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Exciton-phonon interaction calls for a revision of the “exciton” concept
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The concept of optical exciton—a photoexcited bound electron-hole pair within a crystal—is routinely used
to interpret and model a wealth of excited-state phenomena in semiconductors. Beside originating subband
gap signatures in optical spectra, optical excitons have also been predicted to condensate, diffuse, recombine,
and relax. However, all these phenomena are rooted on a theoretical definition of the excitonic state based on
the following simple picture: “excitons” are actual particles that both appear as peaks in the linear absorption
spectrum and also behave as well-defined quasiparticles. In this paper, we show, instead, that the electron–phonon
interaction decomposes the initial optical (i.e., “reducible”) excitons into elemental (i.e., “irreducible”) excitons,
the latter being a different kind of bound electron-hole pairs lacking the effect caused by the induced, classical,
electric field. This is demonstrated within a real-time, many-body perturbation theory approach starting from the
interacting electronic Hamiltonian including both electron-phonon and electron-hole interactions. We then apply
the results to two realistic and paradigmatic systems, monolayer MoS2 (where the lowest-bound optical exciton is
optically inactive) and monolayer MoSe2 (where it is optically active), using first-principles methods to compute
the exciton-phonon coupling matrix elements. Among the consequences of optical-elemental decomposition, we
point to a homogeneous broadening of absorption peaks occurring even for the lowest-bound optical exciton ,
and we demonstrate this by computing exciton-phonon transition rates. More generally, our findings suggest
that the optical excitons gradually lose their initial structure and evolve as elemental excitons. These states can
be regarded as the real intrinsic excitations of the interacting system, the ones that survive when the external
perturbation and the induced electric fields have vanished.
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I. INTRODUCTION

The exciton concept is crucial to contemporary condensed
matter physics and materials science, since it allows for a
simple description of the response of the electrons in a crystal
to an external electromagnetic field. In fact, the usual inter-
pretation of spectroscopic experiments states that, when an
electron-hole pair excitation is created in a (semiconducting)
material, the Coulomb interaction will bind the pair creating
an exciton [1].

Excitons and optical spectra. The excitonic picture stems
from the interpretation of optical absorption spectra. Absorp-
tion is linked to the difference between the external field and
the total field inside the material, including the contribution
coming from the induced macroscopic polarization [2]. In
fact, the exciton energies are just the frequencies of the time
oscillation of the induced polarization [3], which in turn is
determined by electronic charge oscillations induced by the
external field. From a theoretical point of view, the excitonic
picture is based on a combination of linear response theory—
involving weak external fields—and many–body perturbation
theory. In the usual treatment this leads to the well–known
and widely used Bethe-Salpeter equation (BSE) [1,2]. The
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computational application of the BSE to a variety of realistic
semiconducting systems has led to crucial advances in the
field of theoretical optical spectroscopy [4,5]. In this paper,
we will refer to excitations created by the interaction with an
external electric field as optical exciton for the sake of clarity1.
When an optical exciton appears inside the electronic band
gap of a material, the exciton is said to be bound (the lowest
bound, optically active exciton thus defines the optical gap of
the system). The strength of the binding depends on several
factors but, in general, it is stronger in systems with wide
optical gaps and low dimensionality due to weak screening
of the electron-hole interaction [6]. Within linear response
theory, excitonic properties are computed in practice via the
Hamiltonian representation of the BSE [1]. When retardation
effects [7] and electron-phonon interaction are neglected it is
in fact possible to rewrite the excitonic state as an eigenstate
of a pseudo-Hermitian matrix [5,8].

Excitons as real particles? Despite the fact that the pseudo-
Hermitian structure of the BSE does not necessarily ensure
that the exciton can be represented as a real bosonic par-
ticle [9], the possibility that these charge oscillations also

1In many-body theory, they correspond to the poles of the so-called
reducible response function [2]. They are also called “singlet” or
“transverse” excitons [83,96] depending on the context.
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correspond to real populations of nonequilibrium bound
electron-hole pairs is highly debated. The question is how
the interplay of the electromagnetic properties and internal
structure of excitons may produce a real population and what
is the role of the electron-phonon interaction in this process.
In a real-particle picture, optical excitons are treated as bosons
weakly coupled by an effective interaction. In the last few
years, several theoretical [10–12] and experimental [13–16]
works have been using the real-particle assumption for op-
tical excitons. The advent of ultrafast physics has made it
possible to investigate in real time the dynamics of photoex-
cited materials, increasing the interest in excitonic physics.
Model calculations [17,18] have boosted the concept of exci-
tons as real particles, providing intuitive interpretations of the
out-of-equilibrium experiments. Within this picture, optical
excitons have been proposed to form, diffuse, relax, scat-
ter and even condensate before recombining [11,12,19–24].
Also using linear-response inspired model Hamiltonians, ex-
citonic features have been predicted to appear in time-resolved
ARPES [12,14,25,26]. This approach has also been used to
formulate an excitonic version of the semiconductor Bloch
equation [27] with the aim of modeling exciton dynamics
in transition metal dichalcogenides (TMDs) [11,12,28,29]. A
relevant feature of this approach is that excitons are treated
in the popular Wannier model [30–32], which describes ex-
citons as a hydrogen-like energy level series stemming from
parabolic electronic bands and having themselves a parabolic
dispersion in reciprocal space. These studies cemented the
very intuitive picture that after photoexcitation, the system
can be described in terms of bound electron-hole pairs, which
are essentially the same as the ones observed in optical
absorption.

The consensus on the optical exciton as a particle picture
is, however, not complete. In the paradigmatic case of MoS2,
for example, it was initially suggested that the observed rapid
raise of the transient absorption signal was due to the ultra-fast
formation of excitons [13], supported by model calculations
based on the excitonic Bloch equations [18]. Smejkal et al.
[33], however, interpreted the very same experimental results
purely in terms of single-body charge migrations and using
ab initio methods. Additionally, it has also been shown that
a perfect bosonization of interacting electron-hole pairs is im-
possible due to their fermionic substructure retaining the usual
indistinguishability and Pauli repulsion properties [34–36].
Finally, a natural consequence of treating optical excitons as
real particles is that the lowest energy optical exciton must
have an infinite lifetime (i.e., vanishing peak linewidth) since
energy conservation does not allow any scattering. The same
situation occurs in the electronic quasiparticle theory where
the electronic linewidth is known to go to zero at the Fermi
level.

The exciton-phonon coupling. The enormous interest in
the excitonic dynamics has made it crucial to investigate the
problem of exciton-phonon coupling. In this case, the main
conceptual approach is again to consider excitons as bosons
described by the BSE Hamiltonian. Indeed, motivated by the
pioneering works of Toyozawa, Segall, and Mahan [37–39],
several authors have extended and upgraded the original
model using many-body theory with the aim of performing
fully first-principles simulations on realistic materials, focus-

FIG. 1. Simple exciton-phonon coupling sketch. The picture we
propose in this work is that the optical excitation is decomposed
into a distribution of elemental excitons—undressed of the Hartree
interaction (i.e., the electron-hole exchange)—by electron-phonon
interactions. This distribution is the real internal structure of the
optical exciton . A remarkable consequence of this picture is that the
lowest energy optical exciton has zero width in a real-particle repre-
sentation, while if written in terms of elemental excitons acquires a
finite, observable energy broadening.

ing on exciton relaxation lifetimes [40], spectral functions
[41], and exciton-phonon sidebands [42,43].

If the optical exciton is assumed to be a well-defined,
boson-like particle, then the phonons can mediate the exciton-
exciton interaction causing, for example, the dressing of the
excitons and finite lifetimes [10,44]. This picture has been
employed to describe phonon-assisted side peaks in absorp-
tion and luminescence spectra [38,41,43,45–48], as well as the
linewidths of exciton peaks [11,37,40,49]. The methodologies
employed in the above references range from parametrized
simple models to tight-binding treatments and fully first-
principles descriptions.

