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Superconductors can be classified as topological or not based on whether time-reversal symmetry, chiral
symmetry, and particle-hole symmetry are preserved or not. Further, topological superconductors can also be
classified as chiral or helical. In this paper, using Hanbury Brown and Twiss (HBT) shot-noise correlations
and the nonlocal conductance, we probe metal and two-dimensional unconventional superconductor and metal
junctions to understand better the pairing topological vs nontopological or helical vs chiral or nodal vs gapful.
We see that HBT correlations are asymmetric as a function of bias voltage for nontopological superconductors,
whereas they are symmetric for topological superconductors irrespective of the barrier strength. Topological su-
perconductors are associated with Majorana fermions which are important for topological quantum computation.
By distinguishing topological superconductors from nontopological superconductors, our study will help search
for Majorana fermions, which will aid in designing a topological quantum computer.

DOLI: 10.1103/PhysRevB.106.125402

I. INTRODUCTION

Conventional spin-singlet s-wave superconductors have
spherically symmetric order parameters wherein pairing po-
tential is independent of the direction of incident electrons.
Any deviation from this is defined as an unconventional su-
perconductor, e.g., p wave or d wave [1]. In two-dimensional
(2D) unconventional superconductors, zero-bias conductance
peak (ZBCP) may indicate the presence of Majorana zero
modes and thus indicate the topological character of super-
conductors [2,3], but does not provide sufficient evidence
for the pairing symmetry of the topological superconductor.
ZBCP can not distinguish pairing symmetries of different
topological superconductors, e.g., chiral d, chiral p, or helical
p. Moreover, distinguishing different topological pairings is
important as topological superconductors are building blocks
of Majorana zero modes, potentially crucial in topological
quantum computation [4,5].

Among the many proposals to detect pairing symmetry
of unconventional superconductors, a well-known method is
the Knight shift measurement in a nuclear magnetic reso-
nance (NMR) experiment [6]. Invariance of the Knight shift
to change in temperature below 7, is strongly suggestive of
spin-triplet pairing [7], e.g., chiral p, and distinguishes it from
the spin-singlet pairing, e.g., chiral d. Now, both chiral p
and chiral d are topological superconductors. Nevertheless,
how do we distinguish chiral p from chiral d or helical p?
A different method, the current and magnetic field inversion
(CFI) symmetry test of time-reversal symmetry (TRS), can
be used to discriminate between chiral and helical supercon-
ductors, as CFI preserves TRS for helical superconductors.
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At the same time, it breaks TRS for chiral superconductors
[8]. However, these tests are not 100% full proof, so we
propose two additional tests, the nonlocal differential shot-
noise cross correlations and nonlocal Hanbury Brown and
Twiss (HBT) correlations in metal and 2D unconventional
superconductor and metal junctions, to distinguish between
topological (chiral p, chiral d, helical p, p.%, and p.9) and
nontopological (s, p.Z, d_,, and d,) based on whether
spin-rotational symmetry is present or not in 2D. Among
these, chiral p, chiral d, helical p, and s wave are gapful,
while p.%, p.9, p.Z, dyy, and d,>_y» are nodal. As shown in
Ref. [9], different pairing symmetries of superconductors have
been categorized as topological or nontopological via tenfold
classification. As far as we are aware, shot-noise correlations
have not yet been used to identify pairing symmetries of nodal
triplet superconductors, such as p,X, p,J, or p,Z. Hence, we
also include these pairing symmetries in our study with HBT
noise to distinguish topological from nontopological pairings
and gapful from nodal. To decipher the pairing symmetry
of unconventional superconductors, quantum transport in su-
perconducting hybrid junctions via measurement of nonlocal
differential conductance has been helpful [10]. However, shot-
noise or nonlocal HBT correlations can give more information
about the Cooper-pair splitting, which may help differentiate
between pairing symmetries of 2D unconventional supercon-
ductors. We not only focus on cross correlations but also
extend our study to differential shot-noise cross correlations.
The key take-home messages of our study are that HBT or
shot-noise correlations are asymmetric as a function of bias
voltage for nontopological superconductors. In contrast, they
are symmetric for topological superconductors irrespective of
the barrier strength. Further, we show how different topolog-
ical pairings like nodal or gapful and chiral or helical can be
distinguished from each other via the sign of HBT correlations

©2022 American Physical Society
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or their zero-bias nature for both transparent and tunneling
interfaces. Both differential shot-noise and HBT correlations
thus serve as effective tools to discriminate between pairing
symmetries which we explain in detail in this paper.

The paper is organized as follows: We give an overview
of the possible pairing symmetries of 2D unconventional
superconductors in Sec. II. Section III deals with the 2D BTK
approach and how it is used to calculate differential shot-noise
correlations, shot-noise cross correlations, and nonlocal
conductance in our setup. Next, in Sec. IV we describe our
setup, which is a 2D normal metal/insulator/unconventional
superconductor/insulator/normal metal (N;/I/US/I/Ny)
junction for each pairing symmetry. We then discuss the
respective wave functions and boundary conditions necessary
to calculate nonlocal conductance, and shot noise, i.e., HBT
correlations and differential shot-noise correlations. It is
followed by a discussion on the results, first for nonlocal
conductance and differential shot-noise cross correlations
and then for HBT cross correlations. Finally, we provide
a discussion on why we see what we see and summarize
how different processes contribute to HBT correlations in
the subsection “Processes in Play” via Tables II and III. We
finally conclude with a comparison between different pairing
symmetries: topological (gapful helical vs gapful chiral vs
nodal) vs nontopological using HBT as well as differential
shot-noise cross correlations in Tables IV and V. In the
Appendix, we have elaborated first on the crossed Andreev
conductance and elastic cotunneling and then in detail on the
components of shot-noise cross correlations.

II. PAIRING SYMMETRIES

The pairing symmetry of superconductors is classified
based on spin angular momentum (§) of Cooper pairs, which
form via pairing between two spin-half electrons. It can be
either singlet (0) or triplet (1). Spin-singlet states are antisym-
metric in spin space, while spin-triplet states are symmetric.
Column 4 in Table I describes the parity of the different
symmetries. In the absence of spin-orbit coupling, pairing
symmetries are either even parity (spin singlet) or odd parity
(spin triplet). Pairing symmetries, as mentioned in Table I,
that satisfy ¥ (k) = ¥ (—Kk) are associated with spin-singlet
(even-parity) superconductors, and d(k) = —d(—Kk) are as-
sociated with spin-triplet (odd-parity) superconductors [16].
The presence of the spin-orbit coupling term breaks the in-
version symmetry. For superconductors with pairing, gapful
(helical-p) and nodal (p,X, p,.9), there is a spin-orbit coupling
term, which too breaks the inversion symmetry. When the
orbital part of the wave function is even, it is denoted as
even parity with orbital angular momentum (L =0, 2,4...).
When the orbital part is odd, it is called odd parity with orbital
angular momentum (L = 1, 3, 5...). The total wave function
of the Cooper pair must be antisymmetric under the exchange
of particles. Thus, either the orbital part is antisymmetric
and the spin part is symmetric or vice versa. Spin-singlet
pairing is associated with even orbital angular momentum,
and spin-triplet pairing is associated with odd orbital angular
momentum [17]. Even-parity, spin-singlet Cooper-pair states
with angular momentum L = 0, 2 are denoted as s wave and
d wave while odd-parity, spin-triplet Cooper-pair states with

angular momentum L = 1,3 are denoted as p wave and f
wave.

Column 5 in Table I describes tenfold symmetry classifi-
cation. Unconventional superconductors, in general, can be
categorized as topological or nontopological based on the
well-known tenfold symmetry classification. For 2D super-
conductors based on Bogoliubov—de Gennes Hamiltonian,
pairing symmetries can be categorized into different sym-
metry classes [9] based on (1) spin-rotation symmetry, i.e.,
rotation about z component of spin, by the presence or absence
of (2) time-reversal symmetry (TRS), (3) chiral symmetry also
known as sublattice symmetry (SLS), and (4) particle-hole
symmetry (PHS). For a system where TRS is present, 7' = +1
where T is the TRS operator, and when TRS is absent, T =0.
Similarly, when PHS is present, P = 1, P being the PHS
operator, and when PHS is absent, P = 0. Chiral symmetry
can be defined based on whether TRS and PHS are present
or not. TRS and PHS together determine chirality or SLS.
When SLS is present, C = 1 (where C is the chiral symmetry
operator), and when absent, ¢ = 0. When either TRS or PHS
is absent, SLS is absent ¢ = 0, which includes AL All, C, and
D symmetry classes. When both TRS and PHS are present,
SLS is present € = 1, which includes CI, CII, BDI, and DIII
symmetry classes. For a superconductor, if TRS and PHS
are absent, but SLS holds, i.e., ¢ = 1, then it is classified as
AIIl symmetry, but if SLS is absent, i.e., C =0, then it is A
symmetry class.

