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Excitonic insulators conduct neither electrons nor holes but bound electron-hole pairs (excitons). Unfor-
tunately, it is not possible to inject and detect the electron and hole currents independently within a single
semiconducting layer. However, interlayer excitonic insulators provide a spatial separation of electrons and holes
enabling exciton current measurements. The problem is that the spatial separation weakens electron-hole pairing
and may lead to interlayer exciton disassociation. Here we develop an explicitly solvable model to determine an
interlayer separation that is strong enough to prevent electron and hole hopping across the layers but still allows
for electron-hole pairing sufficient for transition into an interlayer excitonic insulator state. An ideal junction to
realize such a state would comprise a pair of identical narrow-gap two-dimensional semiconductors separated
by a wide-gap dielectric layer with low dielectric permittivity. The present study quantifies parameters of such a
junction by taking into account interlayer coherence effects.
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I. INTRODUCTION

The concept of an excitonic insulator (EI) dates back to
the 1960s when the normal insulating ground state was found
to be unstable against the formation of electron-hole bound
states (excitons) in semiconductors with a narrow band gap
[1–3]. The instability emerges as soon as the exciton binding
energy exceeds the semiconducting band gap. The resulting
state remains insulating for holes and electrons separately
but becomes capable to conduct excitons. Unfortunately, low
exciton binding energy and lack of separate control over
electron and hole populations conceal manifestations of the
EI state in bulk semiconductors [4–8]. However, the re-
cent advent of two-dimensional (2D) materials has revived
the field and led to the interlayer excitonic insulator (IEI)
concept [9–16].

The idea is to make use of a double-layer semiconductor
structure with a dielectric spacer that prevents the inter-
layer electron-hole pairs from recombination but allows for
strong Coulomb pairing [9–12,15–17]. Besides higher exci-
ton binding energies in 2D semiconductors, the double-layer
configuration makes it possible to realize a drag-counterflow
setup [18–20] with two pairs of contacts for independent
control of electron and hole transport, see Fig. 1(a). However,
the requirements for a suitable dielectric spacer are somewhat
contradictory. On the one hand, the electron-hole attraction
across the junction must be much weaker than the intralayer
confinement to avoid interlayer charge hopping. On the other
hand, the electron-hole interactions must be sufficiently strong
to ensure stability of the IEI phase state. Indeed, to achieve
better interlayer electrical isolation, one could increase the
spacer thickness d , see Fig. 1(b). However, increasing d leads

to strong reduction of the bare Coulomb 2D Fourier trans-
form Vq = 2π/q by the form-factor e−qd/ε, where ε is the
dielectric permittivity of the interlayer media. The reduction
is especially strong for larger in-plane wave vectors q rel-
evant for tightly bound excitons [21]. To achieve stronger
electron-hole pairing one could decrease d , see Fig. 1(c).
This increases the interlayer charge hoping probability and

FIG. 1. (a) Interlayer excitonic insulator in a drag-counterflow
geometry [18] with the current densities j and jd shown. The inter-
layer spacer thickness d must be chosen within a certain value range.
(b) If d is too large, then electrons and holes are not paired. (c) If d is
too small, then the spacer cannot prevent charge hopping across the
layers disabling the drag-counterflow measurements.
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gradually reduces the double-layer structure to a bilayer ma-
terial hosting conventional excitons [22]. Hence, even if the
IEI state exists at all, it remains stable only within a certain
interval of values d limited from below and above by material
parameters.

The quantum mechanical effects add even more interest-
ing physics into the IEI problem. The eigenstate of a charge
carrier in a double-layer structure obviously does not coincide
with that of a separated layer. Once an electron (or a hole) is
created in an eigenstate of a given layer its further evolution
is governed by the double-layer Hamiltonian. The resulting
probability density oscillates between two layers, and at cer-
tain time points its maximum occurs on the opposite side
of a symmetric double-layer structure. Hence, the electrons
and holes injected into the eigenstates of the separated lay-
ers can hop between the layers when evolving in time. The
phenomenon could be seen as an interlayer coherence that
can be suppressed by either the double-layer asymmetry or
disorder.

