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Five and three quantum dot systems as apparatuses for measuring energy levels
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A quantum dot (QD) system provides various quantum physics of nanostructures. So far, many types of
semiconductor QD structures have been fabricated and investigated experimentally and analyzed theoretically.
Presently, QD systems have attracted considerable attention as units for the qubit system of quantum computers.
Therefore, it is vital to integrate QD systems as measurement devices in addition to qubits. Here, we theoretically
investigate the side-QD system as a measurement apparatus for energy levels of the target QDs. We formulate
the transport properties of both three and five QDs based on the Green’s function method. The effects of the
energy difference of two side-QDs on the measurement current are calculated. The tradeoff between the strength
of the measurement and the back-action induced by the measurement is discussed. It is found that the medium
coupling strength of the three QDs is appropriate for reading out the difference of the two energy levels.
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I. INTRODUCTION

Quantum dot (QD) systems have been providing vari-
ous topics in quantum physics for electronic systems. The
interference between QDs and channel electrons is an impor-
tant phenomenon that characterizes the transport properties
of the system. The great developments of semiconductor
nanofabrication processes enable experimentalists to directly
observe the nanoworld by using the abundant technologies
of the miniaturization of semiconductor devices. Numerous
excellent experimental works have been carried out in this
mesoscopic field [1–10]. Recently, many QD systems have
become a target structure of spin qubits because spin qubits
enter into their development phase with many QDs [11–14].
Thus, the transport properties of many QDs are of newfound
interest in several fields of physics and engineering.

In QD systems, the changes in energy levels of QDs to
external controls are very small, and detecting energy levels is
very difficult [15–19]. Generally speaking, we can obtain the
knowledge of the energy levels indirectly through the current
line attached close to the target QDs. In addition, we have to
consider the effect of the back-action by the measurements. In
order to obtain strong signals, the coupling between the tar-
get structure and the measurement structure should be large.
However, the strong coupling to the target structure tends to
destroy the coherence of the system. The tradeoff between the
measurement and the back-action is an important issue.

In this study, we theoretically describe how to measure the
difference between the energy levels of two QDs by using
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the side-QDs system. We focus on the measurement of the
QDs in the side-QD system, as shown in Fig. 1. In the con-
ventional side-QD structure [Fig. 1(a)], the arrangement of
QDs is symmetric to the center current line [S3-QD3-D3 in
Fig. 1(a)], therefore, we cannot judge which of the QDs has a
higher energy level when we measure only the current of the
structure in Fig. 1(a). However, we can distinguish the two
QDs by adding two other current lines, as shown in Fig. 1(b).
For distinguishing the two energy levels, it is sufficient to
compare the currents separately. For example, by switching
on the current line 1 while the other two current lines are
switched off, the current line 1 reflects only the energy levels
of the QD2. By combining this with the case where only the
current line 3 is switched on, we will be able to judge which
of the QD2 and QD4 has a higher energy level. Similarly,
we can use the case where the current line 5 is switched on
while the other two currents are switched off. On the other
hand, when the three currents flow at the same time, we can
consider an interesting process that does not appear for the
separate current detection. When the three current lines are
simultaneously switched on, new current passes are generated
from the source Si to the drain D j (i �= j) through the QD
between the two current lines. It is expected that these passes
enhance both the measurement and the back-action. We nu-
merically calculate the transport properties of Figs. 1(a) and
1(b), and discuss the tradeoff of the coupling strength and
the back-action. Hereafter, we call Figs. 1(a) and 1(b) as the
“three-QD” and “five-QD” cases, respectively.

The side-QD structures have been mainly investigated as
the typical setup for observing the Fano effect, in which the
current shows a dip via the interference between the energy
level of the QD and the channel current [5–10,20–26]. More-
over, the side-QD structures with two QDs have been called
the two-impurity Kondo effects. In the early research, the
energy levels of the two QDs were the same [27–30], and
recently the difference of the two energy levels is treated to
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FIG. 1. Quantum dot (QD) system considered in this study. In
each figure, the center circles show the QDs, and the voltages are ap-
plied between the sources Si and the drains Di (i = 1, 3, 5). (a) Three
QDs system, which includes two side QDs and one current line.
(b) Five QDs system, which includes the three current lines. �α

i and
Wi j are the tunneling couplings between the electrodes (α = L, R)
and the QDs and those between two QDs, respectively (i = 1, 3, 5,
j = 2, 4) [see also Eqs. (1) and (2) in the main text]. This study
targets the detection of the energy levels of QD2 and QD4. The
right-hand sides of the current lines in (b) can be switched on and
off to select the currents. By choosing the current lines, the relative
energy level between QD2 and QD4 can be detected.

be more widely. In [31], the resonant tunneling effect through
the two impurity energy levels was discussed, and it was found
that a significantly narrowed peak structure superimposes over
a broad peak structure because of the coupling between the
energy levels and the electrode. In addition, the conductance
is sensitively affected by the difference in the impurity energy
levels. These results are analogous to the Dicke effect in
quantum optics [32], where fast and slow relaxation modes ap-
pear owing to the interaction between the coupled relaxation
channels. Similar effects have been extensively discussed for
electrical conduction in mesoscopic systems [33]. In two-side
QD systems, the Dicke-type effect has been discussed in terms
of the Kondo effect [34–39].

The structure of many QDs with many current lines will be
required in the integration of the semiconductor qubits. This
is because packing qubits and the detection current line into a
small area will be important to maintain the decoherence time
of the system. The detection of the energy difference between
the two QDs is required in many cases of quantum computing
systems. The first example is the detection of the gradient
magnetic fields [26,40,41], which is important to control the
qubits individually. When the magnetic fields change depend-
ing on the position of the QDs, the Zeeman energy levels
change accordingly. It is expected that experimentalists can
infer the magnitude of the energy difference of the QDs by
measuring the transport properties. Then, the side-QD system
could be implemented to estimate the energy differences as
a candidate of the measurement system. The second example
is the detection of two qubits in the FINFET(Fin Field Effect
Transistor) structure [42,43]. In [43], QDs embedded between
the channel of the FINFET work as the qubits. The results of

the final qubit state affect the energy levels. In the spin qubit
system, it is important to detect whether the two qubits have
the same spin directions (both |↑↑〉 or |↓↓〉) or opposite spin
directions (|↑↓〉 or |↓↑〉).

This system can also be used to the third example where the
electric field is applied across the vertical direction of the QDs
in Fig. 1. When there is an applied voltage across the QD1-
QD2-QD3-QD4-QD5 via some insulators between the QDs
and the additional electrodes (not shown), we can expect the
gradient changing energy levels. By this vertical electric field,
the interference between the QDs and the channel electrons
can be controlled, and the current reflects the different energy
levels. Thus, we aim to study how the current characteristics
of the channel reflect the difference of the energy levels of two
QDs.

We use the Green’s function methods developed by
[44,45], which enable us to formulate the current charac-
teristics. The formulation of the five QD system is very
complicated and, therefore, it is better to observe the char-
acteristics of the system without the Kondo effect. Moreover,
it seems that it is not easy to experimentally observe the two-
channel Kondo [46,47]. In this study, we neglect the Kondo
effect and onsite Coulomb interaction in each QD.

The rest of this study is organized as follows. In Sec. II,
we show our formalism using the standard Green’s function
method. In Sec. III, we explain our measurement setup. In
Sec. IV, we show the numerical results of our method. In
Sec. V, we discuss our results. In Sec. VI, we summarize and
conclude this study.