We first discuss nodal triplet pairing symmetries, e.g., p.X,
p+y, and p,Z. Among these, p,& and p, do not possess spin-
rotation symmetry but TRS, PHS, and SLS are present and
therefore p,X and p,y belong to DIII symmetry class which
is topological in 2D. However, when spin-rotation symmetry
is present in case of a 2D superconductor, there is an excep-
tion for AIIl symmetry class. AIIl symmetry class is then
uniquely defined by TRS and spin-rotation symmetry in 2D.
Those materials for whom both spin-rotation symmetry S,
[spin-rotation symmetry SU(2) around z direction] and TRS
are preserved, can also be classified as AIIl symmetry class.
In 2D superconductors, p,Z pairing is an example of an AIII
symmetry class that possesses spin-rotation symmetry and
preserves TRS. This is nontopological in 2D; see Refs. [9,18]
for a detailed explanation. Nodal singlet pairing, such as d,,
and d>_,, preserve TRS and possess spin-rotation symmetry.
These are examples of 2D BDG Hamiltonian in CI symmetry
class that preserves PHS and SLS and thus are nontopological
in 2D.

Gapful pairing symmetries such as gapful triplet chiral-p
pairing with d parallel to z direction possess spin-rotation
symmetry around fixed z axis and preserve PHS but TRS and
SLS are absent and thus belong to the D symmetry class in
2D which is topological. Next, gapful singlet chiral-d pairing
possesses complete spin-rotation symmetry. It preserves PHS,
but TRS and SLS are absent and are an example of the C
symmetry class in 2D, which is topological. Gapful triplet
helical-p pairing preserves TRS and PHS but does not possess
spin-rotation symmetry, but preserves SLS, and is a member
of the DIII symmetry class in 2D, which is categorized as a
gapful topological superconductor. Conventional s-wave su-
perconductors are of the CI symmetry class. These possess
complete spin-rotation symmetry and preserve both TRS and
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PHS, thus preserving SLS, which is nontopological in 2D. For
pairing cases without spin-rotation symmetry, there is small
but finite Rashba spin-orbit coupling, and for cases with spin-
rotation symmetry, there is zero Rashba spin-orbit coupling.

In columns 6-9 of Table I, pairing potential [A(k)] of a
Cooper pair is written in terms of d(k) for spin-triplet and
a scalar term v (k) for spin-singlet pairing. For spin-triplet
pairing such as topological gapful (chiral p, chiral d, helical p)
and nodal p, pairing [10,19,20], pair potential is given as

Ak) = Ad(K) - 8 )io, ey

where d(k) is defined for each pairing symmetry in Table I,
6 = 01X + 029 + 032 where o1 » 3 are the three Pauli matrices,
and A is the magnitude of the superconducting gap. For 2D
superconductor, momentum components are k, = kp cos@,
ky, = kp sin 6, where kr is Fermi wave vector and 6 is angle
the incident electron makes with x axis.

D2 pairing is a nodal nontopological superconductor with
d in Z direction, i.e., d(k) = (k,)2/kr = cos 6Z. Spin-triplet p-
wave states or chiral-p pairing has d(k) = (k, & ik, )z/kr with
d || ¢,1.e., d is parallel to crystal ¢ axis [21], implying, d(k) =
(cos @ % i sin 0)Z. In helical-p-wave superconductor, d is de-
fined as (Rk, £ ¥k, )/kr or (Xk, & $k.)/kr withd L ¢ (dinab
plane), i.e., d is perpendicular to the crystal ¢ axis [22], im-
plying, d(k) = (Xcos6 £ §sin6) or (Xsinb £ ycos6). For
nodal topological p, pairing, d can be in X or y direction, i.e.,
d(k) = k.X/kr = cos(0)x or d(k) = k,V/krp = cos(0)y.

For spin-singlet pairing such as nontopological gapful s,
nontopological nodal d,>_» and d,,, topological gapful chiral-
d pairing [20,23], the pair potential is given as

Ak) = A(Y(k)), @

where ¥ (k) is a scalar term that represents spin-singlet
pairing and is defined in Table I. s-wave superconductors
are nontopological gapful superconductors [24]. d\>_,> pair-
ing is a nodal nontopological superconductor, where the
order parameter vanishes, diagonal to x,y directions [25]
with ¥ (k) = (k2 — kyz)/k2 = c0s26. d,, pairing is a nodal
nontopological superconductor, where the order parameter
vanishes in x,y direction [26] with (k) = (2kxky)/k2 =
2 cos@ sinf. For chiral-d-wave superconductor, (k) =
[(k2 — kyz) + i2koky 1/ k7 = €.

In Table I, column 10, we have plotted normalized con-
ductance (o.) vs barrier strength (z) at zero bias for a metal
and 2D superconductor junction which is a typical signature
of the existence of Majorana bound states at metal and topo-
logical superconductor interface. Normalized conductance o,
is quantized for topological superconductors, e.g., chiral-p,
chiral-d, helical-p, p.X, and p,y cases and is in line with the
tenfold symmetry classification for 2D BDG Hamiltonian [9].

In Table I, column 11, examples of topological and non-
topological superconductors are given with their respective
pairing symmetries. Topological gapful superconductors are
chiral p wave which are p, + ip, superconductor [27] and
chiral d wave which is d,._,» + id,, spin-singlet supercon-
ductor [28]. In Table I, we give examples of unconventional
superconductors for which the said pairing is most likely.
For example, the pairing symmetry of Sr,RuQy is still in-
conclusive, as regards chiral p or helical p [6]. The next
section explains the 2D BTK (Blonder, Tinkham, and Klap-

Unconventional »b =
N Superconductor N, z

FIG. 1. Schematic illustration of reflection and transmission of
electrons and holes in a N;/I/US/I/N, junction in x-y plane. The
solid line represents the scattering of electrons, while the dotted line
represents the scattering of holes.

wijk) approach, and using it, we calculate HBT correlations
and nonlocal conductance for the chosen 2D N;/I1/US/I/N,
setup.

III. 2D BTK APPROACH

We consider a 2D N;/I/US/I/N, junction (see Fig. 1)
with insulators at x = —R/2 and R/2. 6 is angle, the incident
(transmitted) electrons (holes) make with x axis [29] in N;
(N») region. 6, is angle, reflected (transmitted) holes (elec-
trons) make with x axis in N; (N;) region. Finally, 6, is
angle, transmitted electrons (holes) make with x axis in US
region. We use the Andreev approximation in normal metal
regions, which implies that the electron and hole wave vectors
are identical and equal to the Fermi wave vector (k). We con-
sider Andreev approximation in the US region for cases with
spin-rotational symmetry (in the absence of Rashba spin-orbit
coupling), which implies that electronlike quasiparticle and
holelike quasiparticle wave vectors are equal to Fermi wave
vector (kr). In contrast, there is no Andreev approximation
in the US region for cases without spin-rotational symmetry;
here, Rashba spin-orbit coupling is finite. Due to presence of
translational invariance in y direction [30], electron, hole, and
quasiparticle wave vectors in y direction in Ny, N,, and US re-
gions are conserved. This further implies that 6 = 6, = 6,;).

In Fig. 1 Andreev reflection amplitude is denoted as a =
si’}l’ normal reflection amplitude as b = 5§, transmission am-
plitude of elastic cotunneling ¢ = 55, transmission amplitude
of cross Andreev reflection d = s¢%. Scattering amplitude
s;/ represents a particle o (€ e, h) incident from contact
i (¢ Ni,N;) which is reflected or transmitted to contact
k (¢ Ni,Np) as a particle y (€ e, h). In Fig. 2 we show
our chosen setting to study transport and current cross cor-
relations across unconventional superconductors for a 2D
N, /I/US/I/N; junction wherein N is at bias voltage V| and
N is at bias voltage V, while US is grounded.

A. Nonlocal conductance and shot noise

Andreev reflection can be nonlocal, too, known as crossed
Andreev reflection(CAR), in which an electron is transmitted
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Y
Z Normal Metal /Unconventional / Normal Metal
X h superconductor,
~
Vi, g‘:b Vs
{
:[ ¥

-R/2 R/2

-~

FIG. 2. 2D N,;/I/US/I/N; junction. The superconductor is
grounded while bias voltage V) is applied to N; and V; is applied
to N,. At —R/2, R/2 these are insulators which are represented by
8-function potentials.

as a hole through the other interface with a superconductor,
i.e., spatially separated entangled electrons in both the normal
metals [31]. When an electron (hole) from the left normal
metal tunnels to the right normal metal as an electron (hole),
the process is known as elastic cotunneling (EC).