The main question addressed in the present paper is
whether the interlayer coherence between electrons and holes
is beneficial for bringing them into the IEI state suitable for
the drag-counterflow measurements, Fig. 1(a). To answer this
question we maximize the coherence effect by employing
a perfectly symmetric double-layer structure modeled by a
double-delta-shaped out-of-plane confinement. We reveal two
competing mechanisms: (i) Electron-hole pairing with larger
in-plane wave vectors that facilitates transition into the IEI
state, and (ii) interlayer hopping that hampers formation of
the IEI state. We find the set of parameters at which the mech-
anism (i) dominates in symmetric double-layer structures and
makes transition into the IEI state possible.

The drag-counterflow setup implies no superfluidity that
is in line with the Kohn-Sherrington classification [23] re-
lating the electron-hole bound complexes to type II bosons.
The possibility of exciton condensation and superfluid-
ity in electron-hole double layers has been discussed in
Refs. [24,25].

The paper is organized as follows. Section II introduces
the one-particle framework for understanding physics of a
double-layer semiconductor junction. Section III builds up
with a mean-field theory of electron-hole pairing to describe
transition between the normal and IEI states. Section IV pro-
vides discussion of asymmetric double-layer structures with
different relative permittivities of the dielectric spacer. Sec-
tion V concludes with a recipe for the IEI using existing 2D
materials.

II. SINGLE-PARTICLE PREREQUISITES

Let us first describe the double-layer junction at a single-
particle level. The junction comprises two identical 2D
semiconductors separated by a dielectric layer of thickness
d , see Figs. 2(a) and 2(b). Each semiconducting layer is de-
scribed by the effective low-energy 2D Hamiltonian resulting
in the dispersion of a massive Dirac particle [26,27]. As the
semiconductors are 2D, the out-of-plane confinement must be
very narrow for each layer. Such ultimately narrow confine-
ments are conveniently described by the Dirac delta-shaped

FIG. 2. Noninteracting quantum mechanics of a double-layer
semiconductor junction. (a) A pair of identical 2D semiconducting
layers separated by an insulator. (b) Double-delta-shaped out-of-
plane potential as a model for the double-layer junction. (c) Even
and odd states of the the double-layer junction. (d) As the layers are
getting closer to each other, the even states become deeper shifting
the 2D bands down in energy, whereas the effect on the odd states is
opposite. (e) Band shifting in the semiconductor layers due to their
proximity to each other. The energy is counted from the bottom of
the conduction band in the dielectric spacer. (f) Interlayer band-gap
reduction upon interlayer proximity for different depths of the poten-
tial well E0. (g) Interlayer coherence time estimated by Eq. (14) for
different energy depths E0 = −m0u2

0/(2h̄2), and interlayer distances
d . The depth must obviously be lower than −m0e4/(2ε2 h̄2) with
ε = 6.9 for h-BN (red line), and τ must be substantially larger than
exciton lifetime (typical defect-assisted nonradiative recombination
time, black curve) to keep electrons and holes in their respective
layers.

potentials. Thus, the model Hamiltonian is written as Ĥ =
Ĥ⊥ + Ĥ‖, where

Ĥ‖ =
(

�∞/2 h̄v(k̂x − ik̂y)
h̄v(k̂x + ik̂y) −�∞/2

)
, (1)

Ĥ⊥ =
(

h̄2 k̂2
z

2m0
+ U (z) 0

0 h̄2 k̂2
z

2m0
+ U (z)

)
, (2)

125311-2



INTERLAYER EXCITONIC INSULATOR IN … PHYSICAL REVIEW B 106, 125311 (2022)

with U (z) given by

U (z) = −u0

[
δ

(
z − d

2

)
+ δ

(
z + d

2

)]
. (3)

Here h̄k̂x,y,z are the components of the electron momentum
operator h̄k̂ with h̄ being the Planck constant, m0 is the free
electron mass, v is the band parameter (effective velocity), u0

is the layer confinement parameter, and �∞ is the band gap at
d → ∞.

