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Density-driven higher-order topological phase transitions in amorphous solids
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Amorphous topological states, which are independent of the specific spatial distribution of microscopic
constructions, have gained much attention. Recently, higher-order topological insulators, which are a new class
of topological phases of matter, have been proposed in amorphous systems. Here, we propose a density-driven
higher-order topological phase transition in a two-dimensional amorphous system. We demonstrate that the
amorphous system hosts a topological trivial phase at low density. With an increase in the density of lattice
sites, the topological trivial phase converts to a higher-order topological phase characterized by a quantized
quadrupole moment and the existence of topological corner states. Furthermore, we confirm that the density-
driven higher-order topological phase transition is size dependent. In addition, our results should be general
and equally applicable to three-dimensional amorphous systems. Our findings may greatly enrich the study of
higher-order topological states in amorphous systems.
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I. INTRODUCTION

Amorphous solids, which can be grown by most solids,
are ubiquitous in condensed matter [1]. Unlike traditional
crystalline solids, amorphous solids lack long-range order but
maintain short-range order due to the random arrangement of
internal atoms. Recently, amorphous topological states, such
as topological insulators [2–17], topological superconductors
[18], and topological metals [19], have been theoretically
proposed in amorphous systems. Meanwhile, several experi-
mental works have reported observations of topological states
in amorphous materials, including silica bilayers [20,21] and
Bi2Se3 thin films [22]. Amorphous topological states, which
are independent of the specific spatial distribution of the mi-
croscopic constructions, have become a hot research topic in
the pursuit of topological states of matter in aperiodic systems
with a rapidly growing number of novel proposals.

Recently, higher-order topological insulators, which are
a new class of topological phases of matter, have been
proposed in various systems [23–83]. Higher-order topolog-
ical insulators, that are established in crystalline systems
with crystalline symmetries, have lower-dimensional bound-
ary states compared with conventional topological insulators
[84–92]. Surprisingly, despite the lack of spatial symmetry,
amorphous systems can still host higher-order topological
phases [93,94]. For instance, Wang et al. have demonstrated
that a second-order topological insulating phase can exist in
a three-dimensional amorphous system without any spatial
order [94].
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It is worth noting that some previous works have demon-
strated that amorphous topological phase transitions are
related to density [2,11,18]. Sahlberg et al. proposed a scaling
theory of an amorphous topological phase transition from
a topological trivial phase to a topological Chern insulator
phase driven by the density of lattice sites [11]. In addi-
tion, McMillan et al. presented experimental evidence for the
occurrence of a density-driven phase transition between semi-
conducting and metallic polyamorphs of silicon by changing
pressure [95]. However, whether a topological phase tran-
sitions from a topological trivial phase to a higher-order
topological phase driven by density can exist in amorphous
systems is unclear.

In this paper, we investigate the density-driven higher-
order topological phase transition in a two-dimensional (2D)
amorphous system without any spatial order. The zero-energy
corner modes are protected by particle-hole symmetry and
effective chiral symmetry which is similar to Ref. [93]. By cal-
culating the quadrupole moment and the probability density of
the in-gap eigenstates, it is found that the amorphous system
hosts a topological trivial phase when the density is below the
critical density, beyond which the system holds a higher-order
topological phase characterized by a quantized quadrupole
moment and the existence of corner states. Our results should
be general, and also applicable to three-dimensional (3D)
amorphous systems.

The rest of the paper is organized as follows. In Sec. II,
we introduce the higher-order topological insulator in a 2D
random lattice and give the details of our numerical methods.
Then, we provide the numerical results for studying a higher-
order topological phase transition driven by density in 2D and
3D random lattices in Sec. III. Finally, we summarize our
conclusions in Sec. IV.
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FIG. 1. Schematic diagram of a random lattice with (a) 270 sites
(ρ = 0.3) and (b) 630 sites (ρ = 0.7) marked by black points. The
sample size is 30 × 30.

