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Thermal decay in the one-dimensional transient thermal grating experiment using
modified Debye-Callaway model
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We calculate the thermal decay in the one-dimensional transient thermal grating (TTG) experiment by solving
the transient Boltzmann-Peierls transport equation (BPTE) within the framework of the single-mode relaxation
time approximation and using modified Debye-Callaway model in which both longitudinal and transverse
phonon modes are included explicitly. We consider surface heating of an opaque thick semiconductor (SC)
crystal film that we assume to have a cubic symmetry and is treated as a continuum, elastic, isotropic, and
dispersionless medium. We obtain a nonuniversal spectral suppression function (SSF) in the integrand of the
effective apparent thermal conductivity that is similar to the one obtained by Chiloyan et al. [Phys. Rev. B
93, 155201 (2016)] using the standard single-mode relaxation time approximation (RTA) model. Therefore, the
nonuniversal character of the SSF in the TTG experiment does not depend on the form of the collision operator
approximation in the BPTE: Callaway’s or standard. Moreover, the analysis of the behavior of the thermal decay
rate shows how the peculiar crystal momentum shuffling effect of phonon-phonon scattering Normal processes
(N processes) that is captured by Callaway’s model influences the onset of the nondiffusive (quasiballistic)
regime in the phonon transport process in SC crystals. This effect tends independently from the other phonon
scattering processes to favor the maintenance of the phonon diffusive regime over a large length-scale range, a
remarkable feature that cannot be put into light with the standard RTA model used in previous works. Hence, the
implicit effect of N processes has certainly an important impact on the extraction of the phonon mean-free path
spectrum distribution, especially in the high-temperature regime.
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I. INTRODUCTION

For the purpose of heat transport in semiconductor (SC)
and dielectric materials, the most important characteristic in-
trinsic length is the mean-free path (MFP) of phonons that
represent the main energy (heat) carriers in these materials
[1–4].

Transient thermal grating (TTG) spectroscopy technique
has been proven to be a robust method to study length-
scale based quasiballistic (nondiffusive) phonon transport,
including the transition from the quasiballistic regime to the
diffusive regime, in dielectric and SC crystals [5–9]. Using a
reconstruction method, the TTG spectroscopy technique has
allowed probing the phonon MFP spectrum distribution and
obtaining valuable information about the contribution weight
and role of low- and high-frequency phonons in the heat
transport process in these materials [5].

In this technique, two crossed laser pulses are shone on
the surface of a thin or thick film material. The film can
be either suspended or deposited on a supporting substrate.
The interference pattern of the pulses results in a spatially
sinusoidal temperature profile that constitutes the thermal
grating with a spatial period that can be varied by adjusting
the angle between the crossed laser beams. Once heated,
the sample is allowed to relax and the timely decay of the
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thermal profile is measured to yield information about the
in-plane phonon transport process within the material [5–9].
Because of the great importance TTG has gained in the study
of phonon spectroscopy, its modeling has become critical.
So far, three approaches have been suggested to mathemat-
ically model the TTG technique in a one-dimensional case.
(i) The first approach was performed in the framework of
a “two-fluid” model by Maznev et al. [10]. An analytical
spectral suppression function (SSF) in the integrand of the
effective apparent thermal conductivity was obtained using
simplifying assumptions about the scattering of high- and
low-frequency phonons. This SSF was later utilized in the
reconstruction of the phonon MFP spectrum distribution by
Minnich [5]. As mentioned by Hua and Minnich [11] and
Chiloyan et al. [12], there is a concern as the extent of va-
lidity of the two-fluid model is not clear. (ii) The second
approach is based on solving the transient Boltzmann-Peierls
transport equation (BPTE) in the framework of the standard
single-mode relaxation time approximation (RTA) model. In
the standard RTA model, all phonon-phonon scattering pro-
cesses are treated similarly regarding the onset of thermal
conduction, with no distinction whatsoever between Normal
and Umklapp anharmonic processes [11,13]. This second ap-
proach was first explored by Collins et al., where they used
analytical and numerical methods to solve the problem and
obtained the exact solution of the BPTE, in both the gray
case and the full spectral case for Si and PbSe [13]. The
authors showed that there is a deviation of the two-fluid model
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from the exact numerical solution for PbSe [13]. Hua and
Minnich extended this same second approach to obtain the
Fourier transform with respect to time of the thermal decay
analytically. The authors were able to recover the two-fluid
model SSF in what they called the “weakly quasi-ballistic
regime” [11]. (iii) The third approach is a variational one
that was first used by Chiloyan et al. to solve the transient
BPTE using also the standard RTA model [12]. The authors
found a different SSF than the one obtained earlier [10,11,13].
The authors argued afterwards about the nonuniversality of
the SSF, as the one they obtained depends explicitly on the
material properties. The SSF obtained by Maznev et al. [10],
Collins et al. [13], and Hua and Minnich [11] is a universal
one; i.e., it depends only on the ratio of the phonon MFP
with respect to a characteristic length and not otherwise on the
material properties. A more detailed and extended analysis of
the application of the variational approach to include the effect
of the two-dimensional case of phonon transport in a TTG
configuration was later presented by Chiloyan et al. [14] and
Hubermann et al. [15]. The authors showed that the optical
penetration depth could have an important effect for thin-film
materials that are transparent or semitransparent to the laser
wavelength used in the TTG experiment [14,15].

Two recent works by Hua and Lindsay [16] and Chiloyan
et al. [17] went beyond the standard RTA model and applied
a more elaborate method using the full linearized collision
matrix. The authors obtained closed-form expressions for the
temperature profile and the effective apparent thermal conduc-
tivity and highlighted the limits of the standard RTA model
in treating the results of the TTG spectroscopy technique,
especially for high thermal conductivity materials.

The differences in the outcomes of all these approaches
show clearly how critical and crucial the modeling of the
TTG spectroscopy technique is, for a better and rigorous
understanding of phonon transport regimes in this experimen-
tal configuration. Besides, no analysis so far has considered
Callaway’s model or a detailed analysis of the effect of tem-
perature.

The motivation behind the present work is to calculate and
analyze the thermal decay in the one-dimensional (1D) TTG
experiment that corresponds to the case of a surface heating of
an opaque thick SC crystal film, by solving the transient BPTE
using Callaway’s approximation of the collision operator. This
will allow us to address and highlight more respectfully and
simply the critical role of phonon-phonon scattering Normal
processes. The analysis will show how considering these pro-
cesses separately affects the expression of the SSF of the
in-plane effective apparent thermal conductivity and the on-
set of the nondiffusive (quasiballistic) regime in the phonon
transport process. This latter effect cannot readily be inferred
from rigorous treatment using the full linearized collision
matrix [16,17]. In addition, the analysis will also allow us to
examine the important impact on the phonon MFP spectrum
distribution that could be reconstructed based on the obtained
thermal decay rate.