II. GREEN’S FUNCTION METHODS

We investigate the transport properties of both the three and
five QD systems depicted in Fig. 1. The formulation of the
three QD systems is the case W12 = 0 = W45 of the five QD
system. Thus, we derive the formula of the five QD system.
The Hamiltonian of the five QD system is given by

H =
∑

s

5∑
i=1

Eid
†
isdis+

∑
s

∑
i=1,3,5

∑
α=L,R

∑
kα

Ekα
c†

ikα,scikα,s

+
∑

s

∑
i=1,3,5

∑
α=L,R

∑
kα

[
Vkα,s,ic

†
ikα,sdis + V ∗

kα,s,id
†
iscikα,s

]

+
4∑

i=1

∑
s

Wi,i+1(d†
isdi+1,s + H.c.), (1)

where c†
iks (ciks) creates (annihilates) an electron with mo-

mentum k and spin s in the i leads (i = 1, 3, 5), and d†
is (dis)

creates (annihilates) an electron in the QDs (i = 1, . . . , 5).
We assume that there is one energy level in each QD. The
coupling coefficients of the leads to the QDs are given by

�α
is(ω) = 2π

∑
kα

∣∣Vkα,s,i

∣∣2
δ
(
ω − Ekα

)
. (2)

We also assume that �α
i (ω) ≡ �α

i↑(ω) = �α
i↓(ω).

Following [44,45], the current IiL of the ith left electrode
is derived from the time derivative of the number of electrons
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NiL ≡ ∑
kLs c†

ikLscikLs by the left electrode, given by

IiL(t ) = −e

〈
dNiL

dt

〉
= − ie

h̄
〈[H, NiL]〉,

= ie

h̄

∑
kL,s

[
VkLs,i

〈
c†

ikLsdis
〉 − VkLs,i

〈
d†

iscikLs
〉]

= 2e

h̄
Re

{∑
kL,s

VkLs,iG
<
dis,cikL s

(t, t )

}

= 2e

h̄

∫
dE Re

{∑
kL,s

VkLs,iG
<
dis,cikL s

(E )

}
, (3)

where

G<
dis,cikα s

(t, t ′) ≡ i〈c†
ikαs(t

′)dis(t )〉, (4)

G<
cikα s,dis

(t, t ′) ≡ i〈d†
is(t

′)cikαs(t )〉, (5)

and

G<
cikα s,dis

(t, t ) = −[
G<

dis,cikα s
(t, t )

]∗
. (6)

We assume that the total current is conserved between the
source (left electrode) and drain (right electrode) which means
that the left-electrode currents IiL and the right-electrode
currents IiR (i = 1, 3, 5) satisfy the relation IL = −IR where
Iα = ∑

i=1,3,5 Iiα for α = L, R. Then, we can express the cur-
rent through the device by I = (IL + IL )/2 = (IL − IR)/2 =∑

i=1,3,5(IiL − IiR)/2. Hereafter, we also assume that the spin-
flip process is neglected, and the suffix s is omitted.

The Green’s functions are derived using the equation of
motion method [45]. For example, the time-dependent behav-
ior of the operator di(t ) is derived from ih̄ d di (t )

dt = [H, di(t )],
and we have

ωdi(ω) = [H, di(ω)]. (7)

As shown in the Appendix C and D, by combining various
pairs of the operators, all Green’s functions are obtained.

The Green’s functions of the electrodes (α = L, R) are the
free-particle Green’s functions given by

g<
α (k, ω) = 2π i f

(
Ekα

)
δ
(
ω − Ekα

)
, (8)

g>
α (k, ω) = 2π i

[
f
(
Ekα

) − 1
]
δ
(
ω − Ekα

)
, (9)

gr
α (k, ω) = 1

ω − Ekα
+ iδ

, (10)

where f (ε) is the Fermi distribution function. We define the
Fermi energy EF as that of the source electrodes. The Green’s
functions of the QDs are given by

gr
di(ω) = 1/

[
ω − Ei − �r

i (ω)
]

= ω − Ei − 	i(ω) − i
2�i

[ω − Ei − 	i(ω)]2 + �2
i /4

= bi(ω)∗

Di(ω)
, (11)

bi(ω) ≡ ω − Ei − 	i(ω) + i�i/2, (12)

Di(ω) ≡ [ω − Ei − 	i(ω)]2 + �2
i /4, (13)

�r,a
i (ω) =

∑
α

∑
kα

|Vkα,i|2
ω − Ekα

± iη
= 	i(ω) ∓ i

2
�i, (14)

�i ≡ �L
i + �R

i , 	i(ω) ≡
∑

α

∑
kα

|Vkα,i|2
ω − Ekα

, (15)

g<
di(ω) = gr

di(ω)�<
i (ω)ga

di(ω)

= i
[
�L

i fiL(ω) + �R
i fiR(ω)

]
[ω − Ei − 	i(ω)]2 + �2

i /4
, (16)

where 	i(ω) is assumed to be constant and included in Ei

in the following. The Fermi distribution function fiα (ω) is
given by fiα (ω) = {exp[(ω − μα )/(kBT )] + 1}−1 (kB, μα , and
T are the Boltzmann constant, the chemical potential of the
α electrode, and the temperature). After the long derivation
process, the retarded and advanced Green’s functions Gdi j (r
and a are omitted) are given by

Gd11(ω) = [1−C32(ω)][1−C54(ω)]−C34(ω)

�c
gd1(ω), (17)

Gd31(ω) = [1 − C54(ω)]

�c
W12W23C32(ω)gd1(ω), (18)

Gd51(ω) = W12W23C32(ω)W43W54C54(ω)

�c
gd1(ω), (19)

Gd13(ω) = [1 − C54(ω)]

�c
W23W12C12(ω)gd3(ω), (20)

Gd33(ω) = [1 − C54(ω)][1 − C12(ω)]

�c
gd3(ω), (21)

Gd53(ω) = [1 − C12(ω)]

�c
W43W54C54(ω)gd3(ω), (22)

Gd15(ω) = W45W34C34(ω)W23W12C12(ω)

�c
gd5(ω), (23)

Gd35(ω) = W45W34C34[1 − C12(ω)]

�c
gd5(ω), (24)

Gd55(ω) = [1−C34(ω)][1−C12(ω)]−C32(ω)

�c
gd5(ω), (25)

where

Ci j ≡ |Wi j |2gdigdj, (26)

�c ≡ [1 − C54](1 − C12 − C32) − C34 + C12C34. (27)

In addition, when three Green’s functions A, B, and C have
the relation of A = BC, the lesser Green’s function A< can be
derived from [44,45]

A<(E ) = Br (E )C<(E ) + B<(E )Ca(E ). (28)

The derivation of the lesser Green’s functions is more com-
plicated than that of the retarded and advanced Green’s
functions. After the long derivation process using Eq. (28),
we have the current formula for the five QDs, given by
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(see Appendix D)

I = e

h̄

∫
dω

2π

{
|W12W23W34W54|2∣∣�r

c

∣∣2

1

D1D2D3D4D5
F12345 +

∣∣1 − Cr
12

∣∣2

|�r
c|2

|W34W54|2
D3D4D5

F345 +
∣∣1 − Cr

54

∣∣2

|�r
c|2

|W23W12|2
D1D2D3

F123

+
∣∣(1 − Cr

34

)(
1 − Cr

12

) − Cr
32

∣∣2∣∣�r
c

∣∣2
D5

F55(ω) +
∣∣(1 − Cr

32

)(
1 − Cr

54

) − Cr
34

∣∣2∣∣�r
c

∣∣2
D1

F11(ω) +
∣∣1 − Cr

54

∣∣2∣∣1 − Cr
12

∣∣2∣∣�r
c

∣∣2
D3

F33(ω)

}
, (29)

where Fii, F12345, F123, and F345 are defined in the Appendix D.
When W12 = W45 = 0 in Eq. (29), we have the current of the
three QDs [Fig. 1(a)], given as

I3 = e

h̄

∫
dω

2π

�L
3 �R

3

|1 − C32 − C34|2D3
[ f3L(ω) − f3R(ω)]. (30)

The density of the states (DOS) is calculated by

ρ(ε) = − 1

π
Im

[
Gr

d11(ε) + Gr
d33(ε) + Gr

d55(ε)
]
. (31)

In the following, we mainly show the results of T → 0 limit,
where ∂ f (ε)/∂ε → −δ(ε − EF ).