First, we calculate nonlocal differential conductance, de-
fined as conductance in N, when both N, and US are
grounded, and voltage is applied to N;. The difference be-
tween CAR and elastic cotunneling (EC) in absence of any
voltage bias to N, is defined as nonlocal differential conduc-
tance [31] GnL = Gear — Gec, Where

/2 0 /2 ]

Gear = / 0% 1P, G = / 00527 P,
—/2 27T -2 27'[

(3)

d = s is scattering amplitude for CAR while ¢ = ¢ is scat-
tering amplitude for EC. Shot noise can give more information
regarding the pairing symmetry from current cross corre-
lations in the N,;/I/US/I/N, junction, which conductance
cannot. It is why we look at cross correlations and differential
shot-noise cross correlations. Discreteness of charge leads to
nonequilibrium temporal fluctuations in the current known as
shot noise. Even at zero temperature, shot noise exists, unlike
thermal noise that originates due to finite temperature and
vanishes at zero temperature [32].

The general result for shot-noise cross correlations using
2D BTK for our setup (see Fig. 2) includes an integral over
incident angle 6 and is given [33,34] as

2 2 /2 0
si2 = sl o8 Z sgn(x)sgn(y)
hJorp 27 klel2,
x,y,y,0€e,h
< [ Wias(ix )
X Wisik,y 2y, E) fiy (E)I1 — fis(EDIAE,  (4)
where parameter Wiy,6(1x, E) = 81818, 0x5 —

s\ "(E)s2(E) contains information about the scattering

process. s, (E) represents scattering amplitude, with y
denoting an electron or hole incident from contact £ which is
transmitted to N as particle of type x. f, is Fermi function
for particle of type y in contact k. Normal metal N; is contact
1 while normal metal N, is contact 2. Here sgn(x) = +1
for x = e, i.e., electron, and sgn(x) = —1 for x = #h, i.e,
hole. In a previous study [35] it was shown that the sign of

cross correlations and sign of differential shot-noise cross

correlations could be different for some regime of bias

voltages applied. Taking a cue from this, we study both

shot-noise cross correlations and differential shot-noise cross

correlations. It will help us understand different pairing

symmetries in our setup. The differential shot-noise cross
ds'?

correlations ‘7~ in symmetric setup (V) =V, = V) at zero

temperature are given as [33,35]

dS2(Vy =V, =V)

dVv
4le|? T2 cosf
= T sgn(iev) / a0 s+, )
—/2

where 54 = )", calSa(|e]V) + 5o (—e|V)], with

__ oeh he hhx jeex eh Jhe (eex hhx
Sa = S51512511 522 T 512521511 522 >

__ Jhh qee (ehx hex ee hh ehx  hex
Sp = 1585185 11 T 812821811 522 s

__ hh ee ehx _hex ee Jhh Jhex ehx
Sc = 81155151 S11 + S11521521 811 >

R
and 55 = Y _, 1 g il5a(lelV) + sa(—lelV)], with

__ wee eh qeex .ehx hh  he hhx hex
Se = 512551522 S11 1 521512511 522 5

__ <eh .ee jeex .ehx hh he hhx Jhex
Sf = 812851811 2 + 81285152, 811 »
__ oeh .ee qeex ehx hh  he hhx hex
Sg = 81151511 $21° T 521511511 521 »

— ee ceh qeex ehx eh Jhe Jhhx hex
Sh = $12512522 127 T S125225%2 7512 -
The differential shot-noise cross correlations in nonlocal setup
at zero temperature with bias voltage V; =V applied to N,
while N, grounded is given by

dS2(V, =V, V, = 0)

av
| |3 /2
A sgn(le|V) do

- /2

cosf
5 (=sc +sp), (6)
T

where sc = s,,(—|e|lV) + s,(le|]V) + s.(le]V) + s.(—|e|V) +
si(le]V) +sj(—lelV), and  sp = se(le]V)+ s4(le]V) +
sg(—lelV) + sk(le]V) + si(—lelV) + sy (—le|V) with

s = sSSP+ sSsatlly

__ oeh _he .eex hhx hh ee ehx hex
Sp = S1p851871 82 T 81255152 811 »

. oee che eex jhex ee Jhe jeex Jhex
Si = S12551511 522 T 521512522 511 »

. — eh Jhh Jhhx (ehx hh eh hhx (ehx
8j = 81285189 811 T+ S12851811 52 »

St = S{505S55TS + shislalyos,

o1 = shsfiste sl + sl
The nonlocal conductance and shot-noise results for normal
incidence (0 = 0) agree with 1D BTK results [36]. In the next
section, we write the wave functions and boundary conditions
for the N, /I/US/I/N, junctions, first for pairing symmetries
that possess spin-rotation symmetries, followed by pairing
symmetries that do not possess spin-rotation symmetry.
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IV. THEORY

We first discuss the wave functions for pairing symmetries
with spin-rotation symmetry, i.e., s wave, dyy, de_y2, piZ,
chiral p, and chiral d followed by their boundary conditions.
Next, we discuss wave functions for pairing symmetries that
do not possess spin-rotation symmetry, i.e., p,X, p.y, and
helical p followed by their boundary conditions.

A. With spin rotation symmetry

The 2D Hamiltonian for BDG equation Hy = E for US
which possesses full spin-rotation symmetry, i.e., for pairing
symmetries d.y, dy>_,2, s-wave, and chiral-d pairing and fi-
nally with fixed spin-rotation symmetry around z axis, i.e.,
PxZ, chiral-p pairing, is a 2 x 2 matrix [9,10], and is written

J

I T

as

Hy (k)
H= (A*(k)

Ak)

—Hé*(—k))’ )
with eigenspinor (c}:, c_x), where CZ (c_x) being the creation
(annihilation) operators. Pairing potential for triplet pairing
is A(kK) = Ad (k) for p,Z and chiral-p cases as defined
in Eq. (1), and in terms of (k) for singlet as A(k) =
Ay (k), ie., dyy, d_yp, s-wave, chiral-d cases, is defined in
Eq. (2). Pairing symmetries that satisfy A(k) = A(—Kk) are
spin-singlet (even-parity) superconductors [16] for cases with
spin-rotation symmetry in the absence of Rashba spin-orbit
coupling. In Eq. (7), Hy(k) = (—}i—f + U(x) — Er), wave
functions in Ny, US, and Nj regions for d.y, d2_, s-wave,
chiral-p, chiral-d, and p,Z pairing, and for an electron incident
from N are given as

R
forx < ——,
2

ey sin u(®) AR (e nOO) . ikt ) etk u(®-)
IﬂUs(x)—eky 9|:<77*(9)v(9)>t6k(+ )= (et )/E_,_( w(0) )fe k(rk3) = (2)/8 <77*(9—)U(9—)>

X ge_ik*(x_g)e(x_g)/s + (n(e)v(e)>heik*‘("_§)e(’“_§)/§:| for — g <x< ]j,

u(6_)

2

Yy () = ikry sinb |:c ((1)) eikX(X—g) + d(?)e—ikx(X—’;):| forx > R/2, ®)

where n(6+) = A(0+)/|A(0+)| withf, =0 andb_ = — 6.
A(k, x) = A from Eq. (2) is constant in s-wave superconduct-
ing region and is zero in the normal-metal regions. For gapful
chiral-p superconductor [10], the pair potential is A(6+) =
Ae and for gapful chiral-d superconductor, A(f:) =
Ae?®:, For nodal d,»_,» superconductor, pairing potential is
A(01+) = A cos(204+) = A cos(20), for d,, superconductor,
A(B+) = 2A cos(0+)sin(04) = £2A cos(f)sin(f), and for
pxZ superconductor, A(f+) = A cos(6+) = £A cos(6). The

coherence factors are u(6+) =\/[E +VE? — |A(BL)121/(RE)

and v(6z) =\/[E —VE? — |A(02)1*1/2E).

