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Ab initio calculation of two-photon absorption in semiconductors
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A theoretical derivation of two-photon absorption (2PA) from semiconductors, based on the length gauge anal-
ysis and the electron density operator, is formulated; the intraband ri part and the interband re part of the position
operator r are properly accounted for. Within the independent-particle approximation, the nonlinear third-order
susceptibility tensor χ abcd(−ω; −ω, −ω,ω) and the two-photon absorption coefficient are calculated, including
the scissors correction needed to correct the well-known underestimation of the local-density-approximation
band gap. Using time-reversal symmetry, it is shown that the expression for χ abcd(−ω; −ω,−ω,ω) is finite
at ω = 0, avoiding nonphysical divergences presented in previous calculations when ω → 0. Ab initio band
structure calculations using different pseudopotential schemes that include spin-orbit coupling are used to
calculate the 2PA for several semiconductors, and the calculations are compared with available experimental
results for photon energies that are below the optical band gap.
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I. INTRODUCTION

Since the development of the two-photon absorption (2PA)
theory in 1931 by Göppert-Mayer [1], a new field of research
has emerged. These new optical phenomena opened the gate
to better understand optical processes and to develop potential
technologies based on 2PA. In this sense, there are current
technologies related to 2PA phenomena, such as two-photon
excitation microscopy [2] and multiphoton microfabrication
and lithography [3–5]; also, work on applications such as
optical power limiting [6], optical data storage [7,8], or two-
photon photodynamic therapy [9] is being done, as well
as research on bioimaging using materials at the nanoscale
[10,11]. For this, it is mandatory to conduct experimental
and theoretical research on 2PA phenomena in materials; in
particular, the explanation and prediction of the microscopic
third-order optical response in materials are theoretical tar-
gets.

Related to the experimental point of view of 2PA, there are
diverse factors that contribute to the difficulty in characteriz-
ing materials in the nonlinear regime. Third-order nonlinear
susceptibility related to 2PA is obtained through the mea-
surement of nonlinear absorption in materials, and several
variables are involved in these kinds of experiments, such
as laser-pulse duration and repetition rate, peak power, laser
coherence, the presence of free carriers, and competition
between nonlinear and linear absorption phenomena, which
increases the complexity of material characterization. Hence
reported values for the 2PA coefficient are only within a
narrow region of the light spectrum and are often varied
over orders of magnitude [12], and even more, experimental
work only reports the 2PA coefficient instead of the imaginary
part of third-order 2PA susceptibility; to our knowledge, only
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Furey et al. [13] have reported the value of all independent
nonzero components of the imaginary part of 2PA suscepti-
bility tensors for GaAs, GaP, and Si in the vicinity of the half
band gap for each material. The complex measurement of 2PA
third-order susceptibility motivates theoretical investigation
of this phenomenon.

To theoretically describe nonlinear optical responses at
the microscopic scale and, in specific, to describe 2PA, a
lot of research has been done. Hutchings and Van Stryland
[14] calculated the 2PA coefficient in zinc-blende semicon-
ductors by means of the Kane band structure model; such
a calculation is a more comprehensive study than the two-
band model used by Aversa et al. to describe 2PA [15].
Additionally, Hutchings and Wherrett [16] first calculated
the polarization dependence of 2PA by means of the four-
band Kane band structure model and later calculated the
anisotropy parameter, including the influence of higher con-
duction bands, by using the Luttinger-Kohn band structure
model [17]. The band structure models cited have the dis-
advantage of being semiempirical approximations and of
describing the absorption phenomena in a vicinity near the
center of the Brillouin zone, with a limited number of
electronic bands. Alternatively, Aversa and Sipe [18] have
cemented the formalism to obtain linear and nonlinear op-
tical responses based on the perturbation theory under the
length gauge analysis and the electron density operator. This
formalism allowed the accurate calculation of nonlinear opti-
cal responses, such as the second-harmonic generator (SHG)
[19], and they also suggested computing higher-order optical
responses. Related to ab initio 2PA calculations, to our knowl-
edge, only Murayama and Nakayama [20–22] have presented
ab initio full-band-structure calculations; they presented the
two-photon absorption spectra and anisotropy of GaAs, ZnSe,
and Si using the density-matrix theory, and nonlocal correc-
tions to the local momentum operator and a correction to
the self-energy were presented. These calculations have the
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disadvantage of presenting apparent unphysical divergences
in the infrared regime.