III. CIRCUIT DETECTION

We would like to detect the difference of E2 and E4 by
using a simple circuit. In a conventional circuit, the voltage
signal is better for output than the current signal. In order to
transform the current change into voltage change, the addi-
tional resistor RD is set to the drain part of the QD system.
Here, we consider a simple measurement system, as shown in
Fig. 2, where Ohm’s law leads to the following relation:

VD = IDRD + Vout. (32)

The current ID is the function of the Vout; thus, this equa-
tion should be solved self-consistently. However, by assuming
that the applied voltages are low, and using ID = σVout, we

VD

Vout

RD

ID

E2

E4

VD

Vout

RD/3

ID
(a) (b)

FIG. 2. Simple setup of converting the current change of the QD
system into voltage change for both (a) the three QD case and (b) the
five QD case. We take the resistance RD as the same order of the QD
system, such as RD = 25.8 k�.

have

Vout = 1

1 + σRD
VD. (33)

In order to effectively reflect the change in σ , the resistor
should be in the order of σ−1 such that

RD = 1/σ ∼ h̄/(2e2). (34)

The amplifying rate is given by

dVout

d[E2 − E4]
= − RD

(1 + σRD)2

dσ

d[E2 − E4]
VD. (35)

In Fig. 1(a), we take σ = σ3, and in Fig. 1(b), we take σ =∑
i=1,3,5 σi, where σi is the conductance of the ith current line.

The relation between the conductance σi and the transmission
coefficient Ti is given by

σi = 2e2

h
Ti. (36)

The shot noise is simply estimated by [48,49]

S = 2e2

π h̄

∑
i

Ti(1 − Ti )|eV |, (37)

where the sum is taken for i = 1, 3, 5 for the five QD case and
only i = 3 for the three QD case, respectively. The measure-
ment time is defined by [50]

t−1
meas ≡ (�I )2

4S
, (38)

where we take �I as the difference of the current from that
at E2 = E4. Moreover, we exclude the region of �I = 0 in
the numerical results below. In the calculation of the noise
power S, we need the concrete value for the applied voltage
VD. For VD = 10 ∼ 100 μeV [1,2], the current I is in order
of I ∼ VD/[2RD] ∼ 0.17–1.7 nA, where approximately 10–
100 electrons flow per 1 ps. Here, we assume VD = 8 μeV.
Regarding the values for the �, � = 0.5 μeV is used in [1],
and � = (3 ns)−1 is used in [2,3]. Here, we take �0 = 10 μeV
as the unit of the �, and EF = 4.5�0. From Refs. [44,45],
the QD connected to two electrodes shows the resonant tun-
neling behavior in which the current has a peak when the
bias voltage becomes larger than the energy level of the QD.
Thus, the linear approximation (33) is appropriate for Ei >

VD, which corresponds to the region other than the neighbor
of (E2, E4) = (0, 0) in the calculations of Sec. IV because
VD  EF .
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Back-action

Usually, it is assumed that the energy levels of QDs are not
changed. However, the energy levels of QDs are changed in
several situations. For example, it can be considered that there
are trap sites near the QDs, and the charge distribution of the
trap site changes depending on the externally applied voltage.
In addition, we can consider the case of [43,51] where the
energy levels are affected by the directions of the spins that
fill the lower energy levels of the same QDs. In these cases, it
is natural to consider that both E2 and E4 are changed by the
measurements. Thus, it is meaningful to analyze the effect of
the measurements on those energy levels. Because the change
of the energy levels affects the electronic states of electrons,
it is related to the decoherence effect. In many literatures, the
decoherence effects have been analyzed regarding the noise
effect on the coherence. However, the detailed noise analysis
of the qubits is complicated and requires a lot of experimental

data [4]. Here, we consider that the decoherence in QD2 and
QD4 is induced by the measurement of the currents 1, 3, and
5. That is, it is possible that electrons in QD2 or QD4 lose
their coherence while they move back and forth to the channel
QDs 1, 3, and 5. We simply describe the decoherence time
caused by the interaction. This process can be described by
the golden rule [52], where the last term of the Hamiltonian
(1), Hint (t ) ≡ ∑4

i=1

∑
s Wi,i+1[d†

i (t )di+1(t ) + H.c.], is treated
as the perturbation term, and the nonperturbated terms are
those of the current lines Si − QDi − Di (i = 1, 3, 5). Then,
the relaxation rate �relax can be defined by

�relax ≈ 1

h̄2

∫ ∞

−∞
dτ e−iω01τ 〈Hint (τ )Hint (0)〉, (39)

where ω01 = |E2 − E4|. The decoherence time tdec is de-
fined by tdec ≡ �−1

relax. The final form of tdec is given by (see
Appendix A)

t−1
dec ≈

∑
i

|Wi,i+1|2
h̄2

∫
dε′

2π
[g<

di(ε
′ + ω01)g>

di+1(ε′) + g<
di+1(ε′ + ω01)g>

di(ε
′)]

= [1 − f (E2)]

( |W12|2
h̄2

�L
1 fL(E2 + ω01) + �R

1 fR(E2 + ω01)

[E2 + ω01 − E1 − 	1(E2 + ω01)]2 + �2
1/4

+ (1 → 3)

)

+ f (E2)

( |W12|2
h̄2

�L
1 [1 − fL(E2 − ω01)] + �R

1 [1 − fR(E2 − ω01)]

[E2 − ω01 − E1 − 	1(E2 − ω01)]2 + �2
1/4

+ (1 → 3)

)

+ [1 − f (E4)]

( |W43|2
h̄2

�L
3 fL(E4 + ω01) + �R

3 fR(E4 + ω01)

[E4 + ω01 − E3 − 	3(E4 + ω01)]2 + �2
3/4

+ (3 → 5)

)

+ f (E4)

( |W43|2
h̄2

�L
3 [1 − fL(E4 − ω01)] + �R

3 [1 − fR(E4 − ω01)]

[E4 − ω01 − E3 − 	3(E4 − ω01)]2 + �2
3/4

+ (3 → 5)

)
. (40)

Here, f (Ei ) and 1 − f (Ei ) mean that there is an electron in
the Ei level and that there is no electron in the Ei level,
respectively (i = 2, 4). In order to treat an average case, we
take f (E2) = f (E4) = 1

2 in the following calculations.

IV. NUMERICAL RESULTS

For simplicity, we assume the uniform case of Wi j (= W )
and �i(= �) at zero temperature (T = 0). The effects of the
nonuniform parameters and the finite temperature are dis-
cussed in the Appendix B. When we use QDs 1, 3, and 5, with
their electrodes as the measurement structure to detect the
energy levels of QD 2 and 4, the magnitude of W compared
with � can be regarded as the strength of measurement. Thus,
we can distinguish the following three regions: (1) strong
measurement of W > � (Figs. 4 and 5), (2) medium measure-
ment of W ≈ � (Figs. 6 and 7), and (3) weak measurement of
W < � (Figs. 8 and 9).