We present the main steps of theoretical modeling in
Sec. II. In Sec. III, we discuss the results of this approach
in application to the 1D TTG experiment by analyzing the
effect of varying the ambient temperature. We summarize and
establish our concluding remarks in Sec. IV.

II. THEORY

TTG spectroscopy technique is an experimental technique
that is particularly sensitive to in-plane phonon transport
[5–15]. In this section, we present the key elements of the
method that allows deriving the full expression of the ther-
mal decay rate that would be measured in this technique,
by analyzing the case of a surface heating of an opaque
thick SC crystal film that we can consider as a bulk mate-
rial [13]. In contrast to previous theoretical works [11–15],
we will consider phonon-phonon scattering Normal processes
(N processes) and phonon-phonon scattering Umklapp pro-
cesses (U processes) separately. Once the expression of the
thermal decay rate is obtained, one can get straightforwardly
the expression of the in-plane effective apparent thermal
conductivity. The integrand of the latter contains the phonon
SSF.

A. Callaway’s approach of the Boltzmann-Peierls
transport equation

The starting point of our modeling is the transient BPTE
in the framework of the single-mode relaxation time ap-
proximation and using modified Debye-Callaway model in
which both longitudinal and transverse phonon modes are
included explicitly [18–26]. The SC system is assumed to
have a cubic symmetry and is treated as a continuum, elastic,
and isotropic medium characterized by a linear (Debye-like)
phonon spectrum for each phonon branch polarization so that
one considers heat transport due only to acoustic phonons
and ignores any contribution from optical phonons [18–26].
Callaway’s approximation of the collision operator in BPTE
captures quite fairly and respectfully the peculiar effect of
phonon-phonon N processes that distinguishes them from the
rest of phonon scattering processes including phonon-phonon
U processes. Thus, it allows a simple separation of N pro-
cesses and U processes [18–21].

Despite its simplicity, Debye-Callaway model has been
proven to be very robust and effective in the study and
prediction of the steady-state temperature behavior of the
thermal conductivity of SC crystals within the conventional
local/linear nonequilibrium thermodynamics theory [18–25].
Besides, it constitutes one of the first models to be used to
study the second sound phenomenon in SC and dielectric
crystals [27]. We recently used the model to analyze the mod-
ulation frequency behavior of the reduced effective thermal
conductivity of SC crystals that is observed in time-domain
thermoreflectance (TDTR) and frequency-domain thermore-
flectance (FDTR) experiments. We obtained an expression of
the effective apparent thermal conductivity of the SC crystal
that is characterized by a universal SSF that captures and
describes the role, the weight, and the contribution of quasi-
ballistic and nondiffusive phonons. The SSF only depends on
the ratio between the spectral phonon MFP and the thermal
penetration depth as defined based on the diffusive Fourier
law [26]. Indeed, the thermal penetration depth constitutes
the central characteristic length scale in TDTR and FDTR
configurations.

We follow the same procedure as Collins et al. [13] and
Hua and Minnich [11] to derive the expression of the thermal
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decay in a TTG experiment. In addition, we will consider local
thermal equilibrium throughout, which is required to define
a temperature [18–27]. Surface heating of an opaque bulk
SC crystal in a TTG experiment results in a one-dimensional
spatially periodic temperature profile that we assume to be
established along the direction −→x . Under the single-mode
relaxation time approximation, the transient Callaway form
of the BPTE along the x axis can be written as the following
[11–13,26]:

∂U m
q,p

∂t
+ mvp

∂U m
q,p

∂x
= −U m

q,p − U 0
q,,p

τC
q,p

+ gm
q,p

τC
q,p

, (1)

where we have introduced the deviational spectral energy
density per phonon mode (phonon wave packet) of wave
vector q and polarization p as U (x, t, m, q, p) ≡ U m

q,p =
h̄ωp(nm

q,p−nEq
q,p). nm

q,p is the phonon distribution function at
the absolute local thermal equilibrium temperature T . U 0

q,p =
h̄ωp(n0

q,p−nEq
q,p) is therefore the deviational equilibrium spec-

tral energy density per phonon mode with n0
q,p and nEq

q,p

denoting the equilibrium phonon Planck distribution func-
tions, at temperatures T and T0, respectively. T0 represents
an absolute reference temperature [11–13,26].

(τC
q,p)−1 = (τR

q,p)−1 + (τN
q,p)−1 is the “combined” phonon

scattering rate [18,19] with τR
q,p representing the single relax-

ation time with which all resistive phonon scattering processes
(all scattering processes that change the total phonon wave
vector: Umklapp, boundary, defects, imperfections) tend to
return the phonon system to its thermal equilibrium state. τN

q,p
is the single relaxation time due to N processes (scattering
processes that do not change the total phonon wave vector). As
pointed out by Callaway [18] and others [19–21], N processes
tend to return the phonon system to a displaced (dri f ted)

Planck distribution function, n
λp
q,p = {exp[ (h̄ωP (q)−λp.q)

kBT ]−1}−1
.

By symmetry consideration in cubic SC crystals, λp is a
constant vector in the direction of the applied temperature
disturbance, which has the dimension of a velocity times the
reduced Planck constant h̄. ωp(q), vp, and m are, respectively,
the dispersion relation of the phonon in state (q, p), group ve-
locity of a p-polarization phonon and directive cosine; cosine
of the angle between the x axis and the phonon wave vector q
[18–27].

By using Callaway’s analysis and Debye-like phonon dis-
persion ωp(q) = vpq [18,19,26], we can easily show that the
term gm

q,p is given by

gm
q,p = −βp

τC
q,p

τN
q,p

mvpC
p
q

dT

dx
. (2)

βp is Callaway’s parameter that has the dimension of a relax-

ation time [18–27] and Cp
q = ∂U 0

q,p

∂T = h̄ωp
∂n0

q,p

∂T is the specific
heat or heat capacity per phonon normal mode [24,26]. The
Callaway pseudorelaxation time βp describing the effect of
N processes is calculated as in the conventional steady-state
local/linear treatment, by recalling that N processes cannot
change the total phonon wave vector (total crystal momentum)
[18–27]. The term gm

q,p as given by Eq. (2) represents the
spectral energy density per phonon mode associated with the
phonon gas drift [18,19].

B. Application to the 1D TTG configuration

The one-dimensional spatially periodic temperature profile
is of the form �T (x, t ) = T (x, t ) − T0 = �̃T (t )eiηx, where
η = 2π

d is the wave number of the thermal grating of spatial
period d . Therefore, we seek a spatially periodic solution for
U m

q,p of the form U m
q,p(x, t ) = Ũ m

q,p(t )eiηx. By noting that dT
dx =

d (�T )
dx , Eq. (1) becomes

dŨ m
q,p

dt
+ γ Ũ m

q,p = Cp
q

τeff
�̃T, (3)

where γ = (τC
q,p)−1 + iηmvp and (τeff )−1 = (τC

q,p)−1 −
iη βp

τN
q,p

mvp.

