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Probing the topological character of superconductors
via nonlocal Hanbury Brown and Twiss correlations
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Superconductors can be classified as topological or not based on whether time-reversal symmetry, chiral
symmetry, and particle-hole symmetry are preserved or not. Further, topological superconductors can also be
classified as chiral or helical. In this paper, using Hanbury Brown and Twiss (HBT) shot-noise correlations
and the nonlocal conductance, we probe metal and two-dimensional unconventional superconductor and metal
junctions to understand better the pairing topological vs nontopological or helical vs chiral or nodal vs gapful.
We see that HBT correlations are asymmetric as a function of bias voltage for nontopological superconductors,
whereas they are symmetric for topological superconductors irrespective of the barrier strength. Topological su-
perconductors are associated with Majorana fermions which are important for topological quantum computation.
By distinguishing topological superconductors from nontopological superconductors, our study will help search
for Majorana fermions, which will aid in designing a topological quantum computer.
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I. INTRODUCTION

Conventional spin-singlet s-wave superconductors have
spherically symmetric order parameters wherein pairing po-
tential is independent of the direction of incident electrons.
Any deviation from this is defined as an unconventional su-
perconductor, e.g., p wave or d wave [1]. In two-dimensional
(2D) unconventional superconductors, zero-bias conductance
peak (ZBCP) may indicate the presence of Majorana zero
modes and thus indicate the topological character of super-
conductors [2,3], but does not provide sufficient evidence
for the pairing symmetry of the topological superconductor.
ZBCP can not distinguish pairing symmetries of different
topological superconductors, e.g., chiral d , chiral p, or helical
p. Moreover, distinguishing different topological pairings is
important as topological superconductors are building blocks
of Majorana zero modes, potentially crucial in topological
quantum computation [4,5].

Among the many proposals to detect pairing symmetry
of unconventional superconductors, a well-known method is
the Knight shift measurement in a nuclear magnetic reso-
nance (NMR) experiment [6]. Invariance of the Knight shift
to change in temperature below Tc is strongly suggestive of
spin-triplet pairing [7], e.g., chiral p, and distinguishes it from
the spin-singlet pairing, e.g., chiral d . Now, both chiral p
and chiral d are topological superconductors. Nevertheless,
how do we distinguish chiral p from chiral d or helical p?
A different method, the current and magnetic field inversion
(CFI) symmetry test of time-reversal symmetry (TRS), can
be used to discriminate between chiral and helical supercon-
ductors, as CFI preserves TRS for helical superconductors.

*colin.nano@gmail.com

At the same time, it breaks TRS for chiral superconductors
[8]. However, these tests are not 100% full proof, so we
propose two additional tests, the nonlocal differential shot-
noise cross correlations and nonlocal Hanbury Brown and
Twiss (HBT) correlations in metal and 2D unconventional
superconductor and metal junctions, to distinguish between
topological (chiral p, chiral d , helical p, pxx̂, and pxŷ) and
nontopological (s, pxẑ, dx2−y2 , and dxy) based on whether
spin-rotational symmetry is present or not in 2D. Among
these, chiral p, chiral d , helical p, and s wave are gapful,
while pxx̂, pxŷ, pxẑ, dxy, and dx2−y2 are nodal. As shown in
Ref. [9], different pairing symmetries of superconductors have
been categorized as topological or nontopological via tenfold
classification. As far as we are aware, shot-noise correlations
have not yet been used to identify pairing symmetries of nodal
triplet superconductors, such as pxx̂, pxŷ, or pxẑ. Hence, we
also include these pairing symmetries in our study with HBT
noise to distinguish topological from nontopological pairings
and gapful from nodal. To decipher the pairing symmetry
of unconventional superconductors, quantum transport in su-
perconducting hybrid junctions via measurement of nonlocal
differential conductance has been helpful [10]. However, shot-
noise or nonlocal HBT correlations can give more information
about the Cooper-pair splitting, which may help differentiate
between pairing symmetries of 2D unconventional supercon-
ductors. We not only focus on cross correlations but also
extend our study to differential shot-noise cross correlations.

The key take-home messages of our study are that HBT or
shot-noise correlations are asymmetric as a function of bias
voltage for nontopological superconductors. In contrast, they
are symmetric for topological superconductors irrespective of
the barrier strength. Further, we show how different topolog-
ical pairings like nodal or gapful and chiral or helical can be
distinguished from each other via the sign of HBT correlations
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)ẑ

eiθ
ẑ
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or their zero-bias nature for both transparent and tunneling
interfaces. Both differential shot-noise and HBT correlations
thus serve as effective tools to discriminate between pairing
symmetries which we explain in detail in this paper.

The paper is organized as follows: We give an overview
of the possible pairing symmetries of 2D unconventional
superconductors in Sec. II. Section III deals with the 2D BTK
approach and how it is used to calculate differential shot-noise
correlations, shot-noise cross correlations, and nonlocal
conductance in our setup. Next, in Sec. IV we describe our
setup, which is a 2D normal metal/insulator/unconventional
superconductor/insulator/normal metal (N1/I/US/I/N2)
junction for each pairing symmetry. We then discuss the
respective wave functions and boundary conditions necessary
to calculate nonlocal conductance, and shot noise, i.e., HBT
correlations and differential shot-noise correlations. It is
followed by a discussion on the results, first for nonlocal
conductance and differential shot-noise cross correlations
and then for HBT cross correlations. Finally, we provide
a discussion on why we see what we see and summarize
how different processes contribute to HBT correlations in
the subsection “Processes in Play” via Tables II and III. We
finally conclude with a comparison between different pairing
symmetries: topological (gapful helical vs gapful chiral vs
nodal) vs nontopological using HBT as well as differential
shot-noise cross correlations in Tables IV and V. In the
Appendix, we have elaborated first on the crossed Andreev
conductance and elastic cotunneling and then in detail on the
components of shot-noise cross correlations.

II. PAIRING SYMMETRIES

The pairing symmetry of superconductors is classified
based on spin angular momentum (S) of Cooper pairs, which
form via pairing between two spin-half electrons. It can be
either singlet (0) or triplet (1). Spin-singlet states are antisym-
metric in spin space, while spin-triplet states are symmetric.
Column 4 in Table I describes the parity of the different
symmetries. In the absence of spin-orbit coupling, pairing
symmetries are either even parity (spin singlet) or odd parity
(spin triplet). Pairing symmetries, as mentioned in Table I,
that satisfy ψ (k) = ψ (−k) are associated with spin-singlet
(even-parity) superconductors, and d(k) = −d(−k) are as-
sociated with spin-triplet (odd-parity) superconductors [16].
The presence of the spin-orbit coupling term breaks the in-
version symmetry. For superconductors with pairing, gapful
(helical-p) and nodal (pxx̂, pxŷ), there is a spin-orbit coupling
term, which too breaks the inversion symmetry. When the
orbital part of the wave function is even, it is denoted as
even parity with orbital angular momentum (L = 0, 2, 4 . . . ).
When the orbital part is odd, it is called odd parity with orbital
angular momentum (L = 1, 3, 5 . . . ). The total wave function
of the Cooper pair must be antisymmetric under the exchange
of particles. Thus, either the orbital part is antisymmetric
and the spin part is symmetric or vice versa. Spin-singlet
pairing is associated with even orbital angular momentum,
and spin-triplet pairing is associated with odd orbital angular
momentum [17]. Even-parity, spin-singlet Cooper-pair states
with angular momentum L = 0, 2 are denoted as s wave and
d wave while odd-parity, spin-triplet Cooper-pair states with

angular momentum L = 1, 3 are denoted as p wave and f
wave.

Column 5 in Table I describes tenfold symmetry classifi-
cation. Unconventional superconductors, in general, can be
categorized as topological or nontopological based on the
well-known tenfold symmetry classification. For 2D super-
conductors based on Bogoliubov–de Gennes Hamiltonian,
pairing symmetries can be categorized into different sym-
metry classes [9] based on (1) spin-rotation symmetry, i.e.,
rotation about z component of spin, by the presence or absence
of (2) time-reversal symmetry (TRS), (3) chiral symmetry also
known as sublattice symmetry (SLS), and (4) particle-hole
symmetry (PHS). For a system where TRS is present, T̂ = ±1
where T̂ is the TRS operator, and when TRS is absent, T̂ = 0.
Similarly, when PHS is present, P̂ = ±1, P̂ being the PHS
operator, and when PHS is absent, P̂ = 0. Chiral symmetry
can be defined based on whether TRS and PHS are present
or not. TRS and PHS together determine chirality or SLS.
When SLS is present, Ĉ = 1 (where Ĉ is the chiral symmetry
operator), and when absent, Ĉ = 0. When either TRS or PHS
is absent, SLS is absent Ĉ = 0, which includes AI, AII, C, and
D symmetry classes. When both TRS and PHS are present,
SLS is present Ĉ = 1, which includes CI, CII, BDI, and DIII
symmetry classes. For a superconductor, if TRS and PHS
are absent, but SLS holds, i.e., Ĉ = 1, then it is classified as
AIII symmetry, but if SLS is absent, i.e., Ĉ = 0, then it is A
symmetry class.