1. Boundary conditions

For pairing symmetries that possess spin-rotation sym-
metry, i.e., d is in z direction with finite d, for spin-triplet
superconductors, e.g., p.Z, chiral p, and for full spin-rotation
symmetry with scalar i for spin-singlet superconductors, e.g.,
s wave, dyy, d>_, and chiral d, pairing potential is a scalar
term. The continuity equation and current conservation at
interface lead to boundary conditions as mentioned in Eq. (9),
solving these one can calculate the scattering amplitudes
[37]. The general boundary conditions at the interfaces for
a N;/I/US/I/N; junction, where US satisfies spin-rotation

(
symmetry at x = —R/2 and R/2 are given by

WN, lx=—r/2 = Yusli=—r/2,  Wusli=r/2 = YN, |x=r/2>

d

—(Wys — Un)|x=—r/2 = 2mU; /R*)Wy, |i=—r/2,

0x

0

a(‘IJN2 — Wys)|x=r/2 = 2mUs /B )Wys | —r/2- )

The barrier strength at the interface in both Egs. (12)
and (9) is characterized by dimensionless parameters z; =
2mUi/h2kp, i=1,2. From the scattering amplitudes a =
s$h b = 5%, ¢ = 5%, d = s¢%, we obtain Andreev and normal
reflection probabilities as A = |a|? and B = |b|>. C = |c|? and
D = |d|* define probabilities for electron cotunneling (EC)
and crossed Andreev reflection (CAR), respectively. This pa-
per considers interface barrier strengths z = z; = 2.

B. Without spin-rotation symmetry

We adopt the Bogoliubov—de Gennes (BDG) approach to
study the transport in Ny /I/US/I/N; junction. The 2D Hamil-
tonian for BDG equation Hy = Ey without spin-rotation
symmetry in case of p,X, p,y, and helical-p pairing [9] can
be written as

" (H(k)

Ak)
AT(k) ) (19)

—H*(-k)
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with eigenspinor (CZT, CZw C_k4, C—ky ) of H, where C}:T (c—k1)
denotes creation (annihilation) operator of spin-up quasipar-
ticle and cz ' (c—ky) denotes creation (annihilation) operator
of spin-down quasiparticle. Pairing potential A(k) for spin-
triplet cases (p.X, p.y, and helical-p) is defined Via Eq (1) and
H(k) = Hy(Kk) - o9 + H,(k) with Hy(k) = (— +Ux)—

Er), Hy(k) = V() -6 denotes the spin-orbit couplmg term
and k = (k,, k,, 0). Here oy is 2 x 2 identity matrix and
6 = 01X + 029 + 032 where 0] 5.3 are the three Pauli matri-
ces. As in [22], V(k) = A(%k, — k,) with Rashba spin-orbit
coupling constant A. In Hy, U(x) = U;8(x + R/2) + Ux8(x —
R/2) with U; and U, being the barrier strengths and R is the

Uy, (x) = ek

=ReNeR

+

lOll v 1052 v

u

-

—ior | ik e iy u
gif . ERELETSY et
v

R
x for — — <x <
2

57
Y, () =R ¢ 8 eik*(x_§)+c2 1 eikx(x—g)_i_dl (1)

with coherence factors for electron (hole) quasiparti-
cles given by u(v) = V(E + (—\VE — [AP)/2E. ai) =
ki Tk where ky()) = +(—)(mr/R?) + NI oS
kﬁu):kT(i)eleT‘“, and k]Tl(i)sz(i)e_lng' QT(U denotes

phase of the wave with wave number k4 ;) (see Ref. [22]).
As translational symmetry is preserved for the y direc-

tion, ky = kp sin@ = k4 sin6y = k| sin6),. k%) denotes the

T(l)x

e(h) e(h) __
x component of wave vector k?( 1)x and is defined as k?( Dx =

2% (k?i( ?))2 — (ky)*. a2y and by, represent scattering ampli-
tudes for Andreev reflection and normal reflection of spin-up
(-down) quasiparticles. cy(2) and d(2) represent scattering am-
plitudes for elastic cotunneling and cross Andreev reflection
of spin-up (-down) quasiparticles. Superconducting coherence
length & = hivp /A where v is the Fermi velocity [39].

1. Boundary conditions

For pairing symmetries, p,X, p,¥, and helical p that do
not possess spin-rotation symmetry, and are not spin polar-
ized, i.e., d is not in one fixed spin direction but in both
x and y directions, this results in finite diagonal terms in

0
1
0
0

_ . .

: o —1 P |

ikyy —io; u i U | ke (ea R
Yus(x) =e* | . 2 ekixtta 2+ 'aalv ekt )+ fi

e R
e_’kw()H_Z) +h1

thickness in x direction of 2D US lying in the x-y plane. The
excitation energy E is measured relative to Fermi energy Ep,
and m is the electronlike or holelike quasiparticle mass. For
simplicity, we neglect self-consistency of the spatial distribu-
tion of the pair potential in the US. In the presence of Rashba
spin-orbit coupling for A # 0, the additional term H,(Kk) in
Hamiltonian breaks the inversion symmetry, ie., H,(k) =
—H,(—k) and A(k) = —A(—k) for odd-parity superconduc-
tors, i.e., helical p, p.%, and p,y. However, mixed-parity states
like noncentrosymmetry superconductors (NCS), e.g., helical-
p + s, have no definite parity [38], i.e., A(k) #* j:A(—k).

The wave functions in N;, US, and N, regions for an
electron incident from N; are

0 0
0 ikyx 0 ikyx
a e forx < ——,
1 + a 0 2
0 1
v iV
: Vo lee+ D o p L) | by
u
—iou ioou
oy v ooV
Vo e+ D g, ekl B | pa—tse
u
—ioju ioou
0
ik (R 0] ik
e =) 4 g, NE he(x=3) for x > 5 (11)

1

(

pairing-potential matrix A. The scattering amplitudes are de-
termined via the continuity equation and current conservation,
which leads to boundary conditions as in Eq. (12) (see also
Ref. [37]). The general boundary conditions at the interfaces
for US without spin-rotation symmetry, for a N;/I/US/I/N;
junction at x = —R/2 and R/2, are given by

WN, lx=—r/2=YUslr=—r/2, WYusli=r2=YN, |x=r/2,

hvysyWusli=—r/2—HUN N, [x=—r/2= — 2iU (X) T3 Us|x=—r/2,
hone Wy, [x=r/2—Avusy Wuslx=r/2= — 2iU (X)13%us | x=r/2,
(12)

where velocity operator in the x direction [22] is defined
by hvysy = 0H/ 0k, for US and hvn, = 0Hy/0k, where the
Hamiltonian Hy for both normal metals N| and N is given by
setting the pairing potential A (k) = 0 in Eq. (10) and diagonal
matrix 73 is given by diag(1, 1, —1, —1).

V. RESULTS AND DISCUSSION

Herein, we calculate differential nonlocal conductance
GnL, differential shot-noise cross correlations, as well as
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shot-noise cross correlations for the 2D N, /I/US/I/N, setup
as shown in Fig. 2 (see [40] for detailed calculations). We
take two cases for bias voltages applied in N; and N, i.e.,
Vi = V, (symmetric setup) and V; # 0, V, =0 (nonlocal
setup). We plot nonlocal conductance [41,42] and differential
shot noise with the propagating phase kxR = 55 and length
of the superconductor in terms of superconducting coherence
length R/& = 2. We take these values for propagating phase
krR and the superconductor’s length because when R > £,
there will be no possibility of nonlocal transport as elec-
tronlike or holelike quasiparticles. These cannot transmit to
the normal metal N,, and when R <« £, the effect of US
will be suppressed. However, when the length of supercon-
ductor R is comparable to superconducting coherence length
&, incident quasiparticles can transmit to normal metal N,
as an electron (EC) or hole (CAR). From Refs. [43,44],
one sees a wide range for the propagating phase (kpR =
10-5000). It has also been shown that nonlocal transport will
be suppressed for small values [45] of krR. In spin-triplet
topological superconductor (Sr,RuQy) [46], superconducting
coherence length & = 91 nm and superconducting gap A =
1.76 kgT,., where kg is Boltzmann constant and critical tem-
perature 7. = 1.6 K. Thus, we get a value for Fermi wave
vector kr =3 x 108 m~'. In this paper, we take the length of
US, R = 2£. This gives us a value for the propagating phase,
i.e., krR >~ 55. Hence, in this paper, we take krR to be 55.
For pairing symmetries without spin-rotational symmetry, i.e.,
p.X, pyP, and helical p, we have considered 2mA/h> = 0.1kg
as has also been taken in Ref. [22]. Substituting the value of
kr, m the mass of electron and /i, we get A = 0.17 x 1073 m.
This A value corresponds to 2mx /> = 0.1k, implying nor-
malized Rashba spin-orbit strength is around 0.1 times the
Fermi wave vector kr. The next subsection provides results
for differential nonlocal conductance and shot-noise cross
correlations for different pairing symmetries.

