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Coherence limitations in the optical control of the singlet-triplet qubit in a quantum dot molecule

Karol Kawa ,1,2,* Tilmann Kuhn ,2 and Paweł Machnikowski 1

1Department of Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
2Institute of Solid State Theory, University of Münster, 48149 Münster, Germany

(Received 28 March 2022; revised 16 September 2022; accepted 16 September 2022; published 26 September 2022)

We analyze the optically driven dynamics of a qubit implemented on a singlet-triplet subspace of two-electron
states in a self-assembled quantum dot molecule. We study two possible control schemes based on the coupling to
an excited (four-particle) state either by two spectrally separated laser pulses or by a single spectrally broad pulse.
We quantitatively characterize the imperfections of the qubit operation resulting from nonadiabatic evolution and
from limited spectral selectivity in a real system, as compared to the ideal adiabatic Raman transfer of occupation
in the � system. Next, we study the effects of decoherence induced by the coupling to the phonons of the
surrounding crystal lattice and by radiative recombination. As a result, we are able to identify the optimization
trade-offs between different sources of errors and indicate the most favorable conditions for quantum control of
the singlet-triplet qubit in the two optical control schemes.
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I. INTRODUCTION

One of the challenges of quantum computation and
networking is to build a quantum interface between the
computational registers and quantum communication links.
Solid-state systems, like carrier spins in self-assembled semi-
conductor quantum dots (QDs), offer a viable way toward this
goal [1–3] by providing relatively stable quantum registers
with lifetimes reaching seconds [4,5] and coherence times of
the order of μs [6], combined with a high level of optical
control, including high-fidelity single spin initialization [7–9],
fast spin manipulation [10–12], and nondestructive readout
[9,13]. An implementation of the quantum bit is also possi-
ble in an artificial molecule composed of two coupled QDs
(quantum dot molecule; QDM) with the benefit of the re-
duced impact of fluctuating magnetic environment and charge
fluctuations, hence extended coherence times [14]. Here, the
qubit space is spanned by the singlet and triplet states of two
electrons with a vanishing z component of the total spin. These
states are both optically coupled to the same four-particle con-
figuration, in which an additional electron-hole pair (exciton)
is created in one of the QDs [14–16]. This renders optical
control of such a singlet-triplet qubit possible in the standard
frame of a � system. Entanglement with photons makes it
possible to couple the qubit to quantum communication lines
[17,18], while resonance fluorescence techniques offer poten-
tial toward single-shot readout [19,20].

While spin states are relatively stable, the absence of
a substantial coupling between light and spin forces the
optical spin control schemes to rely on spin-dependent
charge dynamics involving the coupling to an excited state
[16,21–23]. This makes the qubit vulnerable to errors that may
be due to the occupation leakage to the “virtually” coupled
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auxiliary state, its decay due to radiative recombination, as
well as to the dynamical response of the crystal lattice, i.e.,
phonons, which leads to dephasing and affects the fidelity of
the qubit operation [23–25].

In this paper, we study two possible ways of optical ro-
tation of a singlet-triplet qubit and analyze the leakage and
dephasing channels that limit the fidelity of the quantum gat-
ing protocol. The first control method to be discussed follows
the standard scheme of inducing an arbitrary spin rotation via
an adiabatic Raman transfer with two simultaneous, spectrally
selective laser pulses off-resonantly coupled to the excited
state [22,23]. The second one, experimentally implemented
in Ref. [16], uses a single spectrally broad pulse to couple
both triplet and singlet states to the excited state. We ana-
lyze the imperfections of the evolution with respect to the
intended adiabatic control scheme and discuss the effects of
environmentally induced decoherence as a function of the
system and control parameters. We show that simultaneous
optimization of the fidelity against all sources of error is
possible within the parameter space for the two-color, two-
pulse scheme, while in the single-color, single-pulse protocol
a trade-off between different error mechanisms has to be
resolved.

The organization of the paper is as follows. First, in Sec. II
we introduce the physical system under study and the model
describing it. Next, in Sec. III we present the two protocols
for qubit rotation. Section IV focuses on the unwanted effect
of leakage of quantum information into the auxiliary state and
on the imperfections of the performed quantum gate. Next, we
focus on environmentally induced decoherence processes. In
Sec. V A, we summarize a general theory of the decoherence
mechanism based on the perturbation theory of the density
matrix. In Sec. V B we employ this theory to the impact of
phonons on the fidelity of the quantum gate, while in Sec. V C
the errors induced by radiative recombination are analyzed.
Finally, in Sec. VI, we conclude our work and discuss the
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FIG. 1. (a) Illustrative representation of the system in the form of the band edge diagram: a QDM is occupied by two electrons. Optical
excitation couples the two-electron states to an excited state with an additional exciton created in the upper dot. Here the direction of the
epitaxial growth of the structure (the “vertical” z axis) is from left to right; the electric field is applied in this direction. (b) The � system
necessary for optical control of the singlet-triplet qubit using two laser pulses selectively coupling the singlet and triplet to the exciton state
with Raman conditions satisfied. (c) The � system for optical spin control using only one broad laser pulse coupling both the triplet and singlet
to |X 〉.
possibility of minimizing the error within the available space
of control parameters.

II. THE SYSTEM AND THE MODEL

We consider a QDM formed by two vertically stacked
self-assembled InAs QDs, where, to be specific, we assume
that the upper QD is larger resulting in a smaller excitation
energy than the lower one. The QDM is placed in a field
effect (diode) structure [15,16] to provide controlled charging
[Fig. 1(a)]. We assume that the QDM is charged by two
resident electrons. In a minimal model, which is sufficient for
our purpose, the electrons can occupy the lowest states in each
QD. We assume that the external bias voltage is set to such a
value that the lowest-energy two-electron states correspond to
singly occupied QDs, while the doubly occupied configura-
tions are energetically higher due to Coulomb blockade. The
qubit subspace is then spanned by the singlet state,

|S〉 = 1√
2

(a†
1↑a†

2↓ − a†
1↓a†

2↑)|vac〉, (1)

and the triplet state with zero projection of the angular mo-
mentum, i.e., Jz = 0,

|T 〉 = 1√
2

(a†
1↑a†

2↓ + a†
1↓a†

2↑)|vac〉. (2)

Here |vac〉 denotes the state of empty molecule and a†
j,s is the

electron creation operator in the jth QD ( j = 1, 2) with the
spin s =↑,↓. The states |T 〉 and |S〉 are split by the exchange
coupling which is tunable within a certain range of the electric
field. A comprehensive study of two-electron states along with
the excited states in an artificial molecule can be found, e.g.,
in Ref. [26].