The in-plane term Ĥ‖ can be deduced from the minimal
k · p model describing the coupled dynamics of the valence
and conduction bands in 2D transition metal dichalcogenides
[26,27]. Written in the sublattice basis, the low-energy ex-
pansion of the k · p Hamiltonian results in the off-diagonal
terms linear in k̂x,y. The spin-orbit splitting, electron–hole
asymmetry, and the trigonal warping are neglected here. The
out-of-plane electron motion is described by Ĥ⊥ in terms
of free electron mass because there is no periodicity along
the z axis and no effective electron mass can be introduced.
However, the out-of-plane motion is restricted by the layer
confinement, hence, kz is not a good quantum number.

The eigenfunctions of Ĥ can be factorized and written
explicitly as �±

1,2 = ψ1,2(z)χ±(x, y). Here the indices “1,2”
stand, respectively, for the even and odd states, see Figs. 2(c)
and 2(d), and “±” refers to the conduction and valence bands,
see Fig. 2(e). The even/odd classification refers only to the
symmetric double-layer structures considered in Secs. II and
III. If the symmetry was broken, then the indices 1,2 would,
respectively, refer to the left/right layer of the junction, see
Sec. IV. The factorized functions read [28,29]

ψ1,2(z) = B1,2√
2

⎧⎨
⎩

(1 ± eκ1,2d )eκ1,2z, z � − d
2 ;

eκ1,2z ± e−κ1,2z, − d
2 < z < d

2 ;
±(1 ± eκ1,2d )e−κ1,2z, z � d

2 ;
(4)

where B1,2 = √
κ1,2/(eκ1,2d ± κ1,2d ± 1),

κ1,2 = m0u0

h̄2 + 1

d
W0

(
±m0u0d

h̄2 e− m0u0d

h̄2

)
, (5)

with W0 being the Lambert function (ProductLog in Wol-
fram’s Mathematica), and

χ+(x, y) = 1

L
eikxx+ikyy

(
cos γ

2
sin γ

2 eiφ

)
, (6)

χ−(x, y) = 1

L
eikxx+ikyy

(
sin γ

2− cos γ

2 eiφ

)
, (7)

where tan γ = 2h̄vk/�∞, tan φ = ky/kx, k =
√

k2
x + k2

y , and

L is the layer size. The corresponding eigenvalues are given
by E±

1,2 = E1,2(d ) ± εk , where

εk =
√

(h̄vk)2 + (�∞/2)2 (8)

and

E1,2(d ) = E0

[
1 + h̄2

m0u0d
W0

(
±m0u0d

h̄2 e− m0u0d

h̄2

)]
, (9)

with E0 = −m0u2
0/(2h̄2). The two energy branches E1,2(d )

merge to E0 in the limit of d → ∞, see Fig. 2(d). As d
decreases, the bands shift in opposite directions forming a

type II junction that potentially can host interlayer excitons
[30]. Note, however, that we consider a homojunction, not
a heterostructure [30]. The interlayer band gap reads �d =
�∞ − E2(d ) + E1(d ), see Fig. 2(f). It naturally reduces when
the layers get closer to each other. If the Fermi level is fixed,
then the left semiconducting layer becomes n doped, whereas
the right one acquires p doping. Note, that such a doping-by-
proximity effect is intrinsic for our model.

The single-particle model is able to indicate the mecha-
nisms that can potentially hamper the IEI formation. First of
all, the electrons and holes should sit deeply in the respec-
tive layers to prevent recombination caused by their mutual
attraction. Neglecting dependence on d , we can estimate the
critical u0 as ∼e2/ε that results in the desirable depth E0 �
−m0e4/(2ε2h̄2). This is not a strong criterion in the presence
of a dielectric spacer with ε 	 1, see the red line in Fig. 2(g).