A. Differential nonlocal conductance and differential shot-noise
cross correlations

In Fig. 3 we plot differential nonlocal conductance Gy vs
bias voltage (eV 1) with eV,/A = 0.0 for intermediate barrier
strength (z = 1). Gnr, dominated by EC, is fully negative for
entire range of bias voltage (—1 < eV /A < 1) irrespective
of change in pairing potential for different pairing symmetries.
In Appendix A, we describe the crossed Andreev conductance
(Gcar) and elastic cotunneling (Ggc) contribution to differen-
tial nonlocal conductance for each pairing symmetry in the
nonlocal setup.

Theoretically, it has been shown that for transparent limit,
nonlocal conductance [35,47] is negative, which does not con-
vey enough information about Cooper-pair splitting, known as
CAR. It motivates us to study shot-noise cross correlations to
differentiate between different pairing symmetries.

Next, let us first look at differential shot-noise cross-
correlation behavior for different pairing symmetries due
to changes in barrier strength. First, for symmetric setup
(eVi/A =eV,y/A =0.2) as shown in Fig. 4. Differential
shot-noise cross correlations (dS'?/dV) for helical-p pairing
changes sign with increase in barrier strength (z). Positive
dS'?/dV in case helical-p pairing indicates Cooper-pair split-

— hcli'cal»p
———— chiral-p
----- chiral-d
—_—
..... by
-0.6 1 1 L 1 1 IR
-1.0 -0.5 0.0 0.5 1.0

eVI/A

FIG. 3. Differential nonlocal conductance [GnL, see Eq. (3)] in
units of 2¢?/h, for N; /1/US/I/N, junction vs bias voltage (eV|/A)
for US with different pairing symmetries where krR = 55, R/§€ = 2,
z=1,and eV,/A =0.

ting seen in tunneling regime (z > 2), which we explain in
detail in the next section. dS'?/dV is enhanced in the fully
transparent (z — 0) limit for gapful nontopological s-wave
and gapful topological chiral pairings, while it vanishes in tun-
neling regime (z — large). In the transparent limit, dS'?/dV
slowly increases with increase in barrier strength for non-
topological nodal singlet pairing (d,, and d,»_). Increase
in barrier strength enhances dS'?/dV for topological nodal
triplet pairing (p,& and p.9). dS'?/dV is negative in the trans-
parent limit for nontopological nodal triplet pairing (p,Z) and
vanishes in the tunneling regime.

In Fig. 5 we plot dS'?/dV vs z for nonlocal setup with
eVi/A =0.2andeV,/A = 0.0. Similar results as symmetric
setup are obtained for gapful s, chiral pairing, and nodal p,Z
pairings in nonlocal setup. Unlike symmetric setup, dS'?/dV
is enhanced in the case of nonlocal setup for topological nodal
pairings in the transparent limit. dS'? /dV for helical-p pairing

09 [ d\y _
—_—— -
- | = helical-p T
~————chiral-p
0.6

----- chiral-d

dSlZ \— pX

@ TN iy’
dv 0.3 ;

FIG. 4. Differential shot-noise cross correlations [symmetric
setup, see Eq. (5)] in units of 4|e|*/h for N, /1/US/1/N, junction vs
barrier strength (z), with different pairing symmetries where kR =
55,R/E =2,eV /A= eV,/A=0.2.
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0.4 - dag .
= helical-p
———— chiral-p [= =" " I

""" chiral-d

o Pk

» ! A L Py

[ ————

FIG. 5. Differential shot-noise cross correlations [nonlocal
setup, see Eq. (6)] in units of 4|e|*/h for N /I/US/I/N, junction vs
barrier strength (z) for different pairing symmetries of the unconven-
tional superconductor, with kpR = 55, R/§ =2, eV /A = 0.2, and
eV,/A=0.

changes from negative to positive as one goes from transpar-
ent to tunneling regime in symmetric setup, while for nonlocal
setup, it is completely negative. The opposite behavior is seen
for d,, and d,>_,» pairing as dS 12/dV is completely positive
for symmetric setup. However, it changes from positive to
negative as one goes from transparent to tunneling regime in a
nonlocal setup. For other cases, dS'2/dV is always positive
for both symmetric and nonlocal setups. Differential shot-
noise cross correlations can be a good indicator for helical-p,
Px%, dyy, and dy2_ > pairings.

Next, in Fig. 6 we plot dS'?/dV for different pairing
symmetries as a function of bias voltage (eV;/A) in the
symmetric setup for intermediate barrier strength (z = 1).
dS'?/dV shows zero-bias peak (ZBP) for both nodal non-
topological d,, and d,>_,» and nodal topological p.% and p,9

-—— - d\2~>‘2
——— helical-p
e Chiiral-p
---- chiral-d

— px
7 [ | R Py

P2

U0 -0.5 0.0 0.5 1.0
eVl/A

FIG. 6. Differential shot-noise cross correlations (for symmetric
setup) in units of 4|e|?>/h for N;/I/US/I/N, junction vs bias volt-
age (eV;/A) for different pairing symmetries of the unconventional
superconductor, with kxR = 55, R/E =2,eV| = eV, and z = 1.

05 ! I T T T T

L, -
/ ——— helical-p
/ ~—  chiral-p
-.o2 e chiral-d
/ A
/ -
P oi
-1. ! | 1 | 1 .
—51.0 -0.5 0.0 0.5 1.0
eV, /A

FIG. 7. Differential shot-noise cross correlations (for nonlocal
setup) in units of 4|e|*/h for N; /I/US/I/N, junction vs bias voltage
(eV1/A) for different pairing symmetries with kxR = 55, R/§ = 2,
eV,/A =0,andz = 1.

pairings. dS'?/dV for gapful topological pairings (helical p,
chiral p, and chiral d) and nontopological triplet p,Z pairing
are negative for the entire range of bias voltage. dS'?/dV
shows a zero-bias dip (ZBD) for helical p, while it vanishes
for chiral-p pairing at zero bias. When bias voltages tend to
superconducting gap A, dS'?/dV is strongly enhanced for
chiral pairings.

Next, we plot dS'?/dV vs bias voltage (¢V|/A) for non-
local setup with eV,/A = 0.0 in Fig. 7. Tuning the bias
voltage eV,/A to zero does not affect dS'?/dV for gapful
topological pairing (chiral p, chiral d, and helical p) which
show similar behavior as in the symmetric setup, shown in
Fig. 6. Contrary to symmetric setup, in case of nonlocal setup
for nodal topological pairing (p,%, p.$) dS'?/dV shows ZBD
instead of ZBP. Table IV summarizes the results for non-local
conductance and differential shot noise (in both symmetric
and non-local setups). Table IV succinctly puts all results in
perspective. In the next subsection, we plot HBT or shot-noise
cross correlations in the tunneling and transparent regimes.

B. Shot-noise cross correlations

Shot-noise cross correlations S'? for the setup (Fig. 2) in
the general case (neither symmetric nor nonlocal) are calcu-
lated using Eq. (4) and plotted as function of bias voltage
eV, /A applied to normal metal N, for both transparent (z =
0.1) junction (see Fig. 8) and for tunnel limit (z = 3) in Fig. 9.
Shot-noise cross correlations for s wave comes in line with
previous results [31] for both tunnel and transparent limits.

In Fig. 8, for superconductors that do not possess spin-
rotation symmetry, i.e., for gapful helical-p, nodal p,X and
DxY cases, shot-noise cross correlations (S 12y are negative with
a dip at zero bias in the transparent limit. Positive HBT cor-
relations are seen in the transparent limit for superconductors
with spin-rotation symmetry. S'? for topological chiral-p and
chiral-d pairings shows a ZBP and is symmetric as function
of bias voltage, whereas S'? for all nontopological pairings,
i.e., s-wave, p,Z, dyy, and d,>_,», show asymmetric behavior as
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S
0.5 d
d(:_y:
helical-p
chiral-p
chiral-d
3412 Py
10°S pX
0.0 >
——=-pz
-0.5 -
1 | N | . 1
-1.0 -0.5 0.5 1.0

0.0
eV, /A
2

FIG. 8. Shot-noise cross correlations (S'? multiplied by 10°) in
units of 4|e|?/h for N /I/US/I/N, junction vs bias voltage (eV,/A)

for different pairing symmetries with kxR = 55, R/§ =2, eV /A =
0.2, and z = 0.1 (transparent barriers).

function of bias voltage V», vanishing at V, = —V; for s wave
and p,Z and at V, =V, for d,, and d,>_,» pairings. Hence, by
tuning bias voltages, we can control transport; for example,
in the case of topological pairings, there is no transport for
both V, = £V, whereas for nontopological pairings either at
Vo=—-VioratV, = V.