We first discuss nodal triplet pairing symmetries, e.g., pxx̂,
pxŷ, and pxẑ. Among these, pxx̂ and pxŷ do not possess spin-
rotation symmetry but TRS, PHS, and SLS are present and
therefore pxx̂ and pxŷ belong to DIII symmetry class which
is topological in 2D. However, when spin-rotation symmetry
is present in case of a 2D superconductor, there is an excep-
tion for AIII symmetry class. AIII symmetry class is then
uniquely defined by TRS and spin-rotation symmetry in 2D.
Those materials for whom both spin-rotation symmetry Sz

[spin-rotation symmetry SU(2) around z direction] and TRS
are preserved, can also be classified as AIII symmetry class.
In 2D superconductors, pxẑ pairing is an example of an AIII
symmetry class that possesses spin-rotation symmetry and
preserves TRS. This is nontopological in 2D; see Refs. [9,18]
for a detailed explanation. Nodal singlet pairing, such as dxy

and dx2−y2 , preserve TRS and possess spin-rotation symmetry.
These are examples of 2D BDG Hamiltonian in CI symmetry
class that preserves PHS and SLS and thus are nontopological
in 2D.

Gapful pairing symmetries such as gapful triplet chiral-p
pairing with d parallel to z direction possess spin-rotation
symmetry around fixed z axis and preserve PHS but TRS and
SLS are absent and thus belong to the D symmetry class in
2D which is topological. Next, gapful singlet chiral-d pairing
possesses complete spin-rotation symmetry. It preserves PHS,
but TRS and SLS are absent and are an example of the C
symmetry class in 2D, which is topological. Gapful triplet
helical-p pairing preserves TRS and PHS but does not possess
spin-rotation symmetry, but preserves SLS, and is a member
of the DIII symmetry class in 2D, which is categorized as a
gapful topological superconductor. Conventional s-wave su-
perconductors are of the CI symmetry class. These possess
complete spin-rotation symmetry and preserve both TRS and

125402-3



MOHAPATRA, PAL, AND BENJAMIN PHYSICAL REVIEW B 106, 125402 (2022)

PHS, thus preserving SLS, which is nontopological in 2D. For
pairing cases without spin-rotation symmetry, there is small
but finite Rashba spin-orbit coupling, and for cases with spin-
rotation symmetry, there is zero Rashba spin-orbit coupling.

In columns 6–9 of Table I, pairing potential [�̂(k)] of a
Cooper pair is written in terms of d(k) for spin-triplet and
a scalar term ψ (k) for spin-singlet pairing. For spin-triplet
pairing such as topological gapful (chiral p, chiral d , helical p)
and nodal px pairing [10,19,20], pair potential is given as

�̂(k) = �(d(k) · σ̂ )iσ2, (1)

where d(k) is defined for each pairing symmetry in Table I,
σ̂ = σ1x̂ + σ2ŷ + σ3ẑ where σ1,2,3 are the three Pauli matrices,
and � is the magnitude of the superconducting gap. For 2D
superconductor, momentum components are kx = kF cos θ ,
ky = kF sin θ , where kF is Fermi wave vector and θ is angle
the incident electron makes with x axis.

pxẑ pairing is a nodal nontopological superconductor with
d in ẑ direction, i.e., d(k) = (kx )ẑ/kF = cos θ ẑ. Spin-triplet p-
wave states or chiral-p pairing has d(k) = (kx ± iky)ẑ/kF with
d ‖ ĉ, i.e., d is parallel to crystal c axis [21], implying, d(k) =
(cos θ ± i sin θ )ẑ. In helical-p-wave superconductor, d is de-
fined as (x̂kx ± ŷky)/kF or (x̂ky ± ŷkx )/kF with d ⊥ ĉ (d in ab
plane), i.e., d is perpendicular to the crystal c axis [22], im-
plying, d(k) = (x̂ cos θ ± ŷ sin θ ) or (x̂ sin θ ± ŷ cos θ ). For
nodal topological px pairing, d can be in x̂ or ŷ direction, i.e.,
d(k) = kxx̂/kF = cos(θ )x̂ or d(k) = kxŷ/kF = cos(θ )ŷ.

For spin-singlet pairing such as nontopological gapful s,
nontopological nodal dx2−y2 and dxy, topological gapful chiral-
d pairing [20,23], the pair potential is given as

�(k) = �(ψ (k)), (2)

where ψ (k) is a scalar term that represents spin-singlet
pairing and is defined in Table I. s-wave superconductors
are nontopological gapful superconductors [24]. dx2−y2 pair-
ing is a nodal nontopological superconductor, where the
order parameter vanishes, diagonal to x, y directions [25]
with ψ (k) = (k2

x − k2
y )/k2

F = cos 2θ . dxy pairing is a nodal
nontopological superconductor, where the order parameter
vanishes in x, y direction [26] with ψ (k) = (2kxky)/k2

F =
2 cos θ sin θ . For chiral-d-wave superconductor, ψ (k) =
[(k2

x − k2
y ) + i2kxky]/k2

F = ei2θ .
In Table I, column 10, we have plotted normalized con-

ductance (σc) vs barrier strength (z) at zero bias for a metal
and 2D superconductor junction which is a typical signature
of the existence of Majorana bound states at metal and topo-
logical superconductor interface. Normalized conductance σc

is quantized for topological superconductors, e.g., chiral-p,
chiral-d , helical-p, pxx̂, and pxŷ cases and is in line with the
tenfold symmetry classification for 2D BDG Hamiltonian [9].

In Table I, column 11, examples of topological and non-
topological superconductors are given with their respective
pairing symmetries. Topological gapful superconductors are
chiral p wave which are px + ipy superconductor [27] and
chiral d wave which is dx2−y2 + idxy spin-singlet supercon-
ductor [28]. In Table I, we give examples of unconventional
superconductors for which the said pairing is most likely.
For example, the pairing symmetry of Sr2RuO4 is still in-
conclusive, as regards chiral p or helical p [6]. The next
section explains the 2D BTK (Blonder, Tinkham, and Klap-

FIG. 1. Schematic illustration of reflection and transmission of
electrons and holes in a N1/I/US/I/N2 junction in x-y plane. The
solid line represents the scattering of electrons, while the dotted line
represents the scattering of holes.

wijk) approach, and using it, we calculate HBT correlations
and nonlocal conductance for the chosen 2D N1/I/US/I/N2

setup.

III. 2D BTK APPROACH

We consider a 2D N1/I/US/I/N2 junction (see Fig. 1)
with insulators at x = −R/2 and R/2. θ is angle, the incident
(transmitted) electrons (holes) make with x axis [29] in N1

(N2) region. θa is angle, reflected (transmitted) holes (elec-
trons) make with x axis in N1 (N2) region. Finally, θe(h) is
angle, transmitted electrons (holes) make with x axis in US
region. We use the Andreev approximation in normal metal
regions, which implies that the electron and hole wave vectors
are identical and equal to the Fermi wave vector (kF ). We con-
sider Andreev approximation in the US region for cases with
spin-rotational symmetry (in the absence of Rashba spin-orbit
coupling), which implies that electronlike quasiparticle and
holelike quasiparticle wave vectors are equal to Fermi wave
vector (kF ). In contrast, there is no Andreev approximation
in the US region for cases without spin-rotational symmetry;
here, Rashba spin-orbit coupling is finite. Due to presence of
translational invariance in y direction [30], electron, hole, and
quasiparticle wave vectors in y direction in N1, N2, and US re-
gions are conserved. This further implies that θ = θa = θe(h).

In Fig. 1 Andreev reflection amplitude is denoted as a =
seh

11, normal reflection amplitude as b = see
11, transmission am-

plitude of elastic cotunneling c = see
12, transmission amplitude

of cross Andreev reflection d = seh
12. Scattering amplitude

sαγ

ik represents a particle α (∈ e, h) incident from contact
i (∈ N1, N2) which is reflected or transmitted to contact
k (∈ N1, N2) as a particle γ (∈ e, h). In Fig. 2 we show
our chosen setting to study transport and current cross cor-
relations across unconventional superconductors for a 2D
N1/I/US/I/N2 junction wherein N1 is at bias voltage V1 and
N2 is at bias voltage V2 while US is grounded.

A. Nonlocal conductance and shot noise

Andreev reflection can be nonlocal, too, known as crossed
Andreev reflection(CAR), in which an electron is transmitted
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FIG. 2. 2D N1/I/US/I/N2 junction. The superconductor is
grounded while bias voltage V1 is applied to N1 and V2 is applied
to N2. At −R/2, R/2 these are insulators which are represented by
δ-function potentials.

as a hole through the other interface with a superconductor,
i.e., spatially separated entangled electrons in both the normal
metals [31]. When an electron (hole) from the left normal
metal tunnels to the right normal metal as an electron (hole),
the process is known as elastic cotunneling (EC).