The theoretical derivation of 2PA microscopic susceptibil-
ity is presented in this paper under the ab initio perturbative
model in the independent-particle approximation using a full-
band model. This work uses the length gauge approximation
as the perturbative interaction between materials and light to
obtain the imaginary part of the third-order nonlinear suscep-
tibility, which describes third-order nonlinear absorption. The
well-known band-gap underestimation in density functional
theory with the local-density approximation (DFT-LDA) is
corrected at the scissors operator level, and the inclusion of
the spin-orbit coupling (SOC) is taken into account. Also, we
show that the unphysical divergences are analytically demon-
strated to be zero when ω → 0, which was not considered
in previous ab initio calculations; moreover, the 2ω and 1ω

terms of χ abcd(−ω; −ω,−ω,ω) are analyzed to obtain a com-
plete third-order optical response, where the position matrix
elements are distinguished in the intraband ri part and the
interband re part [18,23,24]; this differentiation allows us to
disregard nonsignificant terms in χ abcd(−ω; −ω,−ω,ω).

The rest of this paper is organized as follows: Sec. II
describes the theoretical derivation of third-order nonlinear
susceptibility, Sec. III presents the evaluation of the 2PA
coefficient for semiconductors and discusses the results, and
Sec. V summarizes our main findings.

II. THEORY

In this section, we present the scheme used to calcu-
late the third-order nonlinear response χ abcd(−ω; −ω,−ω,ω)
using the length gauge formalism, within the independent-
particle approach. Some detail is given, since it is important
to distinguish between the so-called intraband and inter-
band transitions. In Appendix A, we show all the steps of
the perturbation approach taken, and, in particular, we show
how, through time-reversal invariance, the expression for
χ abcd(−ω; −ω,−ω,ω) is divergence-free at ω = 0. We men-
tion that the expression for χ abcd(−ω; −ω,−ω,ω) presented
in Ref. [21] diverges at ω = 0.

A. Two-photon absorption

The absorption of two photons of the same frequency is
characterized through the third-order nonlinear polarization,
written as

P(t ) = ε0X (3)E3(t ), (1)

where the tensorial character of susceptibility X (3) is sup-
pressed for convenience, and the perturbing electric field E(t )
is given by

E(t ) = E+(ω)e−iω̃t + E−(ω)eiω̃t , (2)

where E+(ω) = E (ω)ε̂ and E−(ω) = E (ω)ε̂∗. Then, E (ω)
gives the magnitude and ε̂ gives the polarization of the electric
field. For linear polarization ε̂ = ε̂∗, but for elliptical polariza-
tion, ε̂ will have an opposite helicity to ε̂∗. Also, ω̃ = ω + iη,
and η = 0+ adiabatically switches on the interaction with the
electric field. At the end of the calculation, we take η → 0.
The above field is such that E+(ω)e−iω̃t induces the absorption

of a photon with energy h̄ω, whereas E−(ω)eiω̃t induces the
emission of a photon with energy h̄ω. Then,

P(t ) = ε0X (3)(E+(ω)E+(ω)E+(ω)e−i3ω̃t

+ 3E+(ω)E+(ω)E−(ω)e−iω̃t

+ 3E+(ω)E−(ω)E−(ω)eiω̃t

+ E−(ω)E−(ω)E−(ω)ei3ω̃t ), (3)

where the two-photon absorption (2PA) is given by

P(t ) = 3ε0X (3)E+(ω)E+(ω)E−(ω)e−iω̃t , (4)

where two photons, each of frequency ω, are simultaneously
absorbed through E+(ω), and the resulting polarization oscil-
lates at ω. The above equation leads to

Pa(ω) = 3ε0χ
abcd(−ω; −ω,−ω,ω)Eb

+(ω)E c
+(ω)Ed

−(ω),
(5)

with χ abcd(−ω; −ω,−ω,ω) being the degenerate third-order
nonlinear optical susceptibility tensor describing a polariza-
tion density response at the same frequency as the incident
frequency [25]. Thus, χ abcd(−ω; −ω,−ω,ω) describes 2PA,
whose units are m2/V2. The roman superscripts denote Carte-
sian components, where we use the Einstein convention for
repeated indices, and ε0 is the vacuum permittivity.