In the tunnel limit (Fig. 9), positive shot-noise cross
correlations for chiral-p and chiral-d pairings show similar
behavior with a ZBP as in the transparent limit. However,
contrary to the transparent limit, S'? for helical-p pairing in
the tunnel limit vanishes at zero bias. Shot-noise cross cor-
relations for s-wave pairing linearly increase as a function of
V,. Similar to transparent limit, in the tunnel limit S'2 for all
nontopological cases are asymmetric as function of bias volt-
age and vanish a particular one bias voltage (either V, =V
or Vo = —V}), whereas for all topological cases S'? vanishes
at both V, =V; and V, = —V|, and is symmetric. Negative

T T T T T T T
1
Ok TS e s N L LSl — -~
5
10°S,,
-1 d
hclfcul-p
. ~———— chiral-p
b Y 4 AR e A L chiral-d
2 — 0}
L A by
3 u L T e
-1.0 -0.5 0.0 0.5 1.0

eVz/A

FIG. 9. Shot-noise cross correlations (S'> multiplied by 10°) in
units of 4|e|?/h for N, /1/US/I/N, junction vs bias voltage (eV>/A)
for different pairing symmetries with krR = 55, R/&§ =2, eV /A =
0.2, and z = 3 (tunnel barriers).

shot-noise cross correlations are seen for nodal nontopolog-
ical singlet (d,y, dy>_,») pairings which vanish at V; = V.
At zero bias, S'> shows ZBP for topological p,& and p.9
whereas it is flat at zero bias for nontopological p,Z, enabling
a distinction between the topological and nontopological p,
pairings. Table V summarizes the results for shot-noise cross
correlations in both transparent and tunnel limits.

C. Processes in play

Shot-noise cross correlations have been calculated in
metal /superconductor/metal hybrid junctions to study
Cooper-pair splitting; see Refs. [35,42,48]. Shot-noise cross
correlations for s-wave superconductor show linear behavior,
which is «V; in tunnel limit and xeV; + eV, in transparent
limit for bias voltage range (—V| < V, < V)) as seen in Figs. 8
and 9. This has been also predicted in Refs. [42,48,49], and
explained in Ref. [35]. Shot-noise cross correlations for
s-wave pairing vanish at V, = —V| in transparent limit but
vanish at V, = 0 in tunnel limit, which was also predicted
in Ref. [49]. One understands this behavior by dividing
the shot-noise correlations into individual contributions to
shot noise from local (either Andreev reflection or normal
reflection) processes and nonlocal (CAR or EC) processes. In
the subsections below, we try to understand the reasons for
the plots shown in Figs. 8 (transparent limit) and 9 (tunnel
limit) for HBT correlations via these processes for all pairing
symmetries.

1. Tunnel limit

Shot-noise cross correlations, from Eq. (B1), consist of
local [AR (Andreev reflection), NR (normal reflection)] am-
plitudes and nonlocal [CAR (crossed Andreev reflection), EC
(elastic cotunneling)] amplitudes. Each term in the shot-noise
cross correlations (B1) consists of four processes which can
be grouped as EC-NR, CAR-NR, EC-AR, CAR-AR, and a
mixed group of all four processes. EC-NR implies product
of elastic cotunneling and normal reflection amplitudes, such
as s95557555°55*; similarly CAR-NR is product of crossed
Andreev reflection and normal reflection amplitudes, such as

sshshe shhx geex. CAR-AR is product of crossed Andreev reflec-

tion and Andreev reflection amplitudes, such as s5¢sshe* shex;
and EC-AR is product of elastic cotunneling and Andreev
reflection amplitudes, such as sgfs}f;s’ff*sgg*

Inspecting the different contributions for s-wave case, we
see that NR amplitudes (s, s55) — 1 in tunnel limit, i.e.,
large z, hence, CAR-NR terms in S 12 [see Eq. (B1)] reduce
to just CAR (or scar = si’}s’fﬁ) and EC-NR reduces to just
EC (or sgc = s75557). EC contribution to shot-noise cross
correlations in tunnel limit, using electron-hole symmetry
of scattering matrix amplitudes, gives SEC = spc(hy + ho).
Here hj, h, are Heaviside theta functions and given in
Eq. (B2), while CAR contribution to shot-noise cross
correlations in tunnel limit, which again using electron-hole
symmetry gives SCAR = scar(hs + hy), where hs, hy are
given in Eq. (B2). Shot-noise cross correlations for
s-wave case in tunnel limit in small-bias voltage regime
(=Vi < V5 < V}) can be written as S'2 = SCAR 4 §EC with
SEC = 555 [O(e|V) — E) — O(le|Va — E) — O(—le|V) —
E)+ O(—le[Va —E)] and SR = s$hshs[—O(e|Vy — E) —
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FIG. 10. Processes contributing to shot-noise cross correlations in units of (10*) 4|e|?/h for N,/1/US/I/N, junction vs bias voltage
(eV»/A) for nontopological and topological superconductors with kxR = 55, R/§ = 2, eV /A = 0.2, z = 3 (tunnel barriers).

O(lelV2 — E) + O(—le|Vi — E) + O(—|e|V> — E)], where ©
is the Heaviside theta function. However, for other pairing
symmetries, NR amplitudes (s",555) —41 in tunnel limit.
Thus, SCARNR does not reduce to SCAR, and SECNR does
not reduce to SEC for these cases. For example, in case of
chiral-p, chiral-d, and p,Z pairings, S 12 — gCAR-NR 4 GEC-NR
where SCARNR — (el ghe shhxgecxy(hy + hy) and SECNR =
(5355555557505 iy + ).

From Fig. 10, unlike s-wave (nontopological gapful), shot-
noise cross correlations for chiral-p and chiral-d (topological
gapful) pairings in tunnel limit are exclusively due to the
CAR-NR process at low-bias voltages as EC-NR is sup-
pressed in this regime.

In Fig. 10, essential processes contributing to S'? are CAR-
NR, CAR-AR, EC-NR, and EC-AR, which vanish at V, =V}
or V, = =V or both V, = £V resulting in no transport at
these values for all cases. For chiral (both p and d) supercon-
ductors, CAR-NR and EC-NR contribute to HBT correlations.
However, EC-NR contribution to HBT correlations vanish at
low-bias voltages but dominates at eV, — A, which leads to
a change in sign from positive to negative of shot-noise cross
correlations. Flat §'2 is seen at zero bias for p,Z pairing due to
the contribution of both EC-NR and CAR-NR.

It has been before predicted for s-wave pairing, in
Ref. [48], shot-noise cross-correlations in our calculation for

nontopological s-wave superconductor in the tunnel limit in
low-bias voltage range (—V; < V, < V}) can be written as

Si2 4(s) o< eVs. (13)

Similarly $'?, in tunnel limit, for gapful topological (chi-
ral p, chiral d, helical p), nodal topological (p,X, p.?), nodal
nontopological superconductors (p,Z, dy, dy>_,2) in low-bias
voltage range (—V| < V, < V), one gets

S22 a(p2) o (eVa + eVi)? — v,
St12 dyy, dxz—yz) x —(ceVp — evl)zy

unnel (

Si2  (chiral p and chiral d) o (eV; — |eVa]),

tunnel

Si2 a(helical p) o< —[eV; [eVa] — (eVa)?],

SI2 (xR, ) o (—[eVa] + ceVy) — [(eVa)? — (eV1)?],
(14)

where c is a constant term. For topological superconductors,
S'2 in tunnel limit is symmetric to change in sign of bias
voltage (V»), whereas for nontopological superconductors, it is
asymmetric as a function of bias voltage (V,). This symmetry
can be a marker also for the presence of Majorana fermions
akin to ZBCP in metal and topological superconductor junc-
tion. Shot-noise cross correlations predicted in our work for s
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TABLE II. Processes that contribute to shot-noise cross correlations are denoted by v' and x represents the processes that do not contribute
to shot-noise cross correlations at a low-bias voltage range (—V, < V, < V}) for each pairing in the tunnel limit.

EC-AR CAR-AR EC-NR CAR-NR

Topology Type Pairing  ((ALy AILV) + (ALY AIY)) (AL AIY) + (ALY ALY (ALY AIG) + (ALY ALY) - (AL ALY + (ALY AI,))
Nontopological Gapful s X X v v

Nodal 2% X X v v

do_\2, dry v v v v

Topological Chiral Px +ipy, X X v X

(Gapful) d2_» + idyy

Helical p v v v v

(Gapful)

Nodal X, Py v v v v

wave are in line with that seen for s-wave superconductor in
Refs. [48,49].