Since we focus on the detection of the difference of the two
energy levels, the change of the currents from those at E2 =
E4 is important. Thus, all numerical results are described as
the functions of E2 and E4. As explained in the Introduction,
we assume that the gradient fields are generated by the ap-
plied magnetic fields or electric fields. Thus, it is appropriate
that the difference of the energy levels between the adjacent

QDs are assumed to be uniform such that δ ≡ E2 − E1 =
E3 − E2 = E4 − E3 = E5 − E4. The following graphs show
the conductance and other detectable physical values, aim-
ing that the experimentalists can estimate the difference of
the energy levels of the QDs from the calculated current
characteristics.

Figure 3 shows the DOS of Eq. (31) for the three coupling
regions. In the strong measurement case of Figs. 3(a) and
3(d), the central peak shows the energy level of the QD2
(we fix E2 in the calculation), and the other peaks show the
coupling to the electrodes. In the medium measurement of
Figs. 3(b) and 3(e), we can see both the central sharper peak
and the two broader peaks, which are similar characteristics to
those discussed in [34,35,37–39]. In the weak coupling cases
[Figs. 3(c) and 3(f)], we observe the Fano dip structure over
the broad Lorentzian structure. When the three QD medium
coupling case [Fig. 3(b)] is compared with that of five QD case
[Fig. 3(e)], the peak structures are broadened. This is because
the five QD structure has additional electrodes compared
with the three QD case, and the coupling to the electrodes
makes the Lorentzian wider. In contrast, for the weak cou-
pling case, there is no significant difference in both the three
QD case and the five QD case. This is because the coupling
between the channel current and the electrodes is weak, re-
sulting in the smaller effects of the additional electrodes of
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(b) 3-QDs:medium (c) 3-QDs: weak(a) 3-QDs:strong

(e) 5-QDs:medium (f) 5-QDs: weak(d) 5-QDs:strong

E/EF E/EF

�
�(E

)
�
�(E

)

E/EF

�/EF=0.2
�/EF=0.4
�/EF=0.6

FIG. 3. The density of states (DOS), Eq. (31), for (a), (d) the strong measurement case of � = 0.2�0 and W = 2�0, (b), (e) the medium
measurement case of � = W = �0, and (c), (f) the weak measurements case of � = 2�0 and W = 0.2�0. �0 = 10 μeV and E2/EF = 0.5.
(a)–(c) For the three QD case. (d)–(f) For the five QD case.

the five QD structure. The effect of the increasing detun-
ing δ = Ei+1 − Ei is prominent in the case of the five QD
case for the medium measurement. This is because there
are two additional QDs in the case of the five QD case
in Fig. 3(e).

Figure 4 shows the transport properties of the strong mea-
surement case. We can see that the conductances have the peak
structures around the Fermi energy. This can be understood
by considering that the two kinds of peaks of Figs. 3(a) and
3(d) overlap around the Fermi energy. Some of the outputs

(d) 5-QDs: strong (e) 5-QDs: strong (f) 5-QDs strong

(b) 3-QDs: strong (c) 3-QDs strong(a) 3-QDs: strong

FIG. 4. The strong measurement case of � = 0.2�0 and W = 2�0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV
and VD = 8 μeV. (a), (d) Conductance, (b), (e) Vout. (c), (f) The noise power S. (a)–(c) Three QD case and (d)–(f) five QD case.
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(d) 3-QDs: strong(c) 3-QDs: strong

(e) 5-QDs: strong (h) 5-QDs: strong(g) 5-QDs: strong(f) 5-QDs: strong

(a) 3-QDs: strong (b) 3-QDs: strong

FIG. 5. The strong measurement case of � = 0.2�0 and W = 2�0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV
and VD = 8 μeV. (a), (e) dVout

d (E2−E4 ) /VD. (b), (f) tmeas/tdec. (c), (g) tmeas. (d), (h) tdec. (a)–(d) Three QD case and (e)–(h) five QD case. The dotted
lines in (b) and (f) indicate the boundary of the effective measurement tmeas < tdec.

Vout become the half of VD. A comparison of Figs. 4(c) and
4(f) shows that the coupling of the five QD case induces
a larger noise than the three QD case. This is because of
the three current lines attached to the QDs for the five QD
case. In addition, owing to the fact that the coupling � to
the electrodes is weaker than the coupling W to the QDs, the

shot noises [Figs. 4(c) and 4(f)] are smaller than those of the
following medium measurement case. Figures 5(c) and 5(g)
show the measurement times. Here, in the calculation of tmeas

[Eq. (38)], we exclude the line around E2 = E4, which results
in the divergence structures in Figs. 5(b), 5(c), 5(f), and 5(g).
The dot lines in Figs. 5(b) and 5(f) show the boundary lines

(d) 5-QDs: medium (e) 5-QDs: medium (f) 5-QDs: medium

(b) 3-QDs: medium (c) 3-QDs medium(a) 3-QDs: medium

FIG. 6. The medium measurement case of � = W = �0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV and VD =
8 μeV. (a), (d) Conductance. (b), (e) Vout. (c), (f) The noise power S. (a)–(c) Three QD case and (d)–(f) five QD case.
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(a) 3-QDs: medium (d) 3-QDs: medium(c) 3-QDs: medium(b) 3-QDs: medium

(e) 5-QDs: medium (h) 5-QDs: medium(g) 5-QDs: medium(f) 5-QDs: medium

FIG. 7. The medium measurement case of � = W = �0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV and VD =
8 μeV. (a), (e) dVout

d (E2−E4 ) /VD. (b), (f) tmeas/tdec. (c), (g) tmeas. (d), (h) tdec. (a)–(d) Three QD case and (e)–(h) five QD case. The dotted lines in
(b) and (f) indicate the boundary of the effective measurement tmeas < tdec.

of the effective measurement where the setup of tmeas � tdec

is meaningless because before obtaining the information of
the energy levels of QD2 and QD4, the electrons dephase via
the back-action of the measurement. In the three QD case
[Fig. 5(b)], it is seen that the strong measurement has the

narrow regions for the condition tmeas < tdec. In the case of
the five QD case [Fig. 5(f)], the effective measurement region
becomes much narrower. Note that, in Figs. 5(b) and 5(c), the
overlap of the small tmeas regions come from Eq. (38) where
the conductance, Fig. 4(a), and the noise power, Fig. 4(c),

(d) 5-QDs: weak (e) 5-QDs: weak (f) 5-QDs: weak

(b) 3-QDs: weak (c) 3-QDs weak(a) 3-QDs: weak

FIG. 8. The weak measurement case of � = 2�0 and W = 0.2�0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV and
VD = 8 μeV. (a), (d) Conductance. (b), (e) Vout . (c), (f) The noise power S. (a)–(c) Three QD case and (d)–(f) five QD case.
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(a) 3-QDs: weak (d) 3-QDs: weak(c) 3-QDs: weak(b) 3-QDs: weak

(e) 5-QDs: weak (h) 5-QDs: weak(g) 5-QDs: weak(f) 5-QDs: weak

FIG. 9. The weak measurement case of � = 2�0 and W = 0.2�0 as functions of E2 and E4 for several δ = (E4 − E2)/2. �0 = 10 μeV and
VD = 8 μeV. (a), (e) dVout

d (E2−E4 ) /VD. (b), (f) tmeas/tdec. (c), (g) tmeas. (d), (h) tdec. (a)–(d) Three QD case and (e)–(h) five QD case. The dotted lines
in (b) and (f) indicate the boundary of the effective measurement tmeas < tdec.

shows similar behavior. A larger change in Vout as the func-
tion of the difference between E2 and E4 is desirable. In this
meaning, the strong measurement case shows the large Vout for
some parameters. However, it seems that the corresponding
strong measurement cases such as E4/EF � 0.60 do not hold
the condition for the effective measurement condition.