To obtain Eq. (3), we used the fact that for small �T , we
can write Ũ 0

q,p = Cp
q �̃T .

Eq. (3) is a simple one-variable first-order inhomogeneous
ordinary differential equation for Ũ m

q,p that we can easily and
readily solve. We get the following solution:

Ũ m
q,p(t) = Cp

q

τeff

∫ t

0
eγ (t ′−t )�̃T (t ′)dt ′ + Cp

q �̃T (0)e−γ t . (4)

Another relation between Ũ m
q,p(t) and �̃T (t ) is obtained

through the energy conservation relation. The latter takes the
form

∑
p

∫ 1

−1

∫ qP
D

0

[
Cp

q

τeff
�̃T (t ) − Ũ m

q,p(t)

τC
q,p

]
q2dqdm = 0, (5)

where qP
D denotes Debye’s cutoff wave vector of the acoustic

branch polarization p [18–27].
By considering the expression of (τeff )−1, we can straight-

forwardly show that Eq. (5) leads to

�̃T (t ) =
∑

p

∫ 1
−1

∫ qP
D

0
Ũ m

q,p(t)
τC

q,p
q2dqdm

2
∑

p

∫ qP
D

0
C p

q

τC
q,p

q2dq
. (6)

By inserting Eq. (4) into Eq. (6), we can directly extract the
full expression of the normalized thermal decay Ỹ (t ) = �̃T (t )

�̃T (0)
as

Ỹ (t ) = 1

2
∑

p

∫ qP
D

0
C p

q

τC
q,p

q2dq

∑
p

∫ 1

−1

∫ qP
D

0

[
Cp

q

τC
q,pτeff

∫ t

0
eγ (t ′−t )

× Ỹ (t ′)dt ′+ Cp
q

τC
q,p

e−γ t

]
q2dqdm. (7)

The exploitation of the expression of (τeff )−1 allows us
to rearrange Eq. (7) into a form that clearly highlights the
effects of phonon-phonon scattering N processes and Call-
away’s model in comparison to the standard RTA model. Ỹ (t )
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can be written as

Ỹ (t ) = 1

2
∑

p

∫ qP
D

0
C p

q

τC
q,p

q2dq

∑
p

∫ 1

−1

∫ qP
D

0

[
Cp

q(
τC

q,p

)2

∫ t

0
eγ (t ′−t )Ỹ (t ′)dt ′ + Cp

q

τC
q,p

e−γ t

]
q2dqdm

− iη

2
∑

p

∫ qP
D

0
C p

q

τC
q,p

q2dq

∑
p

βpvp

∫ 1

−1

∫ qP
D

0

[
m

Cp
q

τC
q,pτ

N
q,p

∫ t

0
eγ (t ′−t )Ỹ (t ′)dt ′

]
q2dqdm. (8)

The first term in Eq. (8) is the result we obtain using the standard RTA model [11–15], while the additional second term
represents the effect of separately taking phonon-phonon scattering N processes and U processes in the framework of the
modified Debye-Callaway model [18–27].

We apply Laplace transform to Eq. (7) in order to isolate the expression of the normalized thermal decay ˜̄Y (s) in Laplace
domain. After performing simple calculations of the different integrals with respect to the directive cosine m and rearranging the
different terms, we can straightforwardly obtain the following result:

˜̄Y (s, η) =
∑

p

∫ qP
D

0 Cp
q ψq,p(s, η)q2dq∑

p

∫ qP
D

0
C p

q

τC
q,p

{
1 + βp

τN
q,p

−
[
1 + βp

τN
q,p

(
1 + τC

q,ps
)]

ψq,p(s, η)
}

q2dq
, (9)

where the function ψq,p(s, η) is given by

ψq,p(s, η) = 1

2τC
q,p

∫ 1

−1

dm

γ + s
= i

2Knη
q,p

log
[1 + KnS

q,p − iKnη
q,p

1 + KnS
q,p + iKnη

q,p

]=arctan
[

Knη
q,p

1+KnS
q,p

]
Knη

q,p
, (10)

where we introduce two nondimensional Knudsen numbers:
a spatial one, Knη

q,p = ηvpτ
C
q,p, that compares the spectral

phonon MFP to the thermal grating period, and a tempo-
ral one, KnS

q,p = sτC
q,p, that compares the phonon combined

relaxation time to the thermal decay time [11]. These two
parameters specify the nature of the phonon transport regime
completely in the spatiotemporal domain. In the diffusive
limit, Knη

q,p � 1 and KnS
q,p � 1, while in the ballistic limit

Knη
q,p � 1 and KnS

q,p � 1. In addition, we can obtain more
insights into these regimes based on the full expression of the
normalized thermal decay given by Eq. (7) as we shall see
later.

The behavior of ˜̄Y (s, η) is conditioned by the one
of ψq,p(s, η) depending on the phonon transport regime
{KnS

q,p →0
+∞; Knη

q,p →0
+∞}.

The conventional Fourier form of the normalized thermal
decay in the herein 1D TTG configuration under consideration
is given by

YF (t, x) = e−�F t eiηx, (11)

where the thermal decay rate �F = αF η2 = κF
C η2; αF , κF , and

C are the thermal diffusivity, conductivity, and total specific
heat, respectively.

If one notes ỸF (t ) = e−�F t , we easily remark that the ther-
mal decay rate will be given by

�−1
F =

∫ +∞

0
ỸF (t )dt=˜̄Y F (0). (12)

We apply this formula to our result that is given by Eq. (9)

and we set � = κ
Callaway
TTG

C η2, where κ
Callaway
TTG represents the ef-

fective apparent thermal conductivity that would be extracted
from the measured thermal decay in the considered 1D TTG

configuration. We easily obtain, after some algebra, the full
expression of κ

Callaway
TTG as

κ
Callaway
TTG (η) = C∑

p

∫ qP
D

0 Cp
q χq,pq2dq

∑
p

v2
p

∫ qP
D

0
Cp

q τC
q,p

×
(

1 + βp

τN
q,p

)
1 − χq,p(
Knη

q,p
)2 q2dq, (13)

where the function χq,p is given by

χq,p(η) = ψq,p(0, η) = arctan
[
Knη

q,p

]
Knη

q,p
. (14)

III. RESULTS AND DISCUSSION

In the Theory section, we assumed that the Callaway
pseudorelaxation time βp, describing the implicit effect of
phonon-phonon scattering N processes, does not depend on
space and that this approximation should preserve the essen-
tial features of thermal conduction by phonons. This means
that the dependence of the phonon gas drift on space is con-
tained in the expression of the drift velocity λp

h̄ only through
the temperature gradient ∇T (x) [19]. βp is a complicated
quantity, depending on τN

q,p and τR
q,p. This complication is nec-

essary because of the behavior of N processes, which shuffle
crystal momentum back and forth between phonon normal
modes, and then contribute implicitly to the lattice thermal
conduction (resistance) process of a given SC crystal material
[18,19].

