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Hot and cold phonons in electrically biased graphene
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Based on first-principles calculations and semiclassical transport theory, we study the nonequilibrium phonon
distribution in graphene in the presence of electrical current. In addition to the hot-phonon effect, we observe
a cooling of phonon modes at the same time. Interestingly, the presence of electric current along the direction
connecting K and K ′ valleys induces an opposite dipolelike temperature distribution in the two valleys and at
the � point. This leads to a “high-order” valley polarization of phonon distribution between K and K ′. Based on
the nonequilibrium phonon distribution, we furthermore study their effect on the lattice parameters and find a
negative current-induced expansion coefficient. Similar to graphene’s negative thermal expansion, this is rooted
in the dominant contribution of out-of-plane acoustic phonons, which do not couple directly to electrons, but
gain energy from in-plane phonons through anharmonic scattering.
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I. INTRODUCTION

Recent interest in two-dimensional (2D) materials has trig-
gered intense study on the interaction between electrons and
phonons and the resulting mutual energy transfer when the
electronic system is driven to nonequilibrium by light [1–5],
electrical current [6–9], or other types of stimuli. A two-
temperature model (TTM) has been widely used to describe
energy transfer between electrons and phonons [10–12],
wherein an effective electronic temperature, different from the
phonon temperature, is normally assumed to describe the state
of the electrons under driving. Later, a multiple temperature
model was proposed to improve the two-temperature model
[13–15] where phonons are divided into groups with different
temperatures. This is especially important in graphene and
other 2D materials [16], where the in-plane and out-of-plane
motions couple weakly and one single temperature is not
enough to describe the phonon subsystem.

However, there are situations where such simple mod-
els are not applicable. First, the nonequilibrium electronic
system may not be described by one single effective tem-
perature, despite the fast electron-electron relaxation process.
Second, electrons may couple preferentially to certain phonon
modes due to different electron-phonon coupling (EPC). For
example, many works have demonstrated the existence of
hot-phonon generation in graphene [8,17–21] and carbon
nanotubes [6,7,22–24], which show weak acoustic phonon
scattering and strong optical phonon scattering. The signature
of hot optical phonons during electron transport can be di-
rectly detected by Raman scattering experiments [8,9,22–24].

A quantitative account of these mode-selective processes
requires detailed information on the band structure of elec-
trons, phonons, and their coupling, which can now be obtained
from first-principles calculations at the density functional the-
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ory (DFT) level [25–32]. In this paper, we use graphene as
a model system to study the mode-resolved nonequilibrium
distribution of a phonon system. We utilize a shifted elec-
tron distribution derived from the semiclassical Boltzmann
transport equation to model current-carrying electrons driven
by a static electric field. We calculate electron-phonon and
anharmonic three-phonon scattering rates from DFT. Using
these data as inputs, phonon rate equations describing each
mode are solved self-consistently. We find highly nonuniform
hot- and cold-phonon distribution (relative to the equilib-
rium temperature) in the Brillouin zone, which depends on
the phonon branch and wave vector. In particular, we find a
dipolelike temperature distribution around the � and K points
for in-plane optical phonon branches which interact strongly
with electrons.

From the nonequilibrium phonon distribution, we study the
current-induced change of the graphene lattice constant. It is
known that the thermal expansion coefficient of graphene in a
wide temperature range is negative due to negative Grüneisen
parameters of the out-of-plane acoustic (ZA) and optical (ZO)
phonons. Here, current-induced heating of the lattice phonon
modes results in a highly nonthermal phonon distribution.
How the lattice constant responses to the nonthermal distri-
bution is not known a priori. Since the ZA and ZO modes
with a negative Grüneisen parameter do not couple directly
to electrons, one may expect lattice expansion due to selec-
tive coupling to in-plane phonons with a positive Grüneisen
parameter. In fact, we find that anharmonic coupling between
in-plane and out-of-plane ZA and ZO phonons results in their
temperature change. Consequently, we still get negative ex-
pansion coefficients with increasing electric field or current.