Both qubit states are coupled to a four-particle configura-
tion with angular momentum Jz = −1 via an optical transition
induced by a σ− circularly polarized light field that creates an
additional electron-hole pair in the upper QD [16],

|X 〉 = h†
2⇓a†

2↑a†
1↑a†

2↓|vac〉. (3)

Due to Coulomb binding of the electron-hole pair and
Coulomb blockade against double charging of the QDs, this

configuration is stable in a certain range of electric fields.
The three states |T 〉, |S〉, and |X 〉 form a three-level � system
[see Figs. 1(b), 1(c)], which allows one to control the |T 〉 and
|S〉 states by a detuned optical coupling to the |X 〉 state. It
should be noted that the triplet states with angular momentum
projections Jz = ±1 are only coupled to four-particle states
with Jz = ±2 and therefore do not interfere with the present
� system. Furthermore, by using the Zeeman effect, they can
be shifted to different energies.

The system is described by the Hamiltonian

H = Hc + Henv + Vc-env, (4)

where the three components account for the confined carriers
coupled to a laser field, the environment, and the interaction
between them.

The carrier-laser Hamiltonian describes the three-level �

system formed by the two-electron triplet and singlet states
coupled to the lowest 4-particle state |X 〉 via a classical light
beam, as presented in Figs. 1(b) and 1(c). It has the form

Hc =
∑

n=S,T,X

εn|n〉〈n| + HL. (5)

Here εn are the energies of the relevant states, with the ex-
change splitting εT − εS = 2h̄δ, and the last term describes
the carrier-light coupling for a σ− circular polarization of the
laser beam in the rotating wave approximation,

HL = 1
2 d · E (−)(t )a2↑h2⇓ + H.c., (6)

where d is the only nonvanishing matrix element of the dipole
operator, E (−)(t ) is the negative frequency part of the driving
field, and H.c. stands for Hermitian conjugation.

The environment Hamiltonian consists of two contribu-
tions,

Henv = Hph + Hrad, (7)

corresponding, respectively, to the lattice (phonon) and radia-
tive (photon) bath. The free phonon Hamiltonian has the form

Hph =
∑

k

h̄ωkb†
kbk, (8)
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where b†
k (bk) is the bosonic creation (annihilation) operator

for a phonon with wave vector k while ωk is the phonon
frequency, which can be expressed by the wave vector and
the velocity of phonons cl by ωk = cl |k|. We will restrict the
discussion to the deformation-potential coupling to longitudi-
nal acoustic phonons; hence only this single phonon branch is
relevant. The Hamiltonian of the radiative bath is

Hrad =
∑
q,λ

h̄ω′
qc†

qλcqλ, (9)

where c†
qλ (cqλ) is the bosonic creation (annihilation) operator

of a photon with wave vector q and polarization index λ and
ω′

q = c|q|/nr is the photon frequency with c as speed of light
in vacuum and nr as the refractive index of the crystal.

Finally, the interaction part of Hamiltonian can be written
as

Vc-env = Hc-ph + Hc-rad, (10)

where Hc-ph accounts for the interaction with phonons and
Hc-rad for the interaction with photons. The phonon coupling
Hamiltonian is of the form

Hc-ph =
[∑

k

f (h)
2 (k)h†

2⇓h2⇓ +
∑

k

∑
jσ

f (e)
j (k)a†

jσ a jσ

]

× (bk + b†
−k ), (11)

where f (e,h)
j (k) is the coupling constant for the jth QD for

electrons (e) and holes (h), respectively. The form of this
Hamiltonian reflects the facts that only one hole state is rele-
vant, phonons cannot induce interband transitions due to huge
energy mismatch, the coupling between the states localized in
different QDs is inefficient due to small wave function over-
lap, and spin-nonconserving phonon couplings are neglected
because they are associated with weak spin-orbit cou-
plings. Projected on the relevant subspace {|T 〉, |S〉, |X 〉}, this
Hamiltonian takes the form

Hc-ph =
∑

n

〈n|H |n〉|n〉〈n|

=
{∑

k

(|S〉〈S| + |T 〉〈T |)[ f (e)
1 (k) + f (e)

2 (k)
]

+
∑

k

|X 〉〈X |[ f (e)
1 (k) + 2 f (e)

2 (k) + f (h)
2 (k)

]}
× (bk + b†

−k ). (12)

The off-diagonal elements 〈S|H |T 〉 vanish. We carry out a
canonical transformation to adjust the lattice equilibrium of
the two resident electrons according to

bk = b̃k − f (e)
1 (k) + f (e)

2 (k)

h̄ωk
. (13)

Using the completeness relation |T 〉〈T | + |S〉〈S| + |X 〉〈X | =
1 we obtain

Hph + Hc-ph =
∑

k

[
h̄ωkb̃†

kb̃k + |X 〉〈X |F (k)(b̃k + b̃†
−k )

]
,

(14)

where

F (k) = f (e)
2 (k) + f (h)

2 (k). (15)

This transformation shifts the equilibrium positions of the
lattice ions, building a polaron-like cloud around the charge
distribution. The distorted lattice is the true ground state (“dis-
placed phonon vacuum”) in the presence of resident charges
and all the lattice excitations are built upon this vacuum state.
A product state of the system and its phonon environment, as
assumed in Sec. V B, is defined with respect to these displaced
phonon modes [27].

It is clear from Eq. (14) that only the excited state couples
to phonons, which reflects the fact that the lattice responds to
the change in the charge state of the system. The transforma-
tion leads also to a small shift of the energy εX , the polaron
shift, which in the following we include in εX . The coupling
constants have the form

f (x)
2 (k) =

√
h̄k

2ρVcl
DxFx(k), x = e, h, (16)

where De(h) is the deformation potential constant, ρ is the
crystal density V is the normalization volume, and Fx(k) is
the form factor

Fx(k) =
∫ ∞

−∞
dr	∗

x (r)eik·r	x(r). (17)

For simplicity, we assume the same Gaussian form of the wave
functions for the electron and the hole in the top quantum dot,
i.e.,

	e(r) = 	h(r) ∝ exp

(
− r2

⊥
2l2

⊥
− z2

2l2
z

)
, (18)

with l⊥ and lz denoting the horizontal and vertical wave func-
tion widths, respectively. This approximate model properly
accounts for the deformation-potential coupling that relies on
the different deformation potential constants for electrons and
holes. Further refinement of the wave functions might yield
quantitative corrections to the results, but they will not change
the qualitative behavior. With this choice of wave functions,
the form factor has also the same form for the electron and
hole,

Fe(k) = Fh(k) = e−( k⊥ l⊥
2 )2−( kz lz

2 )2
. (19)

The electron-photon interaction Hamiltonian is

Hc-rad =
∑
q,λ

gqλ(cqλ + c†
−qλ)(|T 〉〈X | + |S〉〈X | + H.c.) (20)

with

gqλ = g∗
−qλ =

√
h̄ω′

q

2ε0εrV
d · ê(λ)(q), (21)

where d is the interband dipole moment, ê(λ)(q) = ê(λ)∗(−q)
is the polarization unit vector, and ε0 and εr are the di-
electric constants for vacuum and material semiconductor,
respectively.