In order to have a closer look at the steady-state behavior
of the effective apparent thermal conductivity κ

Callaway
TTG and

the thermal decay rate � as functions of the thermal grating
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period and temperature, we consider natural silicon (Si) and
Si0.7Ge0.3 alloy as two illustrative examples of single and alloy
SC crystals, respectively. Indeed, the first experimental results
regarding phonon MFP spectroscopy utilizing TTG technique
were carried out on a silicon thin film [5–7]. In addition to
three phonon-phonon anharmonic scattering U- and N pro-
cesses, we assume scattering of phonons by the boundaries of
the thick opaque SC crystal film and by impurities (defects).
All geometrical and physical properties of Si and Si0.7Ge0.3

materials can be found in Tables I and II of Ref. [24]. We
address particular attention to the case of Si, for which we use
two different sets of expressions for the relaxation times of
phonon-phonon scattering U- and N processes depending on
the temperature regime. In the low-temperature regime, up to
100 K, the expressions of the relaxation times of the different
phonon scattering processes considered are the conventionally
and widespread ones we used in our early works [23,24]. In
the high-temperature regime (>100 K), we exploit the expres-
sions suggested by Ward and Broido based on an ab initio
approach using first-principles density-functional perturbation
theory (DFPT) [28,29]. For the case of Si0.7Ge0.3 and because
of the lack of finding expressions of the relaxation times of
phonon-phonon scattering U- and N processes using first-
principles DFPT calculations, we assume the conventional
expressions to be valid over the entire temperature range con-
sidered [23,24].

We assume all physical properties of these SC crystals to be
independent of temperature. The total resistive phonon scat-
tering rate (τR

q,p)−1 is obtained via Matthiessen’s rule [22–24].

To simplify more the expression of κ
Callaway
TTG in Eq. (13), we

express it, as it is customary in the modified Debye-Callaway
model, using a sum over one longitudinal (κCallaway−L

TTG )
and two degenerate transverse (κCallaway−T

TTG ) phonon acous-
tic branch polarizations [22–26]. We also make use of the
usual change of variable y = h̄ω

kBT , which allows us to ob-
tain straightforwardly the final computational expression of
κ

Callaway
TTG .

A. Callaway’s model vs standard RTA model

The reason that motivates the use of Callaway’s model
within the framework of the single-mode relaxation time ap-
proximation is the ability of this model to treat more fairly the
different phonon-phonon scattering processes than does the
standard RTA model. This model captures quite respectfully
the peculiar effect of phonon-phonon scattering N processes
that distinguishes them from the rest of the phonon scattering
processes including phonon-phonon scattering U processes
[18–27]. The standard RTA model, often used, does not take
this difference into consideration, and it treats all phonon
scattering processes similarly, as if they were all independent
resistive processes. It is well known, however, that phonon-
phonon scattering N processes alone do not provide thermal
resistance [18,19,30].

Whether N processes are included or not in the Matthiessen
rule to compute the total relaxation time in the standard RTA
model has a huge impact on the final result of the steady-
state behavior of the thermal conductivity κ as a function of
temperature, of a bulk SC crystal. The influence is striking

in the high-temperature regime above the peak value of κ as
one can see in Figs. 1(a) and 1(b), in which one illustrates a
very instructive comparison between Callaway’s model and
the standard RTA model. Figure 1 reports the computed
temperature steady-state behaviors of κ of Si and Si0.7Ge0.3

using both Callaway’s model and the standard RTA model
with and without phonon-phonon scattering N processes in-
cluded. In the low-temperature regime (below the peak value
of κ), the results of the three models are undistinguishable
due to boundary effects. Indeed, κ mirrors the temperature
behavior of the specific heat in the low-temperature regime
as boundaries phonon scattering processes dominate all other
phonon scattering processes in this regime [18,19,30]. On the
contrary, the three models predict different results in the high-
temperature regime. The standard RTA excluding (including)
N processes over (under)-estimates the value of κ in compar-
ison to Callaway’s model predictions, which fit quite fairly
and consistently the experimental results [21,23]. Previous
studies on Si have shown the standard RTA model including N
processes to work quite well in the high-temperature regime
in comparison to ab initio results, and the difference between
this model and Callaway’s to be less than few percent at 300
K [29]. As one can see in Fig. 1(a), we do not reach the same
conclusion using the conventional expressions of the relax-
ation times of phonon-phonon scattering U- and N processes.
The standard RTA model including N processes falls faster
starting temperatures around 100 K and it predicts a dramatic
decrease of κ of Si by almost an order of magnitude at 300
K compared to experimental values and Callaway’s model.
This anomaly is corrected using first-principles DFPT-based
expressions of the relaxation times as illustrated in Fig. 1(b).
In this figure, we used two different couples of values for
Debye temperatures of the longitudinal and transverse acous-
tic polarization branches: (1) θL

D = 586 K and θT
D = 240 K;

(2) θL
D = 919 K and θT

D = 638 K [23]. The first couple of
values that correspond to the Brillouin-zone boundary fre-
quencies are the ones we used to compute the behaviors of
κ in Fig. 1(a), while the second couple of values are the ones
calculated from the acoustic branch phonon velocity [23,24].
The second couple of values of Debye temperatures might
be an overestimation. Nevertheless, they could be justified
if one considers the contribution of optic phonon modes in
the high-temperature regime. Besides, as mentioned by Ward
and Broido, the first-principles DFPT-based expressions of the
relaxation times of phonon-phonon scattering U- and N pro-
cesses take into account the contribution to scattering events
and therefore to heat transport of all phonon modes, acoustic
and optic. They include also the effect of the full disper-
sive and anisotropic phonon branches [29]. Hence, it makes
total sense that exploitation of these expressions combined
with higher values of θL

D and θT
D gives better results for both

Callaway’s model and the standard RTA model including N
processes as shown in Fig. 1(b). The two models give almost
identical values over the whole temperature range that in
addition fit remarkably the experimental results of natural Si.
Yet, the prediction of the standard RTA model including N
processes remains always below the one of Callaway’s model.
On the other hand, removal of such phonon-phonon scattering
processes in the standard RTA model leads to a huge increase
of κ . κ of Si increases by a factor of 7 at 300 K as one can
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FIG. 1. (a) Computed steady-state behaviors of the thermal conductivity of Si single and Si0.7Ge0.3 alloy SC bulk crystals using the
conventional expressions of the relaxation times of phonon-phonon scattering U- and N processes, as functions of temperature. Callaway’s
model (solid line); the standard RTA model excluding N processes (dotted line) and including them (dashed line). (b) The case of the
high-temperature regime for Si using first-principles DFPT-based expressions of the relaxation times of phonon-phonon scattering U- and
N processes. The experimental data of natural Si are extracted from Ref. [23].

see in Fig. 1(b). This factor remains almost the same over
the whole temperature range considered, which proves the
importance of phonon-phonon scattering N processes in the
high-temperature regime.