B. Perturbation approach

In order to derive the analytic expression for the 2PA
susceptibility of Eq. (5), we assume that electrons may
be described through an independent-particle approximation,
although we do allow for many-body effects through an ef-
fective Hamiltonian that depends on all the occupied states,
as in density functional theory. The electrons interact with an
electromagnetic field, which we assume is a classical field.
Thus we describe quantum mechanical matter interacting with
classical fields. We neglect the local fields and excitonic ef-
fects [26], and we write the one-electron Hamiltonian

Ĥ (t ) = Ĥ0 + Ĥ(t ) (6)

as the sum of an unperturbed effective time-independent
Hamiltonian Ĥ0 that describes the interaction of an electron
with the crystalline lattice and its effective interaction with the
other electrons, as well as an interaction Hamiltonian Ĥ(t ),
which describes the interaction of the electron with a time-
dependent electromagnetic field. We mention that Ĥ0 includes
the scissors operator that allows for the energy correction of
the pseudopotentials gap Eg to the experimental energy of the
gap Eexpt [27]. We describe the state of the system through the
one electron density operator ρ̂, with which we can calculate
the expectation value of any single-particle observable Ô as
〈Ô〉 = Tr(ρ̂Ô) with Tr denoting the trace. Within the interac-
tion picture (I), the density operator evolves in time due to the
interaction Hamiltonian according to

ih̄
d

dt
ρ̂I (t ) = [ĤI (t ), ρ̂I (t )], (7)

while the operators that correspond to all observables evolve
through Ĥ0 according to

ÔI (t ) = Û †(t )Ô(t )Û (t ), (8)
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where Ô(t ) is the same observable in the Schrödinger picture,
given by Ô(0) for operators that do not depend explicitly on
time, and

Û (t ) = exp(−iĤ0t/h̄) (9)

is the nonperturbed unitary time-evolution operator. Assum-
ing that the field is turned on adiabatically, we may integrate
(7) to yield

ρ̂I (t ) = ρ̂I0 + 1

ih̄

∫ t

−∞
dt ′[ĤI (t ′), ρ̂I (t ′)], (10)

where ρ̂I0 is the unperturbed, time-independent equilibrium
density matrix. We look for the standard perturbation series
solution, ρ̂I (t ) = ρ̂I0 + ρ̂

(1)
I (t ) + ρ̂

(2)
I (t ) + · · · , where the su-

perscript denotes the order (power) with which each term
depends on perturbation ĤI (t ). The (N + 1)th-order solution
is given as

ρ̂
(N+1)
I (t ) = 1

ih̄

∫ t

−∞
dt ′[ĤI (t ′), ρ̂ (N )

I

]
, N � 0, (11)

where ρ̂
(N )
I is the density matrix of the previous order pertur-

bation term. For 2PA, N + 1 = 3, and then, we need to know
ρ̂

(0)
I , ρ̂

(1)
I , and ρ̂

(2)
I to obtain ρ̂

(3)
I .

We take our system as a solid described by a nonper-
turbed periodic Hamiltonian, whose eigenfunctions are Bloch
states, |mk〉, characterized by a band index m and a crystal
momentum k. For ĤI (t ), we take the interaction with an
electromagnetic field with a wavelength much larger than the
crystal unit cell dimension. Thus electronic transitions due to
this interaction are vertical; that is, they conserve k. Taking the
matrix elements between Bloch states of Eq. (8), we obtain

〈nk|ÔI |mk〉 ≡OI,nm(k, t ) = eiωnm (k)t 〈nk|Ô|mk〉
= eiωnm (k)tOnm(k, t ), (12)

where ωnm(k) ≡ ωn(k) − ωm(k) and En(k) = h̄ωn(k) are the
unperturbed energy eigenvalues corresponding to the station-
ary Schrödinger’s equation Ĥ0 |nk〉 = En(k) |nk〉, where the
Bloch states |nk〉 are chosen so that 〈r|nk〉 = unk(r)eik·r, with
unk(r) being cell periodic and 〈nk|mk′〉 = δnmδ(k − k′).