Revisiting the exciton-phonon picture. Despite its success,
the treatment of excitons as real particles remains an un-
derinvestigated assumption. Thus, in this work, we ask the
following question: given that “excitons” and “phonons” are
both excitations dressed by the same electron-electron inter-
actions, is it always sound to treat them as “pristine” particles
that may interact with each other? Or, rather, a proper account
of their internal structures, consistent with the approximations
we generally use to treat electronic interactions, may lead to
a subtler picture? We aim to address this issue by considering
the shaping of the exciton complex by both external light and
lattice vibrations. To this end, we derive a theory describing
the scattering of optical excitons with phonons. In deriving
our theory, we demonstrate that the optical excitons are scat-
tered by the phonons in “elemental” excitons, undressed of
the electron-hole exchange components, thus complicating
the original simpler picture.2 A graphical summary of this
statement is presented in Fig. 1. A possible consequence is
that optical excitons, as defined in photoabsorption, may not
provide a suitable basis to describe excited-state dynamics
and excitonic lifetimes, as well as to calculate phonon-assisted

2In this paper, we use the term elemental excitons for simplicity.
These states correspond, in many-body theory, to the poles of the
irreducible response function and hence may also be called irre-
ducible excitons. They also correspond to the “triplet” [81] or “Ising”
excitons [58] in spin-polarized systems.
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optical properties, especially in materials where electron-hole
exchange interaction is large with respect to the excitonic
binding energy. In order to explore this possibility, we perform
fully first-principles exciton-phonon numerical simulations in
monolayer MoS2 and MoSe2 with the goal of comparing the
standard “real-particle” approach with the one proposed here.
In particular, we show how optical excitons are decomposed
in a packet including a large number of elemental excitons
and how the homogeneous linewidth of even the lowest-bound
optical exciton peak may be nonvanishing, according to our
picture of exciton-phonon interaction. We provide a lower-
bound estimate for these linewidths.

The paper is organized as follows. In Sec. II, we intro-
duce the many-body electronic Hamiltonian and the optical
response function describing absorption, and in Sec. III, we
derive a generalized Bethe-Salpeter equation to account for
“optical” or “elemental” excitonic properties. This is fol-
lowed in Sec. IV by a discussion of the difference of the
two pictures with ab initio results for monolayer MoS2 and
MoSe2. The exciton-phonon coupling problem is introduced
and worked out theoretically in Sec. V. Computational results
for exciton-phonon coupling matrix elements and linewidths
involving optical and elemental excitons in MoS2 and MoSe2

are reported in Sec. VI, which is followed by a discussion in
Sec. VII. The main text is complemented by four appendices,
including one reporting the full computational details.

II. EXTERNAL FIELDS AND THE EXCITON DEFINITION

The state-of-the art definition of optical exciton is based
on the linear response of the interacting electron density to an
external electromagnetic perturbation, which is described by
the Bethe-Salpeter equation, used in standard first-principles
calculation of optical absorption spectra [1,2,5]. As before,
we will refer to this equation as optical-BSE, in order to
keep it distinguished from the elemental-BSEdescribing the
elemental excitons.

We follow the real-time approach of Refs. [3,50,51]
in which our subsequent extension including dynamical
electron-phonon interactions will also be formulated. Let us
consider the Hamiltonian of the electronic system perturbed
by a scalar external potential Uext. We assume a purely longi-
tudinal gauge with no external vector potentials:

Ĥ (t ) = Ĥe +
∫

drρ̂(r)U ext (r, t ), (1a)

Ĥe =
∑

i

ĥi + Ŵe-e + V̂e-ion. (1b)

In Eq. 1(a), Ĥe is the electronic Hamiltonian which includes
the electron-electron (Ŵe-e) and the bare electron-ion (V̂e-ion)
interactions. U ext represents the total time-dependent per-
turbation, which embodies the experimental field and the
macroscopic part of the field induced in the material.

It is essential to note that, in Eq. (1), V̂e-ion is not assumed
to be screened from the beginning, as done in the previous
works [40,41]. It has been, indeed, demonstrated [52] that
such an assumption implies double-counting problems that
can be avoided only by screening dynamically V̂e-ion along
with the solution of the BSE.

In Eq. (1), we have also introduced the electronic density
operator ρ̂(r) and the single-particle Hamiltonian ĥi. Let us
also mention the electron Green’s function G(r1t1, r2t2) as-
sociated with this Hamiltonian and recall that the density is
given by ρ(rt ) = 〈ρ̂(r)〉 = −iG(rt, r+t+). By using diagram-
matic methods the effect of Ŵe-e and V̂e-ion is translated in
a self-energy potential �, which appears in the equation of
motion for G, as we will discuss shortly. � is comprised of
the classical Hartree interaction,

V H (r, t ) =
∫ ′

dr′ρ(r′, t )v(r, r′), (2)

where v(r, r′) is the bare Coulomb potential, plus an exchange
and correlation part treatable at different levels of approxi-
mation [3]. The induced potential is actually the macroscopic
average of V H and we include it by definition in U ext. Thus
the integral in Eq. (2) runs only on the spatial microscopic
components. More details about this choice are provided in
Appendix A.

The variation of the density with respect to the external
field within linear order defines the electronic, optical re-
sponse function χopt:

χopt (r1t1, r2t2) = δρ(r1, t1)

δU ext (r2, t2)

∣∣∣∣
U ext=0

. (3)

Optical excitons are the poles of the Fourier transform of
χopt with respect to the time difference. A key property of
Eq. (3) is the appearance in the denominator of U ext, which
is a macroscopic field and the one that can be experimentally
observed. This has a crucial impact on the definition of the
optical excitons.

Let us now consider a hypothetical experimental apparatus
able to also detect all the microscopic variations, induced by
light absorption, of the total potential U tot = U ext + V H . This
corresponds to having an electric field detector with a spatial
resolution tinier than the unit cell size of the system. As a
consequence, in this case, the experimental observable would
be described by a different response function, that we denote
elemental and that is defined as

χ el(r1t1, r2t2) = δρ(r1, t1)

δU tot (r2, t2)

∣∣∣∣
U ext=0

. (4)

Equations (3) and (4) emphasize that the definition of exciton
as an observable is determined by the measure process.

III. THE GENERALIZED BETHE-SALPETER EQUATION

Given the definitions Eqs. (3) and (4) the corresponding
optical and elemental BSEs can be easily derived by neglect-
ing the electron-phonon interaction and using the nonlocal
Hartree plus screened exchange (HSEX) scheme [1] in which
� is written as the sum of the classical, mean-field Hartree
term V̂H with the statically screened exchange interaction em-
bodied in the “mass” term M̂SEX:

MSEX(r1, r2, t ) = iG(r1t, r2t+)W (r1, r2). (5)

Here W = ε−1
H v is the screened Coulomb interaction and the

static screening ε−1
H is calculated in the Hartree (also called

random phase, RPA) approximation [1].
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In the following, we will first introduce a convenient ba-
sis to write the Dyson equation. We will then derive from
the Hedin’s representation of the mass operator a general-
ized Bethe-Salpeter equation for the three-point electron-hole
propagator. From this general equation, we will derive the
optical-BSEand elemental-BSE. Equipped with the two Bethe
Salpeter equations, we resume our discussion of optical vs el-
emental excitons—leading to the problem of exciton-phonon
coupling—in Sec. IV.

A. Dyson’s equation in a generalized basis

The electronic Green’s function (GF) G(r1t1, r2t2) cor-
responding to the Hamiltonian Eq. (1) satisfies the Dyson
equation for the single-particle Green’s function [53]

G(r1t1, r2t2) =
∫

dr3r4dt3t4G0(r1t1, r3t3)[δ(t2, t3)

× δ(r2, r3) + �(r3t3, r4t4)G(r4t4, r2t2)].
(6)

The exact self-energy � corresponding to Eq. (1) has been
derived, among others, in Ref. [54]:

�(r1t1, r2t2) = M(r1t1, r2t2)

+ V H (r1, t1)δ(t1, t+
2 )δ(r1, r2), (7)

with

M(r1t1, r2t2) = Me-e(r1t1, r2t2) + Me-p(r1t1, r2t2). (8)

In Eq. (8), Me-e and Me-p are, respectively, the electron-
electron (e-e) and the electron-phonon (e-p) terms. The
approximated mass operator used in this work will be de-
scribed later. We first want to derive some exact properties
of the response function. We start by introducing a convenient
single-particle representation:

G(r1t1, r2t2) =
∑

i j

φi(r1)φ j (r2)Gi j (t1, t2), (9)

with {φi(r)} a suitable complete basis (i represents a generic
electronic band and k point). Thanks to Eq. (9) we can rewrite
Eq. (6) in a compact form using a matrix notation

G(t1, t2) = G0(t1, t3)[δ(t3, t2) + �(t3, t4)G(t4, t2)]. (10)

Quantities that depend on two electronic indices are repre-
sented as matrices [O]i j . In the following, more convoluted
objects depending on four indices will appear. In this case, we
will represent them as tensors: [ O ]i j

kl
. The conventions used

to represent tensorial operations are defined in Appendix B.
The Einstein convention (assuming all repeated indices to be
summed) is also implied.