First, we calculate nonlocal differential conductance, de-
fined as conductance in N2 when both N2 and US are
grounded, and voltage is applied to N1. The difference be-
tween CAR and elastic cotunneling (EC) in absence of any
voltage bias to N2 is defined as nonlocal differential conduc-
tance [31] GNL = GCAR − GEC, where

GCAR =
∫ π/2

−π/2
dθ

cos θ

2π
|d|2, GEC =

∫ π/2

−π/2
dθ

cos θ

2π
|c|2,

(3)
d = seh

12 is scattering amplitude for CAR while c = see
12 is scat-

tering amplitude for EC. Shot noise can give more information
regarding the pairing symmetry from current cross corre-
lations in the N1/I/US/I/N2 junction, which conductance
cannot. It is why we look at cross correlations and differential
shot-noise cross correlations. Discreteness of charge leads to
nonequilibrium temporal fluctuations in the current known as
shot noise. Even at zero temperature, shot noise exists, unlike
thermal noise that originates due to finite temperature and
vanishes at zero temperature [32].

The general result for shot-noise cross correlations using
2D BTK for our setup (see Fig. 2) includes an integral over
incident angle θ and is given [33,34] as

S12 = 2e2

h

∫ π/2

−π/2
dθ

cos θ

2π

∑
k,l∈1,2,

x,y,γ ,δ∈e,h

sgn(x)sgn(y)

×
∫

Wk,γ ;l,δ (1x, E )

× Wl,δ;k,γ (2y, E ) fkγ (E )[1 − flδ (E )]dE , (4)

where parameter Wk,γ ;l,δ (1x, E ) = δ1kδ1lδxγ δxδ −
sxγ ∗

1k (E )sxδ
1l (E ) contains information about the scattering

process. sxγ
1k (E ) represents scattering amplitude, with γ

denoting an electron or hole incident from contact k which is
transmitted to N1 as particle of type x. fkγ is Fermi function
for particle of type γ in contact k. Normal metal N1 is contact
1 while normal metal N2 is contact 2. Here sgn(x) = +1
for x = e, i.e., electron, and sgn(x) = −1 for x = h, i.e.,
hole. In a previous study [35] it was shown that the sign of

cross correlations and sign of differential shot-noise cross
correlations could be different for some regime of bias
voltages applied. Taking a cue from this, we study both
shot-noise cross correlations and differential shot-noise cross
correlations. It will help us understand different pairing
symmetries in our setup. The differential shot-noise cross
correlations dS12

dV in symmetric setup (V1 = V2 = V ) at zero
temperature are given as [33,35]

dS12(V1 = V2 = V )

dV

= 4|e|3
h

sgn(|e|V )
∫ π/2

−π/2
dθ

cos θ

2π
(−sA + sB), (5)

where sA = ∑
α=a,b,c,d [sα (|e|V ) + sα (−|e|V )], with

sa = seh
21she

12shh∗
11 see∗

22 + seh
12she

21see∗
11 shh∗

22 ,

sb = shh
12see

21seh∗
22 she∗

11 + see
12shh

21seh∗
11 she∗

22 ,

sc = shh
11see

21seh∗
21 she∗

11 + see
11shh

21she∗
21 seh∗

11 ,

sd = seh
12she

22see∗
12 shh∗

22 + shh
12see

22she∗
12 seh∗

22 ,

and sB = ∑
α=e, f ,g,h[sα (|e|V ) + sα (−|e|V )], with

se = see
12seh

21see∗
22 seh∗

11 + shh
21she

12shh∗
11 she∗

22 ,

s f = seh
12see

21see∗
11 seh∗

22 + shh
12she

21shh∗
22 she∗

11 ,

sg = seh
11see

21see∗
11 seh∗

21 + shh
21she

11shh∗
11 she∗

21 ,

sh = see
12seh

12see∗
22 seh∗

12 + seh
12she

22shh∗
22 she∗

12 .

The differential shot-noise cross correlations in nonlocal setup
at zero temperature with bias voltage V1 = V applied to N1

while N2 grounded is given by

dS12(V1 = V,V2 = 0)

dV

= 4|e|3
h

sgn(|e|V )
∫ π/2

−π/2
dθ

cos θ

2π
(−sC + sD), (6)

where sC = sm(−|e|V ) + sn(|e|V ) + sc(|e|V ) + sc(−|e|V ) +
si(|e|V ) + s j (−|e|V ), and sD = se(|e|V ) + sg(|e|V ) +
sg(−|e|V ) + sk (|e|V ) + sl (−|e|V ) + s f (−|e|V ) with

sm = seh
21she

12shh∗
11 see∗

22 + see
12shh

21seh∗
11 she∗

22 ,

sn = seh
12she

21see∗
11 shh∗

22 + shh
12see

21seh∗
22 she∗

11 ,

si = see
12she

21see∗
11 she∗

22 + see
21she

12see∗
22 she∗

11 ,

s j = seh
12shh

21shh∗
22 seh∗

11 + shh
12seh

21shh∗
11 seh∗

22 ,

sk = see
12see

21see∗
11 see∗

22 + she
21she

12she∗
11 she∗

22 ,

sl = shh
12shh

21shh∗
11 shh∗

22 + seh
12seh

21seh∗
11 seh∗

22 .

The nonlocal conductance and shot-noise results for normal
incidence (θ = 0) agree with 1D BTK results [36]. In the next
section, we write the wave functions and boundary conditions
for the N1/I/US/I/N2 junctions, first for pairing symmetries
that possess spin-rotation symmetries, followed by pairing
symmetries that do not possess spin-rotation symmetry.
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IV. THEORY

We first discuss the wave functions for pairing symmetries
with spin-rotation symmetry, i.e., s wave, dxy, dx2−y2 , pxẑ,
chiral p, and chiral d followed by their boundary conditions.
Next, we discuss wave functions for pairing symmetries that
do not possess spin-rotation symmetry, i.e., pxx̂, pxŷ, and
helical p followed by their boundary conditions.

A. With spin rotation symmetry

The 2D Hamiltonian for BDG equationHψ = Eψ for US
which possesses full spin-rotation symmetry, i.e., for pairing
symmetries dxy, dx2−y2 , s-wave, and chiral-d pairing and fi-
nally with fixed spin-rotation symmetry around z axis, i.e.,
pxẑ, chiral-p pairing, is a 2 × 2 matrix [9,10], and is written

as

H =
(

H0(k) �(k)
�†(k) −H∗

0 (−k)

)
, (7)

with eigenspinor (c†
k , c−k), where c†

k (c−k ) being the creation
(annihilation) operators. Pairing potential for triplet pairing
is �(k) = �dz(k) for pxẑ and chiral-p cases as defined
in Eq. (1), and in terms of ψ (k) for singlet as �(k) =
�ψ (k), i.e., dxy, dx2−y2 , s-wave, chiral-d cases, is defined in
Eq. (2). Pairing symmetries that satisfy �(k) = �(−k) are
spin-singlet (even-parity) superconductors [16] for cases with
spin-rotation symmetry in the absence of Rashba spin-orbit
coupling. In Eq. (7), H0(k) = (− h̄2k2

2m + U (x) − EF ), wave
functions in N1, US, and N2 regions for dxy, dx2−y2 , s-wave,
chiral-p, chiral-d , and pxẑ pairing, and for an electron incident
from N1 are given as

ψN1 (x) = eikF y sin θ

[(
1
0

)
(eikxx + be−ikxx ) + a

(
0
1

)
eikxx

]
for x < −R

2
,

ψUS (x) = eikF y sin θ

[(
u(θ )

η∗(θ )v(θ )

)
teikx (x+ R

2 )e−(x+ R
2 )/ξ +

(
η(θ )v(θ )

u(θ )

)
f e−ikx (x+ R

2 )e−(x+ R
2 )/ξ +

(
u(θ−)

η∗(θ−)v(θ−)

)

× ge−ikx (x− R
2 )e(x− R

2 )/ξ +
(

η(θ−)v(θ−)
u(θ−)

)
heikx (x− R

2 )e(x− R
2 )/ξ

]
for − R

2
< x <

R

2
,

ψN2 (x) = eikF y sin θ

[
c

(
1
0

)
eikx (x− R

2 ) + d

(
0
1

)
e−ikx (x− R

2 )

]
for x > R/2, (8)

where η(θ±) = �(θ±)/|�(θ±)| with θ+ = θ and θ− = π − θ .
�(k, x) = � from Eq. (2) is constant in s-wave superconduct-
ing region and is zero in the normal-metal regions. For gapful
chiral-p superconductor [10], the pair potential is �(θ±) =
�eiθ± and for gapful chiral-d superconductor, �(θ±) =
�e2iθ± . For nodal dx2−y2 superconductor, pairing potential is
�(θ±) = � cos(2θ±) = � cos(2θ ), for dxy superconductor,
�(θ±) = 2� cos(θ±) sin(θ±) = ±2� cos(θ ) sin(θ ), and for
pxẑ superconductor, �(θ±) = � cos(θ±) = ±� cos(θ ). The

coherence factors are u(θ±) =
√

[E +
√

E2 − |�(θ±)|2]/(2E )

and v(θ±) =
√

[E −
√

E2 − |�(θ±)|2]/(2E ).