The striking discrepancy in the high-temperature regime
between the standard RTA model including N processes
and Callaway’s model, when use is made of the conven-
tional and widespread expressions of the relaxation times of
phonon-phonon scattering U- and N processes, constitutes an
important and crucial point. It undoubtedly demonstrates the
great sensitivity of the solution of the BPTE within the frame-
work of the single-mode relaxation time approximation, not
only to the different phonon properties and input parameters,
but also and more importantly, to the particular expressions
of the different relaxation times depending on the nature of
the SC crystal and the temperature range. As discussed by
Ward and Broido, most of the conventionally and widespread
expressions of the relaxation times of phonon-phonon scat-
tering U- and N processes were originally derived using
approaches that implicitly assumed low-frequency phonons
and low-temperature regime [19,30]. Thus, it is not surprising
that these expressions sometimes fail to predict the correct re-
sult, especially in the high-temperature regime, depending on
the used scattering term in the BPTE: standard or Callaway’s
and the nature of the SC crystal [29].

Furthermore, it is interesting to note that Callaway’s model
yields almost the same prediction of the temperature steady-
state behavior of κ of Si using the two different sets of
expressions for the relaxation times of phonon-phonon scat-
tering U- and N processes.

In the case of Si0.7Ge0.3, the deviation between Callaway’s
model and the standard RTA model including N processes
occurs starting at room temperature. Therefore, we could infer
that use of the conventional expressions of the relaxation
times of phonon-phonon scattering U- and N processes for
this alloy SC crystal is potentially valid up to at least this
temperature.

In regard to the above discussion, one could assert that a
better analysis, interpretation, and exploitation of the results

of the TTG technique shall arguably consider Callaway’s
model.

B. Phonon transport process in the 1D TTG configuration

TDTR/FDTR and TTG are two different but complemen-
tary experimental techniques that have different excitation and
detection procedures. The former one is more sensitive to the
cross-plane phonon transport process while the latter is more
sensitive to the in-plane one. The thermal penetration depth as
defined based on the diffusive Fourier law constitutes the char-
acteristic length scale in TDTR/FDTR experiment [26]. On
the other hand, and because of the nature of TTG experimental
excitation and detection, no Fourier-based thermal penetration
appears in the calculation, but instead the optical penetration
depth could have an effect as mentioned by Chiloyan et al.
[14] and Hubermann et al. [15]. In the 1D TTG configuration
we are assuming in the herein work, the only characteristic
length scale to be considered is the period of the thermal
grating generated as a result of the interference pattern of the
two crossed laser pulses shone on the surface of the opaque
thick SC crystal film.

In our recent work regarding the analysis of the modu-
lation frequency behavior of the reduced effective thermal
conductivity of SC crystals that is observed in TDTR and
FDTR experiments, we derived an expression of the effective
apparent thermal conductivity of the SC crystal that is char-
acterized with a universal SSF. We obtained the same SSF
either using Callaway’s model or the standard RTA model.
In Callaway’s model, we have an effective relaxation time
τ eff

q,p = τC
q,p(1 + βp

τN
q,p

) in the integrand of the effective apparent

thermal conductivity, while in the standard RTA model we
have only the combined relaxation time τC

q,p. The universality
of the SSF we found was obtained naturally as a function of
the only ratio of the spectral phonon MFP to the thermal pen-
etration depth as defined based on the diffusive Fourier law.
The thermal penetration depth constitutes the characteristic
length scale in the TDTR/FDTR geometry once an analogy
with Fourier’s based thermal conductivity is sought [26].
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It is interesting to note from Eq. (13) that the expression
we derived for the effective apparent thermal conductivity
κ

Callaway
TTG that would be extracted from the measured thermal

decay in the considered 1D TTG configuration has the same
nonuniversal SSF that Chiloyan et al. found using the standard
RTA model [12]. The only difference is that we have an effec-
tive relaxation time τ eff

q,p = τC
q,p(1 + βp

τN
q,p

) that is characteristic

of Callaway’s model in place of just the combined relaxation
time τC

q,p of the standard RTA. The full expression of the SSF
is given by

�TTG
q,p (η) = 6π2C∑

p

∫ qP
D

0 Cp
q χq,pq2dq

[
1 − χq,p(
Knη

q,p
)2

]
. (15)

Hua and Minnich found the same universal SSF of Maznev
et al. [10] due to a further assumption they used in their math-
ematical derivation in what they called “weak quasi-ballistic”
regime [11]. If we do not use this additional assumption, the
general result we obtain is a nonuniversal SSF. Hence, the
nonuniversal character of the SSF of the effective apparent
thermal conductivity in the 1D TTG configuration is not re-
lated to the form of the scattering term in the BPTE: standard
or Callaway’s. That means that considering the peculiar effect
of phonon-phonon scattering N processes through Callaway’s
model does not influence the expression of the SSF. The latter
originates from the time integration of the thermal decay that
embodies time nonlocal effects as shown in Eq. (7). The
appearance of time nonlocal effects is a direct consequence
of solving the time-dependent BPTE in association with the
initial boundary condition. These effects will indeed appear
either using the standard RTA model or the full Callaway
model.

Before we tackle the general spectral result of κ
Callaway
TTG

given by Eq. (13) and the corresponding result of the thermal
decay rate, it is very instructive to discuss first the simple,
yet very meaningful, case of the gray spectrum approximation
(GSA). In this approximation, all phonon modes belonging
to an acoustic branch polarization p have the same relax-
ation time independent of the wave vector q for each phonon
scattering process. We shall however continue to assume sepa-
rately phonon-phonon scattering N processes characterized by
a relaxation time τN and phonon-phonon scattering resistive
processes characterized by a relaxation time τR. In this case,
we can easily show that the Callaway pseudorelaxation time β

will exactly be given by τR. This shows the very fundamental
intertwining between anharmonic N processes and resistive
processes; the implicit effect of N processes in the onset of a
noninfinite thermal conductivity is taken into account through
the resisting causing collisions, namely the relaxation time of
the resistive processes, the effect of which is explicit [24].
In addition, we assume there is no distinction between the
different acoustic phonon polarizations. These assumptions
shall not significantly hamper the physical picture.

Starting from the general expression of the normalized
thermal decay in Laplace domain as given by Eq. (9) and
applying the above assumptions, one gets straightforwardly
the following GSA formula which we express using nondi-

mensional variables ξ = ητRv, � = τRs and τ = τR/τN :

˜̄Y GSA(�, ξ ) = �(�, ξ, τ )

(1 + τ ) − [
(1 + τ )2 + τ�

]
�(�, ξ, τ )

�(�, ξ, τ ) = arctan
[

ξ

1+τ+�

]
ξ

(16)

Note that ξ and � are nothing else than the GSA versions
of the nondimensional spatial and temporal Knudsen numbers
introduced above, respectively.