Next, we consider the medium measurement case shown in
Figs. 6 and 7. In case of the three QDs, it is observed that the
conductance [Fig. 6(a)] decreases before the Fermi level, and
increases at the Fermi level. This wall-like structure around
(E2, E4) = (EF , EF ) of Fig. 6(a) can be partly explained by
considering the zero points of the denominator of Eq. (30)
given by

(
1 − Cr

23 − Cr
34

)
D3 = b∗

3 − W 2

[
b∗

2

D2
+ b∗

4

D4

]
≈ 0, (41)

where bi(ω) = ω − Ei + i�i/2 and Di = [ω − Ei]2 + γ 2
i

(γi = �i/2). The imaginary part of Eq. (41) leads to
γ3

W 2
= γ2

[ω − E2]2 + γ 2
2

+ γ4

[ω − E4]2 + γ 2
4

. (42)

For �3 = W , Eq. (42) satisfies cos2 θa + sin2 θa = 1 if we take
γ2 = γ4 = 2W and

ω − E2 = 2W tan θa, (43)

ω − E4 = 2W cot θa. (44)

The real part of Eq. (41) leads to θa ≈ π/4 by considering
E3 − E2 = E4 − E3. From Eqs. (43) and (44), we obtain

(ω − E2)(ω − E4) = 4W 2. (45)

This equation means that the maximum current, which cor-
responds to the region where the denominator of Eq. (30)
is around zero [Eq. (41)], is observed when E2 and E4 have

the relation y ∝ W 2/x from the viewpoint at the origin of
(x, y) = (EF , EF ). Compared with the three QD case, the
results of the five QD case has a peak structure [Fig. 6(d)].
This is because of the complicated structure of Eq. (29). Note
that the wall-like structure can also be seen in the strong
measurements [Fig. 4(a)]. Because W = 2�0 in the strong
measurement is larger than that of the medium measurement,
the wall-like structure of the strong measurement is far from
the Fermi energy and close to (0,0).

Figure 6(b) shows that the large change of Vout can be
seen around the wall-like structure for the three QD case, and
Fig. 6(e) shows that Vout changes prominently away from the
diagonal line of E2 = E4. Accordingly, Figs. 7(a) and 7(e)
show the large rate of dVout

d (E2−E4 )/VD around the middle of the
Fermi surface (E4/EF ≈ 0.77). Compared with Figs. 7(a) and
7(e), the three QDs have a higher amplifying rate. It is seen
that Vout changes more than 0.5 VD when E2 changes for a
fixed E4 for the three QD case. From Figs. 7(d) and 7(h),
the decoherence time of the three QD case is a little longer
than that of the five QD case. Here, the abrupt change of tdec

comes from the definition of |ω01| in Eq. (40) (see Appendix A
and Fig. 11). When the measurement time of the three QDs
[Figs. 7(b) and 7(c)] is compared with that of the strong
measurement case [Figs. 5(b) and 5(c)], the effective measure-
ment region (tmeas < tdec) becomes larger. The comparison of

dVout
d (E2−E4 )/VD of the medium measurement case [Fig. 7(a)] with
that of the strong measurement case [Fig. 5(a)] indicates that
the medium measurement case will be better than the strong
measurement case. In the present parameter region, there is
no effective measurement region for the five QD case in the
medium measurement [Fig. 7(f)]. Thus, the side-QD setup
of Fig. 1(a) might be a good measurement apparatus for the
energy levels of the two QDs, whereas the five QD case is
meaningless in the present parameter region.

125401-9



TETSUFUMI TANAMOTO AND TOMOSUKE AONO PHYSICAL REVIEW B 106, 125401 (2022)

(d) left-QDs: weak (e) left-QDs: weak (f) left-QDs: weak

(b) left-QDs: medium (c) left-QDs medium(a) left-QDs: medium

FIG. 10. The transport properties, where only the left current channel 1 is switched on. (a)–(c) For the medium measurement case
(� = W = �0), and (d)–(f) for the weak measurement case (� = 2�0 and W = 0.2�0). (a), (d) Conductance. (b), (e) Vout. (c), (f) The noise
power S. �0 = 10 μeV and VD = 8 μeV.

As seen in Fig. 3, the weak measurement case shows the
Fano dip structure, and the conductances [Figs. 8(a) and 8(d)]
reflect the corresponding dip structures around EF . Vout shows
sharp changes around EF in both Figs. 8(b) and 8(e). The
decoherence time of the three QD case is a little better than
that of the five QD case [Figs. 9(a) and 9(e)]. In contrast,
the five QD case has wider effective measurement region of
tmeas/tdec < 1, compared with the three QD case [Figs. 9(b)
and 9(f)]. It is considered that the multiple current passes of
the five QD case help the effective measurement in this weak
measurement region. In addition, if we increase RD more than
Eq. (34), it will be possible to increase the rate dVout

d (E2−E4 )/VD in
the region of the small conductance from Eq. (35).

Figure 10 shows the case where only the current channel
1 of Fig. 1(b) is switched on. In this case, the current reflects
only the energy level of the QD2. The conductance behaves
differently from the numerical results mentioned above, and
by comparing the current where only current 3 is switched on,
we could distinguish which of the energy levels between QD2
and that of QD4 were larger.

V. DISCUSSION

As an application of the present structure, we think that
our setup can be used to distinguish the two Zeeman energies.
Let us estimate the concrete values of the energy difference
of the Zeeman energies shown in [40] and [41]. The gradient
magnetic field in [40] described the 30-mT magnetic field
gradient between two QDs approximately 100 nm apart, and
0.08 mT/nm in [41], which corresponds to the 8 mT between
the two QDs 100 nm apart. When we estimate the Zeeman

energy for the magnetic field gradient �Bz (T) by �EZ =
gμB�Bz with gSi = 2 (gGaAs = −0.44) and μB = 5.789 ×
10−5 (eV/T), the energy difference of �Bz = 30 mT corre-
sponds to �EZ = 3.47 μeV for Si and �EZ = 0.1735 μeV
for GaAs. Thus, these energy-level differences are in the same
order of the present unit of the energy levels by �0 = 10 μeV.
Then, from the numerical results mentioned above, if we
investigate detailed conditions, it will be possible to find the
appropriate measurement time region. The direct comparison
with experiments is the future issue.

Here, in order to remain in the linear region of Eq. (33), we
have shown only the small VD case, which is in the range of the
mesoscopic experiments [1,3,7]. It is seen from Eq. (38) that,
as VD increases, the effective measurement region becomes
wider. To directly connect the readout to the conventional
complementary metal oxide semiconductor (CMOS) circuits
[53], which is in the order of meV, we need to consider the
meV region of VD. It will be necessary to clarify the region
in which the linear approximation (33) is kept by solving the
nonlinear equation of Eq. (32). In any way, the numerical
results change depending on the parameter regions, and to
directly compare the numerical results with experiments, we
need to adjust the parameters. These are near-future problems.