B. The generalized Bethe-Salpeter equation

In the single-particle basis representation, all response
functions are tensors of rank 2. In particular, we can define
a generalized two-particle Green’s function

Lη
i j
kl

(t1, t2; t3) ≡ δGi j (t1, t2)

δηkl (t3)
. (11)

Equation (11) is easily connected to the optical/elemental
response functions. Indeed, by definition

χopt/el(t1, t2) ≡ −i Lη(t1, t+
1 ; t2)

∣∣
η=U ext/U tot

. (12)

Therefore in Eq. (11) η is an arbitrary field that, later, we
will assume to correspond to U tot or U ext. We can work out
Eq. (11) by differentiating Eq. (9)

δG(t1, t2)

δη(t3)
= G0(t1, t4)

[
�(t4, t5)Lη(t5, t2; t3)

+ δ�(t4, t5)

δη(t3)
G(t5, t2)

]
. (13)

We now need to calculate δ�(t4,t5 )
δη(t3 ) . By using the Dyson equa-

tion and the chain rule we get

δ�(t4, t5)

δη(t3)
= G−1(t4, t6)Lη(t6, t7; t3)G−1(t7, t5). (14)

We see that the equation for Lη can be closed:

Lη(t1, t2; t3) = G(t1, t3)δ G(t3, t2) + G(t1, t4)

× [	(t4, t5; t6, t7) + Kη(t4, t6)δ(t4, t5)δ(t6, t7)]

× Lη(t6, t7; t3)G(t5, t2). (15)

In Eq. (15), we have introduced the tensorial delta function
[δ]i j

kl
= δikδ jl and

	(t4, t5; t6, t7) ≡ δM(t4, t5)

δG(t6, t7)
, (16a)

Kη(t4, t6) ≡ δ(U tot (t4) − η(t4))

δG(t6, t6+ )
. (16b)

Equation (15) represents the generalized BSE and it allows to
connect any self-energy � to the equation of motion for the
two-particles Green’s function L.

C. Optical and elemental Bethe-Salpeter Equations

The optical (or reducible) BSE is obtained when η(r, t ) ≡
U ext (r, t ) and the electronic self-energy is approximated with
the SEX expression neglecting electron-phonon effects. In this
case,

Me-e
i j (t1, t2) ≈ iδ(t2, t+

1 )Wi j
kl

Gkl (t1, t+
1 ), (17)

where we defined

Wi j
kl

≡
∫

dr1r2φi(r1)φk (r1)W (r1, r2)φl (r2)φ j (r2). (18)

It follows that

Kopt (t4, t6)i j
kl

= −iV H
ik
jl

δ(t4, t6), (19a)

	(t4, t5; t6, t7)i j
kl

= iδ(t1, t2)δ(t4, t3+ )Wi j
kl
. (19b)

Here the repulsive term Kopt is determined by the microscopic
components of the Hartree interaction, i.e., by the local field
effects. This term is also known as electron-hole exchange
because it swaps electron and hole indices with respect to
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	, which is known instead as the direct or binding term.
In this case, Eq. (15) is closed in the space of two times,
Lopt (t1, t2) ≡ L(t1, t+

1 ; t2), and

Lopt (t1, t2) = G(t1, t2)δ G(t2, t1)

+ iG(t1, t3)[W − V H ]Lopt (t3, t2)G(t3, t1). (20)

The same procedure can be applied to derive the elemental
(or irreducible) BSE which corresponds to taking η(r, t ) ≡
U tot (r, t ), from which follows Kel = 0. In this case, then, we
have

Lel(t1, t2) = G(t1, t2)δ G(t2, t1)

+ iG(t1, t3)W Lel(t3, t2)G(t3, t1). (21)

The last step we need is to connect the Lopt/el to the diagonal-
ization of the Bethe-Salpeter Hamiltonian, which is used in
practice to compute exciton energies and wave functions. The
procedure is outlined in Appendix C and leads to the definition
of

Hopt
i j
kl

= δikδ jl (εi − ε j ) − ( f j − fi )
(
Wi j

kl
− Kopt

i j
kl

)
. (22)

Here again we see that, in the case of optical excitons, the
repulsive term Kopt is given by the microscopic part of the
total field inside the material. It is this purely electrostatic
contribution which defines the optical exciton .

The two-particles Green’s function relative to elemental
excitons has the same form as above, but now only W appears
in the definition of the excitonic Hamiltonian Hel:

Hel
i j
kl

= δikδ jl (εi − ε j ) − ( f j − fi )Wi j
kl
. (23)

It is essential to observe that both W and Kopt are, in general,
pseudo-Hermitian matrices [8] and, therefore, even if their
eigenvalues are real the left and right eigenvectors are differ-
ent [9]. We assume here that Hel/opt are strictly Hermitian,
so that once diagonalized we can finally write Lopt/el in an

excitonic representation. By calling Eopt/el
λ the eigenvalues of

Hopt/el, we have that

Lopt (ω) =
∑

λ

1

ω + i0+ − Eopt
λ

, (24a)

Lel(ω) =
∑

λ

1

ω + i0+ − E el
λ

. (24b)

The picture that follows from the Hamiltonian representation
of the BSE is simple: an optical/elemental exciton is a super-
position of electron-hole pairs weighted by the eigenvectors of
the excitonic Hamiltonian, whose components we call Aopt/el

λ :

|λopt/el〉 =
∑

i j

Ai j,opt/el
λ |i〉 ⊗ | j〉. (25)

IV. ABSORPTION SPECTRA: OPTICAL AND ELEMENTAL
EXCITONS

The differences between optical excitons and elemental
excitons states are analyzed in detail in Fig. 2 for two paradig-
matic TMDs: monolayer MoS2 (upper panels) and monolayer
MoSe2 (lower panels). Naturally, the strength and role of the

matrix elements of Kopt are of particular interest to us. Since
this is a repulsive contribution, lowering the binding energy
of the excitons, χ el may have in general more tightly bound
excitons than χopt. Furthermore, the strength of the excitonic
coupling with light is also affected, since it depends on the
exciton wave functions.

Optical absorption is connected to the imaginary part of
the macroscopic dielectric function εM , which is given by the
q → 0 limit of the response function χ [2,5]:

Imε
η
M (ω) ∝ Im lim

q→0
χη(q, ω) =

∑
λ

∣∣∣∣∣
∑

i j

Ai j,η
λ di j

∣∣∣∣∣
2

δ
(
ω − Eη

λ

)
.

(26)

Here, di j is the optical matrix element for the light-induced
electronic transition between states i and j, calculated in the
dipole approximation.

In Figs. 2(a) and 2(b), the absorption spectra of the two
kinds of excitons are shown. The red region corresponds to
the absorption from elemental excitons, while the blue region
from optical excitons. Each bright exciton also has a dark
companion, shown with a black vertical line, in which Kopt =
0 always because of the opposite spin polarization of electron
and hole [55–57]. Thus dark states always coincide in both
the optical and the elemental cases. Conversely, the energy of
the bright states changes and shifts downwards. In particular,
the B exciton in MoS2 and the A exciton in MoSe2 both
slide below the energy of their dark companions. The latter
case is notable because it means that in MoSe2, the lowest
optical-BSEstate is dark, whereas the lowest elemental-BSEis
bright. The energy difference between the corresponding op-
tical and elemental states are �MoS2 A = 16 meV, �MoS2 B =
22 meV, and �MoSe2 A = 19 meV. Their intensity also notice-
ably changes, with Kopt accounting for a large increase of the
B exciton with respect to the A one in MoS2, while in the
elemental case they have almost the same intensity [58].