125308-3



KAWA, KUHN, AND MACHNIKOWSKI PHYSICAL REVIEW B 106, 125308 (2022)

III. THE GATING PROTOCOLS

In this section, we present the spin rotation procedure,
define the ideal (adiabatic) evolution of the system, and define
the Hamiltonians that lead to nonadiabatic corrections. We
first focus on the description of the two-color protocol in
Sec. III A and then summarize the single-color protocol in
Sec. III B.

A. Two-color protocol

The first protocol follows the idea of two-color, two-pulse
adiabatic transfer proposed for single-spin states in [22] and
then further analyzed in Refs. [23,25]. Here the system is
driven by two simultaneous laser pulses with frequencies

ωn = (εX − εn)/h̄ − 
, n = T, S, (22)

so that both pulses are detuned from the transition to the
|X 〉 state by a common detuning 
 and their frequencies
satisfy the Raman condition for the energy-conserving trans-
fer between the states |S〉 and |T 〉, as shown in Fig. 1(b).
Correspondingly, we write

d · E (−)(t ) =
∑

n=T,S

h̄�n(t )ei(ωnt+γn ), (23)

where �n is assumed real. The Hamiltonian in Eq. (6) couples
the state |X 〉 [Eq. (3)] to the states |T 〉 and |S〉 [Eq. (1) and
Eq. (2)] via identical matrix elements. Hence, the laser Hamil-
tonian defined by Eq. (6), projected on the relevant subspace
of system states spanned by {|S〉, |T 〉, |X 〉}, takes the form

HL = h̄

2

∑
n=T,S

�n(t )ei(ωnt+γn ) 1√
2

(|T 〉 + |S〉)〈X | + H.c. (24)

As only the difference between the phases of the laser
pulses is relevant, we set γS = 0 and denote γT = γ . The
pulses are assumed to have the same shape and arrive simul-
taneously; they are parametrized as

�T (t ) =
√

2�(t ) cos β and �S (t ) =
√

2�(t ) sin β.

(25)

We assume a Gaussian pulse shape �(t ) =
�0 exp[−t2/(2τ 2)], where τ is the pulse duration. It is
convenient to introduce the further parametrization

�(t ) = �(t ) sin[2φ(t )], 
 = �(t ) cos[2φ(t )], (26)

i.e.,

�(t ) =
√

�2(t ) + 
2, φ(t ) = 1

2
arctan

�(t )



, (27)

where φ(t ) is referred to as the tipping angle.
We transform the system to the rotating frame picture using

the unitary operator

U (t ) = exp

{
it

h̄
[(εT − εX + h̄
)|T 〉〈T |

+ (εS − εX + h̄
)|S〉〈S| + (εX − h̄
)1̂]

}
. (28)

The Hamiltonian can then be split into two components,

H̃c = H̃ (0)
c + H̃ (1)

c . (29)

The first term of Eq. (29) contains the secular terms,

H̃ (0)
c = h̄
|X 〉〈X | + h̄

2
�(t )(|B〉〈X | + |X 〉〈B|), (30)

where we introduce the bright state

|B〉 = eiγ cos β|T 〉 + sin β|S〉 (31a)

coupled to the |X 〉 state and the orthogonal dark state,

|D〉 = eiγ sin β|T 〉 − cos β|S〉, (31b)

which is decoupled from the excited state and thus unaffected
during the evolution. The Hamiltonian H̃ (0)

c drives the in-
tended evolution of the singlet-triplet qubit. The second part
reads

H̃ (1)
c = h̄

2
�T (t )e−2iδt+iγ 1√

2
|S〉〈X |

+ h̄

2
�S (t )e2iδt 1√

2
|T 〉〈X | + H.c. (32)

This contribution contains off-resonant terms rotating with the
frequency corresponding to the splitting between triplet and
singlet states 2h̄δ = εT − εS that are treated as a perturbation.

The essence of the protocol is to let the state |B〉 undergo
an adiabatic evolution generated by the Hamiltonian H̃ (0)

c and
attain a dynamical phase due to the ac Stark shift induced by
the laser field that off-resonantly couples this state to the ex-
cited state |X 〉. This additional phase, relative to the decoupled
dark state |D〉, is equivalent to a rotation on the Bloch sphere
around the axis defined by the states |B〉 and |D〉 which are, in
turn, defined by the pulse parameters. The adiabatic evolution
is secured upon a sufficiently slow variation of �(t ), by the
splitting 
, which generates a gap between the instantaneous
eigenvalues of H̃ (0)

c at any time t . In addition, the protocol
relies on the spectral selectivity that suppresses off-resonant
transitions induced by H̃ (1)

c , for which a sufficiently long
pulse duration (compared to the inverse exchange splitting)
is required.

To describe the ideal adiabatic evolution explicitly, we find
the instantaneous eigenvalues of H̃ (0)

c ,

λ0(t ) = 0, (33a)

λ1(t ) = −h̄�(t ) sin2 φ(t ) = h̄

2
[
 −

√

2 + �2(t )],

(33b)

λ2(t ) = h̄�(t ) cos2 φ(t ) = h̄

2
[
 +

√

2 + �2(t )],

(33c)

and the corresponding instantaneous eigenstates

|a0(t )〉 = |D〉, (34a)

|a1(t )〉 = cos φ(t )|B〉 − sin φ(t )|X 〉, (34b)

|a2(t )〉 = sin φ(t )|B〉 + cos φ(t )|X 〉. (34c)

Before and after the pulse, the tipping angle satisfies φ(t →
±∞) → 0. Therefore, |a1(±∞)〉 = |B〉 and |a2(±∞)〉 =
|X 〉. In general, the state of the system at time t can be
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written as

|ψ (t )〉 =
∑

n

cn(t )e−i�n (t )|an(t )〉, (35)

where cn(t ) are time-dependent coefficients and

�n(t ) = 1

h̄

∫ t

t0

λn(t ′)dt ′ (36)

is the phase attained during the evolution. By virtue of
the adiabatic theorem [28], in the case of perfectly adia-
batic evolution, the coefficients cn(t ) are time-independent;
thus the only effect of the evolution is the acquisition of a
phase by each state. The dark state remains intact while the
bright and excited states receive an additional phase, �n ≡
�n(∞), where n = 1 or n = 2 refer to the bright and excited
states, respectively. The evolution (rotation) operator in the
{|D〉, |B〉, |X 〉} basis is