II. METHOD

From the semiclassical Boltzmann transport equation, we
know that, under a small applied electric field the electron
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distribution shifts along the field direction as

fk = 1

exp{β[εk − (μ + �k )]} + 1
, (1)

where k includes the band index (n), wave vector (k), spin
index (s), εk is the electronic band energy, μ is the chemical
potential without electric field, and β = (kBT )−1 is the inverse
temperature with kB the Boltzmann constant. Here we define
the deviation function �k as

�k = �k(E ) cos θk,E, (2)

where θk,E is the angle between the electron wave vector and
electric field direction, and �k(E ) has a dimension of energy
and is proportional to the magnitude of electric field E . From
the semiclassical transport theory, we have

�k(E ) = −|e|Evkτk, (3)

where e is the electron charge, vk is the electron group ve-
locity, and τk is the relaxation time. Here, due to the linear
dispersion of graphene, the magnitude of group velocity does
not depend on k. If we furthermore ignore the k dependence
of τk near the chemical potential, �k(E ) will not depend on
k. We use this approximation in this work and take �(E ) as a
parameter to characterize the magnitude of the electric field.
For weakly doped graphene, vk ∼ 106 m/s, for τk ∼ 10−12 s,
�(E ) = 1 meV represents an electric field of 1 kV/m. The
corresponding electrical current density is then obtained from
the nonequilibrium distribution j = 2eV0

−1 ∑
k vk fk, where

V0 is the volume of the unit cell and 2 is for the spin degener-
acy.

A. Electron-phonon scattering

The Fermi golden rule can be used to calculate the scatter-
ing rate and phonon linewidth. For electron-phonon scattering
we have

�ep = 4π

h̄

∑

nn′k

∣∣Mλ
nn′ (k, q)

∣∣2
( fk − fk+q)

× δ(εk + h̄ωq − εk+q), (4)

where Mλ
nn′ (k, q) is the EPC matrix element, and ωq is the

phonon frequency of mode q. The branch index λ is included
implicitly in q, and electron spin degeneracy is included in the
coefficient.

There are two types of electron-phonon scattering pro-
cesses, corresponding to phonon emission (k′ → k + q)
or absorption (k + q → k′). Correspondingly, the phonon
linewidth has two opposite contributions,

�ep = Bep − Aep, (5)

where Aep corresponds to the phonon emission process

Aep = 4π

h̄

∑

nn′k

∣∣Mλ
nn′ (k, q)

∣∣2
fk+q(1 − fk )

× δ(εk + h̄ωq − εk+q), (6a)

and Bep corresponds to phonon absorption

Bep = 4π

h̄

∑

nn′k

∣∣Mλ
nn′ (k, q)

∣∣2
fk(1 − fk+q)

× δ(εk + h̄ωq − εk+q). (6b)

B. Anharmonic three-phonon scattering

The phonon linewidth due to anharmonic three-phonon
scattering is written similarly as [33]

�pp = 36π

h̄2

∑

q′q′′
|�−qq′q′′ |2

× [(nq′ + nq′′ + 1)δ(ωq − ωq′ − ωq′′ )

+ (nq′ − nq′′ )δ(ωq + ωq′ − ωq′′ )

+ (nq′′ − nq′ )δ(ωq − ωq′ + ωq′′ )]. (7)

Each term in square brackets above represents a kind of scat-
tering process in which phonon q participates. Similarly, �pp

has two contributions

�pp = Bpp − App, (8)

where App corresponds to the emission of phonon mode q,

App = 36π

h̄2

∑

q′q′′
|�−qq′q′′ |2

× [nq′nq′′δ(ωq − ωq′ − ωq′′ )

+ (nq′ + 1)nq′′δ(ωq + ωq′ − ωq′′ )

+ nq′ (nq′′ + 1)δ(ωq − ωq′ + ωq′′ )], (9a)

and Bpp corresponds to absorption

Bpp = 36π

h̄2

∑

q′q′′
|�−qq′q′′ |2

× [(nq′ + 1)(nq′′ + 1)δ(ωq − ωq′ − ωq′′ )

+ nq′ (nq′′ + 1)δ(ωq + ωq′ − ωq′′ )

+ (nq′ + 1)nq′′δ(ωq − ωq′ + ωq′′ )]. (9b)

C. Rate equation

To consider the effect of applied electric field and gen-
erated electrical current, we take the electron subsystem as
a nonequilibrium reservoir acting on the phonon subsystem.
For the case of a relatively small electric field considered in
this work this approximation should be valid. However, to
consider high-field transport or a strong electron-phonon in-
teraction, the backaction of phonons on the electronic system
should be taken into account, i.e., by solving the electron
and phonon Boltzmann equations self-consistently. This is
a challenging problem that deserves separate study and is
beyond the scope of present paper [34]. Phonons experience
scattering from electrons and other phonon modes simultane-
ously. In equilibrium, the final steady state due to scattering is
the Bose-Einstein distribution. However, when the electrons
are driven to nonequilibrium, the steady state distribution of
phonons also deviates from the equilibrium distribution. It can
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FIG. 1. The flowchart of solving rate equation. MODULE repre-
sents the code added in the PHONO3PY package to calculate App

and Bpp. Note that the phonon wave vector and branch indices are
omitted.