The relationship between optical and elemental excitons
can be further elucidated by looking at the decomposition of
one type into the other, defining the projections

Bνel

λopt =
∑

i j

Ai j,el
ν Ai j,opt

λ = 〈νel|λopt〉. (27)

In Figs. 2(c) and 2(d), we report the calculated projections
(values of |Bνel

λopt |) of the lowest-bound optical excitons onto
the elemental excitons of MoS2 (c) and MoSe2 (d). In the
case of MoS2, there are two bound states (A and B) while
in MoSe2 only A. Let us first look at the inset in Fig. 2(c);
here we see that despite the A and B excitons of MoS2 being
formed by different eletronic transitions (the difference is due
to spin-orbit coupling), they both partially decompose onto
each other: the A optical exciton has a sizable component
onto the B elemental exciton and vice versa. This was already
noted in Ref. [58]: however, the decomposition shown in the
inset only accounts for 30% of the projection components,
as can be evinced by looking at the complete figure which
includes up to 450 elemental excitonic states. A large number
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FIG. 2. Optical and elemental excitons compared in the case of monolayer MoS2 (top) and monolayer MoSe2 (bottom). [(a) and (b)]Optical
(blue) and elemental (red) spectrum. The black vertical lines represent the dark states, while the peak “A” and “B” labels represent the
established names for the relative bright peaks in the literature. In the insets showing the lattice geometry the gray balls represent Mo atoms,
the yellow (green) ones represent S (Se) atoms. A set broadening parameter of 10 meV was used for the peaks. [(c) and (d)] Projections
(normalized) of A and B optical excitons onto the elemental excitons [see Eq. (27)]. The projections of the A (B) optical excitons are shown in
orange (teal). The inset shows a zoom around the low-lying dark (D1, D2) and bright (A, B) states of MoS2 (they are all doubly degenerate).
[(e) and (f)] Exciton dispersion curves. Full lines and circles: optical excitons (including Kopt-driven degeneracy splittings). Dashed lines and
diamonds: elemental excitons. The orange (teal) lines track the dispersion of the A (B) excitons. Black lines follow the dispersion of the dark
states. The red shaded regions marks the energy-allowed region for the exciton-phonon scattering of the A exciton at � (one Debye energy).

of exchange-less excitonic states, much higher in energy than
the A and B ones, have nonzero projections with the optical
A and B states, accounting for the remaining 70% of the
strength. This suggests that a large distribution of (elemental)
states may play a role in the processes of optical-elemental
scatterings and exciton dynamics. The same is true in the case
of the A exciton in MoSe2.

In Figs. 2(e) and 2(f), we report the exciton disper-
sions obtained by solving the optical-BSE(full lines) and
elemental-BSE(dashed lines) at finite momenta. These states,
not observable with optical light [15], correspond to electronic
transitions in which the electron momentum k and the hole
momentum k′ differ as k − k′ = q. The plots are made close
to q = 0 (�) and along the direction �M in the hexagonal,
two-dimensional BZ of these systems. We see that the bright
A (orange color) and B (teal color) excitons, as well as their
dark companions (black color), are doubly degenerate states.
In particular, in addition to the energy shifts between optical
and elemental bright excitons, we see that the presence of the
Hartree contribution in the optical case causes a splitting of the
bright excitons at finite momentum, something that is com-
pletely absent in the elemental case. Moreover, Kopt causes
the higher energy split state to have a linear behavior with
respect to |q|—something that is well-known in the literature
[55,59]—instead of the parabolic dispersion typical of W ,
which appears for all other states. If we consider for example
the A excitons at �, we know that the scattering to finite-q

states mediated by one phonon can take place in an energy
window with the size of the Debye energy (59 meV in MoS2,
50 meV in MoSe2 according to our ab initio calculation). This
window is shown by the red shaded region: we can clearly see
how, depending on the kinds of initial and final excitonic states
to be considered in our exciton-phonon description, the scat-
tering dynamics may be quite different. This is particularly
relevant because the intraband, low-q scattering mediated by
acoustic phonons is predicted to account for a large part of the
excitonic homogeneous linewidths [60,61].

V. THE EXCITON-PHONON SCATTERING

Several different theoretical approaches to the derivation
of exciton-phonon coupling for computational purposes are
available in the literature [40,41,43]. All current approaches
share the conceptual basis of the pioneering modellistic
works of Toyozawa [37,39] and Segall, Rudin, and Mahan
[38,45]. This theory is based on three core assumptions:
optical excitons and elemental excitons are the same, the
excitonic Hamiltonian representation is taken as granted and
the electron-phonon interaction appearing in the Hamiltonian
is screened from the beginning.

By assuming that only one kind of excitons η exists, this
theory also assumes Hη to be a physical Hamiltonian. The
eigenvectors of Hη are then used to define excitonic cre-
ation and annihilation operators [B̂η

λ]† and B̂η

λ, while Hη is
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rewritten as

Ĥη ≈
∑
αq

Eη
αq

[
B̂η

αq

]†
B̂η

αq. (28)

An additional, crucial—and strong [34–36]—assumption in
Eq. (28) is that excitons are good bosons in the sense that they
satisfy bosonic commutation relations.

Now, by analogy with the electronic case, this bosonized
treatment introduces exciton-phonon interaction into Eq. (28)
in the form

Ĥη
e-p =

∑
αα′μqq′

Gμq′
αα′q(b̂μq′ + b̂†

μ−q′ )
(
B̂η

α′q+q′
)†

B̂η
αq. (29)

This term represents the η-exciton-phonon interaction with
b̂μ being the phonon destruction operator for the phonon of
branch μ and momentum q′. The crucial quantity in Eq. (29)
is the exciton-phonon coupling matrix element Gμq′

αα′q.
Clearly Eq. (29) makes sense only if it is possible to

demonstrate that the case η = opt involves only optical ex-
citons. We will demonstrate in the next section that this is,
actually, not possible. Moreover a crucial consequence of
Eq. (29) is that the Fermi golden rule predicts the excitonic
linewidths, γαq, of the state α with momentum q to have the
form

γαq ∝
∑
μβq′

∣∣Gμq′
αβq

∣∣2
δ
(
Eopt

αq − Eopt
βq+q′ ± �μq′

)
. (30)

Equation (30) has been used, for example, in Refs. [40,41] and
predicts the lowest optical exciton to have zero width.

Below, we will outline a derivation of the exciton-phonon
coupling starting from the electronic Hamiltonian, Eq. (1),
with electron-phonon interactions explicitly included from the
start. This will allow us to overcome several of the assump-
tions underpinning the “bosonized” excitons model.

A. The vertex function

The exact [54] electron-phonon self-energy is

Me-p
i j (t1, t2) = i

∑
μ

Glm(t1, t3)

× (
�el(t3, t2; t4)Dμ(t4, t1)

)
m j
il

. (31)

Equation (31) is written in the reference single parti-
cle basis defined in Eq. (9), G is the single-particle GF,
while D is the dressed phonon propagator and �el is the
elemental/irreducible vertex function, given by

Dμ
i j
kl

(t1, t2) = gμ

ik (t1)Dμ(t1, t2)gμ

l j (t2), (32a)

�el
m j
np

(t3, t2; t4) = −δGm j (t3, t2)

δU tot
np (t4)

. (32b)

In Eq. 32(a), gμ(r, t ) is the dressed and time-dependent
electron-phonon interaction along the phonon normal mode
direction μ. Here we calculate it with state-of-the-art first-
principles density functional perturbation theory (DFPT),

(a)

Dµ

(b)

W
Dµ

Lel

FIG. 3. Diagrammatic decomposition of the Me-p mass operator
in terms of elemental electron-hole Green’s function. (a) The well-
known Fan-Migdal self-energy (Me-p reduces to this when �el = δ).
The straight (curly) line represents the electronic (phononic) GF
and the filled box (�) is the dressed e-p coupling matrix element
g from Eq. (33). (b) Vertex part of the self-energy from Eq. (36):
this is the driving mechanism of the exciton-phonon coupling as
explained the text. The vertex function is written in terms of the
elemental/irreducible excitonic propagator Lel and the statically
screened electronic interaction W (wiggly line).

where the matrix elements are given by [62]

gμ
i j (t ) ≈ gμ

i j = 1√
2�μ

∫
d3r1r2φi(r1)

× ε−1
Hxc(r1, r2)∂μ

∣∣
eq Ve-ion(r2)φ j (r1). (33)

In this expression, �μq are the “adiabatic” phonon frequencies
that may be computed in DFPT and are already renormalized
by the static VH + Vxc interaction, {φi(r)} are the Kohn-Sham
eigenfunctions of the DFT electronic problem, and finally
ε−1

Hxc is the static dielectric function again describing the
screening of lattice vibrations by the interacting electronic
system. In Fig. 3, the dressed g is represented by the filled
box (�).