1. Boundary conditions

For pairing symmetries that possess spin-rotation sym-
metry, i.e., d is in z direction with finite dz for spin-triplet
superconductors, e.g., pxẑ, chiral p, and for full spin-rotation
symmetry with scalar ψ for spin-singlet superconductors, e.g.,
s wave, dxy, dx2−y2 , and chiral d , pairing potential is a scalar
term. The continuity equation and current conservation at
interface lead to boundary conditions as mentioned in Eq. (9),
solving these one can calculate the scattering amplitudes
[37]. The general boundary conditions at the interfaces for
a N1/I/US/I/N2 junction, where US satisfies spin-rotation

symmetry at x = −R/2 and R/2 are given by

�N1 |x=−R/2 = �US|x=−R/2, �US|x=R/2 = �N2 |x=R/2,

∂

∂x
(�US − �N1 )|x=−R/2 = (2mU1/h̄2)�N1 |x=−R/2,

∂

∂x
(�N2 − �US)|x=R/2 = (2mU2/h̄2)�US|x=R/2. (9)

The barrier strength at the interface in both Eqs. (12)
and (9) is characterized by dimensionless parameters zi =
2mUi/h̄2kF , i = 1, 2. From the scattering amplitudes a =
seh

11, b = see
11, c = see

12, d = seh
12, we obtain Andreev and normal

reflection probabilities as A = |a|2 and B = |b|2. C = |c|2 and
D = |d|2 define probabilities for electron cotunneling (EC)
and crossed Andreev reflection (CAR), respectively. This pa-
per considers interface barrier strengths z = z1 = z2.

B. Without spin-rotation symmetry

We adopt the Bogoliubov–de Gennes (BDG) approach to
study the transport in N1/I/US/I/N2 junction. The 2D Hamil-
tonian for BDG equation Hψ = Eψ without spin-rotation
symmetry in case of pxx̂, pxŷ, and helical-p pairing [9] can
be written as

H =
(

H (k) �̂(k)
�̂†(k) −H∗(−k)

)
, (10)
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with eigenspinor (c†
k↑, c†

k↓, c−k↑, c−k↓) ofH, where c†
k↑ (c−k↑)

denotes creation (annihilation) operator of spin-up quasipar-
ticle and c†

k↓ (c−k↓) denotes creation (annihilation) operator

of spin-down quasiparticle. Pairing potential �̂(k) for spin-
triplet cases (pxx̂, pxŷ, and helical-p) is defined via Eq. (1) and
H (k) = H0(k) · σ0 + Hp(k) with H0(k) = (− h̄2k2

2m + U (x) −
EF ), Hp(k) = V(k) · σ̂ denotes the spin-orbit coupling term
and k = (kx, ky, 0). Here σ0 is 2 × 2 identity matrix and
σ̂ = σ1x̂ + σ2ŷ + σ3ẑ where σ1,2,3 are the three Pauli matri-
ces. As in [22], V(k) = λ(x̂ky − ŷkx ) with Rashba spin-orbit
coupling constant λ. In H0, U (x) = U1δ(x + R/2) + U2δ(x −
R/2) with U1 and U2 being the barrier strengths and R is the

thickness in x direction of 2D US lying in the x-y plane. The
excitation energy E is measured relative to Fermi energy EF ,
and m is the electronlike or holelike quasiparticle mass. For
simplicity, we neglect self-consistency of the spatial distribu-
tion of the pair potential in the US. In the presence of Rashba
spin-orbit coupling for λ �= 0, the additional term Hp(k) in
Hamiltonian breaks the inversion symmetry, i.e., Hp(k) =
−Hp(−k) and �̂(k) = −�̂(−k) for odd-parity superconduc-
tors, i.e., helical p, pxx̂, and pxŷ. However, mixed-parity states
like noncentrosymmetry superconductors (NCS), e.g., helical-
p + s, have no definite parity [38], i.e., �̂(k) �= ±�̂(−k).

The wave functions in N1, US, and N2 regions for an
electron incident from N1 are

ψN1 (x) = eikyy

⎡
⎢⎣
⎛
⎜⎝

1
0
0
0

⎞
⎟⎠(eikxx + b1e−ikxx ) + b2

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠e−ikxx + a1

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠eikxx + a2

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠eikxx

⎤
⎥⎦ for x < −R

2
,

ψUS (x) = eikyy

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣t1

⎛
⎜⎜⎝

u
−iα−1

1 u
iα−1

1 v

v

⎞
⎟⎟⎠eike

↑x (x+ R
2 ) + t2

⎛
⎜⎜⎝

u
iα−1

2 u
iα−1

2 v

−v

⎞
⎟⎟⎠eike

↓x (x+ R
2 ) + f1

⎛
⎜⎝

iα1v

v

u
−iα1u

⎞
⎟⎠e−ikh

↑x (x+ R
2 ) + f2

⎛
⎜⎝

iα2v

−v

u
iα2u

⎞
⎟⎠e−ikh

↓x (x+ R
2 )

⎞
⎟⎟⎠e−(x+ R

2 )/ξ

+

⎡
⎢⎢⎣g1

⎛
⎜⎜⎝

u
−iα−1

1 u
iα−1

1 v

v

⎞
⎟⎟⎠e−ike

↑x (x+ R
2 ) + g2

⎛
⎜⎜⎝

u
iα−1

2 u
iα−1

2 v

−v

⎞
⎟⎟⎠e−ike

↓x (x+ R
2 ) + h1

⎛
⎜⎝

iα1v

v

u
−iα1u

⎞
⎟⎠eikh

↑x (x+ R
2 ) + h2

⎛
⎜⎝

iα2v

−v

u
iα2u

⎞
⎟⎠eikh

↓x (x+ R
2 )

⎤
⎥⎥⎦e(x− R

2 )/ξ

⎫⎪⎪⎬
⎪⎪⎭

× for − R

2
< x <

R

2
,

ψN2 (x) = eikyy

⎡
⎢⎣c1

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠eikx (x− R

2 ) + c2

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠eikx (x− R

2 ) + d1

⎛
⎜⎝

0
0
1
0

⎞
⎟⎠e−ikx (x− R

2 ) + d2

⎛
⎜⎝

0
0
0
1

⎞
⎟⎠e−ikx (x− R

2 )

⎤
⎥⎦ for x >

R

2
, (11)

with coherence factors for electron (hole) quasiparti-
cles given by u(v) =

√
(E + (−)

√
E − |�|2)/2E . α1(2) =

kh
↑(↓)/k↑(↓) where k↑(↓) = +(−)(mλ/h̄2) +

√
(mλ/h̄2)2 + k2

F ,
ke
↑(↓) = k↑(↓)eiθ↑(↓) , and kh

↑(↓) = k↑(↓)e−iθ↑(↓) . θ↑(↓) denotes
phase of the wave with wave number k↑(↓) (see Ref. [22]).
As translational symmetry is preserved for the y direc-
tion, ky = kF sin θ = k↑ sin θ↑ = k↓ sin θ↓. ke(h)

↑(↓)x denotes the

x component of wave vector ke(h)
↑(↓)x and is defined as ke(h)

↑(↓)x =√
(ke(h)

↑(↓) )
2 − (ky)2 . a1(2) and b1(2) represent scattering ampli-

tudes for Andreev reflection and normal reflection of spin-up
(-down) quasiparticles. c1(2) and d1(2) represent scattering am-
plitudes for elastic cotunneling and cross Andreev reflection
of spin-up (-down) quasiparticles. Superconducting coherence
length ξ = h̄vF /� where vF is the Fermi velocity [39].

1. Boundary conditions

For pairing symmetries, pxx̂, pxŷ, and helical p that do
not possess spin-rotation symmetry, and are not spin polar-
ized, i.e., d is not in one fixed spin direction but in both
x and y directions, this results in finite diagonal terms in

pairing-potential matrix �̂. The scattering amplitudes are de-
termined via the continuity equation and current conservation,
which leads to boundary conditions as in Eq. (12) (see also
Ref. [37]). The general boundary conditions at the interfaces
for US without spin-rotation symmetry, for a N1/I/US/I/N2

junction at x = −R/2 and R/2, are given by

�N1 |x=−R/2=�US|x=−R/2, �US|x=R/2=�N2 |x=R/2,

h̄vUSx�US|x=−R/2−h̄vNx�N1 |x=−R/2= − 2iU (x)τ3ψUS|x=−R/2,

h̄vNx�N2 |x=R/2−h̄vUSx�US|x=R/2= − 2iU (x)τ3ψUS|x=R/2,

(12)

where velocity operator in the x direction [22] is defined
by h̄vUSx = ∂H/∂kx for US and h̄vNx = ∂HN/∂kx where the
Hamiltonian HN for both normal metals N1 and N2 is given by
setting the pairing potential �̂(k) = 0 in Eq. (10) and diagonal
matrix τ3 is given by diag(1, 1,−1,−1).