Uc(t ) =
⎛⎝1 0 0

0 e−i�1(t ) cos φ(t ) e−i�2(t ) sin φ(t )
0 −e−i�1(t ) sin φ(t ) e−i�2(t ) cos φ(t )

⎞⎠. (37)

After the pulse is switched off, φ(t ) → 0 and the transforma-
tion, projected on the qubit subspace spanned by the states |D〉
and |B〉, has the simple form

U (q)
c (∞) = |D〉〈D| + e−i�1 |B〉〈B|. (38)

Converted to the original singlet-triplet basis according to
Eq. (31a) and Eq. (31b), this corresponds to the qubit rotation

U (q)
c (∞) = cos

�1

2
1 − i sin

�1

2
�σ · �n = e−i�1 �σ·�n/2, (39)

where �σ is a vector of Pauli matrices expressed in the basis of
{|T 〉, |S〉}. The laser field thus induces a rotation on the Bloch
sphere by an angle �1 about the axis given by

�n = [cos γ sin(2β ),− sin γ sin(2β ), cos(2β )], (40)

with the triplet and singlet placed at the poles along the z
axis. It is now clearly seen that by the appropriate choice
of the laser amplitudes and phases, an arbitrary axis of the
qubit rotation can be achieved. There is no unique relation
between the pulse parameters and the rotation angle of the
Bloch vector. In Fig. 2(a) the scaled pulse area �0/
 leading
to a rotation angle of π in the adiabatic evolution is plotted
as a function of the scaled pulse duration τ
. This shows
that for any detuning and pulse duration, a pulse can be found
which satisfies this condition. Figure 2(b) shows exemplarily
the tipping angle and its derivative as a function of time for a
10 ps pulse with a detuning of 1 meV.

For future convenience, we express the initial state of the
system as

|ψ0〉 = cos
ϑ

2
|B〉 + eiϕ sin

ϑ

2
|D〉, (41)

where ϑ and ϕ are the angles on a Bloch sphere. We will also
need two other states, orthogonal to the above,

|ψ1〉 = sin
ϑ

2
|B〉 − eiϕ cos

ϑ

2
|D〉, |ψ2〉 = |X 〉. (42)

FIG. 2. (a) Scaled pulse area �0/
 as a function of the scaled
pulse duration τ
 corresponding to the rotation over angle of �1 =
π . The red-blue point corresponds to the value of detuning and pulse
duration for which φ(t ) and φ̇(t ) were depicted in (b). (b) Tipping
angle φ(t ) (red line) and its derivative φ̇(t ) (blue line) as a function
of time for pulse duration τ = 10 ps and detuning h̄
 = 1 meV.

B. Single-color protocol

The second protocol, implemented experimentally in
Ref. [16], uses only a single pulse, centered between the
energies of the singlet and triplet states and detuned from the
|X 〉 state by h̄
 [see Fig. 1(c)]. This reduces the experimental
complexity but, as we will see, restricts the qubit rotation to
a single axis. The essential mechanism of the qubit rotation
is still the phase accumulation attained during the adiabatic
evolution along an ac-Stark-shifted spectral branch, but the
different spectral conditions lead to a different nature of the
corrections to the ideal evolution.

The Hamiltonian describing the laser driving now takes the
form

HL = h̄

2
�(t )eiωt 1√

2
(|T 〉 + |S〉)〈X | + H.c. (43)

Using the same unitary transformation of Eq. (28) as pre-
viously, we again transform the Hamiltonian to the rotating
frame. The new Hamiltonian is again split as in Eq. (29) but
now we define

H̃ (0)
c = h̄
|X 〉〈X | + h̄

2
�(t )

1√
2

(|T 〉 + |S〉)〈X | + H.c. (44)

and

H̃ (1)
c = h̄

2
�(t )

1√
2

[(eiδt − 1)|T 〉 + (e−iδt − 1)|S〉]〈X | + H.c.

(45)

As follows from Eq. (44), the bright state is now

|B〉 = 1√
2

(|T 〉 + |S〉) (46a)

and the dark state is

|D〉 = 1√
2

(|T 〉 − |S〉). (46b)

With these definitions of the states, the Hamiltonian H̃ (0)
c is

exactly the same as in the case of the two-color protocol
[Eq. (30)]. However, the qubit rotation is now performed only
about the x axis on the Bloch sphere, corresponding to the
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transformation

U (q)
c (∞) = cos

�1

2
1 − i sin

�1

2
σx. (47)

IV. IMPERFECTIONS OF THE UNITARY EVOLUTION

In this section, we analyze the discrepancies between the
idealized qubit rotation based on the adiabatic theorem and the
actual system evolution. To the lowest order, the imperfections
can be divided in two classes. First, nonadiabatic corrections
are revealed as the difference between the exact evolution gen-
erated by H̃ (0)

c and the adiabatic approximation. Second, the
off-resonant terms contained in H̃ (1)

c may affect the evolution.
We study the magnitude of these corrections for a fixed in-
tended angle of qubit rotation of �1 = π around the x axis in
both protocols. That is, for each set of parameters (exchange
splitting, detuning, and pulse duration) we determine �0 from
Eq. (36) with �1 = π , as shown in Fig. 2(a). One should note
that the corrections discussed here do not involve dephasing
and can in principle be compensated for by an appropriate
adjustment of the control fields. As long as these unwanted
effects are small, this can be done to the leading order by
calculating the corrections perturbatively, as we do below,
and adding a compensating gate to the control procedure. A
more general approach can be based on advanced optimization
techniques [29].

A. Nonadiabatic transitions

An example of the exact (numerically computed) evolution
governed by H̃ (0)

c and starting from the triplet state is shown
in Fig. 3(a). For these particular parameters, the adiabatic
approximation works very well. The numerically calculated
evolution agrees almost perfectly with the one obtained within
the adiabatic scheme and the π rotation to the singlet state is
achieved with a very high fidelity. Figures 3(b) and 3(c) show
results for the evolution of the occupations of the states ob-
tained from a numerical simulation of the two-color protocol
including the full carrier-light Hamiltonian Hc = H (0)

c + H (1)
c

for a 10 ps and a 20 ps pulse. We find a clear influence of
the off-resonant part during the presence of the pulse and a
reduction of the fidelity in the case of the 10 ps pulse. With
increasing pulse duration, the fidelity increases, which can
be understood from the increased spectral selectivity of the
longer pulse. Figures 3(d) and 3(e) show the evolution of the
occupations in the case of the single-color protocol for a 5
ps and a 1 ps pulse. In contrast to the first protocol, now the
fidelity increases with decreasing pulse duration because of
the increasing simultaneous overlap with both transitions.