The GF appearing in Eq. (32) is the exact one, solution
of Eq. (9) with self-energy including Me-p. This is a self-
consistent problem requiring a resummation to all orders the
e-e and e-p interactions. Here we are interested, however, in
the lowest order exciton-phonon scattering. This is consistent
with ab initio approaches based on the Debye-Waller plus
Fan-Migdal approximations [62].

In the present context, we can linearize Eq. 32(b) by ap-
proximating the G appearing on the r.h.s. with the electronic
one, solution of the Dyson equation within the SEX approx-
imation. This is a crucial approximation as it corresponds
exactly to the excitonic vertex:

�el
i j
kl

(t3, t4) ≡ δMSEX
i j (t3)

δU tot
kl (t4)

. (34)
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A key step now is to rewrite �el in terms of the excitonic
propagator. Indeed, by using Eqs. (17) and (11), we get

�el
i j
kl

(t1, t2) = δikδ jl + iW ik
mn

Lel
mn
kl

(t1, t2). (35)

Thanks to Eq. (35) the e-p mass operator can be finally rewrit-
ten in terms of Lel:

Me-p
i j (t1, t2) = i

∑
μ

Glm(t1, t3)[(δδ(t2 − t4)

+ W Lel(t2, t4))Dμ(t4, t1)]m j
il

. (36)

Equations (31) and (35) are essential ingredients of our the-
ory and require further discussion. The diagrammatic form
of Eq. (31) is shown in Fig. 3. It is already clear that the
appearance of Lel, via Eq. (35), in Me-p, will play a crucial
role in the following of the theory. The question is, then, if it
were possible to define Me-p in terms of Lopt. The answer is no
and the reason is that the V̂e-ion potential appearing in Eq. (1) is
bare, by definition. The phonon propagator calculated within
state-of-the-art, first-principles DFPT is defined in terms of
the screened variation of the ionic potential, as seen before.
The inverse dielectric function appearing in Eq. (33) is, in
DFPT, approximated with the static DFT inverse response
functions. As discussed in Ref. [52] the dressing of Ve-ion

absorbs the exchange scatterings from the vertex function and
this is the reason why in Eq. (31) the elemental vertex appears.

B. The exciton-phonon kernel

Equation (35) connects the e-p mass operator to the ele-
mental excitonic GF. This is a key property that permits to
calculate correctly the exciton-phonon interaction. The next
step now is to link Me-p to the optical-BSEand its associated
response function. To this end we go back to the two-times
electron-hole GF,

Lopt
i j
kl

(t1, t2) ≡ δGi j (t1, t+
1 )

δU ext
kl (t2)

, (37)

and to its corresponding response function χopt (t1, t2) ≡
−iLopt (t1, t2). The equation of motion for Lopt can be derived
with the Schwinger approach, i.e., by using the functional
derivatives to manipulate Eq. (37), exactly as we did for the
time-dependent generalized BSE in Sec. III [3].

This procedure, along with the help of Eqs. (36) and (16),
leads to the e-p contribution to the generalized BSE kernel.
Indeed, we have that

	(t4, t5; t6, t7) = 	e-e(t4, t5; t6, t7)

+	e-p(t4, t5; t6, t7) (38a)

and

	e-e(t4, t5; t6, t7) = iδ(t1, t2)δ(t4, t3+ )W , (38b)

the last line being the same as that of Eq. (19) already obtained
in the previous Section. 	e-p can then be also obtained by
functionally deriving Eq. (36) with respect to G. We see that
Me-p depends on G via Glm, W , Lel, and D.

We now adopt the usual approximation used to derive
the optical-BSE, where δW /δG is neglected. In addition we

(a)

Dµ

(b)

W

Dµ

Lel

FIG. 4. The two terms contributing to 	e-p|G, Eq. (40). Note
that diagram (b) represents a renormalization of the electron-phonon
vertex.

assume that the phonon propagator is calculated with DFPT,
which implies that also δD/δG = 0. Those approximations do
not alter the main finding of this section.3

We are left, therefore, with two terms

	e-p(t4, t5; t6, t7) = 	e-p(t4, t5; t6, t7)
∣∣
G

+ 	e-p(t4, t5; t6, t7)
∣∣
L
. (39)

The first term of Eq. (39) is easy to evaluate

	
e-p
i j
kl

(t1, t2; t5, t6)|G

= i
∑

μ

[(δδ(t2 − t4) + W Lel(t2, t4))Dμ(t4, t1)]l j
ik

(40)

and is graphically represented in Fig. 4. From the dia-
grammatic representation we see that 	e-p|G, physically,
corresponds to a free electron-hole pair exchanging a phonon
lines. It is, in practice, a phonon-mediated electron-hole
scattering term. This scattering occurs at the level of free

3Indeed, even by performing the two neglected functional deriva-
tives it is possible to show that they lead to the renormalization of the
electron-phonon and electron-electron interaction. In diagrammatic
language, this means that they produce diagrammatic geometries that
can be reduced with respect to a W and/or D internal propagator.
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W

l

Dµ

Lel

Lel

t4

t1

FIG. 5. Graphical representation of the most important diagram
contributing to the exciton-phonon kernel. This arises from the
change in the elemental exciton GF and it splits Lel in two terms. One
recreates the internal exciton (four point function) while the other
dresses the e-p interaction.

electron-hole pairs via a DFPT e-p interaction potential,
Fig. 4(a), and with a renormalized interaction caused by
the exciton-level electron-hole scatterings embodied in Lel,
Fig. 4(b).

The second term of Eq. (40) to be calculated is 	e-p|L. This
corresponds to the functional derivative of Lel with respect to
G. In order to proceed we observe that, by definition,

δLel(t2, t4)

δG(t5, t6)
= Lel(t2, t7)

δ[Lel(t7, t8)]−1

δG(t5, t6)
Lel(t8, t4). (41)

In order to calculate δ[L]−1

δG , we notice that from the equation of
motion for Lel, Eq. (21), it follows that

[Lel(t7, t8)]−1 = (G(t8, t7)δG(t7, t8))−1 − iW . (42)

Hence, it also follows that

δLel(t2, t4)

δG(t5, t6)
= Lel(t2, t7)[L0(t7, t6)]−1[δ G(t6, t5)

+ G(t6, t5)δ][L0(t5, t8)]−1Lel(t8, t4). (43)

Equation (43) may appear complicated but it actually encodes
in mathematical form a simple diagrammatic procedure. In-
deed, the convolution of Lel with [L0]−1 corresponds to the
action of removing the last free electron-hole pair propagator
from the series of diagrams that build Lel. In this way we get
the final form of 	e-p|L:

	
e-p
i j
kl

(t1, t2; t5, t6)|L

= iGnm(t1, t2)

[
Wm j

pq

δLel
pq
rs

(t2, t4)

δGkl (t5, t6)
Dμ

rs
in

(t4, t1)

]
. (44)

Equation (44) leads to two contributions. The first is repre-
sented in Fig. 5 while the second corresponds to the dressed
electron-phonon scattering at time t4 to be positioned on the
upper right propagator (index l in the figure) instead that on
the lower right one.

The diagrams we have derived in this section correspond
to the so-called “left” mass-operator [2], shown in Fig. 3.
Actually, in order to obtain the complete kernel of the BSE,
we need to apply the same procedure to the right (or adjoint)
mass-operator. The difference with Eq. (31) is that the vertex

�el appears on the left side of the diagram, with one leg at time
t1. The derivation is exactly the same as we have already done,
the only change being the reflection of the “left” diagrams
with respect to the central time. In this way, we obtain four
contributions to 	e-p|L.