II. MODELS AND METHOD

First, we construct a random lattice by placing N sites ran-
domly in an L × L region, where the positions of the sites are
sampled from an uncorrelated uniform distribution, as shown
in Fig. 1. We define a cutoff distance R = 4 such that hoppings
(marked by light blue lines in Fig. 1) for |r jk| < R exist for
each site, where r jk is the distance from site j to site k. It
is noted that the density of the lattice sites ρ = N/V , where
V = L × L is the volume of the sample. Next, we realize a
higher-order topological insulator in an amorphous system
by adding a proper mass term into the quantum spin Hall
(QSH) insulator to gap the topological edge states, leading to
the appearance of topological corner states [80]. The model
Hamiltonian is given by

H = H0 + Hm, (1)

with the QSH insulator Hamiltonian

H0 = −
∑
j �=k

l (r jk )

2
c†

j [it1(s3τ1 cos ψ jk + s0τ2 sin ψ jk )

+ t2s0τ3]ck +
∑

j

(M + 2t2)c†
j s0τ3c j, (2)

and the mass term

Hm = g
∑
j �=k

l (r jk )

2
c†

j s1τ1 cos(ξψ jk )ck, (3)

where c†
j = (c†

jα↑, c†
jα↓, c†

jβ↑, c†
jβ↓) is the creation operator at

site j. Each site contains four degrees of freedom. α and β

present two orbitals at each site. ↑ and ↓ denote spin up and
spin down, respectively. j and k denote lattice sites running
from 1 to N , and N is the total number of lattice sites. s1,2,3

and τ1,2,3 are the Pauli matrices acting on the spin and orbital
spaces, respectively. s0 and τ0 are the 2 × 2 identity matrices.
ψ jk is the polar angle of the bond between site j and k with
respect to the horizontal direction. l (r jk ) = e1−r jk/λ is the spa-
tial decay factor of hopping amplitudes with the decay length
λ. M is the Dirac mass. t1 and t2 are the hopping amplitudes.
Without loss of generality, we set t1 = 1, t2 = 1, and λ = 1
for simplicity. ξ is the varying period of the mass term. For
a square sample, we set ξ = 2. The Wilson mass term Hm,
relaying in the polar angle of the bond ψ jk , can result in
an effective edge mass domain structure. The corner states
appear only when a mass domain wall forms, which can be

explained by a generalized Jackiw-Rebbi mechanism [96].
The Hamiltonian H in Eq. (1) respects particle-hole symmetry
P = s3τ1K and effective chiral symmetry Seff = s2τ1, where K
is the complex conjugate operator.

The random lattice lacks translation invariance, thus,
to characterize the higher-order topological phases of the
random lattice, we will employ the real-space topological in-
variant quadrupole moment, which has been proposed in two
previous works [97,98]. The real-space quadrupole moment is
given by [93,97–100]

qxy = 1

2π
Im log

[
det(
†

occÛ
occ)
√

det(Û †)

]
, (4)

where Û ≡ exp[i2π X̂Ŷ /N] with X̂ (Ŷ ) the position opera-
tor. The matrix 
occ is the eigenvectors of occupied states,
such that 
occ


†
occ is the projector to the occupied subspace.

The case with qxy = 0 corresponds to the topological trivial
phase, and qxy = 0.5 corresponds to the higher-order topo-
logical phase. It is noted that Ono et al. indicated that the
validity of the real-space quadrupole moment proposed by
two previous works is still under discussion [101]. In fact,
to define a satisfactory real-space quadrupole moment is a
difficult task. Despite the fact that the real-space formula of
the bulk quadrupole moment has been applied to the study of
higher-order topological insulators, it is worth defining a satis-
factory formulation of the bulk quadrupole moment in future
works. In addition, another appropriate way to characterize
the higher-order topological phase is to adopt the existence
of corner states as a working definition [102–104]. In the
following calculation, we employ the quantized quadrupole
moment (qxy = 0.5) as well as the existence of corner states
as criteria to characterize the higher-order topological phase.
Note that it has been proved that the quantization of the
quadrupole moment can be protected by chiral symmetry and
particle-hole symmetry [100].