Table IT summarizes how the different processes contribute
to the shot-noise cross correlations as a function of bias
voltages. Current is carried by electrons or holes, i.e., I or
I". Shot-noise cross correlations can be categorized based on
correlation between same type of carriers, i.e., (AIy ALy ) +
(Alf\’,l AI,{}Z) for EC-NR and CAR-AR or between different
types of carriers, i.e., (AI§ ALY ) + (AL, AIf ) for EC-AR
and CAR-NR. Hence, EC-AR and CAR-NR behave similarly
due to different charge-carrier correlations, e.g., in the case
of nontopological d,, and d,>_,» pairings, while EC-NR and
CAR-AR behave similarly due to correlations between same
charge carriers, e.g., in case of helical-p, p.X, and p,y pair-
ings which are topological. For nontopological p,Z pairing
and topological chiral-p and chiral-d pairing, AR contribution
tends to be negligible, hence, suppressing EC-AR and CAR-
AR contributions at low-bias voltages.

2. Transparent limit

From Ref. [35], for s-wave pairing, shot-noise cross
correlations in transparent limit contribute only from the
EC-AR process. Along with s-wave, shot-noise cross cor-
relations for chiral-p, chiral-d, and p,Z pairings in trans-
parent limit (z = 0.0) are limited to EC-AR, as CAR-
NR contribution is negligible. Thus, for s-wave, chiral-p,
chiral-d, and p,Z pairings, §12 = SECAR — g \RABCAR,
where Sgc.ar = STES%?S?}{*S%* and hgc.ar = h3 + hg, h3 and
hy are Heaviside theta functions given in Eq. (B2).
Simplifying the shot-noise cross correlations for s-wave,
chiral-p, chiral-d, and p,Z pairings in transparent limit
(z=0.0), and in low-bias voltage regime —V; <V, <
Vi, we get S12 = SECAR — (gee hhgehs shesy[_@(e|V; — E) —
O(le|Vo — E) 4+ O(—|e|Vy — E) + ©O(—|e|V, — E)], where ©
is Heaviside theta function. All four processes (EC-AR, EC-
NR, CAR-AR, and CAR-NR) contribute to shot-noise cross
correlations for superconductors that do not possess spin-
rotation symmetry. In contrast, only one process contributes
to shot-noise cross correlations for superconductors that pos-
sess spin-rotation symmetry in a low-bias voltage range.
Hence, for dy, and d,._,» cases, §'2 = SSARAR gt Jow-bias
voltages. CAR-AR contribution to shot noise can be written

CAR-AR _ __ eh he Jhex el
as S = SCAR-ARICAR-AR, WheTe ScarR-AR = $51875515"555"

and hcar-ar = M1 + hg, hy and hy are Heaviside theta func-
tions given in Eq. (B2).

Similar to tunnel limit in the transparent limit, processes
that contribute to S'> are asymmetric as function of V, and
lead to no transport at V, = —V; for s-wave case and at
V, =V, for d,y and d,>_,» cases as given in Eq. (15). For all
topological cases, processes that contribute to S'? are sym-
metric as function of V, resulting in vanishing S'? at both
V, =V and V, = —V; as shown in Fig. 11. Shot-noise cross
correlations for all pairing symmetries in Fig. 11 shown for
z = 0.0 (transparent limit) show similar behavior as also seen
in Fig. 8 for z = 0.1.

As also predicted in Ref. [49], shot-noise cross correlations
for s-wave superconductor in transparent limit at zero temper-
ature reduces to

transparent

(s) x eVy +év,. (15)

In the transparent limit and low-bias voltage range (—V; <
Vo < V1), shot-noise cross correlations for the rest of the pair-
ing symmetries are given as

SlZ

transparen!

((chiral p, chiral d) o eV; — |eV;],
Sllrgnsparem(pxz) X (ceVy + eV )27

si2 (dyy, de_y2) o (ceVs — eV )2,

transparen

Siansparent (helical p, p.k, p.9) o (eV2)* — (eV1)?, (16)

where c is a constant value. Bias-voltage dependence of shot-
noise cross correlations for chiral pairing is the same in both
transparent and tunnel limits. In contrast, barrier strength
influences bias-voltage dependence of shot-noise cross cor-
relations for other cases.

Different processes that contribute to shot-noise cross cor-
relations as a function of bias voltages are summarized in
Table III in the low-bias voltage range (—V; < V, < V)) for
transparent limit. All four processes contribute to shot-noise
cross correlations for superconductors that do not possess
spin-rotation symmetry in 2D. In contrast, for superconduc-
tors that possess spin-rotation symmetry, only one process
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FIG. 11. Processes contributing to shot-noise cross correlations in units of 4|e|?/h for N; /1/US/I/N, junction vs bias voltage (eV>/A)
for nontopological superconductors S'2(103) and topological superconductors S'2(10°) with kxR = 55, R/&€ =2, eV;/A = 0.2, and z = 0.0

(transparent limit).

contributes to noise cross correlations at low-bias voltages.
We have observed that shot-noise cross correlations for un-
conventional superconductors do not obey the linearity in bias
voltage V;, like s wave.

VI. EXPERIMENTAL REALIZATION AND CONCLUSION

Experiments on NSN junctions, similar to those shown in
Fig. 2, but with s-wave superconductors, are already a decade

old. In Refs. [50,51], positive shot-noise cross correlations
were experimentally observed for the first time in a NSN
junction with copper being the metal and aluminium as a
s-wave superconductor. Next, in Ref. [52], when gold replaced
copper as the metal in the NSN junction, similar positive
shot-noise cross correlations were again seen. Uniquely, in
Ref. [52], the effects of an external magnetic field on shot-
noise cross correlations were also taken into account. Finally,
in a more recent experiment, shot-noise autocorrelations were

TABLEIII. Processes that contribute to shot-noise cross correlations are denoted by v* and X represents the processes that do not contribute
to shot-noise cross correlations at low-bias voltage (—V; < V, < V;) for each pairing in transparent limit.

EC-AR CAR-AR EC-NR CAR-NR
Topology Type Pairing (AL AIY) + (ALY ALG)) (AL ALY + (ALY ALY (AL AR + (AL ALY (AL ALy) + (ALY, ML)
Nontopological ~ Gapful s v X X X
Nodal 254 v X X X
do_p, dy X v X X
Topological Chiral Px +ipy, v X X X
(Gapful) dp_p +idyy
Helical b v v v v
(Gapful)
Nodal DX, Py v v v v

125402-13



PHYSICAL REVIEW B 106, 125402 (2022)

MOHAPATRA, PAL, AND BENJAMIN

AATISOd AAISOd QANISOd QAISOd Sumystuep  QAneSON ‘QHZ  SuIysiuep aAnIsod ‘d9zZ EINSREING Surystuep &xd
AANISOd AANISOd AANISOd AANISOd Sumystuep  2aneSoN ‘qdZ  Surysruep AANISOd ‘d9Z aanesoN Surystuep x¥d [ePON
(ingden)
AESON ABSON QANISOd EINSLREING Sumystuep  oAnedoN ‘qqz  Surysmuep  oaneSoN ‘ddZ Surystuep Ane3aN ‘qdzZ d [es1°H
Surystuep QAISO] Surystuep QATISO] AESON Surystuep ‘ye[ EINSLREING Surystuep ‘ye[ QATIBION oanedoN el Ypr+ NTNRE
(inydeo)
Surystuep AANISOd Surystuep ANISOd aAnesaN Surystuep aaneSoN ANISOJ “‘Te[d EINGLREING aAne3aN el Sdy+ xd reayD [ea1Sojodoy,
EINSLHEING AANISOd QANISOd Surystuep Surystuep QANISOd Surystuep aAnIsod ‘d9dzZ EINSLREING Surystuep Cp
EINSLTEING EINSIYOR | EINSIYOR | Surystuep Surystuep AATISO] Surystuep aanIsod ‘d9Z aAne3aN Surystuep ot “p
Surystuep EINSLHEING Surystuep EINSLHEING EINSLREING Surystuep QANISOd Surystuep EINSLREING Surystuep 2¥d [epPON
Surystuep AANISOd Surystuep QANISO] Surystuep QANISOJ “Ie[] Surystuep QANISOJ “‘Fe[] Surystuep aAne3oN “eld s myden ea13ojodojuoN
Surpouuny,  juoredsuei],  Surouuny, Juoredsuel],  VF = Ip2 0=v/2 VF = p2 0=vV/A2 VF = p2 0=vV/A2 Suureq adAg, A3ojodoy,

0=V/%2T0=v/A?
dnyas [eoo[uoN

T0=V/%U2=v/"2
dmos oowAg

0=vVv/Y2'1=z2
dnmjas [eoo[uON

No=1lpa‘1=2

dmos oowAg

0=V/%H21=z2
QOUBJONPUOD [BOO[UOU [BIIUAIJI

UOTJB[O1I0D SSOIO 9SIOU JOUS-[eNUIJI

‘uonounf IN/1/SN/1/'N Ul SUONE[LIOD SSOID ISIOU-10YS [BIIUAISJIP PUE 9OUBIONPUOD [BOO[UOU [BIIUAISJIP JO SONSLIOORIRYD) ‘Al A T1dVL