An additional crucial approximation that we need to reach
the final form of the 	e-p is to neglect all internal dressings
of the e-p vertexes. The physical motivation is that the DFPT
approach already embodies a correlation contribution due to
the DFT exchange-correlation kernel and in order to avoid
double-counting errors the �el renormalization must be ne-
glected. Mathematically this correspond to assume in Figs. 4
and 5 �elDμ ≈ Dμ and to replace the interaction at time t4 in
Fig. 5 with a plain dressed vertex (�). At the same time this
approximation corresponds to taking only the diagram (a) of
Fig. 4.

Ultimately, if we now sum 	e-p|G + 	e-p|L we finally get
the final result that is shown diagrammatically in Fig. 6. We
note that in order to rebuild the full L, the diagrams Figs. 6(b)
and 6(d) are to be summed with the diagram Fig. 4(a) and its
adjoint.

The final step is to move from time to frequency domain.
By using the Feynman diagrams “cutting” techniques intro-
duced in Refs. [7,43], it is possible to demonstrate that the
Generalized BSE acquires the form

Lopt (ω) = L0(ω){1
+ i(W − V H ) + 	e-p[Lel](ω)}Lopt (ω). (45)

Equation (45) is the main result of this work. The 	e-p kernel
is a functional of the elemental excitonic propagator. This is
a key property overlooked by previous attempts at deriving a
theory of exciton-phonon coupling [40,41].

Equation (45) demonstrates what could already be ex-
pected from the form of Me-p: the optical exciton-phonon
interaction should be written in terms of elemental excitons.
This is not a consequence of the specific diagrammatic form
of the mass operator but it is an intrinsic property of bound
electron-hole pairs in a many-body treatment.

VI. EXCITON-PHONON IN PRACTICE

We can now rotate Eq. (45) in the optical excitons basis
composed by the states |λ〉opt with energy Eopt

λ to get

Lopt
λ1λ2

(ω) = Lopt
λ1

(ω)|HSEX[δλ1λ2

+ �λ1λ3 (ω)Lopt
λ3λ2

(ω)], (46)

with

�λ1λ2 (ω) =
∑
νμ

Gμ

λ
opt
1 νel

Gμ

λ
opt
2 νel

ω − E el
ν − �μ − i0+ (47)

being the exciton-phonon self-energy. In Eq. (47), we have
defined the optical-elemental phonon-mediated scattering
potential

Gμ

λoptνel ≡
∑
i jl

(
Ai j,opt

λ Ail,el
ν gμ

jl − Ai j,opt
λ Al j,el

ν gμ

il

)
. (48)
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FIG. 6. Final form of the exciton-phonon kernel. This is composed by four diagrams corresponding to the different possible geometries of
the phonon scattering.

Equation (48), which differs from the commonly employed
optical-optical version of the scattering potential, is the central
result of this work for computational purposes. It shows that
lattice vibrations can distinguish between total and external
fields when coupling to electronic excitations.

In order to complement these equations and remarks with
numerical analysis, we consider the excitonic self-energy to
be diagonal. In addition, it is useful to rewrite the self-energy
and the coupling matrix element exposing their momentum
structure:

�αoptq(ω) = 1

Nq

∑
μβelq′

∣∣Gμq′

αoptβelq

∣∣2

ω − Eβelq+q′ − �μq′ − iη
, (49)

and for the coupling we have [40,63]

Gμq′

αoptβelq =
∑
cvk

[ ∑
v′

Ack,vk−q
αoptq Ack,v′k−q−q′

βelq+q′ gμq′
vk,v′k−q′

−
∑

c′
Ack,vk−q

αoptq Ac′k+q′,vk−q
βelq+q′ gμq′

c′k+q′,vk

]
. (50)

Here, the v indices correspond to valence (hole) states and
the c ones to conduction (electron) states. We have calculated
from first principles the exciton-phonon coupling matrix ele-
ment, Eq. (50), relative to the A and B excitons of of MoS2 and
MoSe2 at the � point (q = 0, q′ = 0). We have done so using
both the opt-el (Gμ

αoptβel ) and the opt-opt (Gμ

αoptβopt ) scatterings
in order to compare the two approaches, showing the results in
Fig. 7 for the A and B excitons for each optical phonon mode
μ. Firstly, we point out that the only active optical modes for
these excitons are those with E ′ and A′

1 symmetry [64]. Fig-
ures 7(a) and 7(b) display the values of |Gμ

AoptBη | and |Gμ

BoptAη |
for MoS2 with η = opt (orange) and η = el (teal). This is not

a physically meaningful coupling since it is not possible for
exciton A to scatter into exciton B at � with the aid of a single
phonon due to their energy separation, yet it is useful to com-
pare the opt-opt and opt-el cases. We see that the couplings
are quite similar in terms of active phonon modes, with the
opt-el matrix elements having generally a larger value. Note
also that, as expected, the opt-el matrix at q′ = 0 elements are

FIG. 7. Strengths of the exciton-phonon matrix elements G be-
tween A and B excitons in MoS2 and MoSe2 with respect to the
optical phonon modes at q = 0 (the phonon modes are labeled ac-
cording to their symmetry representation). [(a) and (b)] Comparison
between opt-opt (orange) and opt-el (teal) scattering pictures in
MoS2. The couplings of exciton Aopt with Bopt/el (a) and of exciton
Bopt with Aopt/el (b) are shown. [(c) and (d)] Values of the Aopt − Ael

couplings in the case of MoS2 and MoSe2, respectively.
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not symmetric in the interchange of the exciton index, unlike
in the opt-opt case. Figures 7(b) and 7(c) show the couplings
between excitons of the same kind, in particular the A states
of MoS2 and MoSe2, respectively. As the coupling with the A′

1
mode is close to 100 meV in both cases, and these scatterings
are permitted by energy conservation, we may expect that
these matrix elements, which are absent in the opt-opt case,
may play a large role in the excitonic linewidths.4

Indeed, from Eqs. (49) and (50), it is possible to define the
(homogeneous) linewidth of exciton αq due to phonon scat-
tering. First, we switch to the finite temperature version of the
self-energy, �αoptq(w; T ), where T is the lattice temperature.
In this case, Eq. (49), which describes phonon emission at
zero temperature, becomes proportional to 1 + nB(�μq′ , T ),
where nB is the Bose-Einstein distribution for phonons. Ad-
ditionally, a second term appears, this time proportional to
nB(�μq′ , T ) and describing the phonon absorption process.
Then, the linewidth can be defined as the imaginary part of
the self-energy evaluated at the exciton energy, giving

γαoptq(T ) = 2π

Nq

∑
sμβelq′

∣∣Gμq′

αoptβelq

∣∣2

× F (s)
μq′ (T )δ(Eαoptq − Eβelq+q′ − s�μq′ ), (51)

with s = ± and F (s)
μq′ (T ) = (1 + s)/2 + nB(�μq′ , T ). A strik-

ing occurrence arises from this expression: the linewidth of
the optical exciton αopt is now determined by all the elemental
excitons βel it can scatter to. This means, given that elemental
excitons are generally more tightly bound than optical ones,
that the energy conservation condition Eαopt = Eβel + �μ may
be satisfied even for the lowest-lying optically bright exci-
ton at zero temperature, which therefore counterintuitively
acquires a finite linewidth. In order to numerically test this,
we have computed the q′ = 0 component of the linewidths,
denoted as γ 0

αopt , for our excitonic states of interest.
This represents the exciton-phonon transition rates at

vanishing momentum and, potentially, the most important
contributions to the linewidths due to the large values of
the electron-phonon coupling matrix elements for zone-center
optical modes in these 2D systems [65–67]. This quantity is
sufficient to assess if the A (and B) excitons have a finite
linewidth or not. The results for γ 0

αopt are plotted in Fig. 8 as a
function of temperature for the A and B excitons of MoS2 [(a)
and (b), respectively] and for the A exciton of MoSe2 [case
(c)]. The red diamonds represent the opt-el case, while the
blue circles refer to the opt-opt scatterings (the lightly shaded
region corresponds to the contribution of the phonon emission
term; the barely visible darkly shaded region is due to the
phonon absorption term). We see that in the opt-opt case the
q = 0 transition rates are always negligibly small, as expected.
However, in the case of the opt-el scattering, the same quantity
for the A excitons starts with a finite value around 4 meV, even

4Note that the A′′
2 mode, i.e., the longitudinal optical mode, is identi-

cally zero in our q = 0 calculation because the long-range Coulomb
interaction was not added to the electron-phonon matrix elements
[65]. This mode is therefore not considered in the evaluation of
exciton-phonon transition rates.