To perform a more complete and quantitative analysis, we
choose the final occupation of the auxiliary state |X 〉 as a
figure of merit. Such an occupation may result from a nonadia-
batic jump between the branches of instantaneous eigenvalues
and constitutes a “leakage” error, as the occupation leaves the
computational singlet-triplet space.

We find an approximate formula for the final occupation
of state |X 〉 from the lowest-order correction to the adia-
batic evolution [28]. Substituting Eq. (35) to the Schrödinger
equation one can easily derive the equation for the

FIG. 3. Occupancy of singlet, triplet, and |X 〉 states in time
during gating operations within the two- or single-color protocol
(a) when evolution is governed by a Hamiltonian H (0)

c ; (b)–(e) when
evolution is governed by a Hamiltonian Hc = H (0)

c + H (1)
c , i.e., con-

taining off-resonance terms in the two- [(b), (c)] and single-color
[(d), (e)] protocol for different values of pulse duration and singlet-
triplet energy splitting.

coefficients cn(t ),

ċm(t ) = −
∑

n

cn(t )〈am(t )|ȧn(t )〉. (48)

We aim at obtaining an approximate formula for the amplitude
c2(∞) which corresponds to the occupation of the |X 〉 state at
the end of the gating procedure. For m = 2 the only relevant
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term on the right-hand side is 〈a2(t )|ȧ1(t )〉 = −φ̇(t ), since
〈an(t )|ȧn(t )〉 = 0 for any n and |a0(t )〉 is time-independent.
Finally, we take the upper estimate of the integral by setting
c1(t ) = c1(0) = cos(ϑ/2) and write

cna
2 = cos

ϑ

2

∫ ∞

−∞
dt ei[�2(t )−�1(t )]φ̇(t ), (49)

where the superscript “na” corresponds to the nonadia-
batic corrections. Thus, the error due to nonadiabaticity
is

δna
u = ∣∣cna

2

∣∣2
. (50)

The integral in Eq. (49) can be evaluated as

cna
2 = −i cos

ϑ

2
τ
�̃0

∫ ∞

0
ds sin

(
�1

F (�̃0, s) + s

F (�̃0,∞)

)
× se−s2/2

1 + �̃2
0e−s2 , (51)

where we have performed the change of integration variables
s = t/τ and defined �̃0 = �0/
 together with the function

F (�̃0, s) =
∫ s

0
ds′(

√
1 + �̃0e−s′2 − 1). (52)

We benefit from the oddness of F (�̃0, s) and φ̇(t ) and use the
relation

�1 = τ
F (�̃0,∞). (53)

It is now clearly seen that δna
u depends only on the product of

τ and 
.
This estimate for δna

u is shown in Figs. 4(a) and 4(b) as a
function of τ and 
. As expected, the error very quickly drops
down by orders of magnitude when τ
 � 1. The oscillations
visible in the plots are due to the interference of quantum am-
plitudes for nonadiabatic jumps on the rising and decreasing
slopes of the pulse, where the rate of change of the tipping
angle is the fastest [see Fig. 2(b)] [23].

B. Off-resonant terms: Two-color protocol

The other source of corrections is the transitions induced
by the Hamiltonian H̃ (1)

c , which can be written in the bright-
dark basis in the form

H̃ (1)
c = h̄

2
�(t )

[
sin2 βei(2δt−γ ) − cos2 βe−i(2δt−γ )

]|D〉〈X |

+ h̄

2
�(t ) sin(2β ) cos(2δt − γ )|B〉〈X | + H.c. (54)

First, we study the unwanted occupation of the state |X 〉,
which is found by treating H̃ (1)

c as a perturbation to the ideal
adiabatic evolution. Using first-order perturbation theory, we
obtain the relevant probability amplitude,

coff
2 = 1

h̄

∫ ∞

−∞
dt〈X |U †

c (t )H̃ (1)
c Uc(t )|ψ0〉

= 1

2
cos

ϑ

2
sin(2β )

∫ ∞

−∞
dt ei[�2(t )−�1(t )]�(t )

× cos(2δt − γ ) cos[2φ(t )]

FIG. 4. Leakage to the excited state: (a), (c), (e) as a function of
pulse(s) detuning h̄
; (c), (d), (f) as a function of pulse(s) duration
τ ; (a), (b) due to nonideal adiabaticity of the control process, i.e., not
including off-resonant drivings, and thus the same for both kinds of
control protocols; (c), (d) including off-resonant driving in the two-
color protocol; (e), (f) including off-resonant driving in the one-color
protocol. In all cases, singlet-triplet splitting due to axial electric field
was set to 2h̄δ = 0.2 meV. Error is averaged over all possible initial
states on a Bloch sphere.

+ 1

2
eiϕ sin

ϑ

2

∫ ∞

−∞
dt ei�2(t )�(t ) cos φ(t )

× [
e−i(2δt−γ ) sin2 β − ei(2δt−γ ) cos2 β

]
. (55)

The corresponding error is defined as

δoff
u = ∣∣coff

2

∣∣2
. (56)

The total leakage of quantum information into the excited
state, taking into account the possible interference between
the two mechanisms of leakage, is

δtot
u = ∣∣cna

2 + coff
2

∣∣2
. (57)

This total leakage probability, averaged over the initial state,
is shown in Figs. 4(c) and 4(d) as a function of τ and 
. It
turns out that including the effects of H̃ (1)

c has a minor effect
on the leakage probability and the nonadiabatic jumps remain
the main source of this kind of error.