Within the dipole approximation, the interaction Hamilto-
nian in the length gauge is given by [27]

ĤI (t ) = −er̂I (t ) · E(t ), (13)

where r̂I (t ) = Û †
0 (t )r̂U (t ) is the position operator of the

electron at time t , and from Eq. (2), E(t ) = E±(ω)e∓iω̃t ,
the time-dependent perturbing classical electric field that, as
explained in the previous section, induces two-photon absorp-
tion through the correct choices of E(t ), as given in Eq. (5).
Then, from Eqs. (11) and (12) we obtain

ρ
(N+1)
I,nm (k, t ) = ie

h̄

∫ t

−∞
dt ′eiωnm (k)t ′ 〈nk|[r̂, ρ̂ (N )]|mk〉 · E(t ′),

(14)

where it is convenient to represent the position operator in
the coordinate space r̂ → r when calculating its interband
matrix elements, and in the reciprocal space r̂ → i∇k when
calculating its intraband matrix elements, so that following
Refs. [18,28,29], the matrix elements of r are split between

the intraband (ri) and interband (re) parts, where r = ri + re

and

〈nk| r̂i |mk′〉 = δnm[δ(k − k′)ξnn(k) + i∇kδ(k − k′)], (15)

〈nk| r̂e |mk′〉 = (1 − δnm)δ(k − k′)ξnm(k), (16)

with

ξnm(k) ≡ i
(2π )3

	

∫
	

dr u∗
nk(r)∇kumk(r) (17)

being the Berry connection, where 	 is the unit cell volume.
The well-known commutator

v̂ = ˆ̇r = 1

ih̄
[r̂, Ĥ0] (18)

allows us to write the interband matrix element as

rnm(k) = vnm(k)

iωnm(k)
(n �= m), (19)

where v̂ is the velocity operator related to the momentum
operator by p̂ = mv̂, with m being the mass of the electron.
For re, we obtain that

〈nk| [r̂a, ρ̂ (N )(t )] |mk〉 =
∑


 �=m,n

(
ra

n
(k)ρ (N )

m (k, t )

− ρ
(N )
n
 (k, t )ra


m(k)
)
(1 − δnm)

≡ Ra,(N )
nm (k, t ), (20)

where we used the closure relationship
∑

n |nk〉〈nk| = 1.
When ri appears in commutators, we use

〈nk| [r̂a
i , ρ̂

(N )(t )] |mk〉 = iρ (N )
nm;ka (k, t ) ≡ Ra,(N )

i,nm (k, t ) (21)

with

ρ
(N )
nm;k(k, t ) = ∇kρ

(N )
nm (k, t ) − iρ (N )

nm (k, t )(ξnn(k) − ξmm(k)),
(22)

where “; k” denotes the generalized derivative with respect to
k and ρ (N )

nm (k, t ) could be replaced by any function.
From Eq. (14), we obtain

ρ
(N+1)
I,nm (k, t ) = ie

h̄

∫ t

−∞
dt ′ei(ωnmk±ω̃p)t ′

× [
Rb,(N )

nm (k, t ′) + Rb,(N )
i,nm (k, t ′)

]
Eb

∓(ωp), (23)

where subscript p is a tag to keep track of the frequency ωp

that belongs to the Cartesian direction b.
The perturbation series is generated by the unperturbed

density operator

〈nk|ρ̂ (0)|mk〉 = δnm f (h̄ωn(k)) ≡ fn(k), (24)

with fn(k) being the Fermi-Dirac distribution; for a clean,
cold semiconductor, fn(k) = 1 when n is a valence (v) or
occupied band, and fn(k) = 0 when n is a conduction (c) or
empty band. This defines the distribution functions fn(k) in
reciprocal space, one for each band. Also, following Ref. [18],
we can readily show that

〈nk|[r̂, ρ̂ (0)]|mk〉 = fmn(k)rnm(k) + iδnm∇k fn(k), (25)

where fnm(k) = fn(k) − fm(k). For a clean, cold semiconduc-
tor, ∇k fn(k) = 0, and thus there are no intraband contributions
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to the optical response; however, this term is finite for
metallic systems and gives rise to their low-frequency op-
tical behavior through the so-called Drude tensor [30].
From Eq. (20), Ra,(0)

nm (k, t ) = fmn(k)ra
nm(k)(1 − δnm), and from

Eq. (21), Ra,(0)
i,nm (k, t ) = 0, which, when used in Eq. (23), leads

to ρ
(1)
I,nm(k, t ) = eiωnm (k)tρ (1)

nm (±ωp, t ), where

ρ (1)
nm (±ωp, k, t ) = Bb

nm(±ωp, k)(1 − δnm)Eb
∓(ωp)e±iω̃pt ,

(26)

with

Bb
nm(±ωp, k) = e

h̄

fmn(k)rb
nm(k)

ωnm(k) ± ω̃p
. (27)

For the linear response, ρ (1)
nm (−ωp, k, t ) [ρ (1)

nm (+ωp, k, t )]
would lead to the absorption (emission) of a photon with
energy h̄ωp.