FIG. 8. Sum of the exciton-phonon transition rates at vanishing
momentum γ 0

αopt as a function of temperature (see text) for select
excitonic states in the optical-elemental scattering picture (red line
and diamonds) and in the optical-optical scattering picture (blue line
and circles). (a) MoS2, A exciton. (b) MoS2, B exciton. (c) A MoSe2,
A exciton. The lightly shaded (darkly shaded, barely visible on the
top) red area represents the phonon emission (phonon absorption)
contribution to γ 0

αopt .

though these states are the lowest-bound optical excitons in
the two systems considered. The B exciton has a much larger
value as well.

We note that the opt-el scattering also affects the energy po-
sition of the phonon-assisted satellite replicas in absorption or
emission spectra [40,43,63] (in addition to their linewidths),
since the poles of the self-energy in Eq. (49) are different
than in the opt-opt case—the difference being Eβopt − Eβel . For
example, the optical absorption satellites relative to exciton
αopt (with q = 0) will appear at energy Eαopt + Eβelq′ − s�μq′

instead of Eαopt + Eβoptq′ − s�μq′ .

VII. DISCUSSION

In this work, we stressed and formally demonstrated the
importance of considering “excitons” as a product of the mea-
surement process, i.e., as the response of the electronic system
to a specific external experimental field, instead of thinking
about them as real particles. In the case of the exciton-phonon
problem, this leads to the optical-elemental scattering picture
rather than the optical-optical picture. Here we discuss several
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possible directions of future investigations. As for how to
compare theory and experiment, at the end of this Section we
outline the main underlying challenges.

Excitons as real particles. It may be possible, under spe-
cific experimental conditions (such as low excitation density,
equilibrium-like steady state of exciton generation and recom-
bination), to reduce the physics of a photo-excited system
to simple objects. However it does not seem possible, at the
same time, to write a theory of exciton dynamics in terms of
excitonic boson states. In general, the difference between the
optical-elemental and optical-optical pictures may be small in
materials where |V H | 
 |W SEX|, while it may be sizable in
systems where this does not hold. According to our calcula-
tions, the ratios of |V H | to |W SEX| for the excitons analysed in
this paper are: 2.4% (A exciton, monolayer MoS2), 4.0% (B
exciton, monolayer MoS2), and 2.8% (A exciton, monolayer
MoSe2). This is sufficient to cause level crossings between
bright and dark states and sensibly alter the exciton dispersion
landscape at low finite momenta (see Fig. 2).

Photoluminescence. In general, it is well known that the
frequency of the emitted light may be different from the
one corresponding to the peak absorption (one striking case
is the upconversion effect [68]). Since photo-luminescence
is a recombination process involving real excitations of the
system, it is possible that this is purely governed by elemental
states, leading to different energies and linewidths. In other
words, our theory suggests that the emission linewidths and
their time-domain counterparts, “exciton” relaxation times,
should be different from absorption linewidths and decoher-
ence times (only the latter linewidths having a finite value at
T = 0).

Ultrafast physics and excitonic dynamics. What dictates
the dynamics following a photo-excitation? Our hypothesis
is that the initial excitation does not project the system in a
specific and well-defined (“optical”) excited state but, rather,
to a packet of (“elemental”) excited states, e.g., the ener-
getically accessible section of the distributions in Figs. 2(c)
and 2(d). This means that the dynamics that follows depends,
unavoidably, from the excitation itself. In addition, and more
importantly, the physics of this evolution cannot be described
entirely in terms of optical excitons.

Comparison between theory and experiment. Unfortu-
nately, the comparison of ab initio, parameterless theory
and experiment is very difficult in these kinds of systems.
On the theory side, TMD exciton linewidths and phonon-
assisted optical spectra carry unknown uncertainties because
they depend on the relative positions of the many valleys
appearing in the exciton dispersions of these materials. These
valleys in turn depend enormously on tiny details of the
underlying electronic band structures, and are affected both
by pseudopotential details (DFT level) and quality of the
k-dependent quasiparticle approximation employed (many-
body level). The severity of these problems increases with
the atomic number of the elements forming the TMD com-
pound (particularly if Se, Te, or W are present). From the
experimental point of view, it is very difficult to disentan-
gle the phonon contribution to the exciton linewidths from
other effects. In particular, beyond the phonon contributions,
linewidths are also compounded by the probability of radiative
recombination, substrate and encapsulation dependence and

inhomogeneities due to disorder, defects and strain. In order
to unambiguously check our predictions, we would need an
experimental setup able to measure either exciton absorption
linewidths (in the frequency domain) or exciton decoherence
times (in the time domain) on a very clean sample and with
an accuracy around 1 meV/5 ps while reliably discarding
the radiative recombination contributions. In recent years, at-
tempts have been made theoretically and experimentally to
quantify the latter contribution [11,61,69–73]. In addition,
multidimensional optical spectroscopy (MDOS) experiments
[74,75] have allowed for the extraction of the homogeneous
part of the linewidths from the inhomogeneous one, leading in
many cases to a reduction of about one order of magnitude in
observed linewdiths between MDOS and photoluminescence
experiments [10,58,76,77]. In general, MDOS experiments
measure values below 10 meV for the A exciton linewidths
at low temperatures. Using these techniques, experimentalists
are now able to probe the roles of electron-hole exchange
and phonon interactions in the exciton dynamics in real
time [58,78]. Despite all the current advances, unresolved
differing theoretical and experimental estimates for the A
exciton linewidths of MoS2 and MoSe2 are still present in
the cited literature–with no estimates to our knowledge for
the B exciton of MoS2. For example, in the case of the A
exciton of MoSe2, Ref. [77] finds a broadening of less than
1 meV—consistent with what the optical-optical scattering
would predict, while Ref. [76] finds a homogeneous value of
around 5 meV for both MoS2 and MoSe2, proposing intrinsic
electron-phonon interactions as the limiting factor: the latter
interpretation is quite consistent with our findings. Both are
MDOS experiments.

VIII. CONCLUSION

We have developed a theory of exciton-phonon coupling
starting from the many-body interacting electronic Hamil-
tonian, in the presence of both an external electromagnetic
field and electron-phonon interaction. In deriving the theory,
we have used only those approximations and assumptions
already underlying first-principles treatments of optical exci-
tations and lattice vibrations, without adding additional ones,
such as bosonized excitons, which are often employed in
the literature. Our main finding is that exciton-phonon in-
teraction fundamentally distinguishes between the responses
of the electron system to the external and total fields,
coupling the excitations that describe the first (optical, re-
ducible) and the second (elemental, irreducible). Using the
examples of monolayer MoS2 and MoSe2—two paradig-
matic materials belonging to the highly interesting class
of layered semiconductors—we have also shown how the
exciton-phonon matrix elements and linewidths can be quali-
tatively different with respect to the case when only a single
exciton “type” is considered. Therefore we believe that our
work may be valuable for the interpretation and calculation
of various exciton-phonon related phenomena, namely exci-
ton linewidths and broadening, phonon-assisted absorption,
emission and reflectivity measurements in the presence of
excitons, and the complex nonequilibrium problem of exciton
dynamics. On the computational side, a full implementation
of exciton-phonon interactions is ongoing in the YAMBO code
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[79,80], with the aim of computing accurate linewidths and
luminescence spectra including finite-momentum integrals in
the Brillouin zone. On the theoretical side, two very promising
avenues of research are represented by the derivation of a
consistent theory for incoherent exciton relaxation (including
the coherent-to-incoherent crossover) and the investigation of
the dynamical effects of electronic screening on the electron-
hole-phonon composite excitation.

ACKNOWLEDGMENTS

We gratefully thank C. Attaccalite, D. Sangalli, and
M. Zanfrognini for precious insight on the numerical
simulations and testing of the finite-q BSE and of the
electron-phonon and exciton-phonon couplings. We are also
indebted to M. Palummo for sharing input files for the
GW-BSE calculations of MoSe2 based on Ref. [81] and
for discussions about pseudopotentials. We acknowledge the
funding received from the European Union projects: MaX
Materials design at the eXascale H2020-EINFRA-2015-1,
Grant Agreement No. 676598, and H2020-INFRAEDI-2018-
2020/H2020-INFRAEDI-2018-1, Grant Agreement No. n.
824143; Nanoscience Foundries and Fine Analysis - Europe
H2020-INFRAIA-2014-2015, Grant Agreement No. 654360.