It is instructive to consider the quantum mechanical ef-
fects leading to electron-hole interlayer hopping. The effect
of quantum mechanical superposition is especially obvious
when the two layers are perfectly identical. In this case, an
electron (or a hole) is not localized in either layer. The position
probability density |�±

1,2|2 is symmetric with respect to z = 0
for both states 1 and 2, meaning that a position measurement
would reveal an electron (or a hole) with the same probability
in either layer.

An electron (or a hole) state created at time t = 0 in a given
layer involves a superposition between ψ1(z) and ψ2(z). To be
specific, consider an electron localized in the left layer and a
hole localized in the right layer described, respectively, by the
wave functions

�e
L(x, y, z) = 1√

2
[ψ1(z) − ψ2(z)]χ+(x, y), (10)

�h
R(x, y, z) = 1√

2
[ψ1(z) + ψ2(z)]χ−(x, y), (11)

see Fig. 2(c) for ψ1,2(z) profiles. The states are not stationary,
and they evolve in accordance with the standard solutions of
the time-dependent Schrödinger equation written as

�e
L(x, y, z, t ) = 1√

2
[ψ1(z)e−iE+

1 t/h̄ − ψ2(z)e−iE+
2 t/h̄]

×χ+(x, y), (12)

�h
R(x, y, z, t ) = 1√

2
[ψ1(z)e−iE−

1 t/h̄ + ψ2(z)e−iE−
2 t/h̄]

×χ−(x, y). (13)

Obviously the probability density |�e,h
L,R(x, y, z, t )|2 oscillates

with the period given by

τ (d ) = 2π h̄

E2(d ) − E1(d )
. (14)

The interlayer probability density oscillation period could also
be seen as an interlayer coherence time. Within the period
τ (d ), the electron (or hole) probability density maximum hops
back and forth between the layers. Hence, an electron (or
a hole) injected into one of the two layers of a symmetric
double-layer structure can be found in any layer at a random
time point t 	 τ (d ).
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FIG. 3. Mean-field theory of an interlayer excitonic insulator
state emerging in a symmetric double-layer semiconductor junction.
(a) Two-band reformulation of the four-band problem shown in
Fig. 1(e), with the zero energy level placed in the midgap. An inter-
layer electron-hole pair is shown in terms of the respective creation
operators, see Eq. (16). (b) The wave function overlap facilitates
the Coulomb interactions between electrons and holes, as compared
with the conventional case Fq = e−qd , when electrons and holes are
localized in the respective layers. The curves are given by Eq. (25).
(c) Mean-field many-body gap vs interlayer distance for different
semiconductor gap values. The dashed curves show solutions in the
conventional case with Fq = e−qd . (d) Phase diagram in terms of
the interlayer distance and potential depth. The black long-dashed
line separating single-layer and interlayer EI regions is taken from
Fig. 2(g). There is no sharp transition between the single-layer and
interlayer EI states, as indicated by the gradient fill.

Microscopically, the quantum mechanical “measurement”
takes place each time when a charge carrier is trapped by
a defect. The process is usually associated with nonradia-
tive exciton recombination and occurs in 2D semiconductors
[31,32] at the timescale τnr ∼ 10−12–10−10 s. Obviously,
if τnr 	 τ (d ), then electrons and holes have already hoped
between the layers many times before recombining. This is
the case when the interlayer spacer is thin, see Fig. 2(g). If EI
state can form at all in such conditions, then it should be seen
as a single-layer EI, where drag-counterflow measurements
are impossible, see Fig. 1(c). In contrast, if τnr � τ (d ), then
electrons and holes remain in the respective layers within the
excitonic lifetime, and an EI state, if formed, could be detected
in drag-counterflow measurements.