We proceed with the second-order terms, and from
Eqs. (20) and (21) we obtain

Rb(1)
e,nm(k, t ) = e

h̄

∑

 �=m,n

(
rb

n
(k)Bc

m(k,±ωq )

− Bc
n
(k,±ωq )rb


m(k)
)
(1 − δnm)E c

∓ωq
e±iω̃qt

(28)

and

Rb(1)
i,nm(k, t ) = ie

h̄
Bc

nm;kb (k,±ωq )(1 − δnm)E c
∓ωq

e±iω̃qt , (29)

where we use ωq to differentiate it from ωp, since it
is associated with the electrical field along the Cartesian
direction c. From Eq. (23), we obtain that ρ

(2)
I,nm(k, t ) =

eiωnm (k)tρ (2)
nm (±ω̃p ± ω̃q, k, t ), where ρ (2)

nm (±ωp ± ωq, k, t ) =
ρ (2)

nm (±ωp ± ωq, k)Eb
∓pE c

∓qei(±ω̃p±ω̃q )t , with

ρ (2)
nm (±ωp ± ωq, k) = e2

h̄2

1

ωnmk ± ω̃p ± ω̃q

[
iBc

nm;kb (±ωq, k)

+
∑

 �=nm

(
rb

n
Bc

m(±ωq, k) − Bc

n
(±ωq, k)rb

m

)]
(1 − δnm). (30)

We mention that the above expression would lead to second-harmonic generation by taking −ωq = −ωp = −ω [27,31].
Finally, we proceed with the third-order nonlinear response. Then, from Eqs. (20) and (21),

Rd(2)
e,nm(k, t ) =

∑

 �=nm

(
rd

n
(k)ρ (2)

m (±ωp ± ωq, k) − ρ

(2)
n
 (±ωp ± ωq, k)rd


m(k)
)
Eb

∓pE c
∓qei(±ωp±ωq−iη)t (1 − δnm), (31)

and

Rd(2)
i,nm(k, t ) = iρ (2)

nm;kd (±ωp ± ωq, k)Eb
∓pE c

∓q(1 − δnm)ei(±ωp±ωq−iη)t . (32)

Then, from Eq. (23), ρ
(3)
I,nm(k, t ) = eiω�

nmktρ (3)
nm (±ωp ± ωq ± ωs, k, t ), where

ρ (3)
nm (±ωp ± ωq ± ωs, k, t ) = ρ (3)

nm (±ωp ± ωq ± ωs, k)Ed
∓sE

b
∓pE c

∓qei(±ωp±ωq±ωs−iη)t (33)

and

ρ (3)
nm (±ωp ± ωq ± ωs, k) = e

h̄

[ ∑

 �=nm

(
rd

n
(k)ρ (2)

m (±ωp ± ωq, k) − ρ

(2)
n
 (±ωp ± ωq, k)rd


m(k)
)

+ iρ (2)
nm;kd (±ωp ± ωq, k)

]
1 − δnm

ωnm(k) ± ω̃p ± ω̃q ± ω̃s
, (34)

where now ωs is associated with the Cartesian direction d of the electric field.
From Eq. (5), 2PA is given by this combination of fields, Eb

+(ω)E c
+(ω)Ed

−(ω), which in turn implies that ωp = −ω, ωq = −ω,
and ωs = ω, so that from Eq. (34), the third-order density matrix that describes 2PA is given by

ρ (3)
nm (−ω, k) = e

h̄

∑

 �=mn

[(
rd

n
(k)ρ (2)

m (−2ω, k) − ρ

(2)
n
 (−2ω, k)rd


m(k)
) + iρ (2)

nm;kd (−2ω, k)
] 1 − δnm

ωnm(k) − ω
, (35)

where, from Eq. (30),

ρ (2)
nm (−2ω, k) = e2

h̄2

Gbc
nm(−ω, k)

ωnm(k) − 2ω̃
(36)

with

Gbc
nm(−ω, k) = iBc

nm;kb (−ω, k) +
∑

 �=mn

(
rb

n
(k)Bc

m(−ω, k) − Bc

n
(−ω, k)rb

m(k)