The second type of error induced by H̃ (1)
c is the modifica-

tion of the final state within the qubit space. This is quantified
by the probability of finding the system in the state orthogonal
to the intended one. In the leading order, for an initial state
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FIG. 5. Quantum gate error due to the off-resonant terms in Hc

within the first [(a), (b)] and second [(c), (d)] type of protocol as
a function of pulse duration [(a), (c)] and singlet-triplet energetic
splitting [(b), (d)] and averaged over all possible initial states in the
Bloch sphere.

|ψ0〉, this is given by δT -S = |cT -S|2, where

cT -S = − i

h̄

∫ ∞

−∞
〈ψ⊥|U †

c (t )H̃ (1)
c Uc(t )|ψ0〉dt, (58)

where |ψ⊥〉 is the qubit state orthogonal to |ψ0〉. The error
is thus related to jumps induced by H̃ (1)

c from the ideally
evolving initial state Uc(t )|ψ0〉 to the orthogonal state (at
a given instant of time) Uc(t )|ψ⊥〉. Restricting ourselves to
|ψ0〉 = |T 〉 we get

cT -S = 1

h̄

∫ ∞

−∞
〈S|U †

c (t )H̃ (1)
c Uc(t )|T 〉dt

= 1

2
e−iγ

∫ ∞

−∞
dt�(t ) sin [φ(t )]

{
cos2 (β )e−i�1(t )

× [
ei(2δt−γ ) sin2 (β ) − e−i(2δt−γ ) cos2 (β )

]
− ei�1(t ) sin2 (β )

[ − ei(2δt−γ ) cos2 (β ) + e−i(2δt−γ )

× sin2 (β )
] − sin2 (2β ) cos [φ(t )] cos (2δt − γ )

}
.

(59)

This contribution to the error is plotted in Figs. 5(a) and
5(b) as a function of pulse duration and exchange splitting.
It is clear that the fidelity grows for longer pulses and larger
exchange splitting. Unlike the leakage to the |X 〉 state, this
error is due to imperfect spectral selectivity of the singlet and
triplet states by the pulses driving the � system and therefore
it depends on the exchange splitting, which is much lower
than typically achievable detunings from the excited state. As
a result, this error dominates in the range of longer pulse du-
rations, where the leakage [cf. Figs. 4(c), 4(d)] is suppressed.

C. Off-resonant terms: Single-color protocol

The off-resonant part in the second type of protocol in the
basis of bright and dark states takes the form

H̃ (1)
c = h̄

2
�(t ){[cos(δt ) − 1]|B〉 + sin(δt )|D〉}〈X | + H.c.

(60)

As in Eq. (55), we can write the leakage amplitude coff
2 for an

arbitrary initial state in the leading order as

coff
2 = 1

2
cos

ϑ

2

∫ ∞

−∞
dt�(t )ei[�2(t )−�1(t )]

× cos[2φ(t )][cos(δt ) − 1]

+ 1

2
eiϕ sin

ϑ

2

∫ ∞

−∞
dt�(t )ei�2(t ) cos φ(t ) sin(δt ). (61)

This total leakage error for the single-pulse protocol, averaged
over the initial states, is plotted in Figs. 4(e) and 4(f). Again,
the leakage induced by nonadiabaticity dominates.

The amplitude of the error component within the qubit
subspace for the initial trion state for this protocol is [cf.
Eq. (59)]

cT -S = −1

4

∫ ∞

−∞
dt�(t ) sin[φ(t )]{2[cos(δt ) − 1]

× cos[φ(t )] + 2i sin[�1(t )] sin(δt )}. (62)

The corresponding error δT -S = |cS-T |2 is plotted in Figs. 5(c)
and 5(d). In contrast to the previous case, the fidelity decreases
with increasing pulse length and increasing singlet-triplet
energy splitting. This is related to the construction of this
protocol, which relies on the simultaneous coupling of both
the singlet and triplet states to the excited state. As the pulse
duration increases, the pulse becomes energetically narrow,
thus unable to cover both qubit states. Similarly, as the singlet-
triplet splitting increases, it becomes more difficult to cover
both states by a pulse of a given spectral width. This can
also be clearly seen from the form of the off-resonance terms.
Small δ assures sin(δτ ) and cos(δτ ) − 1 to be small within the
given timescale. On the other hand, as the timescale increases
(larger τ ), a smaller value of δ is needed to keep the terms of
H (1)

c small.
While for the two-pulse protocol extending the pulse du-

ration suppresses all types of errors discussed so far, in the
single-pulse scheme, the error δT -S is reduced by decreasing
the pulse duration, which leads to a trade-off with the leak-
age. Considerable improvement of the achievable fidelity is
possible for smaller exchange splittings.

V. ENVIRONMENT-INDUCED ERRORS

In this section, we study the effect of the lattice and radia-
tive environments on the operation of the singlet-triplet qubit
in the two control schemes. Unlike the unitary corrections dis-
cussed above, the decoherence induced by the interaction with
the macroscopic surroundings of the qubit is irreversible and
cannot be compensated by small adjustments of the control
parameters.
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A. General theory

In this subsection, we give the most important steps in
deriving the effect of decoherence due to the interaction with
the environment on the evolution of a quantum system. This
approach follows the general perturbative scheme [24,30] ap-
plicable in the weak-coupling limit. This is valid as long as the
accumulated effect of the perturbation is small over the time of
the evolution. In the current case of perturbation that is effec-
tive only during the optical driving, this approximation may
hold for arbitrary times, whenever the environment-induced
correction to the system state remains small throughout the
driving period. The general form of the interaction Hamilto-
nian between the system and its environment is

V =
∑

l

Ŝl ⊗ R̂l , (63)

where Ŝl act in the Hilbert space of the system and R̂l act
in the space of the environment. The state of the system
together with the environment is described by a density matrix
�(t ). The system is assumed to be initially in a product state
�(t0) = ρ(t0) ⊗ ρenv, with the system in a pure state, ρ(t0) ≡
ρ0 = |ψ0〉〈ψ0|, while the environment is taken to remain in
thermal equilibrium. One assumes that the evolution of the
system and the environment in the absence of the coupling is
known and given by

U0(t ) = Uc(t ) ⊗ e−itHenv/h̄,

where the system evolves according to Uc(t ) and Henv is the
Hamiltonian of the environment. In the second-order Born
approximation and in the interaction picture with respect to
the unperturbed evolution U0(t ), the equation for the density
matrix reads

�̃(t ) = �̃(t0) + 1

ih̄

∫ t

t0

dτ [V (τ ), �(t0)]

− 1

h̄2

∫ t

t0

dτ

∫ τ

t0

dτ ′[V (τ ), [V (τ ′), �(t0)]], (64)

where �̃(t ) = U †
0 (t )�(t )U0(t ) and V (t ) = U †

0 (t )VU0(t ). From
the above, one extracts the reduced density matrix of the
carrier subsystem (in the Schrödinger picture),

ρ(t ) = Uc(t )TrR�̃(t )U †
c (t ),

where the trace is taken over the reservoir degrees of free-
dom. The first (0th order) term in Eq. (64) yields ρ (0)(t ) =
Uc(t )ρ0U †

c (t ). The second (1st order) term vanishes because it
contains an average of an odd number of reservoir operators
which is zero in the thermal equilibrium state. The third (2nd
order) term is the leading correction to the dynamics of the
system,

ρ̃ (2)(t ) = − 1

h̄2

∫ t

t0

dτ

∫ τ

t0

dτ ′TrR[V (τ ), [V (τ ′), �(t0)]].