VI. CONCLUSION

We have theoretically investigated the three and five QD
systems as the measurement system of energy levels of inter-
nal QDs by considering the additional small circuit to convert
the current changes into voltage changes. We observed that
depending on the coupling strength of the measurement part
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and the targeted internal QDs, the conductance, noise, and
output voltage change. We have also estimated the measure-
ment time and the decoherence time, and showed the tradeoff
between the measurement strength and the decoherence time.
It was found that the medium measurement region of the
three QDs is relatively good for the detection of the difference
between two energy levels. It was also found that the three
QD case shows a wide range of effective measurement regions
compared with the five QD case.
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APPENDIX A: DEPHASING RATE

The dephasing rate described by the golden rule [52] can
be calculated from the correlation function 〈Hint (t )Hint (0)〉,
which is given by

〈Hint (t )Hint (0)〉

=
〈 ∑

i j

[Wi,i+1d†
i (t )di+1(t ) + W ∗

i,i+1d†
i+1(t )di(t )]

× [Wj, j+1d†
j (0)d j+1(0) + W ∗

j, j+1d†
j+1(0)d j (0)]

〉

=
∑

i

|Wi,i+1|2〈d†
i (t )di(0)〉〈di+1(t )d†

i+1(0)〉

+ |Wi,i+1|2〈d†
i+1(t )di+1(0)〉〈di(t )d†

i (0)〉
=

∑
i

|Wi,i+1|2[g<
di(−t )g>

di+1(t ) + g<
di+1(−t )g>

di(t )]

=
∑

i

|Wi,i+1|2
∫∫

dε

2π

dε′

2π
[g<

di(ε)g>
di+1(ε′)

+ g<
di+1(ε)g>

di(ε
′)]ei(ε−ε′ )t . (A1)

Then, the relaxation rate is given by

�relax ≈ 1

h̄2

∫ ∞

−∞
dτ e−iω01τ 〈Hint (τ )Hint (0)〉

=
∑

i

|Wi,i+1|2
h̄2

∫
dε′

2π
[g<

di(ε
′ + ω01)g>

di+1(ε′)

+ g<
di+1(ε′ + ω01)g>

di(ε
′)]. (A2)

The abrupt change tdec originates from the definition of ω01.
For E2 > E4, ω01 = E2 − E4, and we have

E2 + ω01 = 2E2 − E4, E2 − ω01 = E4, (A3)

E4 + ω01 = E2, E4 − ω01 = 2E4 − E2. (A4)

FIG. 11. 3D view of the decoherence time for the medium mea-
surement case of � = W = �0 for �0 = 10 μeV and VD = 8 μeV.
(a) The three QD case and (b) the five QD case. The abrupt changes
of Figs. 7 and 9 come from Eqs. (A4) and (A6).

For E2 < E4, ω01 = E4 − E2, and we have

E2 + ω01 = E4, E2 − ω01 = 2E2 − E4, (A5)

E4 + ω01 = 2E4 − E2, E4 − ω01 = E2. (A6)

The bird’s-eye views of tdec are shown in Fig. 11.

APPENDIX B: EFFECTS OF VARIATIONS
AND TEMPERATURE DEPENDENCE

It is not easy to fabricate the nanometer-sized structures,
and the size variations of structures are inevitable. Here, we
show a couple of numerical results regarding the effect of
the variations by comparing with Figs. 7(a)–7(d). In Fig. 12,
we have introduced the variations on �α

i and Wi j by adding
the randomness. The concrete values are listed in Table I.
We can see the 20% variations greatly shift the appropriate
measurement regions.

Figure 13 shows the conductance at finite temperature.
Other than the magnitude of the conductance, the dependence
of E2 and E4 on the conductance is similar to those for the
T = 0 cases in the main text. The detailed temperature depen-
dence is a future issue.

APPENDIX C: GREEN’S FUNCTIONS FOR THE QDs

In this Appendix, we show the derivation of the Green’s
functions based on the equation-of-motion method. From
Eq. (7), we have the equations like

(ω − E1)d1 =
∑

kL

V ∗
kL,1c1kL +

∑
kR

V ∗
kR,1c1kR + W12d2. (C1)

TABLE I. Concrete values used in the effect of variations.

10% 20% 10% 20%
(dashed dotted) (dashed dotted) (dotted) (dotted)

�L
3 /�0 1.092 1.158 1.057 1.066

�R
3 /�0 1.073 0.931 1.056 0.892

W32/�0 0.901 1.104 1.011 1.111
W34/�0 1.035 0.989 1.089 1.148
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FIG. 12. The effects of the variations of �α
i and Wi j in the medium coupling of the three QD system. We take �α

i = �0(1 + δgα
i ) and

Wi j = W (1 + δwi j ) (α = L, R) where δgα
i and δwi j are random numbers. �0 = 10 μeV and VD = 8 μeV. (a) 10% randomness (−0.1 �

δgα
i , δwi j � 0.1). (b) 20% randomness (−0.2 � δgα

i , δwi j � 0.2). Solid lines correspond to the uniform cases [Figs. 7(a)–7(d)]. The dashed
dotted and dotted lines are the results of two types of random numbers. The dashed red lines in (b) and (f) indicate the boundary of the effective
measurement tmeas < tdec.

Thus, we obtain

[ω − E1 − �1(ω)]Gd1,d j = W12Gd2,d j + δ1 j, (C2)

(ω − E2)Gd2,d j = W21Gd1,d j + W23Gd3,d j + δ2, j, (C3)

[ω − E3 − �3(ω)]Gd3,d j = W32Gd2,d j + W34Gd4,d j + δ3, j,

(C4)

(ω − E4)Gd4,d j = W45Gd5,d j + W43Gd3,d j + δ4, j, (C5)

[ω − E5 − �5(ω)]Gd5,d j = W54Gd4,d j + δ5 j, (C6)

where Gdi,d j represents Gdi,d j (ω), and

�i(ω) ≡
∑

kL

|VkL,i|2
(ω − EkLi )

+
∑

kR

|VkR,i|2
(ω − EkRi )

. (C7)

(a) 3-QDs: T/EF=0.02 (b) 3-QDs: T/EF=0.2

E2 /EF E2 /EF

�
/ (

2e
2 /

h)

FIG. 13. The conductances at finite temperature in the medium
coupling of the three QD system. (a) T/EF = 0.02. (b) T/EF = 0.2.

Thus, the equations between the Green’s functions of the QDs
are given as follows:

Gd11 = W12gd1Gd21 + gd1, (C8)

Gd21 = C12Gd21 + W21gd2gd1 + W23gd2Gd31, (C9)

Gd22 = C12Gd22 + W23gd2Gd32 + gd2, (C10)

Gd23 = C12Gd23 + W23gd2Gd33, (C11)

Gd24 = C12Gd24 + W23gd2Gd34, (C12)
Gd25 = C12Gd25 + W23gd2Gd35, (C13)

Gd31 = gd3(W32Gd21 + W34Gd41), (C14)

Gd32 = gd3(W32Gd22 + W34Gd42), (C15)

Gd33 = gd3(W32Gd23 + W34Gd43 + 1), (C16)

Gd34 = gd3(W32Gd24 + W34Gd44), (C17)

Gd35 = gd3(W32Gd25 + W34Gd45), (C18)

Gd41 = C54Gd41 + W43gd4Gd31, (C19)

Gd42 = C54Gd42 + W43gd4Gd32, (C20)

Gd43 = C54Gd43 + W43gd4Gd33, (C21)

Gd44 = C54Gd44 + W43gd4Gd34 + gd4, (C22)
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Gd45 = C54Gd45 + W45gd4gd5 + W43gd4Gd35, (C23)

Gd55 = W54gd5Gd45 + gd5, (C24)

where

gdi(ω) = 1/(ω − Ei − �i ). (C25)

These equations can be solved by starting with the elimination
of Gd2i and Gd4i (i = 1, . . . , 5) such as

Gd21 = W21gd2gd1

(1 − C12)
+ W23gd2Gd31

(1 − C12)
, (C26)

Gd22 = W23gd2Gd32

(1 − C12)
+ gd2

(1 − C12)
, (C27)

· · · .