III. NUMERICAL SIMULATION

We map out the energy spectrum of the amorphous lattice
with different densities of both the open boundary condition
(OBC) (marked by blue circles) and periodic boundary condi-
tion (PBC) (marked by red dots) in Figs. 2(a) and 2(b), where
g = 1. When the density is small [ρ = 0.24 in Fig. 2(a)],
the system is a topological trivial phase accompanied by the
appearance of an energy gap in both OBC and PBC. The cor-
responding probability density of the middle four eigenstates
which are the nearest to the zero energy [marked by purple
arrows in Fig. 2(a)] are localized in the bulk [see Fig. 2(c)].
When the density ρ = 1, the system hosts a higher-order
topological phase with four degenerate zero-energy states
localized at the four corners of the lattice [see Fig. 2(d)],
indicating that the system undergoes a phase transition from
a normal insulator phase to a higher-order topological phase
with an increase in density. It is noted that the existence of
the corner states is strong evidence for the emergence of the
higher-order topological phase.

To further study the effect of density on higher-order topo-
logical phase transitions, we plot the real-space quadrupole
moment as a function of density ρ and the Dirac mass M
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FIG. 2. Energy spectrum (top) and the probability density (bot-
tom) of the four eigenstates which are the nearest to zero energy
(marked by purple arrows) at an open boundary condition (OBC)
with different densities. (a), (c) ρ = 0.24 and (b), (d) ρ = 1. The
Dirac mass is set as M = 0. The sample size is 30 × 30.

in Fig. 3(a). The color map represents the magnitude of the
real-space quadrupole moment qxy. It is found that the sys-
tem is in a topological trivial phase characterized by qxy = 0
when the density is small (ρ ≈ 0.1) with arbitrary Dirac mass
M. With an increase in density, the trivial phase converts to
a higher-order topological phase with qxy changing from 0
to 0.5. However, the critical density points where the phase
transitions occur are dependent on Dirac mass M. Figure 3(b)
shows the energy spectrum versus density ρ at M = 0 with

FIG. 3. (a) Topological phase diagram of the amorphous lattice
in (ρ, M ) space obtained by calculating the topological invariant
quadrupole moment qxy with g = 1. Periodic boundary conditions
are taken in our calculation. (b) Energy spectrum vs density ρ with
M = 0 in the OBC marked by the blue circles and the PBC marked
by the red dots. (c) Energy gap and quadrupole moment qxy vs density
ρ with M = 0. The system with OBC marked by the red line shows
that the edge energy gap becomes smaller with an increase of ρ and
eventually closes. The system with PBC marked by the yellow line
shows that the bulk energy gap has undergone the process of closing
and reopening. The sample size is 30 × 30 for (a)–(c). An average of
some 100 random configurations are performed for (a) and (b), and
an average of 1000 random configurations in (c).

OBC (marked by the blue circles) and PBC (marked by the red
dots), respectively. It is noted that the energy gap calculated in
the PBC corresponds to the bulk energy gap. It is found that
the system is a normal insulator with a large bulk energy gap
when the density is small. With an increase in density, the bulk
energy gap is closed at ρ ≈ 0.28. However, when the density
continues to increase to ρ ≈ 0.4, the bulk energy gap is re-
opened. Simultaneously, a series of zero-energy modes appear
in the energy gap. It is demonstrated that the system undergoes
a topological phase transition from a normal insulator to a
higher-order topological insulator. In Fig. 3(c), we plot the
quadrupole moment and the energy gap versus density ρ with
M = 0. It is found that the system hosts a trivial phase with
qxy = 0 when the density is small (0.1 < ρ < 0.28). With an
increase in density, qxy increases and is finally quantized to
0.5 (ρ ≈ 0.7), indicating that the system hosts a higher-order
topological phase.