V. RESULTS AND DISCUSSION

Herein, we calculate differential nonlocal conductance
GNL, differential shot-noise cross correlations, as well as
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shot-noise cross correlations for the 2D N1/I/US/I/N2 setup
as shown in Fig. 2 (see [40] for detailed calculations). We
take two cases for bias voltages applied in N1 and N2, i.e.,
V1 = V2 (symmetric setup) and V1 �= 0, V2 = 0 (nonlocal
setup). We plot nonlocal conductance [41,42] and differential
shot noise with the propagating phase kF R = 55 and length
of the superconductor in terms of superconducting coherence
length R/ξ = 2. We take these values for propagating phase
kF R and the superconductor’s length because when R 
 ξ ,
there will be no possibility of nonlocal transport as elec-
tronlike or holelike quasiparticles. These cannot transmit to
the normal metal N2, and when R � ξ , the effect of US
will be suppressed. However, when the length of supercon-
ductor R is comparable to superconducting coherence length
ξ , incident quasiparticles can transmit to normal metal N2

as an electron (EC) or hole (CAR). From Refs. [43,44],
one sees a wide range for the propagating phase (kF R =
10–5000). It has also been shown that nonlocal transport will
be suppressed for small values [45] of kF R. In spin-triplet
topological superconductor (Sr2RuO4) [46], superconducting
coherence length ξ = 91 nm and superconducting gap � =
1.76 kBTc, where kB is Boltzmann constant and critical tem-
perature Tc = 1.6 K. Thus, we get a value for Fermi wave
vector kF = 3 × 108 m−1. In this paper, we take the length of
US, R = 2ξ . This gives us a value for the propagating phase,
i.e., kF R � 55. Hence, in this paper, we take kF R to be 55.
For pairing symmetries without spin-rotational symmetry, i.e.,
pxx̂, pxŷ, and helical p, we have considered 2mλ/h̄2 = 0.1kF

as has also been taken in Ref. [22]. Substituting the value of
kF , m the mass of electron and h̄, we get λ = 0.17 × 10−30 m.
This λ value corresponds to 2mλ/h̄2 = 0.1kF , implying nor-
malized Rashba spin-orbit strength is around 0.1 times the
Fermi wave vector kF . The next subsection provides results
for differential nonlocal conductance and shot-noise cross
correlations for different pairing symmetries.

A. Differential nonlocal conductance and differential shot-noise
cross correlations

In Fig. 3 we plot differential nonlocal conductance GNL vs
bias voltage (eV 1) with eV 2/� = 0.0 for intermediate barrier
strength (z = 1). GNL, dominated by EC, is fully negative for
entire range of bias voltage (−1 < eV 1/� < 1) irrespective
of change in pairing potential for different pairing symmetries.
In Appendix A, we describe the crossed Andreev conductance
(GCAR) and elastic cotunneling (GEC) contribution to differen-
tial nonlocal conductance for each pairing symmetry in the
nonlocal setup.

Theoretically, it has been shown that for transparent limit,
nonlocal conductance [35,47] is negative, which does not con-
vey enough information about Cooper-pair splitting, known as
CAR. It motivates us to study shot-noise cross correlations to
differentiate between different pairing symmetries.

Next, let us first look at differential shot-noise cross-
correlation behavior for different pairing symmetries due
to changes in barrier strength. First, for symmetric setup
(eV 1/� = eV 2/� = 0.2) as shown in Fig. 4. Differential
shot-noise cross correlations (dS12/dV ) for helical-p pairing
changes sign with increase in barrier strength (z). Positive
dS12/dV in case helical-p pairing indicates Cooper-pair split-

FIG. 3. Differential nonlocal conductance [GNL, see Eq. (3)] in
units of 2e2/h, for N1/I/US/I/N2 junction vs bias voltage (eV 1/�)
for US with different pairing symmetries where kF R = 55, R/ξ = 2,
z = 1, and eV 2/� = 0.

ting seen in tunneling regime (z > 2), which we explain in
detail in the next section. dS12/dV is enhanced in the fully
transparent (z → 0) limit for gapful nontopological s-wave
and gapful topological chiral pairings, while it vanishes in tun-
neling regime (z → large). In the transparent limit, dS12/dV
slowly increases with increase in barrier strength for non-
topological nodal singlet pairing (dxy and dx2−y2 ). Increase
in barrier strength enhances dS12/dV for topological nodal
triplet pairing (pxx̂ and pxŷ). dS12/dV is negative in the trans-
parent limit for nontopological nodal triplet pairing (pxẑ) and
vanishes in the tunneling regime.

In Fig. 5 we plot dS12/dV vs z for nonlocal setup with
eV 1/� = 0.2 and eV 2/� = 0.0. Similar results as symmetric
setup are obtained for gapful s, chiral pairing, and nodal pxẑ
pairings in nonlocal setup. Unlike symmetric setup, dS12/dV
is enhanced in the case of nonlocal setup for topological nodal
pairings in the transparent limit. dS12/dV for helical-p pairing

FIG. 4. Differential shot-noise cross correlations [symmetric
setup, see Eq. (5)] in units of 4|e|3/h for N1/I/US/I/N2 junction vs
barrier strength (z), with different pairing symmetries where kF R =
55, R/ξ = 2, eV 1/� = eV 2/� = 0.2.
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FIG. 5. Differential shot-noise cross correlations [nonlocal
setup, see Eq. (6)] in units of 4|e|3/h for N1/I/US/I/N2 junction vs
barrier strength (z) for different pairing symmetries of the unconven-
tional superconductor, with kF R = 55, R/ξ = 2, eV 1/� = 0.2, and
eV 2/� = 0.

changes from negative to positive as one goes from transpar-
ent to tunneling regime in symmetric setup, while for nonlocal
setup, it is completely negative. The opposite behavior is seen
for dxy and dx2−y2 pairing as dS12/dV is completely positive
for symmetric setup. However, it changes from positive to
negative as one goes from transparent to tunneling regime in a
nonlocal setup. For other cases, dS12/dV is always positive
for both symmetric and nonlocal setups. Differential shot-
noise cross correlations can be a good indicator for helical-p,
pxẑ, dxy, and dx2−y2 pairings.

Next, in Fig. 6 we plot dS12/dV for different pairing
symmetries as a function of bias voltage (eV 1/�) in the
symmetric setup for intermediate barrier strength (z = 1).
dS12/dV shows zero-bias peak (ZBP) for both nodal non-
topological dxy and dx2−y2 and nodal topological pxx̂ and pxŷ

FIG. 6. Differential shot-noise cross correlations (for symmetric
setup) in units of 4|e|3/h for N1/I/US/I/N2 junction vs bias volt-
age (eV 1/�) for different pairing symmetries of the unconventional
superconductor, with kF R = 55, R/ξ = 2, eV 1 = eV 2, and z = 1.

FIG. 7. Differential shot-noise cross correlations (for nonlocal
setup) in units of 4|e|3/h for N1/I/US/I/N2 junction vs bias voltage
(eV1/�) for different pairing symmetries with kF R = 55, R/ξ = 2,
eV2/� = 0, and z = 1.

pairings. dS12/dV for gapful topological pairings (helical p,
chiral p, and chiral d) and nontopological triplet pxẑ pairing
are negative for the entire range of bias voltage. dS12/dV
shows a zero-bias dip (ZBD) for helical p, while it vanishes
for chiral-p pairing at zero bias. When bias voltages tend to
superconducting gap ±�, dS12/dV is strongly enhanced for
chiral pairings.

Next, we plot dS12/dV vs bias voltage (eV 1/�) for non-
local setup with eV 2/� = 0.0 in Fig. 7. Tuning the bias
voltage eV 2/� to zero does not affect dS12/dV for gapful
topological pairing (chiral p, chiral d , and helical p) which
show similar behavior as in the symmetric setup, shown in
Fig. 6. Contrary to symmetric setup, in case of nonlocal setup
for nodal topological pairing (pxx̂, pxŷ) dS12/dV shows ZBD
instead of ZBP. Table IV summarizes the results for non-local
conductance and differential shot noise (in both symmetric
and non-local setups). Table IV succinctly puts all results in
perspective. In the next subsection, we plot HBT or shot-noise
cross correlations in the tunneling and transparent regimes.

B. Shot-noise cross correlations

Shot-noise cross correlations S12 for the setup (Fig. 2) in
the general case (neither symmetric nor nonlocal) are calcu-
lated using Eq. (4) and plotted as function of bias voltage
eV2/� applied to normal metal N2 for both transparent (z =
0.1) junction (see Fig. 8) and for tunnel limit (z = 3) in Fig. 9.
Shot-noise cross correlations for s wave comes in line with
previous results [31] for both tunnel and transparent limits.

In Fig. 8, for superconductors that do not possess spin-
rotation symmetry, i.e., for gapful helical-p, nodal pxx̂ and
pxŷ cases, shot-noise cross correlations (S12) are negative with
a dip at zero bias in the transparent limit. Positive HBT cor-
relations are seen in the transparent limit for superconductors
with spin-rotation symmetry. S12 for topological chiral-p and
chiral-d pairings shows a ZBP and is symmetric as function
of bias voltage, whereas S12 for all nontopological pairings,
i.e., s-wave, pxẑ, dxy, and dx2−y2 , show asymmetric behavior as
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FIG. 8. Shot-noise cross correlations (S12 multiplied by 103) in
units of 4|e|2/h for N1/I/US/I/N2 junction vs bias voltage (eV 2/�)
for different pairing symmetries with kF R = 55, R/ξ = 2, eV 1/� =
0.2, and z = 0.1 (transparent barriers).

function of bias voltage V2, vanishing at V2 = −V1 for s wave
and pxẑ and at V2 = V1 for dxy and dx2−y2 pairings. Hence, by
tuning bias voltages, we can control transport; for example,
in the case of topological pairings, there is no transport for
both V2 = ±V1 whereas for nontopological pairings either at
V2 = −V1 or at V2 = V1.