be obtained from the rate equation describing the change of
phonon distribution nq,

∂nq

∂t
= A(nq + 1) − B nq. (10)

Here, A and B include both electron-phonon and three-phonon
scattering,

A = Aep + App, (11)

B = Bep + Bpp. (12)

In steady state, the distribution function does not depend on
time,

∂nq

∂t
= 0. (13)

The distribution function nq can be determined by numeri-
cally solving Eqs. (10)–(13). Since App and Bpp depend on
the distribution of other phonon modes [see Eqs. (9a) and
(9b)], we need to solve them self-consistently. The flowchart
of the numerical procedure is shown in Fig. 1. We can define
an effective temperature Tq for each mode by assuming the
steady state distribution follows the Bose-Einstein form

Tq = h̄ωq

kB ln
(
1 + n−1

q
) . (14)

FIG. 2. (a) Brillouin zone of graphene with typical high-
symmetry points. (b) Electronic band of graphene along a high-
symmetry path. The light blue area shows the energy range ±1 eV
around the Fermi energy. (c) Phonon dispersion relation of graphene.

D. DFT calculation

The electron, phonon band structure, and EPC matrix
elements are calculated using SIESTA [35,36] together with
PHONOPY/PHONO3PY [37,38] and the INELASTICA [39] toolkit.
The Perdew-Burke-Ernzerhof (PBE) version of the gener-
alized gradient approximation (GGA) [40] is used for the
exchange-correlation functional. For structure relaxation, the
k-point grid used in the self-consistent-field (SCF) cycle is
45×45×1. The unit cell is relaxed until the force on each
atom is less than 0.001 eV/Å. We have optimized the origi-
nal code of INELASTICA to improve the numerical efficiency.
The scattering coefficients Aep and Bep in Eqs. (6a) and (6b)
are computed by our own code. For the phonon calcula-
tion, second- and third-order force constants are calculated
using supercells of 9×9×1 and 5×5×1, respectively. The
mesh sampling grid in reciprocal space is 100×100×1 and is
gamma centered. Since the symmetry properties of phonons
in the Brillouin zone are broken by an interaction with the
nonequilibrium electrons, we calculate the phonon linewidth
of all 10 000 q points in the Brillouin zone. In order to obtain
converged results, the sampling of electronic states should be
fine enough. Considering the Pauli exclusion principle and
conservation of energy during electron-phonon scattering, we
use 31 240 k points in two valleys K, K ′ [Fig. 2(a)], which is
equivalent to a density of 1000×1000×1 in the full Brillouin
zone. These k points are within 1 eV near the Fermi level,
indicated by the blue area in Fig. 2(b).

III. RESULTS

A. Phonon linewidth due to electron-phonon scattering

The phonon dispersion relation of graphene is shown in
Fig. 2(c). To calculate the phonon linewidth �ep [Eq. (4)], we

125406-3



MAO, SHANG, AND LÜ PHYSICAL REVIEW B 106, 125406 (2022)

FIG. 3. Phonon linewidth due to electron-phonon scattering
when electrons are in equilibrium with T = 300 K and μ = 0.3 eV.
Yellow hexagons indicate the first Brillouin zone. Note that the ZA
and ZO modes do not couple directly to electrons due to mirror
symmetry about the graphene plane.

set T = 300 K and μ = 0.3 eV above the charge neutrality
point. In experiments, the position of the Fermi level can be
adjusted by gating. The calculated results are shown in Fig. 3.
ZA and ZO modes are not shown since they do not couple
directly to electrons to linear order in phonon displacement.
This is due to the mirror symmetry of graphene about the
2D plane [41]. Our numerical results indeed confirm this
symmetry argument. The other in-plane modes have nonzero
linewidth mainly around � and K . Considering the electronic
band structure in Fig. 2, we can attribute the phonon linewidth
around � and K to intra- and intervalley scattering processes,
respectively. Phonons outside these regions scatter much less
with electrons due to the requirement of energy and crystal
momentum conservation (up to integer multiples of the re-
ciprocal lattice vector). In particular, transverse optical (TO)
and longitudinal optic (LO) modes have the largest linewidth
around �. In addition, TO modes also have a large linewidth
around K . Their linewidth is an order of magnitude larger
than that of transverse acoustic (TA) and longitudinal acous-
tic (LA) modes. These are so-called strong-coupling �-E2g

and K-A′
1 optical modes showing a strong Kohn anomaly in

phonon dispersion [42,43]. This comes as no surprise since
linewidth broadening and frequency renormalization are two
physical effects of the EPC on the phonon properties. For
acoustic branches, we observe that electrons mainly couple
to the LA phonon near K . At the same time, TA and LA have
a relatively weak but comparable linewidth around �.