We report in Fig. 2 the computed behavior of the nor-
malized thermal decay in the 1D TTG configuration in the
framework of the GSA for a bulk SC crystal as a function
of the nondimensional time t/τR for different values of the
parameters τ and ξ . For large values of the thermal grating
period that correspond to small values of the nondimensional
spatial Knudsen number ξ , the phonon transport regime is
diffusive and the normalized thermal decay decreases with
time in a Fourier-like exponential fashion. As discussed by
Collins et al., based on the standard RTA model [13], the
full solution derived from the BPTE seems to decrease slowly
compared to the conventional Fourier solution. Furthermore,
and as one can see in Figs. 2(a) and 2(b), consideration of
the peculiar implicit effect of phonon-phonon scattering N
processes through Callaway’s model tends to increase the
decreasing rate of the normalized thermal decay ˜̄Y GSA. The
curve of ˜̄Y GSA falls faster by increasing τ . As ξ increases,
the phonon transport regime transitions to a quasiballistic
(nondiffusive) regime, then to a full ballistic regime for very
high values of ξ where the phonon MFP becomes very large
in comparison to the thermal grating period. In this regime,˜̄Y GSA manifests an oscillatory behavior as a function of time
that is a manifestation of the phonons traveling ballistically
as explained by Collins et al. [13]. These oscillations are
due to spatial nonlocal effects [16] and could also be viewed
as a signature of the phonon hydrodynamic transport regime
[17]. In this case of the 1D TTG configuration, the phonons
travel at a speed determined by the ratio of the thermal grating
period to the period of oscillations and would be comparable
to the speed of second sound [17]. Here also, the impact of
the crystal momentum shuffling effect of the phonon-phonon
scattering N processes is evident as the change in τ impacts
both the amplitude and the period of the oscillations. It is
remarkable to note however, from Figs. 2(c) and 2(d), that
the oscillations seem to die off almost at the same moment
independent of the value of τ . We note that the consideration
of Callaway’s model in the framework of the simple GSA is
able to exhibit one of the most important features that was
recently highlighted using rigorous analysis based on the full
linearized collision matrix [16,17].

As we mentioned above, we obtain the same expression
of the SSF in the integrand of the effective apparent ther-
mal conductivity that would be extracted from the measured
thermal decay in the 1D TTG configuration using both the
Callaway and standard RTA models. The nonuniversal char-
acter of this SSF is captured through the term C∑

p

∫ qP
D

0 C p
q χq,pq2dq

that illustrates the dependence of this function on the material
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FIG. 2. Computed behavior of the normalized thermal decay in the 1D TTG configuration in the framework of the GSA for a bulk SC
crystal as a function of the nondimensional time t/τR, for different values of the parameters τ and ξ : (a) ξ = 0.1, (b) ξ = 1, (c) ξ = 10, and
(d) ξ = 50.

properties, in addition to the nondimensional spatial Knudsen
number Knη

q,p.

In the diffusive regime (Knη
q,p � 1), 1−χq,p

(Knη
q,p)2 and χq,p tend

to 1/3 and 1, respectively. Hence κ
Callaway
TTG tends logically and

naturally to the expression of steady-state Fourier thermal
conductivity within the framework of the modified Debye-
Callaway model [18–20,22–24]. On the other hand, in the
ballistic regime limit (Knη

q,p � 1), 1−χq,p

(Knη
q,p)2 decreases as 1

(Knη
q,p)2

while χq,p decreases as 1
Knη

q,p
; thus, κ

Callaway
TTG will decrease as

1
Knη

q,p
and ultimately tends to zero.

Figures 3(a) and 3(b) show, respectively, the computed
room-temperature steady-state behaviors of the effective ap-
parent thermal conductivity κTTG of Si and Si0.7Ge0.3 SC
crystals using the conventional expressions of the relaxation

times of phonon-phonon scattering U- and N processes, as
functions of the thermal grating period d in the 1D TTG
configuration. The figures report the results of both Call-
away’s model and the standard RTA model with and without
N processes included. Figure 3(c) reports the case of Si us-
ing first-principles DFPT-based expressions of the relaxation
times of phonon-phonon scattering U- and N processes. It is
worth mentioning that for the quasiparticle description of the
phonon wave packet to be valid in the first place, the minimum
phonon MFP cannot be less than 2a, where a denotes the
lattice constant of the SC crystal [30]. Therefore, we set the
minimum value of d to be dmin = 2a.

For each of the three computation approaches, the behav-
ior of κTTG shows three different regimes: (i) κTTG increases
slowly as function of d for small values of the latter, then
(ii) the increasing rate gets faster with d over a certain
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FIG. 3. Computed room-temperature steady-state behaviors of the 1D TTG effective apparent thermal conductivity of Si single (a) and
Si0.7Ge0.3 alloy (b) SC bulk crystals using the conventional expressions of the relaxation times of phonon-phonon scattering U- and N processes,
as functions of the thermal grating period. Callaway’s model (solid line); the standard RTA model excluding N processes (dotted line) and
including them (dashed line). (c) The case of Si using first-principles DFPT-based expressions of the relaxation times of phonon-phonon
scattering U- and N processes.

intermediate interval, and finally (iii) κTTG saturates to a
higher value for long values of d . These three regimes
correspond to the quasiballistic (nondiffusive), intermediate
(transitional), and diffusive ones, respectively, of the phonon
transport process. Nonetheless, we clearly see in Fig. 3 how
the features of these three phonon transport regimes are af-
fected and hugely impacted by the computation model used,
the nature of the SC cubic crystal: single or alloy, as well
as the form of the expressions of the relaxation times of
phonon-phonon scattering U- and N processes. The zone of
the transition from the quasiballistic regime to the diffusive
regime seems to be particularly influenced in terms of onset
threshold, width, height, and increasing rate (slope). Exclud-
ing phonon-phonon scattering N processes in the standard
RTA model tends to widen this quasiballistic-diffusive tran-
sition zone in addition to its dramatic overestimation of the
value of κTTG in the diffusive regime. As one can see in
Fig. 3(a), by using the conventional expressions of the relax-
ation times of phonon-phonon scattering U- and N processes,
Callaway’s model seems to recover the bulk thermal con-
ductivity of Si at a shorter thermal grating period threshold
(around 1 μm) than does the standard RTA model. This is an

odd prediction in comparison to experimental TTG results on
Si material. It is true that several published works regarding
TTG experiment on Si, dealt with Si membranes or thin films
[5–9]. Some samples are however thick enough to be consid-
ered as bulk materials. These works show indeed a recovery
of the thermal conductivity of Si membranes starting around
7–10 μm. Once again, this anomaly is corrected using first-
principles DFPT-based expressions of the relaxation times as
illustrated in Fig. 3(c). Here also, we report the results using
the two different couples of values for Debye temperatures of
the longitudinal and transverse acoustic polarization branches.
Callaway’s model and the standard RTA model including N
processes predict now similar behaviors where the recovery
of the bulk thermal conductivity of Si starts occurring for a
thermal grating period around 100 μm with a full recovery
around 1000 μm. This is in total agreement with previous
theoretical works in the literature that used the standard RTA
model [6,12,16].