In the tunnel limit (Fig. 9), positive shot-noise cross
correlations for chiral-p and chiral-d pairings show similar
behavior with a ZBP as in the transparent limit. However,
contrary to the transparent limit, S12 for helical-p pairing in
the tunnel limit vanishes at zero bias. Shot-noise cross cor-
relations for s-wave pairing linearly increase as a function of
V2. Similar to transparent limit, in the tunnel limit S12 for all
nontopological cases are asymmetric as function of bias volt-
age and vanish a particular one bias voltage (either V2 = V1

or V2 = −V1), whereas for all topological cases S12 vanishes
at both V2 = V1 and V2 = −V1, and is symmetric. Negative

FIG. 9. Shot-noise cross correlations (S12 multiplied by 105) in
units of 4|e|2/h for N1/I/US/I/N2 junction vs bias voltage (eV2/�)
for different pairing symmetries with kF R = 55, R/ξ = 2, eV1/� =
0.2, and z = 3 (tunnel barriers).

shot-noise cross correlations are seen for nodal nontopolog-
ical singlet (dxy, dx2−y2 ) pairings which vanish at V2 = V1.
At zero bias, S12 shows ZBP for topological pxx̂ and pxŷ
whereas it is flat at zero bias for nontopological pxẑ, enabling
a distinction between the topological and nontopological px

pairings. Table V summarizes the results for shot-noise cross
correlations in both transparent and tunnel limits.

C. Processes in play

Shot-noise cross correlations have been calculated in
metal/superconductor/metal hybrid junctions to study
Cooper-pair splitting; see Refs. [35,42,48]. Shot-noise cross
correlations for s-wave superconductor show linear behavior,
which is ∝V2 in tunnel limit and ∝eV1 + eV2 in transparent
limit for bias voltage range (−V1 < V2 < V1) as seen in Figs. 8
and 9. This has been also predicted in Refs. [42,48,49], and
explained in Ref. [35]. Shot-noise cross correlations for
s-wave pairing vanish at V2 = −V1 in transparent limit but
vanish at V2 = 0 in tunnel limit, which was also predicted
in Ref. [49]. One understands this behavior by dividing
the shot-noise correlations into individual contributions to
shot noise from local (either Andreev reflection or normal
reflection) processes and nonlocal (CAR or EC) processes. In
the subsections below, we try to understand the reasons for
the plots shown in Figs. 8 (transparent limit) and 9 (tunnel
limit) for HBT correlations via these processes for all pairing
symmetries.

1. Tunnel limit

Shot-noise cross correlations, from Eq. (B1), consist of
local [AR (Andreev reflection), NR (normal reflection)] am-
plitudes and nonlocal [CAR (crossed Andreev reflection), EC
(elastic cotunneling)] amplitudes. Each term in the shot-noise
cross correlations (B1) consists of four processes which can
be grouped as EC-NR, CAR-NR, EC-AR, CAR-AR, and a
mixed group of all four processes. EC-NR implies product
of elastic cotunneling and normal reflection amplitudes, such
as see

12see
21see∗

22 see∗
11 ; similarly CAR-NR is product of crossed

Andreev reflection and normal reflection amplitudes, such as
seh

21she
12shh∗

11 see∗
22 ; CAR-AR is product of crossed Andreev reflec-

tion and Andreev reflection amplitudes, such as she
21she

12she∗
11 she∗

22 ;
and EC-AR is product of elastic cotunneling and Andreev
reflection amplitudes, such as she

21she
12she∗

11 she∗
22 .

Inspecting the different contributions for s-wave case, we
see that NR amplitudes (shh

11, see
22) → 1 in tunnel limit, i.e.,

large z, hence, CAR-NR terms in S12 [see Eq. (B1)] reduce
to just CAR (or sCAR = seh

21she
12) and EC-NR reduces to just

EC (or sEC = see
12see

21). EC contribution to shot-noise cross
correlations in tunnel limit, using electron-hole symmetry
of scattering matrix amplitudes, gives SEC = sEC(h1 + h2).
Here h1, h2 are Heaviside theta functions and given in
Eq. (B2), while CAR contribution to shot-noise cross
correlations in tunnel limit, which again using electron-hole
symmetry gives SCAR = sCAR(h3 + h4), where h3, h4 are
given in Eq. (B2). Shot-noise cross correlations for
s-wave case in tunnel limit in small-bias voltage regime
(−V1 < V2 < V1) can be written as S12 = SCAR + SEC, with
SEC = see

12see
21[�(e|V1 − E ) − �(|e|V2 − E ) − �(−|e|V1 −

E ) + �(−|e|V2 − E )] and SCAR = seh
21she

12[−�(e|V1 − E ) −
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FIG. 10. Processes contributing to shot-noise cross correlations in units of (104) 4|e|2/h for N1/I/US/I/N2 junction vs bias voltage
(eV2/�) for nontopological and topological superconductors with kF R = 55, R/ξ = 2, eV1/� = 0.2, z = 3 (tunnel barriers).

�(|e|V2 − E ) + �(−|e|V1 − E ) + �(−|e|V2 − E )], where �

is the Heaviside theta function. However, for other pairing
symmetries, NR amplitudes (shh

11, see
22) →/1 in tunnel limit.

Thus, SCAR-NR does not reduce to SCAR, and SEC-NR does
not reduce to SEC for these cases. For example, in case of
chiral-p, chiral-d , and pxẑ pairings, S12 = SCAR-NR + SEC-NR,
where SCAR-NR = (seh

21she
12shh∗

11 see∗
22 )(h3 + h4) and SEC-NR =

(see
12see

21see∗
22 see∗

11 )(h1 + h2).
From Fig. 10, unlike s-wave (nontopological gapful), shot-

noise cross correlations for chiral-p and chiral-d (topological
gapful) pairings in tunnel limit are exclusively due to the
CAR-NR process at low-bias voltages as EC-NR is sup-
pressed in this regime.

In Fig. 10, essential processes contributing to S12 are CAR-
NR, CAR-AR, EC-NR, and EC-AR, which vanish at V2 = V1

or V2 = −V1 or both V2 = ±V1 resulting in no transport at
these values for all cases. For chiral (both p and d) supercon-
ductors, CAR-NR and EC-NR contribute to HBT correlations.
However, EC-NR contribution to HBT correlations vanish at
low-bias voltages but dominates at eV2 → �, which leads to
a change in sign from positive to negative of shot-noise cross
correlations. Flat S12 is seen at zero bias for pxẑ pairing due to
the contribution of both EC-NR and CAR-NR.

It has been before predicted for s-wave pairing, in
Ref. [48], shot-noise cross-correlations in our calculation for

nontopological s-wave superconductor in the tunnel limit in
low-bias voltage range (−V1 < V2 < V1) can be written as

S12
tunnel(s) ∝ eV2. (13)

Similarly S12, in tunnel limit, for gapful topological (chi-
ral p, chiral d , helical p), nodal topological (pxx̂, pxŷ), nodal
nontopological superconductors (pxẑ, dxy, dx2−y2 ) in low-bias
voltage range (−V1 < V2 < V1), one gets

S12
tunnel(pxẑ) ∝ (eV2 + eV1)2 − c,

S12
tunnel(dxy, dx2−y2 ) ∝ −(c eV2 − eV1)2,

S12
tunnel(chiral p and chiral d ) ∝ (eV1 − |eV2|),

S12
tunnel(helical p) ∝ −[eV1 |eV2| − (eV2)2],

S12
tunnel(pxx̂, pxŷ) ∝ (−|eV2| + c eV1) − |(eV2)2 − (eV1)2|,

(14)

where c is a constant term. For topological superconductors,
S12 in tunnel limit is symmetric to change in sign of bias
voltage (V2), whereas for nontopological superconductors, it is
asymmetric as a function of bias voltage (V2). This symmetry
can be a marker also for the presence of Majorana fermions
akin to ZBCP in metal and topological superconductor junc-
tion. Shot-noise cross correlations predicted in our work for s
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TABLE II. Processes that contribute to shot-noise cross correlations are denoted by � and × represents the processes that do not contribute
to shot-noise cross correlations at a low-bias voltage range (−V1 < V2 < V1) for each pairing in the tunnel limit.

EC-AR CAR-AR EC-NR CAR-NR

Topology Type Pairing (〈�Ie
N1

�Ih
N2

〉 + 〈�Ih
N1

�Ie
N2

〉) (〈�Ie
N1

�Ie
N2

〉 + 〈�Ih
N1

�Ih
N2

〉) (〈�Ie
N1

�Ie
N2

〉 + 〈�Ih
N1

�Ih
N2

〉) (〈�Ie
N1

�Ih
N2

〉 + 〈�Ih
N1

�Ie
N2

〉)

Nontopological Gapful s × × � �
Nodal pxẑ × × � �

dx2−y2 , dxy � � � �
Topological Chiral px + ipy, × × � ×

(Gapful) dx2−y2 + idxy

Helical p � � � �
(Gapful)
Nodal pxx̂, pxŷ � � � �

wave are in line with that seen for s-wave superconductor in
Refs. [48,49].