B. Nonequilibrium phonon distribution
in the presence of electric field

The effective phonon temperature under electrical driving
at �(E ) = 29 and 59 meV is shown in Figs. 4(a) and 4(b).
The nonequilibrium electron subsystem drives phonons away
from equilibrium through electron-phonon scattering. From
their occupation we can assign an effective temperature to
each phonon mode. For all in-plane modes, the deviation from
equilibrium is the most prominent around � and K . This

FIG. 4. Phonon effective temperature distribution under elec-
tronic drive for μ = 0.3 eV, (a) �(E ) = 29 meV and (b) 59 meV.
The direction of applied electric field is indicated by the arrow
in the top-right corner. The temperature in all subplots is relative
to the equilibrium temperature without driving T = 300 K. In the
ZA subplot, the small white circle at the center indicates the heat
reservoir zone where ZA phonon modes are kept at 300 K during
self-consistent calculation.

is consistent with the patterns of the corresponding phonon
linewidth due to the electron-phonon interaction. Interest-
ingly, in the vicinity of � and K , phonons are heated opposite
to the electric field direction and cooled along the direc-
tion. They form dipolelike or even higher-order distribution
patterns. Thus, hot and cold phonons coexist in electrically
biased graphene. Although their electron-phonon coupling is
negligible, ZA and ZO phonons also deviate from equilibrium
considerably. This results from anharmonic phonon-phonon
scattering processes, leading to energy transfer from the in-
plane to out-of-plane phonon modes. Consequently, their
temperature distribution within the Brillouin zone spreads out
more. The corresponding temperature change is also orders of
magnitude smaller than the in-plane modes.

The appearance of cold phonons under electrical drive is
counterintuitive at first sight. For a better understanding of
this phenomenon, we present a detailed analysis in the fol-
lowing. In the equilibrium case, the emission and absorption
of phonons follow the principle of detailed balance. Phonon
occupation is determined by the ratio between Aep and Bep,

Aep

Bep
= e−βq h̄ωq , (15)

with βq = 1/(kBTq). In equilibrium, Tq is the same for all
phonon modes.
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FIG. 5. Heating and cooling of phonons due to scattering with nonequilibrium electrons. (a), (b) Electron hops between k1 and k2,
accompanied by (a) emission and (b) absorption of phonon mode q. Momentum and energy conservation are satisfied during the scattering
process with k1 + q = k2 and εk1 + h̄ωq = εk2. Blue and red lines mark electron or hole occupation before and after electric field is applied.
In (a), fk2(1 − fk1) increases because of applied electric field, leading to the enhancement of the emission rate. In (b), fk1(1 − fk2 ) decreases,
leading to the decrease of the absorption rate. Thus phonon mode q is heated. (c), (d) Similar processes as (a) and (b) lead to cooling of mode
−q. (e) The change of electron chemical potential in each valley. (f) Phonon temperature change around � and K .

However, when there is an external electric field, the sit-
uation is different. Focusing on one type of such scattering
processes, we show in Fig. 5 the physical mechanism leading
to the heating and cooling of phonon modes at the opposite
wave vector. The applied electric field changes the effective
chemical potential of the initial and final electronic states.
This modifies the rate of phonon emission and absorption
processes due to the change of the Fermi-Dirac distribution
function. When the emission (absorption) process is enhanced
(weakened), the corresponding phonon mode is heated. In the
opposite case, the corresponding phonon mode is cooled. The
details are explained in the caption of Fig. 5. The change of
the electron chemical potential in each K valley is shown in
Fig. 5(e). Therefore, we can easily make a schematic diagram
of heating and cooling of phonons around � and K , as shown
in Fig. 5(f). Compared with the results in Fig. 4, our simple
model can qualitatively explain the phonon temperature of
in-plane modes.

Moreover, in the extreme case of Aep = Bep, Tq → ∞,
and when Aep > Bep, Tq is negative. This corresponds to the
negative lifetime indicating phonon instability or the break-
down of the harmonic approximation. A similar effect has
been predicted in molecular junctions [44]. This instability
can be avoided by including anharmonic phonon scattering
and calculating the coupled electron and phonon dynamics
self-consistently. Since here we only consider the case of
relatively weak electrical driving, we do not encounter such
extreme cases.