Thus, we have

Gd31 = (1 − C54)

�c
W32W21gd3gd2gd1, (C28)

Gd32 = (1 − C54)

�c
W32gd3gd2, (C29)

Gd33 = (1 − C12)(1 − C54)

�c
gd3, (C30)

Gd34 = (1 − C12)

�c
W34gd3gd4, (C31)

Gd35 = (1 − C12)

�c
W34W45gd3gd4gd5. (C32)

Here,

�c ≡ (1 − C12 − C32)(1 − C54) − (1 − C12)C34. (C33)

Similarly, we have

Gd11 = (1 − C32)(1 − C54) − C34

�c
gd1, (C34)

Gd55 = (1 − C12)(1 − C34) − C32

�c
gd5. (C35)

There are the Green’s functions of Eqs. (17)–(25) in the main
text.

APPENDIX D: GREEN’S FUNCTION FOR THE QD-LEAD
(k-d) ELEMENTS

Similar to the Green’s functions of the QDs, we can derive
the Green’s functions of the type of Gdi,kα j (ω) [≡ Gdi,c jkα

(ω)
in Eq. (4) in the main text] based on the equation-of-motion
method as follows:

[ω − E1 − �1(ω)]Gd1,k′
α j

= W12Gd2,k′
α j

+ vk′
α1
δ1 j, (D1)

(ω − E2)Gd2,k′
α j

= W21Gd1,k′
α j

+ W23Gd3,k′
α j
, (D2)

[ω − E3 − �3(ω)]Gd3,k′
α j

= W32Gd2,k′
α j

+ W34Gd4,k′
α j

+ vk′
α3
δ3 j,

(D3)

(ω − E4)Gd4,k′
α j

= W45Gd5,k′
α j

+ W43Gd3,k′
α j
, (D4)

[ω − E5 − �5(ω)]Gd5,k′
α j

= W54Gd4,k′
α j

+ vk′
L5
δ5 j, (D5)

where ( j = 1, 3, 5), and

vk′
αi

(ω) ≡
V ∗

k′
α,i

(ω − Ek′
αi

)
. (D6)

Hereafter we write the QD-lead Green’s functions Gdi,kα j (ω)
as Gi j , and vi ≡ vk′

αi
(ω) for simplicity. These equations are

changed into the following:

G1 j = gd1(W12G2 j + v1δi j ), (D7)

G2 j = gd2(W21G1 j + W23G3 j ), (D8)

G3 j = gd3(W32G2 j + W34G4 j + v3δ3 j ), (D9)

G4 j = gd4(W45G5 j + W43G3 j ), (D10)

G5 j = gd5(W54G4 j + v5). (D11)

For the three Green’s functions A(t, t ′), B(t, t ′), and C(t, t ′), if
Ar (t, t ′) = ∫

dt1Br (t, t1)Cr (t1, t ′) is held, we have the relation

A<(t, t ′) =
∫

dt1[Br (t, t1)C<(t1, t ′)

+ B<(t, t1)Ca(t1, t ′)]. (D12)

When we apply this relation to Eq. (D9), we have

G<
13 − Cr

12G<
13

= W23W12cr
12G<

33 + C<
12Ga

13 + W23W12c<
12Ga

33, (D13)

G<
33 − [

Cr
32 + Cr

34

]
G<

33 = W21W32cr
32G<

13 + W21W32c<
32Ga

13

+W45W34cr
34G<

53 + W45W34c<
34Ga

53

+ [C<
32 + C<

34]Ga
33 + [gd3v3]<,

(D14)

G<
53 − Cr

54G<
53 = W43W54cr

54G<
33 + C<

54Ga
53 + W43W54c<

54Ga
33,

(D15)

where

cr,a
i j = (gdigdj )

r,a = gr,a
di gr,a

d j , (D16)

c<
i j = (gdigdj )

< = gr
dig

<
d j + g<

dig
a
d j, (D17)

Cr,a
i j = |Wi j |2cr,a

i j , (D18)

C<
i j = |Wi j |2c<

i j . (D19)

Here, we use the expressions of Eqs. (17)–(25). For example,

C<
12Ga

13 + W23W12c<
12Ga

33 =
(
1 − Ca

54

)
�a

c

W23W12c<
12ga

d3v
a
3,

(D20)

W21W32c<
32Ga

13 + C<
32Ga

33 =
(
1 − Ca

54

)
�a

c

C<
32ga

d3v
a
3, (D21)

C<
54Ga

53 + W43W54c<
54Ga

33 =
(
1 − Ca

12

)
�a

c

C<
34ga

d3v
a
3 . (D22)
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Then, we have

G<
13 = W23W12

cr
12G<

33 + c<
12ga

133(
1 − Cr

12

) , (D23)

G<
53 = W43W54

cr
54G<

33 + c<
54ga

533(
1 − Cr

54

) , (D24)

where

ga
133 =

(
1 − Ca

54

)
�a

c

ga
d3v

a
3, (D25)

ga
533 =

(
1 − Ca

12

)
�a

c

ga
d3. (D26)

Thus, we have

G<
33 = ∣∣1 − Cr

54

∣∣2
[
Cr

32C
<
12 + C<

32

(
1 − Cr

12

)]
ga

d3v
a
3 − (

1 − Cr
12

)
Ca

32[gd3v3]<∣∣�r
c

∣∣2

+ ∣∣1 − Cr
12

∣∣2
[
Cr

34C
<
54 + C<

34

(
1 − Cr

54

)]
ga

d3v
a
3 − (

1 − Cr
54

)
Ca

34[gd3v3]<∣∣�r
c

∣∣2 + ∣∣1 − Cr
54

∣∣2∣∣1 − Cr
12

∣∣2 [gd3v3]<∣∣�r
c

∣∣2

= ∣∣1 − Cr
54

∣∣2 |W23|2|W12|2|gd2|2|gd3|2
(
g<

d1v
a
3 + gr

d1v
<
3

) + |W32|2
∣∣gr

d3

∣∣2[
g<

d2v
a
3 − ga

d2v
<
3

]
∣∣�r

c

∣∣2

+ |1 − Cr
12|2

|W43|2|W54|2|gd4|2|gd3|2
(
g<

d5v
a
3 + gr

d5v
<
3

) + |W34|2
∣∣gr

d3

∣∣2[
g<

d4v
a
3 − ga

d4v
<
3

]
|�r

c|2

+ ∣∣1 − Cr
54

∣∣2∣∣1 − Cr
12

∣∣2
[
gr

3v
<
3 + g<

3 va
3

]
∣∣�r

c

∣∣2 . (D27)

Next, we consider the derivation of G55 from Eq. (D11):

G<
15 − Cr

12G<
15 = C<

12Ga
15 + W23W12cr

12G<
35 + W23W12c<

12Ga
35,

(D28)

G<
35 − [

Cr
32 + Cr

34

]
G<

35 = [
C<

32 + C<
34

]
Ga

35 + W21W32cr
32G<

15

+W21W32c<
32Ga

15 + W45W34cr
34G<

55

+W45W34c<
34Ga

55, (D29)

G<
55 − Cr

54G<
55 = C<

54Ga
55 + W43W54cr

54G<
35

+W43W54c<
54Ga

35 + (gd5v5)<. (D30)

Equation (D28) is changed to

G<
15 = W23W12cr

12(
1 − Cr

12

) G<
35 + C<

12(
1 − Cr

12

)ga
135, (D31)

where

ga
135 ≡ W23W12W45W34

|W12|2
ca

34

�a
c

(gd5v5)a. (D32)