Table II summarizes how the different processes contribute
to the shot-noise cross correlations as a function of bias
voltages. Current is carried by electrons or holes, i.e., Ie or
Ih. Shot-noise cross correlations can be categorized based on
correlation between same type of carriers, i.e., 〈�Ie

N1
�Ie

N2
〉 +

〈�Ih
N1

�Ih
N2

〉 for EC-NR and CAR-AR or between different
types of carriers, i.e., 〈�Ie

N1
�Ih

N2
〉 + 〈�Ih

N1
�Ie

N2
〉 for EC-AR

and CAR-NR. Hence, EC-AR and CAR-NR behave similarly
due to different charge-carrier correlations, e.g., in the case
of nontopological dxy and dx2−y2 pairings, while EC-NR and
CAR-AR behave similarly due to correlations between same
charge carriers, e.g., in case of helical-p, pxx̂, and pxŷ pair-
ings which are topological. For nontopological pxẑ pairing
and topological chiral-p and chiral-d pairing, AR contribution
tends to be negligible, hence, suppressing EC-AR and CAR-
AR contributions at low-bias voltages.

2. Transparent limit

From Ref. [35], for s-wave pairing, shot-noise cross
correlations in transparent limit contribute only from the
EC-AR process. Along with s-wave, shot-noise cross cor-
relations for chiral-p, chiral-d , and pxẑ pairings in trans-
parent limit (z = 0.0) are limited to EC-AR, as CAR-
NR contribution is negligible. Thus, for s-wave, chiral-p,
chiral-d , and pxẑ pairings, S12 = SEC-AR = sEC-ARhEC-AR,
where sEC-AR = see

12shh
21seh∗

11 she∗
22 and hEC-AR = h3 + h4, h3 and

h4 are Heaviside theta functions given in Eq. (B2).
Simplifying the shot-noise cross correlations for s-wave,
chiral-p, chiral-d , and pxẑ pairings in transparent limit
(z = 0.0), and in low-bias voltage regime −V1 < V2 <

V1, we get S12 = SEC-AR = (see
12shh

21seh∗
11 she∗

22 )[−�(e|V1 − E ) −
�(|e|V2 − E ) + �(−|e|V1 − E ) + �(−|e|V2 − E )], where �

is Heaviside theta function. All four processes (EC-AR, EC-
NR, CAR-AR, and CAR-NR) contribute to shot-noise cross
correlations for superconductors that do not possess spin-
rotation symmetry. In contrast, only one process contributes
to shot-noise cross correlations for superconductors that pos-
sess spin-rotation symmetry in a low-bias voltage range.
Hence, for dxy and dx2−y2 cases, S12 = SCAR-AR at low-bias
voltages. CAR-AR contribution to shot noise can be written
as SCAR-AR = sCAR-ARhCAR-AR, where sCAR-AR = seh

21she
12she∗

11 seh∗
22

and hCAR-AR = h1 + h4, h1 and h4 are Heaviside theta func-
tions given in Eq. (B2).

Similar to tunnel limit in the transparent limit, processes
that contribute to S12 are asymmetric as function of V2 and
lead to no transport at V2 = −V1 for s-wave case and at
V2 = V1 for dxy and dx2−y2 cases as given in Eq. (15). For all
topological cases, processes that contribute to S12 are sym-
metric as function of V2 resulting in vanishing S12 at both
V2 = V1 and V2 = −V1 as shown in Fig. 11. Shot-noise cross
correlations for all pairing symmetries in Fig. 11 shown for
z = 0.0 (transparent limit) show similar behavior as also seen
in Fig. 8 for z = 0.1.

As also predicted in Ref. [49], shot-noise cross correlations
for s-wave superconductor in transparent limit at zero temper-
ature reduces to

S12
transparent(s) ∝ eV1 + eV2. (15)

In the transparent limit and low-bias voltage range (−V1 <

V2 < V1), shot-noise cross correlations for the rest of the pair-
ing symmetries are given as

S12
transparent(chiral p, chiral d ) ∝ eV1 − |eV2|,

S12
transparent(pxẑ) ∝ (c eV2 + eV1)2,

S12
transparent(dxy, dx2−y2 ) ∝ (c eV2 − eV1)2,

S12
transparent(helical p, pxx̂, pxŷ) ∝ (eV2)2 − (eV1)2, (16)

where c is a constant value. Bias-voltage dependence of shot-
noise cross correlations for chiral pairing is the same in both
transparent and tunnel limits. In contrast, barrier strength
influences bias-voltage dependence of shot-noise cross cor-
relations for other cases.

Different processes that contribute to shot-noise cross cor-
relations as a function of bias voltages are summarized in
Table III in the low-bias voltage range (−V1 < V2 < V1) for
transparent limit. All four processes contribute to shot-noise
cross correlations for superconductors that do not possess
spin-rotation symmetry in 2D. In contrast, for superconduc-
tors that possess spin-rotation symmetry, only one process
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FIG. 11. Processes contributing to shot-noise cross correlations in units of 4|e|2/h for N1/I/US/I/N2 junction vs bias voltage (eV2/�)
for nontopological superconductors S12(103) and topological superconductors S12(105) with kF R = 55, R/ξ = 2, eV1/� = 0.2, and z = 0.0
(transparent limit).

contributes to noise cross correlations at low-bias voltages.
We have observed that shot-noise cross correlations for un-
conventional superconductors do not obey the linearity in bias
voltage V2, like s wave.

VI. EXPERIMENTAL REALIZATION AND CONCLUSION

Experiments on NSN junctions, similar to those shown in
Fig. 2, but with s-wave superconductors, are already a decade

old. In Refs. [50,51], positive shot-noise cross correlations
were experimentally observed for the first time in a NSN
junction with copper being the metal and aluminium as a
s-wave superconductor. Next, in Ref. [52], when gold replaced
copper as the metal in the NSN junction, similar positive
shot-noise cross correlations were again seen. Uniquely, in
Ref. [52], the effects of an external magnetic field on shot-
noise cross correlations were also taken into account. Finally,
in a more recent experiment, shot-noise autocorrelations were

TABLE III. Processes that contribute to shot-noise cross correlations are denoted by � and × represents the processes that do not contribute
to shot-noise cross correlations at low-bias voltage (−V1 < V2 < V1) for each pairing in transparent limit.

EC-AR CAR-AR EC-NR CAR-NR

Topology Type Pairing (〈�Ie
N1

�Ih
N2

〉 + 〈�Ih
N1

�Ie
N2

〉) (〈�Ie
N1

�Ie
N2

〉 + 〈�Ih
N1

�Ih
N2

〉) (〈�Ie
N1

�Ie
N2

〉 + 〈�Ih
N1

�Ih
N2

〉) (〈�Ie
N1

�Ih
N2

〉 + 〈�Ih
N1

�Ie
N2

〉)

Nontopological Gapful s � × × ×
Nodal px ẑ � × × ×

dx2−y2 , dxy × � × ×
Topological Chiral px + ipy, � × × ×

(Gapful) dx2−y2 + idxy

Helical p � � � �
(Gapful)

Nodal pxx̂, pxŷ � � � �
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measured in a metal–high-Tc cuprate superconductor junction
[53]. Extending these experimental setups to metal-2D un-
conventional superconductor-metal junctions and measuring
shot-noise cross correlations should reveal the signatures of
the distinct pairing symmetries. Suggested pairing symmetries
for Sr2RuO4 are still in conflict but recent anisotropic strain
experiment in Sr2RuO4 suggests pairing as chiral p [54].

In Table IV, we summarize the results of our work con-
cerning differential nonlocal conductance and differential
shot-noise cross correlations in both symmetric and nonlocal
setups. Whether we consider symmetric or nonlocal setup,
differential shot-noise cross correlations for helical-p super-
conductor are always negative in the transparent limit. Further,
for the entire range of bias voltages, shot noise is negative
for helical-p pairing. It is the unique signature of helical-p
pairing. In the transparent and tunnel limits, we summa-
rize the results of shot-noise cross correlations in Table V.
Irrespective of whether tunnel limit or transparent, HBT cor-
relations for nontopological pairings are always asymmetric
to the sign of bias voltage and symmetric for topological
pairings.