In fact, the energy gap calculated in the OBC also has a rich
physical meaning. To be specific, if the system is in a topologi-
cal nontrivial phase, the energy gap with the OBC corresponds
to the energy gap of the boundary states due to the finite-size
effect. If the system is topologically trivial, the energy gap
calculated in the OBC should be equal to the bulk energy gap
since no boundary states exist. In Fig. 3(c), the red line and
orange line represent the energy gap versus density ρ with
OBC and PBC, respectively. It is found that the values of the
energy gap with OBC and PBC are nonzero due to the system
being in a topological trivial phase when the density is small
(0.1 < ρ < 0.28). However, the values of the energy gap with
OBC are similar to that of the energy gap with PBC but not
equal with the same density, which is because the amorphous
lattice is lacking periodicity and the PBC is constructed by the
quasiperiodic approximation theory, inevitably bringing some
additional hopping terms. We find that the values of the energy
gap in both OBC and PBC decay exponentially as the density
increases. Further increasing the density, the bulk energy gap
has a minimum value E p

g ≈ 0.096. The corresponding criti-
cal density is ρ ≈ 0.41, beyond which the bulk energy gap
increases. This process seems to be similar to the bulk energy
gap closing and then reopening, however, the minimum values
of the bulk energy gap are not exactly equal to zero in our
calculations. We attribute it to the finite-size effect of the sys-
tem. In addition, it is found that the open boundary energy gap
closes at ρ ≈ 0.55. This is because the amorphous system is
already in a higher-order topological phase and the degenerate
zero-energy states appear in the energy gap. Thus, the energy
gap of the boundary states is closed.

In order to get a better understanding of the finite-size
effect on the topological phase transition mentioned above,
we studied the energy gap Eo

g , E p
g and quadrupole moment

qxy versus density ρ for different sample sizes, as shown in
Fig. 4. It is found that the critical values of the density of the
topological phase transition in an amorphous system are size
dependent. More specifically, the critical density where the
energy gap is closed with the OBC becomes smaller with an
increase of the sample size, as shown in Fig. 4(a). Meanwhile,
the minimum value of the bulk energy gap becomes smaller
and closer to 0 with an increase of the sample size, as shown
in Fig. 4(b). It can be inferred that the minimum value of the
bulk energy gap should be equal to zero in the thermodynamic
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FIG. 4. The energy gap as a function of the density with different
sample sizes in (a) OBC and (b) PBC. (c) The real-space quadrupole
moment qxy vs density with different sample sizes. We set M = 0 and
an average of 1000 random configurations are taken.

limit. In addition, with an increase in the sample size, the
critical density corresponding to qxy changing from 0 to 0.5
gradually decreases, as shown in Fig. 4(c).

In addition, we find that the density-driven higher-order
topological phase transition is also effective for a 3D sys-
tem. We start from a 3D amorphous higher-order topological
insulator, supporting eight corner modes, for which the Hamil-
tonian can be written as [87,88]

H3D = −
∑

j

c†
j (γyτ3σ2s2 − γxτ1σ0s0 − γzτ3σ1s0)c j

+
∑
j �=k

l (r jk )

2
c†

j [−iλxτ3σ2s3C1C2 + λxτ1σ0s0|C1|C2

− iλyτ3σ2s1S1C2 − λyτ3σ2s2|S1|C2

+ λzτ3σ1s0|C1||S2| + iλzτ2σ0s0|C1|S2]ck, (5)

where c†
j = (c†

j1, c†
j2, c†

j3, c†
j4, c†

j5, c†
j6, c†

j7, c†
j8) is the creation

operator in cell j. γx,y,z and λx,y,z are the intracell hopping
amplitudes and intercell hopping amplitudes along the x axis,
y axis, and z axis, respectively. S1 = sin(φ jk ), S2 = sin(θ jk ),
C1 = cos(φ jk ), and C2 = cos(θ jk ), where φ jk and θ jk are the
azimuth and elevation angles, respectively. τ , σ , and s are
Pauli matrices for the degrees of freedom within a unit cell.
We set γx,y,z = −0.25 and λx,y,z = 1 for numerical simulation.