III. MANY-BODY MODEL

We are now ready to write a mean-field Hamiltonian de-
scribing the many-body IEI state. To do that, we reduce
the four-band model shown in Fig. 2(e) to a two-band one
shown in Fig. 3(a) because �∞ is supposed to be always
large enough to prevent formation of the intralayer EI. The
effective model involves one conduction and one valence band

hosting electrons and holes in the single-particle states �+
1

and �−
2 , respectively. We symmetrize the bands placing the

zero-energy level in the middle of the interlayer band gap. The
mean-field Hamiltonian can be then written as [33]

HMF =
∑

k

(
a†

kb†
k

)( ξk −�
†
k−�k −ξk

)(
ak
bk

)
, (15)

where a†
k (b†

k) are the electron creation operators in the con-
duction (valence) band, ak (bk) are the respective hole creation
operators, ξk = εk + [E1(d ) − E2(d )]/2, and the mean-field
parameter reads [33]

�k =
∑

k′
|Vkk′ |〈a†

k′bk′ 〉. (16)

Here Vkk′ is the electron-hole interaction matrix element. Us-
ing the Bogolubov transformation

ak = c1k cos
ζk

2
− c2k sin

ζk

2
, (17)

bk = −c1k sin
ζk

2
− c2k cos

ζk

2
, (18)

with tan ζk = �k/ζk, we arrive at the canonical form of the
mean-field Hamiltonian given by

HMF =
∑

k

√
ξ 2

k + �2
k(c†

1kc1k − c†
2kc2k ). (19)

In the low-temperature limit, the mean-field order parameter
reads

�k = 1

2

∑
k′

|Vkk′ | �k′√
ξ 2

k′ + �2
k′

. (20)

Equation (20) is formally equivalent to the gap equation de-
rived in the seminal paper [3]. However, Vkk′ and ξk both
depend on d in our case. Finally, we assume that the order
parameter does not depend on k and represents the mean-field
band gap �MF, which can be found from the gap equa-
tion written as

1

2

∑
q

Vq√
ξ 2

q + �2
MF

= 1. (21)

Evaluation of Vq must take into account the wave function
overlap between the single particle states �+

1 and �−
2 . The

two-particle wave function can be written as an antisymmetric
combination of the single-particle states given by

�(k1, r1; k2, r2) = 1√
2

[�+
1 (k1, r1)�−

2 (k2, r2)

−�+
1 (k2, r2)�−

2 (k1, r1)], (22)

where r1,2 = (x1,2, y1,2, z1,2) are the coordinates of particles
1 and 2, and k1,2 are their in-plane wave vectors. Transition
from the state with k1, k2 to the state with p1, p2 is described
by the following matrix element:

Vp1p2k1k2 =
∫

dr3
1

∫
dr3

2�
∗(p1, r1; p2, r2)

×V (r1, r2)�(k1, r1; k2, r2), (23)

125311-4



INTERLAYER EXCITONIC INSULATOR IN … PHYSICAL REVIEW B 106, 125311 (2022)

where V (r1, r2) = e2/(ε|r2 − r1|). The integrand in Eq. (23)
contains four terms, but we have γ ∼ 0 for low-energy elec-
trons and holes (2h̄vk/�∞ � 1), and the terms containing
spinor products between χ+(x1,2, y1,2) and χ−(x1,2, y1,2) be-
come negligible, see Eqs. (6) and (7). The remaining two
terms are equal. Neglecting unimportant phase factors we
have

Vp1p2k1k2 ≈ (2π )2δ(q − s)Vq, (24)

where q = p1 − k1, s = k2 − p2, and Vq = 2πe2Fq/(εq) with
Fq given by

Fq =
∫ ∞

−∞
dz1

∫ ∞

−∞
dz2e−q|z2−z1||ψ1(z1)|2|ψ2(z2)|2. (25)

In the conventional limit of the states localized in the respec-
tive layers we can approximate |ψ1,2(z1,2)|2 = δ(z1,2 ± d/2),
and Fq = e−qd . If the wave functions ψ1,2(z) overlap, then Fq

differs strongly from e−qd , as demonstrated in Fig. 3(b).
Introducing νq = h̄vq we rewrite the gap equation (21) as∫ ∞

0
dνq

Fνq/(h̄v)√
�2

MF +
(√

ν2
q + �2∞

4 + E1(d )−E2(d )
2

)2
= 2

rs
, (26)

where rs = e2/(ε h̄v). Figure 3(c) shows solutions of Eq. (26)
for different semiconductor band gaps, with �∞ = 1.6 eV
being relevant for 2D WSe2 [34]. The velocity v ∼ 107 cm/s
is typical for 2D transition metal dichalcogenides [26], and
the spacer is assumed to be made of h-BN with the relative
dielectric permittivity of ε = 6.9 [35]. The energy depth is
taken to be E0 = −2 eV but it could be even deeper up to
E0 ∼ −3 eV (one-half of the h-BN monolayer band gap)
[34,36].