Our approach using nonlocal differential conductance, dif-
ferential shot-noise cross correlations, and shot-noise cross
correlations to probe chiral (p and d), as well as helical-p and
nodal pairing in topological superconductors, will help dis-
tinguish helical from chiral and nodal pairing, unlike Knight
shift measurement that does not resolve the helical and chiral
dichotomy. Our method will give an easy way for experimen-
talists to distinguish nontopological superconductors from
chiral, nodal, as well as helical-p superconductors via dif-
ferential shot-noise cross correlations and shot-noise cross
correlations. We have considered a finite but small value of
Rashba spin-orbit coupling λ for cases without spin-rotation
symmetry, i.e., pxx̂, pxŷ, and helical p which has a minor
effect on the magnitude of the results as compared to that
for λ = 0. In the future, we will extend our study to probe
the topological character of superconducting Dirac materials
using shot-noise cross correlations.
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APPENDIX A: DIFFERENTIAL NONLOCAL
CONDUCTANCE

In Fig. 12, we plot GCAR and GEC vs barrier strength (z)
for nonlocal setup with eV1/� = 0.2, eV2/� = 0.0. GCAR for
helical p superconductor tends to a finite value in the tunnel
limit, while for other cases tends to zero. GEC for helical
p superconductor tends to a finite value, but GEC for other
cases tend to zero in the tunnel limit (z → large). GNL is
always dominated by GEC. In Fig. 13, we plot GNL vs z in
nonlocal setup with eV1/� = 0.2, eV2/� = 0.0. GNL for all
pairings tends to zero in the tunnel limit (z → large). One
does not see any marked difference between topological and
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FIG. 12. Crossed Andreev conductance GCAR (left) and elastic cotunneling GEC (right) for N1/I/US/I/N2 junction vs barrier strength (z)
for US with different pairing symmetries with kF R = 55, R/ξ = 2, eV1/� = 0.2, and eV2/� = 0.

nontopological superconductors from the nonlocal conduc-
tance. It is because the electron cotunneling conductance
dominates the crossed Andreev conductance.

APPENDIX B: SHOT-NOISE CROSS CORRELATION

This Appendix expands the shot-noise cross-correlations
formula regarding scattering amplitudes. Shot-noise cross cor-
relations as given in Eq. (4) can be expanded as

S12 = 4e2

h

∫ π/2

−π/2
dθ

cos θ

2π

∫
dE{(s1 + s2)h1 + (s3 + s4)h2

+ (s5 + s6)h3 + (s7 + s8)h4 + s9h5 + s10h6

+ s11h7 + s12h8 + s13h9 + s14h10}. (B1)

The Fermi functions as given in Eq. (2) for electron and hole
in contact i are fie(E ) = [1 + exp( E−|e|Vi

kBT )]−1 and fih(E ) =
[1 + exp( E+|e|Vi

kBT )]−1, where kB is Boltzmann constant and T
is temperature. At zero temperature, fie(E ) → �(|e|Vi − E )

FIG. 13. GNL for N1/I/US/I/N2 junction vs barrier strength (z)
for US with different pairing symmetries where kF R = 55, R/ξ = 2,
eV1/� = 0.2, and eV2/� = 0.

and fih(E ) → �(|e|Vi + E ), where � is the Heaviside theta
function.

The variables si to i = 1, . . . 14 and Heaviside theta func-
tion components hi to i = 1, . . . 10 given in Eq. (B1) are

h1 = �(|e|V1 − E ) − 2�(|e|V1

− E )�(|e|V2 − E ) + �(|e|V2 − E ),

h2 = �(−|e|V1 − E )

− 2�(−|e|V1 − E )�(−|e|V2 − E ) + �(−|e|V2 − E ),

h3 = −�(−|e|V1 − E ) + 2�(−|e|V1 − E )�(|e|V2

− E ) − �(|e|V2 − E ), h4 = −�(|e|V1 − E )

+ 2�(|e|V1 − E )�(−|e|V2 − E ) − �(−|e|V2 − E ),

h5 = −�(−|e|V1 − E ) + 2�(−|e|V1 − E )�(−|e|V2 − E )

− �(−|e|V2 − E ), h6 = −�(|e|V1 − E )

+ 2�(|e|V1 − E )�(|e|V2 − E ) − �(|e|V2 − E ),

h7 = �(−|e|V1 − E ) − 2�(−|e|V1 − E )�(|e|V2 − E )

+ �(|e|V2 − E ), h8 = �(|e|V1 − E )

− 2�(|e|V1 − E )�(−|e|V2 − E ) + �(−|e|V2 − E ),

h9 = �(|e|V2 − E ) − 2�(|e|V2 − E )�(−|e|V2 − E )

+ �(−|e|V2 − E ), h10 = �(|e|V1 − E )

− 2�(|e|V1 − E )�(−|e|V1 − E ) + �(−|e|V1 − E ),

s1 = {
see

12see∗
11 see

21see∗
22

}
, s2 = {

she
21she∗

11 she
12she∗

22

}
,

s3 = {
shh

12shh∗
11 shh

21shh∗
22

}
, s4 = {

seh
12seh∗

11 seh
21seh∗

22

}
,

s5 = {
seh

21shh∗
11 she

12see∗
22

}
, s6 = {

see
12seh∗

11 shh
21she∗

22

}
,

s7 = {
seh

12see∗
11 she

21shh∗
22

}
, s8 = {

shh
12seh∗

22 see
21she∗

11

}
,

s9 = {
seh

12shh∗
22 shh

21seh∗
22 + shh

12shh∗
11 seh

21seh∗
22

}
,

s10 = {
see

12see∗
11 she

21she∗
22 + see

21see∗
22 she

12she∗
11

}
,

s11 = {
see

12see∗
22 seh

21seh∗
11 + shh

21shh∗
11 she

12she∗
22

}
,

s12 = {
seh
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11 see
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22 + shh
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22 she
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}
,

125402-16



PROBING THE TOPOLOGICAL CHARACTER OF … PHYSICAL REVIEW B 106, 125402 (2022)

s13 = {
seh

11see∗
11 see

21seh∗
21 + shh

21shh∗
11 she

11she∗
21

− shh
11seh∗

21 see
21she∗

11 − see
11she∗

21 shh
21seh∗

11

}
,

s14 = {
see

12see∗
22 seh

12seh∗
12 + seh

12shh∗
22 she

22she∗
12

− seh
12see∗

12 she
22shh∗

22 − shh
12she∗

12 see
22seh∗

22

}
. (B2)

EC-NR processes are identified by s1 and s3, while CAR-AR
processes are s2 and s4. CAR-NR processes are identified
by s5 and s7, while EC-AR processes are s6 and s8. Finally,
s9–s14 are identified as mixed processes that consist of scat-
tering amplitudes of all four processes, i.e., EC, CAR, AR,
and NR.
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Github, https://github.com/TUSARADRI/Shot-noise-in-metal-
2D-superconductor-metaljunction.git.

[41] S.-B. Zhang and B. Trauzettel, Phys. Rev. Lett. 122, 257701
(2019).

[42] R. Melin, C. Benjamin, and T. Martin, Phys. Rev. B 77, 094512
(2008).

[43] M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. Lett. 74,
1657 (1995); Phys. Rev. B 49, 16070(R) (1994).

[44] Z. C. Dong, D. Y. Xing, and J. Dong, J. Phys.: Condens. Matter
13, 3839 (2001).

[45] W. Liming, J.-Y. Luo, X.-X. Cai, K. Sha, C.-P. Yin, and L.-B.
Hu, Front. Phys. 8, 50 (2012).

[46] Y. Liu and Z. Q. Mao, Phys. C (Amsterdam) 514, 339 (2015);
A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G.

Lonzarich, Y. Mori, S. Nishizaki and Y. Maeno, Phys. Rev. Lett.
80, 161 (1998).

[47] R. Melin and D. Feinberg, Phys. Rev. B 70, 174509 (2004).
[48] G. Bignon, M. Houzet, F. Pistolesi, and F. W. J. Hekking,

Europhys. Lett. 67, 110 (2004).
[49] D. S. Golubev and A. D. Zaikin, Phys. Rev. B 99, 144504

(2019).
[50] A. O. Denisov, A. V. Bubis, S. U. Piatrusha, N. A. Titova, A.

G. Nasibulin, J. Becker, J. Treu, D. Ruhstorfer, G. Koblmüller,
E. S. Tikhonov, and V. S. Khrapai, Semicond. Sci. Technol. 36,
09LT04 (2021).

[51] J. Wei and V. Chandrasekhar, Nat. Phys. 6, 494 (2010).
[52] A. Das, Y. Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin, and

H. Shtrikman, Nat. Commun. 3, 1165 (2012).
[53] K. M. Bastiaans, D. Cho, T. Benschop, I. Battisti, Y. Huang,

M. S. Golden, Q. Dong, Y. Jin, J. Zaanen, and M. P. Allan, Nat.
Phys. 14, 1183 (2018).

[54] Y. C. Liu, F.-C. Zhang, T. M. Rice, and Q.-H. Wang, npj
Quantum Mater. 2, 12 (2017).

125402-18

https://github.com/TUSARADRI/Shot-noise-in-metal-2D-superconductor-metaljunction.git
https://doi.org/10.1103/PhysRevLett.122.257701
https://doi.org/10.1103/PhysRevB.77.094512
https://doi.org/10.1103/PhysRevLett.74.1657
https://doi.org/10.1103/PhysRevB.49.16070
https://doi.org/10.1088/0953-8984/13/17/304
https://doi.org/10.1007/s11467-013-0291-2
https://doi.org/10.1016/j.physc.2015.02.039
https://doi.org/10.1103/PhysRevLett.80.161
https://doi.org/10.1103/PhysRevB.70.174509
https://doi.org/10.1209/epl/i2003-10293-9
https://doi.org/10.1103/PhysRevB.99.144504
https://doi.org/10.1088/1361-6641/ac187b
https://doi.org/10.1038/nphys1669
https://doi.org/10.1038/ncomms2169
https://doi.org/10.1038/s41567-018-0300-z
https://doi.org/10.1038/s41535-017-0014-y