125402-14



PROBING THE TOPOLOGICAL CHARACTER OF ... PHYSICAL REVIEW B 106, 125402 (2022)

P measured in a metal-high-7, cuprate superconductor junction
S [53]. Extending these experimental setups to metal-2D un-
_ T | conventional superconductor-metal junctions and measuring
% T 1: — < 1; shot-noise cross correlations should reveal the signatures of
< o ”;_ T s | ~ the distinct pairing §yrpmetr1e§. Suggested pairing syrr}metrlgs
Vs :T- SO N for Sr.zRuOf; are still in conflict bu.t recent anisotropic strain
< < RS § = experiment in Sr,RuQO4 suggests pairing as chiral p [54].
¥ N S, o In Table IV, we summarize the results of our work con-
‘ i@. cerning differential nonlocal conductance and differential
s shot-noise cross correlations in both symmetric and nonlocal
U setups. Whether we consider symmetric or nonlocal setup,
o differential shot-noise cross correlations for helical-p super-
" ?‘: 222 g 2 2 conductor are always negative in the transparent limit. Further,
I ;“jo % % 'g 'g % for the. entire range of blas voltages, shot noise is negative
L ZZZ s g for. hehcal—p pairing. It is the unique s1gpat'ure of helical-p
pairing. In the transparent and tunnel limits, we summa-
sl a Sleoop g 2 2 rize the results of shot-noise cross correlations in Table V.
Sl s M 55 g 4 g g Irrespective of whether tunnel limit or transparent, HBT cor-
§ 2 < £ L § § § c>‘§ relations for nontopological pairings are always asymmetric
E = to the sign of bias voltage and symmetric for topological
S| ol ,e2 g e pairings. . . ) .
s || £ T E= 5 Z g k= Our approach using nonlocal differential conductance, dif-
§ % RN z °C; £ "o“, ferential shot-noise cross correlations, and shot-noise cross
E § S E é % S % correlat19n§ to ’probe chlrgl (p and d), as well as h.ehcal— P apd
=1l 2 nodal pairing in topological superconductors, will help dis-
2 5 < . tinguish helical from chiral and nodal pairing, unlike Knight
% £ v o ”;_ “; = S “:_ shift measurement that does not resolve the helical and chiral
Ti:) ; S _Ti :T- T S 5‘3 S dl(fhotomy. Our mgthod will give an easy way for experimen-
S & V| e Lo N talists to distinguish nontopological superconductors. frqm
§ < © § \; S %“ o chiral, nodal, as well as helical-p superconductors via dif-
2 \ =2 ferential shot-noise cross correlations and shot-noise cross
g B correlations. We have considered a finite but small value of
g %‘) :%” é‘) o é” %” éﬂ Rashba spin-orbit coupling A for cases without spin-rotation
E, I é é Z Z 2 3 symmetry, i.e., Pt i, and helical p which has a minor
5 ~|g|ss= s g g effect on the magnitude of thg results as compared to that
2 ‘ﬁ for A = 0. yn the future, we will extend our st.udy to prgbe
£ N e the topological character of superconducting Dirac materials
5 S| ZEe 2y 2P using shot-noise cross correlations.
g €22 2 2 2
<= ~| o 8 E E g ‘g
g £ E =22 s 7 ACKNOWLEDGMENT
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@ . :T‘ -E%E E APPENDIX A: DIFFERENTIAL NONLOCAL
F1 < % + oS e CONDUCTANCE
< = N = In Fig. 12, we plot Gcar and Gge vs barrier strength (z)
o for nonlocal setup with eV; /A = 0.2, eV, /A = 0.0. Gcar for
2|25 = 2 G = helical p superconductor tends to a finite value in the tunnel
= 53 £S5 83 limit, while for other cases tends to zero. Ggc for helical
= < O S0 802 imit, EC
© = OCEE== p superconductor tends to a finite value, but Ggc for other
= cases tend to zero in the tunnel limit (z — large). G is
§o = always dominated by Ggc. In Fig. 13, we plot Gy Vs z in
2 & nonlocal setup with eV;/A = 0.2, eV,/A = 0.0. Gy, for all
3 & S .. . L.
3| g g pairings tends to zero in the tunnel limit (z — larg.e). One
R e does not see any marked difference between topological and
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FIG. 12. Crossed Andreev conductance Gear (left) and elastic cotunneling Ggc (right) for Ny /I/US/I/N, junction vs barrier strength (z)
for US with different pairing symmetries with krR = 55, R/§ = 2,¢eV/A = 0.2, and eV,/A = 0.

nontopological superconductors from the nonlocal conduc-
tance. It is because the electron cotunneling conductance
dominates the crossed Andreev conductance.

APPENDIX B: SHOT-NOISE CROSS CORRELATION

This Appendix expands the shot-noise cross-correlations
formula regarding scattering amplitudes. Shot-noise cross cor-
relations as given in Eq. (4) can be expanded as

4¢2 (/2 cosH
= — do
h —/2 27'[
+ (85 + S6)h3 + (57 + 58)ha + Sohs + s10he
+ s11hy + s12hg + s13ho + s14h10}-

SIZ

/dE{(Sl + 852)h1 + (53 + s4)h2

(B1)
The Fermi functions as given in Eq. (2) for electron and hole
in contact i are fi,(E) = [1 —{—exp(%)]‘1 and fi(E) =

[14+ exp(%)]“, where kg is Boltzmann constant and T
is temperature. At zero temperature, f;.(E) - O(le]V; — E)

0.00

-0.05
G, £ Y

-_——- dx:_y_:

-0.10 —— helical-p
——— chiral-p
----- chiral-d
R px,”(

-01s+/ ... ng'
_———- pX2

C 1 | 1 | 1 | 1 | I
0.0 0.5 1.0 1.5 2.0 2.5

FIG. 13. Gy for N;/I/US/I/N; junction vs barrier strength (z)
for US with different pairing symmetries where kxR = 55, R/§ = 2,
eVi/A =0.2,and eV,/A = 0.

and fiy(E) — O(le|V; + E), where ® is the Heaviside theta
function.
The variables s; to i = 1, ... 14 and Heaviside theta func-
tion components /; to i = 1, ... 10 given in Eq. (B1) are
hy = O(lelVi — E) — 20(|e|V)
— E)O(le|V2 — E) + O(le|V, — E),
O(—lelVi — E)
—20(—le[Vi — E)O(—le[V2 — E) + O(—le|V> — E),
hy = —0(—le|Vi — E) +20(—|e|V| — E)O(|e|V»
—E)—0(elV, —E), hs=—-0(le|Vi —E)
+20(le|Vi — E)O(—[e|V> — E) — O(—e|V2 — E),
hs = —O(—le|Vi — E) +20(—le|V; — E)O(—l|e|V2 — E)
—O(—le[Va —E), hs=—0(le|Vi —E)
+20(le|Vi — E)O(le|V, — E) — O(le|V> — E),
h; = ©(—lelVi — E) —20(—le[Vi — E)O(le|V> — E)
+O(lelV2 —E), hs =0O(le|]Vi —E)
—20(le|VI — E)O(—|e|V, — E) + O(—e|V2 — E),
hg = O(le[V> — E) —20(le|V> — E)O(—|e|V> — E)
+ O(—lelV2 —E), hio=0(elVi —E)
—20(le|Vi — E)O(—le|V) — E) + O(—le[Vi — E),

hy

= (o) s = (sl
2= (S ] sy = (st
o= (ool ], o= (sl
7= (s s = (sl
50 = (sl + st )
s10 = {sfasiy shists” + ssissy'slasli”).
s = s sttt + sl .
st = st + sttt
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_ eh eex ee _ehx hh _hhx _he _hex
S13 = {511511 Sp1891 T+ 81811 S1187)

hh _ehx ee hex

ee Jhex hh ehx
— S11521 }’

$21511 — S11%21 $21511
_ ee eex eh ehx eh _hhx _he _hex
S14 = {512522 S12812 81285 S8

eh _eex _he hhx hh _hex _ee eh*}

= S12812 $22522 T S12S812 2522 (B2)

EC-NR processes are identified by s; and s3, while CAR-AR
processes are s, and s4. CAR-NR processes are identified
by ss and s7, while EC-AR processes are s¢ and ss. Finally,
s9—s14 are identified as mixed processes that consist of scat-
tering amplitudes of all four processes, i.e., EC, CAR, AR,
and NR.
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