In Figs. 5(a) and 5(b), we plot the energy spectrum of the
3D amorphous lattice with different densities ρ in both OBC
(marked by blue cirlces) and PBC (marked by red dots). For
the case of ρ = 0.125, the system is a topological trivial phase
with a small energy gap. The corresponding wave-function
distributions of the eight eigenstates which are the nearest
to zero energy [marked by purple arrows in Fig. 5(a)] are
localized in the bulk, as shown in Fig. 5(c). For another case
of ρ = 1, eight zero-energy modes appear in the energy gap.
The corresponding wave-function distributions of the eight

FIG. 5. Energy spectrum and the probability density of the eight
eigenstates which are the nearest to zero energy (marked by purple
arrows) at OBC with different densities. (a), (c) ρ = 0.125 and (b),
(d) ρ = 1. The sample size is Lx × Ly × Lz = 20 × 20 × 20. We set
the cutoff distance R = 2.5.

zero-energy modes [marked by the purple arrow in Fig. 5(b)]
are localized at the eight corners of the lattice, indicating
the system is in a higher-order topological phase. Thus, it is
confirmed that a density-driven topological phase transition
from a topological trivial phase to a higher-order topological
phase can be realized in 3D amorphous systems. Actually,
the real-space octupolar moment is a well-defined topological
invariant which can characterize the higher-order topological
phase in 3D amorphous systems. However, due to our limited
computing power at this stage, we cannot satisfy the need of
computing the topological invariants of 3D systems and will
continue to study it in the future.

IV. CONCLUSION AND DISCUSSION

In this paper, we investigate the density-driven higher-
order topological phase transition in a 2D amorphous lattice.
Based on calculating the quadrupole moment and detecting
the presence of corner states, we demonstrate that a higher-
order topological insulator phase can exist in an entire random
lattice. More interestingly, the topological phase transition
from a normal phase to a higher-order topological insulator
phase occurs in the amorphous system with increasing density.
In addition, the density can also drive a higher-order topolog-
ical phase transition in a 3D amorphous lattice.

It is well known that higher-order topological insulators
are established as topological crystalline insulators protected
by crystalline symmetries. However, with further study, it is
found that higher-order topological insulators can also exist
in aperiodic systems, such as quasicrystals and amorphous
solids, which lack translational symmetry. In our model,
higher-order topological insulators are protected by particle-
hole symmetry and effective chiral symmetry. In fact, the
geometric structure of a 2D (3D) amorphous lattice can be
constructed by adding structural disorder to a square (cubic)
lattice, so that each site in a square (cubic) lattice gener-
ates a random deviation. Thus, an amorphous system can be
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regarded as a clean system with structural disorder in some
sense. Very recently, structural disorder-induced first-order
and second-order topological phase transitions have been pro-
posed [94,105]. According to our calculations, it is found that
density can drive higher-order topological phase transitions
in amorphous systems. We suppose that an increase in density
brings some additional hopping terms into the system, leading
to the occurrence of a topological phase transition. In addition,
changing the density of the amorphous system is equivalent
to modulating the strength of the structural disorder, thus,
density-driven topological phase transitions are reasonable in
amorphous systems. Moreover, we find that our phase dia-
gram in the 2D model correlates very well with Ref. [106].
In some sense, the density in our model has a similar physical
effect as the hopping parameters for the higher-order topolog-
ical phase transitions.

Recently, 3D amorphous topological insulators protected
by time-reversal symmetry have been experimentally ob-

served in Bi2Se3 films [22]. In addition, a density-driven phase
transition between semiconducting and metallic polyamorphs
of silicon has been realized by changing pressure [95]. There-
fore, we propose that density-driven higher-order topological
phase transitions may be realized in amorphous Bi2Se3 thin
films by changing the pressure of the sample.
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