There is a small difference between Callaway’s model
and the standard RTA model including N processes. We will
emphasize next the impact of this difference on the informa-
tion we could obtain relative to the transition between the
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FIG. 4. Computed behaviors of the 1D TTG thermal decay rate of Si SC bulk crystal as functions of the thermal grating wave number
squared using Callaway’s model and the standard RTA model excluding and including phonon-phonon scattering N processes; at room
temperature (a) and at different temperatures: Callaway (b), standard RTA with N processes (c), and standard RTA without N-processes
(d).

diffusive and nondiffusive (quasiballistic) regimes in the
phonon transport process, as well as on the phonon MFP
spectrum distribution extraction in bulk SC crystals.

As mentioned by Chiloyan et al., the behavior of the
thermal decay rate � as a function of the square of thermal
grating wave number η constitutes a very efficient metric that
allows precise and quantitative determination of the length-
scale threshold at which the phonon nondiffusive transport
regime onset occurs in a TTG experiment [14]. Indeed, �

is proportional to η2 in the Fourier diffusive regime and the
proportionality coefficient is equal to the thermal diffusivity
[13,14]. Any deviation from this scaling law is an indication of
a deviation of the phonon transport process from the diffusive
regime.

We report, respectively, in Figs. 4 and 5, the computed
behaviors of � in the 1D TTG configuration as functions
of η2 for Si and Si0.7Ge0.3 SC crystals at different temper-
atures for the three models considered: Callaway’s model
and the standard RTA model with and without N processes
included.

We remind here that in the case of Si, we use the conven-
tional expressions of the relaxation times of phonon-phonon
scattering U- and N processes for the temperatures 3, 10, and
20 K and we use first-principles DFPT-based expressions of

these relaxation times for the temperatures 300 and 500 K. In
the case of Si0.7Ge0.3, we use the conventional expressions of
these relaxation times for all temperatures, as we mentioned
in the beginning of the Results and Discussion section.

As one can see in these figures, the three models show the
deviation of the phonon transport process from the Fourier
diffusive regime to occur at different thresholds depending
on ambient temperature T . For each of the approaches, �

decreases and η, at which the quasiballistic (nondiffusive)
phonon transport regime starts to manifest itself, shifts to
higher values by increasing T. This means that the onset
length-scale threshold of the nondiffusive phonon transport
regime decreases as expected by increasing T . Indeed, the
phonon MFP decreases by increasing T [30]. We note also
that in the ballistic limit (Knη

q,p → +∞), (i) the three ap-
proaches collapse on each other and (ii) for each approach, all
the curves for different T collapse on each other as expected,
in accordance with the tendencies in Figs. 3(b) and 3(c).

In the TTG configuration, the characteristic length scale
of the experiment (thermal grating period) does not depend
on the model: Callaway’s or standard RTA. We define the
length-scale threshold at which there will be a transition in
the phonon transport process from the nondiffusive (quasibal-
listic) regime to the diffusive regime, as the thermal grating
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FIG. 5. Computed behaviors of the 1D TTG thermal decay rate of Si0.7Ge0.3 SC bulk crystal as functions of the thermal grating wave
number squared using Callaway’s model and the standard RTA model excluding and including phonon-phonon scattering N processes; at room
temperature (a) and at different temperatures: Callaway (b), standard RTA with N processes (c), and standard RTA without N processes (d).

period for which �/�F = 0.99. We summarize in Table I the
values of these thresholds obtained from Figs. 4 and 5 for both
Si and Si0.7Ge0.3 SC crystals using the three different models
at different temperatures.

The length-scale threshold ranges from centimeters in the
low-T regime to millimeters in the high-T regime. At each
T and for each SC crystal, the behavior of the threshold for
the three different models used mirrors, to a certain point,
the steady-state T behavior of the thermal conductivity κ

discussed above in Fig. 1. The three models lead to almost
the same values of the length-scale threshold for temperatures
below the optimal Top of the peak value of κ and start to depart
from each other for temperatures above Top. For each SC crys-
tal above its Top, Callaway’s model shows the lowest threshold
and the standard RTA model without phonon-phonon scat-
tering N processes included shows the highest. It is worth
noticing also that both Si and Si0.7Ge0.3 manifest very close
length-scale thresholds for the onset of nondiffusive phonon

TABLE I. Computed thermal grating period thresholds at which �/�F = 0.99 for both Si and Si0.7Ge0.3 SC bulk crystals at different
temperatures, using Callaway’s model and the standard RTA model excluding and including phonon-phonon scattering N processes.

Thermal grating period threshold at 99% of Fourier’s diffusive regime

Temperature (K) Callaway Standard RTA with τC Standard RTA with τR

Si Si0.7Ge0.3 Si Si0.7Ge0.3 Si (cm) Si0.7Ge0.3 (cm)

3 15.783 cm 13.126 cm 15.783 cm 13.126 cm 15.783 13.126
10 14.393 cm 10.667 cm 14.393 cm 10.667 cm 14.729 10.915
20 9.727 cm 9.289 cm 9.954 cm 9.289 cm 11.97 9.954
300 5.581 mm 2.324 mm 5.712 mm 2.608 mm 9.506 2.277
500 3.52 mm 226.649 μm 3.602 mm 403.279 μm 9.506 1.403
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TABLE II. Computed thermal grating period thresholds at which �/�F = 0.99 for Si SC bulk crystal in the high-temperature regime,
using Callaway’s model and the standard RTA model including phonon-phonon scattering N processes.

Thermal grating period threshold at 99% of Fourier’s diffusive regime (mm)

Callaway Standard RTA with τC Relative difference (%)

Temperature (K) dC dτC (dτC − dC )/dτC

100 15.747 16.114 2.28
200 8.07 8.259 2.29
300 5.581 5.712 2.29
500 3.52 3.602 2.28
800 2.434 2.491 2.29

transport regime for temperatures in the vicinity of their Top,
which happen to be around 20 K for both SC crystals as can
be seen in Fig. 1. We could attribute this result to the fact that
in the neighboring κ peak, all phonon scattering processes,
intrinsic and extrinsic, are important and all contribute sig-
nificantly [28]. Since κ of both Si and Si0.7Ge0.3 reaches its
peak value at almost the same Top, this means that the interplay
mechanism between the different phonon scattering processes
in the vicinity of this temperature would have comparable
strengths or magnitudes in both SC crystals.

In order to shed more light on the implications of the
difference between Callaway’s model and the standard RTA
model including N processes, we report in Table II the values
of the thermal grating period threshold defined in Table I in
the case of Si in the high-temperature regime.