Equation (D29) is changed to(
1 − Cr

34

)(
1 − Cr

12

) − Cr
32(

1 − Cr
12

) G<
35

= W45W34cr
34G<

55 +
[
C<

32 + Cr
32C

<
12(

1 − Cr
12

)]
ha

135 + C<
34ga

535,

where

ha
135 ≡ W45W34ca

34

�a
c

(gd5v5)a, (D33)

ga
535 ≡ W45W34

[
1 − Ca

12 − Ca
32

]
|W34|2�a

c

gd5v
a
5 . (D34)

Equation (D30) is changed to(
1 − Cr

54

)
G<

55 = W43W54cr
54G<

35 + C<
54ha

535 + (gd5v5)<,

(D35)
where

ha
535 ≡ 1 − Ca

12 − Ca
32

�a
c

(gd5v5)a. (D36)

Thus, we have

G<
55 = |W32W34W54|2∣∣�r

c

∣∣2 |gd3|2|gd4|2|gd5|2
{|W12|2|gd2|2

(
gr

d1v
<
5 + g<

d1v
a
5

) + (
g<

d2v
a
5 − ga

d2v
<
5

)}

+ |W34W54|2
∣∣1 − Cr

12

∣∣2∣∣�r
c

∣∣2 |gd4|2|gd5|2
[
gr

d3v
<
5 + g<

d3v
a
5

] + |W54|2
∣∣1 − Cr

12 − Cr
32

∣∣2∣∣�r
c

∣∣2 |gd5|2
(
g<

d4v
a
5 − ga

d4v
<
5

)

+
∣∣(1 − Cr

34

)(
1 − Cr

12

) − Cr
32

∣∣2∣∣�r
c

∣∣2

(
gr

d5v
<
5 + g<

d5v
a
5

)
. (D37)
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By exchanging “(1,2)” with “(5,4)”, we obtain the expression of G11(ω).
Finally, we input the following relations into the above equations:

gr
di(ω) = ai(ω) − iγi

Di(ω)
, (D38)

ai(ω) = ω − Edi − 	i(ω), Di = a2
i + γ 2

i , (D39)

g<
di(ω) = iF (ω)/Di(ω), (D40)

Fi = �iL fiL(ω) + �iR fiR(ω). (D41)

As explained in the main text, from the assumption that the total current is conserved between the source (left electrode) and
drain (right electrode) such as IL = −IR, we can express the current I = (IL + IL )/2 = (IL − IR)/2 = ∑

i=1,3,5(IiL − IiR)/2. This
means that each current element can be symmetrized to Ii = (IiL + IiL )/2 = (IiL − IiR)/2 in the formulation, and we have

vr
L − vr

R ⇒ 1

2π
(�L − �R)

[
P

1

ω − Ek
− iπδ(ω − Ek )

]
. (D42)

Then, we can use the equations as follows:

gr
d1v

<
1 + g<

d1v
a
1 + (

gr
d1v

<
1 + g<

d1v
a
1

)∗ ⇒ 1

D1(ω)
�R

1 �L
1 [ f1L(ω) − f1R(ω)], (D43)

gr
d1v

<
5 + g<

d1v
a
5 + (

gr
d1v

<
5 + g<

d1v
a
5

)∗ ⇒ 1

D1
{[�1L + �1R][�5L f5L(ω) − �5R f5R(ω)]

− [�5L − �5R][�1L f1L(ω) + �1R f1R(ω)]}δ(ω − E5k ), (D44)

g<
d2v

a
5 − ga

d2v
<
5 + (

g<
d2v

a
5 − ga

d2v
<
5

)∗ ⇒ π{�5L[ f5L(E2) − f (E2)] − �5R[ f5R(E2) − f (E2)]}δ(E2 − E5k ). (D45)

Thus, the current (29) is given by calculating from I = I1 + I3 + I5, where

Ii = e

h̄

∑
k

∫
dω

2π
{VkiG

<
ii + V ∗

ki (G
<
ii )∗}. (D46)

Concretely, we have

I3 = e

h

∫
dω

{∣∣1 − Cr
54

∣∣2|W23|2|W12|2
|�r

c|2D1D2D3
{[�1L + �1R][�3L f3L(ω) − �3R f3R(ω)] − [�3L − �3R][�1L f1L(ω) + �1R f1R(ω)]}

+
∣∣1 − Cr

12

∣∣2|W43|2|W54|2∣∣�r
c

∣∣2
D3D4D5

{[�5L + �5R][�3L f3L(ω) − �3R f3R(ω)] − [�3L − �3R][�5L f5L(ω) + �5R f5R(ω)]}

+
∣∣1 − Cr

54

∣∣2∣∣1 − Cr
12

∣∣2∣∣�r
c

∣∣2
D1(ω)

�R
3 �L

3 [ f3L(ω) − f3R(ω)]

}

⇒ e

h

∫
dω

{∣∣1 − Cr
54

∣∣2|W23|2|W12|2∣∣�r
c

∣∣2
D1D2D3

Fa31 +
∣∣1 − Cr

12

∣∣2|W43|2|W54|2∣∣�r
c

∣∣2
D3D4D5

Fa35 +
∣∣1 − Cr

54

∣∣2∣∣1 − Cr
12

∣∣2∣∣�r
c

∣∣2
D3

F33

}
. (D47)

The current I1 is given by

I1 = e

h

∫
dω

{
|W34W32W12W54|2∣∣�r

c

∣∣2
D1D2D3D4D5

{[�5L + �5R][�1L f1L(ω) − �1R f1R(ω)] − [�1L − �1R][�5L f5L(ω) + �5R f5R(ω)]}

+ |W32W12|2|1 − Cr
54|2∣∣�r

c

∣∣2
D1D2D3

{[�3L + �3R][�1L f1L(ω) − �1R f1R(ω)] − [�1L − �1R][�3L f3L(ω) + �3R f3R(ω)]}

+
∣∣(1 − Cr

32

)(
1 − Cr

54

) − Cr
34

∣∣2∣∣�r
c

∣∣2
D1

�R
1 �L

1 [ f1L(ω) − f1R(ω)]

}

⇒ e

h

∫
dω

{
|W34W32W12W54|2∣∣�r

c

∣∣2
D1D2D3D4D5

Fb15 + |W32W12|2
∣∣1 − Cr

54

∣∣2∣∣�r
c

∣∣2
D1D2D3

Fb13 +
∣∣(1 − Cr

32

)(
1 − Cr

54

) − Cr
34

∣∣2∣∣�r
c

∣∣2

F11

D1

}
. (D48)
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I5 is obtained by replacing 1 ↔ 5 and 2 ↔ 4. We have also defined

Fa31 = [�1L + �1R][�3L f3L(ω) − �3R f3R(ω)] − [�3L − �3R][�1L f1L(ω) + �1R f1R(ω)], (D49)

Fa35 = [�5L + �5R][�3L f3L(ω) − �3R f3R(ω)] − [�3L − �3R][�5L f5L(ω) + �5R f5R(ω)], (D50)

Fb15 = [�5L + �5R][�1L f1L(ω) − �1R f1R(ω)] − [�1L − �1R][�5L f5L(ω) + �5R f5R(ω)], (D51)

Fb13 = [�3L + �3R][�1L f1L(ω) − �1R f1R(ω)] − [�1L − �1R][�3L f3L(ω) + �3R f3R(ω)]. (D52)

In the main text, we use

Fii = �R
i �L

i [ fiL(ω) − fiR(ω)], (D53)

F12345 ≡ Fb15 + Fb51, (D54)

F123 ≡ Fa31 + Fb13, (D55)

F345 ≡ Fa35 + Fb53. (D56)
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