We have calculated the total energy of each phonon branch
as a function of applied electric field in Fig. 6(a). All phonon
modes gain energy from the electron subsystem, including

ZA and ZO modes that do not couple directly to electrons.
The energy gain of ZA and ZO modes has to be from scat-
tering with other in-plane phonons. Thus, the energy transfer
includes two stages. The first stage involves energy transfer
from electrons to the in-plane phonon modes, especially to
the optical modes. This process is determined by EPC. In
the second stage, the excess energy in the in-plane modes
is further transported to out-of-plane modes via anharmonic
phonon scattering. This two-stage energy transfer process is
similar to that in the laser-pump experiments [17–19,21,45]
and has been noticed in a related theoretical study [46]. Here,
due to the shifted electron distribution, mode-selective heating
and cooling of phonons take place simultaneously.

Importantly, more than 50% of the excess energy is stored
in ZA and ZO modes. This seems odd at first sight. Two
factors are noteworthy to understand this result. First, only LO
and TO modes near � and K/K ′ couple strongly to electrons
and show an obvious temperature change, while almost all
ZA and ZO modes in the Brillouin zone show a temperature
increase. Second, in the temperature range considered here,
the heat capacity of the ZA and ZO modes is much larger
than LA and TA phonon modes. Even though the temperature
change of the ZA and ZO modes is much smaller, the excess
energy stored in them can still be more than other branches.

C. Change of lattice constant due to nonequilibrium phonons

As has been shown by many previous works, the ZA and
ZO modes of graphene have negative Grüneisen parameters
contrary to the rest of the in-plane modes [47–49]. An inter-
esting question to ask is how the graphene lattice constant
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FIG. 6. (a) Change of harmonic phonon energy (per unit cell) �Eharm as a function of electric field parameter �(E ). (b) Dependence of
electric field expansion coefficient β(E ) on �(E ).

changes in response to current-induced heating and cool-
ing. The thermal expansion coefficient α(T ) = V −1∂V /∂T
can be calculated using the Grüneisen theory [49], α(T ) =
(4V0B)−1 ∑

q Cq γq, where B is the bulk modulus, Cq is the
mode heat capacity, and γq is the mode-resolved Grüneisen
parameter. Similarly, we can define an expansion coefficient
induced by electric field,

β(E ) = 1

V

∂V

∂E
. (16)

Similar to α(T ), we calculate β(E ) using

β(E ) = 1

4V0B

∑

q

Cq γq
∂Tq

∂E
. (17)

The Grüneisen parameters are obtained using the PHONOPY-
QHA script [50]. The final results are shown in Fig. 6(b). We
see that all modes but ZA and ZO have positive β(E ). Their
absolute magnitude increases with electric field. Moreover,
we find that the ZA mode contributes dominantly. This is
reasonable since ZA’s Grüneisen parameter is negative and
much larger in magnitude than other phonons in the long-
wavelength limit. Considering all the modes together, we
observe a rather weak dependence of β on E for � < 0.05 eV,
followed by a fast decrease toward the negative side. Thus,
the contribution of the ZA mode remains dominant leading
to negative β(E ), although they do not couple directly to
electrons.

IV. CONCLUSIONS

Taking the current-carrying electron subsystem as a
nonequilibrium bath for the phonon subsystem in graphene,

we have shown that hot and cold phonons are present simul-
taneously in the Brillouin zone. This can be explained by the
opposite change of the Fermi-Dirac distribution of electronic
states along and opposite to the current direction. A flowing
current along the line connecting K and K ′ valleys leads to
the high-order valley polarization of phonons between the two
valleys. From these nonequilibrium distribution functions, we
have shown the current-induced contraction of graphene. The
physical mechanism behind this is attributed to heating of out-
of-plane acoustic and optical phonons, which have negative
Grüneisen parameters. Although they do not couple directly
to electrons, the excess heat of in-plane phonon modes is
transported to the out-of-plane modes with the help of an-
harmonic phonon scattering. We have taken graphene as the
simplest example material. The method used here can be used
to study more complicated anisotropic materials, where more
interesting effects such as angular momentum generation due
to valley polarization may emerge [51–53].

Finally, other consequences of the dipolelike hot- and cold-
phonon distribution may also be expected. For example, one
expects a corresponding phonon heat current flow along or
opposite to the direction of electrical current. This represents
the drag effect of nonequilibrium electrons on phonons. One
can thus study the correction to the Peltier coefficient due
to the electron-phonon interaction based on the results in the
present paper. We will explore this problem in a future study.
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