The relative difference between the values of the thermal
grating period thresholds obtained using the two approaches
remains almost the same over the whole high-temperature
range and is equal to ∼2.3%. It is remarkable to notice
that this is very close to the relative difference between the
values of the steady-state thermal conductivities κ obtained
using these approaches (κCallaway − κRTA−τC )/κCallaway. Never-
theless, while in the study of the temperature behavior of the
steady-state κ this difference might be considered negligible,
this cannot be the case when investigating the phonon MFP
spectrum distribution. This fact consolidates and highlights
the importance of Callaway’s model.

It is interesting to remind that in our 1D TTG experiment
configuration for an opaque thick film (bulk material) SC
crystal, there is no scattering process of phonons associated
with the thermal grating period; the thermal grating does not
physically reduce the phonon MFP [13]. The boundary scat-
tering process we assumed in our computations corresponds
to a fixed effective length scale that is representative of a bulk
material [24].

In order to have an approximative yet very instructive
physical picture of the effect of phonon-phonon scattering N
processes in the framework of Callaway’s model on the onset
of the nondiffusive phonon transport regime, we could use the
simple argument of the GSA approach as we did above. In
light of this approach and based on a combination of Eqs. (12)
and (16), one could straightforwardly get

τR�(τ, ξ ) = (1 + τ )
ξ − (1 + τ )arctan

[
ξ

1+τ

]
arctan

[
ξ

1+τ

] . (17)

Moreover, we can easily show that τR�F = ξ 2 in this case.
One sets the real number 0 < n < 1 such that �/�F = n.
Thus, one could show, after some algebra, that we obtain the
following equation:

arctan(Z ) = Z

1 + nZ2

Z = ξ

1 + τ
. (18)

If Zn is the solution of Eq. (18), then one could write

ξn = Znτ+Zn=2πτRv

dn
. (19)

The length-scale threshold dn for the onset of the non-
diffusive phonon transport regime at 100n% of the Fourier
diffusive regime scales, therefore, inversely to τ = τR/τN .
The peculiar crystal momentum shuffling effect of phonon-
phonon scattering N processes tends thus, independently
from the other phonon scattering processes, to reduce the
length-scale threshold of occurrence of the transition from
the diffusive regime to the nondiffusive (quasiballistic) regime
in the phonon transport process. Consequently, it favors
the maintenance of the phonon diffusive regime over a
large length-scale range. The standard RTA model excluding
phonon-phonon scattering N processes is unable to unveil this
remarkable feature, which nonetheless will be hidden when
using the standard RTA model including these processes.
Callaway’s model sheds light on this key characteristic of N
processes straightforwardly. This simple analysis using the
GSA approach confirms very well the results of the general
spectral case shown in Tables I and II above.

Phonon-Phonon scattering N processes are treated simi-
larly to all other phonon scattering processes in the standard
RTA model [30]. This does not mean they are not consid-
ered important. But rather, we commonly neglect in such
a model the particularity these scattering processes have of
shuffling the crystal momentum between the different phonon
normal modes [18,19,30]. The use of Callaway’s model cap-
tures this peculiar effect twice: first, through the combined
relaxation time and second, through Callaway’s parameter,
which leads to an additional term to the standard RTA model
[18,19]. Therefore, by using the standard RTA model, we miss
this effect either by including or excluding phonon-phonon
scattering N processes in the total relaxation time. This can
be justified in the steady-state low temperature regime but
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not in the steady-state high-temperature regime, where con-
sideration of the peculiar implicit effect of phonon-phonon
scattering N processes becomes more relevant.

All the above results we obtained in the framework of Call-
away’s approach of the collision operator in the BPTE shed
light on the fundamental role of phonon-phonon scattering
N processes in the intrinsic intertwining interaction between
low- and high-frequency phonons that leads to the onset of the
nondiffusive (quasiballistic)-diffusive transition regime in the
phonon transport process in cubic SC crystals in the 1D TTG
configuration. As such, the approach would allow obtaining
more details and information about this intermediate regime
than what we can get based on the standard RTA approach
used in previous works [5–15]. The accumulation function
and, more precisely, the thermal conductivity per phonon MFP
are directly influenced.

Furthermore, the contribution weights of phonons with
MFP within this quasiballistic-diffusive transition regime can
be very sensitive to temperature, the SC crystal thin-film
thickness, as well as the depth of the dissipated heat inside
the latter. The study of the 1D TTG configuration we per-
formed in the present work can be deepened and enlarged to
a multidimensional TTG configuration, in order to evaluate
the real impact of Callaway’s model in phonon spectroscopy.
Indeed, the SSF in the framework of this model will be im-
portant for a more accurate prediction of thermal conductivity
reduction over the entire phonon spectrum. This will allow
a better understanding of how thermal length scales in the
TTG experiment affect which phonons conduct heat in each
transport regime, in a rather simpler manner. To a certain
point, this will be equivalent to the rigorous treatment based
on the full linearized collision matrix used in recent works
[16,17]. Of course, these works have the merit of a more
accurate physical picture. But, Callaway’s model big advan-
tage and great usefulness will lie in its simplicity and reduced
computational cost with the aim of applying a reconstruc-
tion method to obtain the phonon MFP spectral distribution
from the experimentally measured thermal decay in the TTG
experiment [5,31,32]. The method used in the case of the

standard RTA model will have to be modified [5]. This would
probably increase the sensitivity of the reconstruction method
to hyperparameters [33], but this is beyond the scope of the
present work.

IV. CONCLUSIONS

An approach based on solving the transient single-mode
relaxation time approximated Boltzmann-Peierls transport
equation in the framework of modified Debye-Callaway
model has been developed to analyze the thermal decay of
opaque thick semiconductor cubic crystal films in the 1D
configuration of the transient thermal grating experiment. We
have obtained a nonuniversal spectral suppression function
in the integrand of the effective apparent thermal conduc-
tivity that is similar to the one obtained using the standard
single-mode relaxation time approximation model. The only
difference is that we have an effective relaxation time τ eff

q,p =
τC

q,p(1 + βp

τN
q,p

) that is characteristic of Callaway’s model in

place of just the combined relaxation time τC
q,p of the standard

RTA model. This proves that the nonuniversal character of
the SSF in the TTG experiment does not depend on the form
of the collision operator approximation in the BPTE: Call-
away’s or standard. The SSF captures and describes very well
the intertwining interaction between low- and high-frequency
phonons in the onset of the quasiballistic (nondiffusive) heat
transport regime and as such, the reduction of the effective
apparent thermal conductivity of SC crystals observed in TTG
experiments.

Callaway’s approach unveils the central and relevant role
that the meticulously implicit shuffling effect of the crystal
momentum by phonon-phonon scattering N processes plays
in the onset of the nondiffusive (quasiballistic) regime in the
phonon transport process in SC crystals. Thus, the peculiar
effect of phonon-phonon scattering N processes captured by
Callaway’s model has undoubtedly an impact on the extrac-
tion of the phonon MFP spectrum distribution, especially in
the high-temperature regime.
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