(65)

Then one can write

ρ(t ) = Uc(t )[ρ0 + ρ̃ (2)(t )]U †
c (t ). (66)

The fidelity F of the gating procedure is defined as the overlap
of the density matrix with the ideal final state Uc(t )|ψ0〉,

F 2 = 〈ψ0|Uc(t )†ρ(t )Uc(t )|ψ0〉 = 1 − δ, (67)

where

δ = 〈ψ0|ρ (2)(t )|ψ0〉 (68)

is the error of the gating procedure. Using Eqs. (67), (68), and
(65) one can obtain the error of the quantum evolution due to
the interaction with the environment,

δ =
∑

ll ′

∫
dωRll ′ (ω)Sll ′ (ω), (69)

where we introduce two spectral functions: The spectral den-
sity of the reservoir

Rll ′ (ω) = 1

2π

∫
dteiωt 〈R̂l (t )R̂l ′ 〉 (70)

and the spectral characteristic function of the system evolution

Sll ′ (ω) =
∑

i

〈ψ0|Y †
l (−ω)|ψi〉〈ψi|Yl ′ (ω)|ψ0〉, (71)

where the sum is over states orthogonal to |ψ0〉 and

Yl (ω) =
∫

dt eiωt Ŝl (t ), (72)

where Ŝl (t ) = U †
c (t )̂SlUc(t ) are the system operators in the

interaction picture.

B. Destructive influence of the phonon bath

In this subsection, we derive the gating error due to carrier-
phonon interactions. For that purpose, we employ the general
theory of decoherence presented in Sec. V A to the carrier-
phonon Hamiltonian given by Eq. (14). The results presented
here are very similar to those of Ref. [23] due to formal
equivalence of the two Hamiltonians.

Comparing Eq. (14) with Eq. (63) one can see that the sys-
tem is coupled to phonons only through the diagonal coupling
to the excited state; hence the only relevant operators are

R̂ph =
∑

k

F (k)(b̃k + b̃†
−k ) (73)

and Ŝph = |X 〉〈X |.
Using Eq. (70) and the standard properties of the bosonic

thermal bath, one obtains the spectral density in the form

Rph(ω) = [nB(ω, T ) + 1]

×
∑

k

|F (k)|2[δ(ω − ωk ) + δ(ω + ωk )], (74)

where nB(ω, T ) stands for the Bose-Einstein distribution at
the lattice temperature T . The sum can be evaluated by
approximating it by an integral and representing k in the
spherical coordinates k = (k, ζ , η). The result is

Rph(ω) = R0[nB(ω) + 1]ω3g(ω), (75)
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FIG. 6. Spectral characteristics: (a), (b) sph
1 (ω) [see Eq. (79a)]

and (c), (d) sph
2 (ω) [see Eq. (79b)] as a function of the phonon

frequency, for different values of the detuning at a fixed pulse length
[(a), (c)] and various values of the pulse duration at a fixed detuning
[(b), (d)]. (e) Spectral density [see Eq. (74)] as a function of the
phonon frequency for three selected values of temperature.

with R0 = (De − Dh)/(8π2h̄ρc5
l ) and

g(ω) =
∫ π/2

−π/2
dζ cos ζ exp

[
− ω2

c2
l

(
l2
⊥ sin2 ζ + l2

z cos2 ζ
)]

.

(76)

This is plotted in Fig. 6(e) for some values of the temperature.
At absolute zero, the spectral density is nonzero only for
ω > 0, which corresponds to the emission of the phonons. At
finite temperature, Rph is also nonvanishing for ω < 0, as the
phonon absorption becomes possible.

Next, we consider the spectral function of the system dy-
namics, which is expressed in a general form in Eq. (71).
For our model, the sum runs over states |ψ1〉 and |ψ2〉 [see
Eq. (42)]. Correspondingly, the spectral function splits into
two parts and has the form

Sph(ω) = sph
1 (ω) + sph

2 (ω)

= 1

4
sin2 ϑ

∣∣∣∣∫ ∞

−∞
dt eiωt sin2 φ(t )

∣∣∣∣2

+ 1

4
cos2 ϑ

2

∣∣∣∣∫ ∞

−∞
dt eiωt ei[�2(t )−�1(t )] sin[2φ(t )]

∣∣∣∣2

.

(77)

As presented here, the spectral function depends on the sys-
tem evolution via the tipping angle φ(t ) and the dynamical
phases �1,2(t ) and has the same formal form for both control

schemes. The total error, as defined in Eq. (69), takes the form

δph =
∫ ∞

−∞
dω Rph(ω)Sph(ω). (78)

Here we investigate the value of the error averaged over all
possible initial states, averaging over ϑ on the Bloch sphere
and evaluating the integrals in Eq. (77) numerically. The aver-

aged spectral functions are denoted by sph
1 (ω) and sph

2 (ω). In
Figs. 6(a)–6(d), we plot these functions for selected values
of the detuning and pulse duration, for the special case of
π rotation around the x axis on the Bloch sphere, when the
phonon response to both protocols is the same.

It is useful to derive approximate analytical expressions for
the characteristic functions that are obtainable in the regime
of �0 � 
 which occurs for sufficiently long pulses or large
detunings [see Fig. 2(a)]. The spectral functions take the ap-
proximate form (see Ref. [23])

sph
1 (ω) ≈ π

96

�4
0τ

2


4
exp

(
−1

2
τ 2ω2

)
(79a)

and

sph
2 (ω) ≈ π

4

�2
0τ

2


2

{
exp

[
−1

2
τ 2(
 + ω)2

]
− �2

0

2
√

3
2
exp

[
−1

6
τ 2(
 + ω)2

]}2

. (79b)

One can understand the physical meaning of the spectral
functions using Fig. 6 and the approximate forms given above.

First, sph
1 is a symmetric function of ω, centered at ω = 0,

and broadens with decreasing τ . It corresponds to dynamically
induced pure dephasing processes and overlaps considerably
with the spectral density for small pulse duration even at
zero temperature. However, its area diminishes as detuning
increases. Thus, the corresponding error δ1 decreases with
increasing pulse duration and diminishes with the value of
detuning as is clear from Figs. 7(a) and 7(b). Second, the func-

tion sph
2 (ω) has two peaks of which the large one is centered

around ω = −
 and broadens with decreasing pulse duration,
while the small one is located to the right of the former having
a width independent of both τ and 
. This spectral structure
corresponds to the phonon-assisted generation of the excited
state by absorbing a phonon to provide the missing energy 


(for detuning below the optical transition). This process has
an approximately resonant nature, with a broadening due to
the driven dynamics of the system.