Figure 3(c) demonstrates clearly that the wave function
overlap in Fq is crucial for creating an IEI state at a reasonable
d . If the overlap is neglected, then the solutions of Eq. (26)
shown in Fig. 3(c) by dashed curves exist only at d < 0.5 nm,
i.e., the critical d is smaller than the monolayer thickness.
The local maximum of �MF(d ) occurs at the point when
�∞ ∼ E2(d ) − E1(d ). It shifts to even smaller d when �∞
increases. If the overlap is taken into account, then the critical
d shifts towards larger values reaching 2 nm for �∞ = 1 eV,
see solid curves in Fig. 3(c).

Figure 3(d) combines the data shown in Figs. 3(c) and
2(g). The lower right corner of the phase diagram is the
region where IEI state is expected. In that region, Eq. (26)
allows for a solution with respect to �MF, and, at the same
time, the interlayer coherence time τ (d ) is much longer than
the typical exciton lifetime in 2D semiconductors. In simple
terms, the electrons and holes interact strongly but are well
separated. The interlayer EI gradually becomes a single-layer
one with decreasing d . There is no sharp border between
the two states because there is always a nonzero interlayer
hopping probability for electrons and holes even though it
decays exponentially with increasing d . In contrast, the nor-
mal and correlated phases are separated by a sharp border, as
shown by solid curve in Fig. 3(d), because the order parameter
equation (21) either has a solution or not.

IV. DISCUSSION

Having established the crucial role of the interlayer co-
herence in the IEI state, we now focus on the effects of the
double-layer asymmetry, relative dielectric permittivity of the
interlayer media, and the size of a semiconductor band gap.
The double-layer asymmetry influences the IEI state in two
different ways. On the one hand, the asymmetry reduces the
wave function overlap that results in Fq → e−qd making the
IEI state harder to reach. On the other hand, the asymmetry
triggers the collapse of electron and hole wave functions into
their respective layers precluding the interlayer coherence ef-
fects [28] and improving electron-hole separation beneficial
for the IEI phase. Note that Eq. (14) estimating τ (d ) makes
sense for a symmetric double-layer only.

To quantify the effect of the double-layer asymmetry we
introduce E0L,R = −m0u2

0L,R/(2h̄2), and instead of Eq. (3) we
have

U (z) = −u0Rδ

(
z − d

2

)
− u0Lδ

(
z + d

2

)
. (27)

The eigenstates of H can be still written as �±
1,2 =

ψ1,2(z)χ±(x, y) with ψ1,2(z) given by

ψ1,2(z) =
⎧⎨
⎩

A1,2Leκ1,2z, z � − d
2 ;

B1,2eκ1,2z + C1,2e−κ1,2z, − d
2 < z < d

2 ;
A1,2Re−κ1,2z, z � d

2 ;
(28)

where κ1,2 are the two solutions of the eigenvalue equa-
tion given by

m2
0u0Lu0R

h̄4 −
(
κ − m0u0R

h̄2

)(
κ − m0u0L

h̄2

)
e2κd = 0. (29)

In contrast to the symmetric case, Eq. (29) does not allow
for an explicit solution but it can be solved numerically [28].
Figure 4(a) shows the states ψ1,2(z) in a slightly asymmetric
double layer. It is clear that ψ1(z) tends to collapse into the
left layer, whereas ψ2(z) does the same into the right one.
As ψ1(z) and ψ2(z) describe, respectively, electron and hole
states in our many-body model, the carriers having opposite
charges turn out to be well separated in space. Hence, the
IEI state should exist even at smaller separations. Figure 4(a)
demonstrates, however, that Fq drops significantly even for
a slightly asymmetric double layer and rapidly approaches
the e−qd form. As a consequence, the many-body gap equa-
tion has a solution only at a very small d , in the region
enclosed by the short-dashed line in Fig. 3(d). Such a small
separation does not have physical sense because it is smaller
than the monolayer thickness. Hence, an asymmetric double-
layer structure made of 2D semiconductors with �∞ > 1 eV
separated by h-BN is not suitable for creating the IEI state.
A very recent paper [13], however, offers a way to suppress
interlayer tunneling in semiconducting bilayers without a di-
electric spacer.