APPENDIX A: EXTERNAL AND INDUCED FIELDS

In Eq. (1), we have used as external perturbation the total
macroscopic potential U ext which includes the induced po-
tential. This is a mathematical short way to introduce optical
excitons directly from the response function defined in Eq. (3).
In reality the Hamiltonian contains just the external, bare
potential, V ext whose dressing by the local, induced potential
should appear dynamically [82–85].

Mathematically this corresponds to define the total Hartree
potential as

V H,TOT(r, t ) =
∫

dr′ρ(r′, t )v(r, r′), (A1)

so that U ext (r, t ) = V ext (r, t ) + ∫
drV H,TOT(r, t ). It follows

that Eq. (2) contains just the microscopic part of the Hartree
potential

V H (r, t ) = V H,TOT(r, t ) −
∫

drV H,TOT(r, t ). (A2)

The exciton-phonon derivation is totally independent on
the definition of the external potential. It is in fact pos-
sible, without changing anything in the theory, to take as
U ext just the external, experimental field V ext, leaving the
macroscoping average of V H,TOT together with the rest of the
electron-electron interaction terms in Eq. (1). In this case,
the present theory may be said to describe plasmon-phonon
scattering.

APPENDIX B: MATHEMATICAL CONVENTIONS

In considering operations among matrices, vectors and ten-
sors we will use the following convention

[V M]i j
kl

= VimMm j
kl

, (B1a)

[M V ]i j
kl

= Mim
kl

Vm j, (B1b)

[M O]i j
kl

= Mi j
pq

Opq
kl

. (B1c)

In Eq. (B1), we use the Einstein convention that all repeated
indices are summed. Notice also that the generalized single-
particle indices may be transformed in Bloch-state indices by
explicitly by replacing i and j with band (n, m) and crystal
momentum (k, k′) indices:

i → nk, (B2a)

j → mk′, (B2b)

λ → αq, (B2c)

where the last index λ refers to the excitonic basis, with α

indicating the exciton “branch” and q = k − k′ its momentum.
We will use the generalized indices as much as possible in
order to lighten the equations, switching to the other ones
when needed.

APPENDIX C: THE BETHE-SALPETER HAMILTONIAN

The optical-BSEHamiltonian emerges when the retarded
time ordering in t1 and t2 is considered (t1 > t2) and the
equations are solved in frequency space by by applying the
Laplace transform to the time difference t1 − t2.

The noninteracting part of the BSE, L0(t1, t2) ≡
G(t1, t2)δ G(t2, t1), can be Laplace transformed and results in

L0
i j
kl

(ω) = iδikδ jl ( f j − fi )[ω + i0+ − (εi − ε j )]
−1

, (C1)

where fi represents a single-particle occupation factor. Then,
Eq. (20) can be rewritten as

Lopt (ω) = [(L0(ω))−1 − i(W − V H )]−1. (C2)

Equation (C2) is an exact way to rewrite the BSE in the
case of interacting neutral excitations (optical excitons, our
focus here, or plasmons). At this point, the introduction of an
effective Hamiltonian can be done by observing that Eq. (C2)
can be rewritten using Eq. (C1) as

[Lopt (ω)]−1
i j
kl

= −i( f j − fi )
−1

(
δikδ jl (ω + i0+) − Hopt

i j
kl

)
,

(C3)
with

Hopt
i j
kl

= δikδ jl (εi − ε j ) − ( f j − fi )
(
Wi j

kl
− Kopt

i j
kl

)
. (C4)

APPENDIX D: COMPUTATIONAL DETAILS

In this Appendix, we provide extensive computational de-
tails regarding our many-body, first-principles simulations
[1,5] of monolayers MoS2 and MoSe2. The density functional
theory [86] (DFT) simulations of the electronic ground state
and the Kohn-Sham eigenvalues were done with QUANTUM

ESPRESSO [87,88] (QE). This code was also used for the
density functional perturbation theory [89,90] (DFPT) calcu-
lation of the phonon frequencies and electron-phonon matrix
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elements. The many-body simulations, using DFT as a start-
ing point, were performed with the YAMBO code [79]. They
include the use of the G0W0 approximation [91,92] for the
quasiparticle corrections to the Kohn-Sham eiganvalues, as
well as the state-of-the-art BSE [93] simulations of excitonic
properties.

DFT and DFPT. We used norm-conserving, fully rela-
tivistic pseudopotentials [94] (GGA-PBE type) and included
spin-orbit interaction at all stages of the calculations, work-
ing with spinorial wave functions [81]. Our 2D hexagonal
systems have lattice parameter a = 5.90 (MoS2) and a =
6.15 (MoSe2) bohrs, with about 40 bohrs of vacuum sepa-
rating repeated copies of the simulation supercells in the c
direction. A 2D Coulomb cutoff technique was used both
at the DFT/DFPT level [65], in order to correctly compute
phonon-related quantities at vanishing momentum, and at the
many-body stage. The kinetic energy cutoff on the wave
functions were 140 Ry (MoS2) and 90 Ry (MoSe2), and
the ground-state charge density was converged in both cases
with a 12 × 12 × 1 grid of k points in momentum space.
Unoccupied Kohn-Sham bands, phonon frequencies, phonon
eigenvectors and the variations in the self-consistent DFT po-
tential were then computed on this charge density. We checked
that both the Kohn-Sham band structures and the phonon
dispersion curves were in agreement with previous calcula-
tions. Electron-phonon matrix elements were computed on a
39 × 39 × 1 k-grid to match the one used for excitons.

Many body. The quasiparticle corrections for MoS2 were
simulated using a simple scissor operator enforcing a rigid
shift of the bands by 1 eV, which was enough for our purposes.
For MoSe2, we used instead the quasiparticle corrections
previously calculated in Ref. [81] at the G0W0 level, where
the relevant details may be found. We computed the BSE
both with (reducible, optical) and without (irreducible, el-
emental) the exchange contribution to the excitonic kernel,
all in the Tamm-Dancoff approximation [95] (i.e., the kernel
includes only resonant or antiresonant electron-hole tran-
sitions; this common approximation usually works well
for gapped semiconductors and is a requirement for the

exciton-phonon treatment). We used a dense grid of 39 ×
39 × 1 k points for both systems. The RPA static screening
was computed with an energy cutoff of 8 Ry, using 100 empty
states in both cases. The energy cutoff for the exchange part
of the kernel was set to 60 Ry (MoS2) and 40 Ry (MoSe2)
when included in the calculations. The cutoff on the RPA
screened interaction was 8 Ry for both systems. The electronic
transitions included in the BSE kernel were comprised in both
cases of the two top valence and the two bottom conduction
states, properly including the spin-orbit splitting at the K and
K ′ points in the BZ. We checked that our calculated optical
absorption spectra are in agreement with existing calculations
[81]. For the finite-q BSE calculations, Figs. 2(e) and 2(f), we
also checked that our results are in agreement with existing
literature [55].

Exciton-phonon. The phonon frequencies, eigenvectors
and electron-phonon matrix elements were read from the
DFPT-QE calculations and converted to the YAMBO format.
Then, these quantities along with the exciton energies and
k-space exciton wave functions from the BSE-YAMBO calcu-
lations were combined using the YAMBOPY package5 in order
to compute the exciton-phonon coupling matrix elements,
Eq. (50), at q = 0. We note that the capability to compute
various exciton-phonon related quantities, including integra-
tions over q, is currently being developed in the YAMBO code.
Concerning the q′ = 0 component of the linewidth, γ 0

αopt in
Eq. (51), a numerical broadening factor of 1 meV was used
for the delta function. Sixteen excitonic states were included
in the sum: this is enough to converge the value of γ 0

αopt within
0.01 meV for the excitonic states considered (note that many
more states may be necessary to converge the real part of the
self-energy [41]). Each plot in Figs. 7 and 8 is summed over
the two components of the doubly degenerate A and B states.

5YAMBOPY is a python pre-postprocessing tool for QE and YAMBO.
It is currently under development, but a public version of the code is
already available on the YAMBO website.
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