C. Error due to radiative recombination

In this subsection, we consider the error originating from
the spontaneous emission from the state |X 〉 (radiative re-
combination), which is slightly occupied during the gating
procedure and induced by the interaction Hamiltonian in
Eq. (20). We apply the theory presented in Sec. V A in a
similar way to the phonon error studied in Sec. V B.

The system and reservoir operators in Eq. (63) in the inter-
action picture with respect to the unperturbed evolution have
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FIG. 7. Gating operation error due to the influence of crystal
lattice phonons of the first kind [(a), (b)] corresponding to the first
spectral characteristic sph

1 (ω); of the second kind [(c), (d)] corre-
sponding to the second spectral characteristic sph

2 (ω) and the sum
of them (c) as a function of the detuning h̄
 [(a), (c), (e)] and laser
pulse duration τ [(b), (d), (f)].

the form

Ŝrad(t ) = U †
c (t )[e−iωT t |T 〉〈X | + e−iωSt |S〉〈X |]Uc(t ) + H.c.

(80)

and

R̂rad(t ) =
∑
q,λ

gqλc†
qλ + H.c. (81)

The radiative reservoir is assumed to be in the vacuum state;
hence the corresponding spectral density is nonzero only at
positive frequencies and only the positive-frequency part of
the spectral functions contributes. According to Eq. (71), the
spectral function can be written as

Srad(ω) =
∑

i

|〈ψi|Yrad(ω)|ψ0〉|2, (82)

where Yrad(ω) is defined in Eq. (72). The system operator
in the present case involves interband transitions; hence the
spectral function is centered around the interband transition
frequency ω0, which is on the order of fs−1, while its dynam-
ically induced broadening is on the order of ps−1 (the typical
timescale of the qubit dynamics). Since the radiative spectral
density is a smooth function, one can approximate the result

FIG. 8. Radiative recombination error: as a function of (a) pulse
detuning and (b) pulse duration for a π rotation around the x axis,
averaged over initial states. For such a choice of the rotation axis,
this error is identical in both protocols. We assume 2h̄δ = 0.2 meV
and � = 1 ns−1.

by a Markovian formula

δrad =
∫ ∞

−∞
dω Rrad(ω)Srad(ω) = �

1

2π

∫ ∞

−∞
dω Srad(ω),

(83)

where � = 2πR(ω0) is the spontaneous emission (radiative
recombination) rate, which is known from experiment. One
can write

〈ψi|Yrad(ω)|ψ0〉 =
∫

dt eiωt srad
i (t ), (84)

where srad
i (t ) = 〈ψi |̂Srad(t )|ψ0〉. Then

1

2π

∫ ∞

−∞
dω Srad(ω) =

∑
i

∫ ∞

−∞
dt |si(t )|2. (85)

For the two-color protocol, the explicit forms of the two func-
tions involved are

srad
1 (t ) = −1

4
sin ϑ sin [2φ(t )]

× (e−iωSt sin β + e−i(ωT t+γ ) cos β )

− cos2 ϑ

2
sin [φ(t )]e−i�1(t )e−iϕ

× (e−iωSt cos β − e−i(γ+ωT t ) sin β ) (86)

and

srad
2 (t ) = − cos

ϑ

2
sin2 [φ(t )]ei[�2(t )−�1(t )]

× [e−iωSt sin β + e−i(ωT t+γ ) cos β]. (87)

The functions for the single-pulse protocol are obtained by
restricting these equations to rotations around the x axis, i.e.,
β = π/4, γ = 0.

The radiative contribution to the error, defined by Eq. (83),
for a π rotation around the x axis and averaged over initial
states, is shown in Fig. 8 for the exchange splitting of 0.2 meV
and an exciton lifetime of 1 ns. The error is reduced by in-
creasing pulse detuning, which results in a weaker occupation
of the |X 〉 state. Since this occupation is small at large detun-
ings (see Fig. 4), the error is on the order of 10−4 even though
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the duration of the gating reaches 10% of the exciton lifetime.
Although in the Markov approximation the probability of
spontaneous emission accumulates with time, the resulting
error shows a sublinear dependence on the pulse duration at
sufficiently large detunings, since for a longer pulse duration
the pulse amplitude �0 is lower for a given rotation angle,
which reduces the occupation of the excited state during the
evolution.

Recent works [31–33] consider environmental nonadditiv-
ity of several baths. This occurs for systems strongly coupled
to at least one of the baths. In particular, strong coupling to the
phonon bath can slow down the radiative recombination of a
two-level emitter [31]. In our study, the effect of interaction
with both baths is assumed weak; hence we calculate it to
the leading order only, where the individual corrections enter
additively.

VI. SUMMARY AND CONCLUSIONS

We have presented an extensive analysis of the accuracy
and dephasing effects on two possible optical Raman control
schemes for a singlet-triplet qubit encoded in a two-electron
system in a self-assembled QDM.

Our study reveals the dependence of the fidelity of quantum
control on the system and driving parameters: The exchange
splitting in the two-electron system, the detuning from the
optical transition, and the pulse duration. The results show
that high-fidelity operation requires appropriate optimization
of these parameters, depending on the control scheme. In
both protocols, the probability of leakage to the auxiliary

excited state becomes small for pulse durations of a few pi-
coseconds or longer and decreases with the growing detuning.
Phonon-induced errors are small for pulse durations of at
least a few picoseconds or as long as the detuning of the
optical coupling is sufficiently large. For a protocol based
on two spectrally selective optical pulses, the rotation error
within the qubit subspace is very small (10−3 or lower) for
pulse durations of several picoseconds, which is consistent
with reducing the leakage but incurs a higher impact from
spontaneous emission. The latter, however, can be suppressed
to values on the order of 10−4 by increasing the detuning of
the optical coupling. For a high-accuracy single-pulse scheme,
which assumes nonselective optical coupling, short pulses
are preferred for lowering the gating error, which creates a
trade-off situation against the leakage error. This trade-off can
be mitigated by the selection of optical detunings and using
systems with small exchange splitting.

In general, large optical detuning (which is an easily
tunable parameter of the experiment) is favorable for both
protocols, while the two schemes require the opposite en-
gineering of the exchange splitting (which depends on the
structure morphology and can be tuned to some extent with
an external electric field).
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