There are two obvious options to remedy the situation.
First, we could reduce �∞ by using a narrow gap 2D semicon-
ductor, such as one of X-enes [34,37,38] or 1T -TiS2 [39,40].
Second, we could substitute h-BN by a dielectric material
with a smaller relative dielectric permittivity, such as silicon
dioxide (ε = 3.9) or polyethylene (ε = 2.25). Figures 4(c)
and 4(d) compare the IEI phase diagrams for the symmetric
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FIG. 4. Roles of the double-layer asymmetry, relative dielectric
permittivity of the interlayer media, and semiconductor band gap
value in formation of the IEI state. (a) The wave functions be-
come very asymmetric even though the potential depth difference
is small, (E0R − E0L )/(E0R + E0L ) = 0.01, compare with Fig. 1(c).
(b) The form-factor approaches Fq = e−qd when the layer asymmetry
increases, as if electrons and holes are forced to localize in the
respective layers. (c) The IEI state is easy to reach in the symmet-
ric double-well configuration with d ∼ 1 nm separation within any
reasonable range of the dielectric permittivity and semiconductor
band-gap values. (d) Reaching the IEI state in an asymmetric double
well is difficult but possible for narrow-gap semiconductors and
spacers with low dielectric permittivity.

[Fig. 4(c)] and asymmetric [Fig. 4(d)] double-layer junctions.
The IEI state is supposed to be stable as long as the solution
of Eq. (26) exists. The interlayer distance is shown in the re-
spective panels. The temperature is assumed to be zero. Note,
however, that decreasing the semiconductor band gap might
induce transition to the EI state in each layer separately that
would make the desired drag-counterflow setup impossible to
implement. This transition cannot be described by the simpli-
fied two-band many-body model employed in this section.

V. OUTLOOK

The results discussed above suggest that the interlayer
overlap between electron and hole wave functions potentially
facilitates transition into the IEI state. Figure 3(d) is among
the main results of the present paper offering a recipe for the
IEI state using known 2D materials. The ingredients are one
insulating and two semiconducting layers. The semiconduct-
ing layers must be identical and possess a direct band gap of
about 1 eV. A much larger band gap would require either unre-
alistically strong interaction or unrealistically small interlayer
separation to bring the double layer into the IEI state, whereas
a much smaller band gap would convert each layer into the EI
state separately. At the moment, the best choice seems to be
2D TiS3 with the direct band gap very close to �∞ ∼ 1 eV
taken in Fig. 3(d). The band gap size has been predicted by
means of ab initio calculations [41] and confirmed experimen-
tally [42]. There is strong anisotropy in electronic structure
[43] but it is not able to spoil the qualitative applicability of
the model proposed. Moreover, 2D TiS3 can be assembled
into heterostructures with other 2D materials [44], including
h-BN [45] employed in Fig. 3(d) as a spacer. As 2D TiS3 and
h-BN have similar work functions of about 5 eV, and h-BN
monolayer has a band gap of about 6 eV, the resulting band
diagram should be similar to that shown in Fig. 2(e) with
E0 ∼ −3 eV. Having two or three monolayers of h-BN as a
spacer would bring the electron-hole system into the desired
lower-right corner of the phase diagram in Fig. 3(d). The black
long-dashed curve separating the single-layer EI from the true
IEI state also applies to TiS3, with subpicosecond exciton
lifetime [46]. The main obstacle would be to maintain the
layer symmetry in the double junction.
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