)
, (37)

and Bc
nm(−ω, k) is given in Eq. (27), with the generalized derivative “; k” in Eq. (22).
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C. 2PA susceptibility

To obtain the 2PA response, we look for the expectation value of the macroscopic polarization density P, whose time derivative
yields the current density J as

∂

∂t
P = J = e

	
Tr(v̂ρ̂ (3)(t )), (38)

where 	 is the volume of the unit cell, from Eq. (33),

P(ω) = ie

ω

∫
dk

8π3

∑
mn

vmn(k)ρ (3)
nm (−ω, k)Eb

+E c
+Ed

−, (39)

and using Eq. (5), we obtain that

χ abcd(−ω; −ω,−ω,ω) = ie2

h̄ω

∫
dk

8π3

∑
m �=n

va
mn(k)

[ ∑

 �=mn

(
rd

n
(k)ρ (2)

m (−2ω, k) − ρ

(2)
n
 (−2ω, k)rd


m(k)
)

+ iρ (2)
nm;kd (−2ω, k)

]
1

ωnm(k) − ω̃
(40)

is the third-order nonlinear susceptibility that describes 2PA in semiconductors; integration over k is over the Brillouin zone
(BZ). In Appendix A, we show how to obtain explicit expressions for χ abcd(−ω; −ω,−ω,ω) that we use to calculate 2PA.
Those expressions are composed of terms that resonate when the external frequency of the incoming beam of light h̄ω � Egap or
h̄ω � Egap/2, where Egap is the energy gap of the semiconductor. We mention that the factor of 3 that appears in Eq. (5) is the
factor of 3 that is given in the numerator of Eq. (44) as obtained in Ref. [13].

In this paper, we are mainly interested in 2PA for Egap/2 � h̄ω < Egap, which, according to Appendix A, would correspond
to the 2ω expression for χ abcd(−ω; −ω,−ω,ω) given in Eqs. (A18), (A22), (A32), and (A35), so that

Im[χ abcd
2ω ] = πe4

h̄3

∫
dk

8π3

∑
vc

(
16
d

cv (k)Im
[
rc

cv;kb (k)va
vc(k)

]
ω4

cv (k)
− 32
b

cv (k)
d
cv (k)Im

[
va

vc(k)rc
cv (k)

]
ω5

cv (k)

− 8Im
[
va

vc;kd (k)rc
cv;kb (k)

]
ω3

cv (k)
+ 16
b

cv (k)Im
[
rc

cv (k)va
vc;kd (k)

]
ω4

cv (k)

)
δ(ωcv (k) − 2ω), (41)

where we have suppressed the argument (−ω; −ω,−ω,ω)
to save space; the generalized derivatives of va

nm;kb (k) and
ra

nm;kb (k) are given in Eqs. (A6) and (A7), respectively. It is
worth mentioning that the expression involves transitions only
from valence (v) to conduction (c) states. Indeed, as it turns
out, the terms of χ abcd

2ω (−ω; −ω,−ω,ω) that have summa-
tions that involve three and four energy states (Appendix A)
are 105 times smaller than what Eq. (41) gives; therefore we
could ignore them throughout this paper. Finally, as described
in Ref. [27], the scissors operator would lead to the following
modifications:

ω�
n (k) = ωLDA

n (k) + (1 − fn(k))�, (42)

with ωLDA
n (k) being the LDA energy of band n at point k and

� being the energy or “scissors shift” required to obtain the
experimental energy gap of the semiconductor in question.
Also,

v�
nm(k) = vLDA

nm (k) + i� fnm(k)rnm(k) (43)

gives the scissor shift to the velocity matrix elements.
To summarize the procedure used to obtain the 2PA sus-

ceptibility, in Fig. 1 we show a tree diagram of the electronic
density ρ

(N )
i,e and its intraband ri and interband re contributions

to every order in the perturbation scheme presented above. As
mentioned before, for a clean, cold semiconductor, ∇k fn(k) =

0, and there are no intraband contributions to ρ
(1)
i , for which

the left branch of Fig. 1 vanishes; however, this branch is
finite for a metal. On the other hand, the right branch of the
tree is always finite for both semiconductors and metals. As
shown in Sec. III, the contributions from three bands and four
bands to 2PA are negligible with respect to the contributions
from two bands, which is why the only contributing term to
2PA susceptibility is the branch circled in the tree, and it
corresponds to ρ

(3)
eii , which involves “one” contribution from

re and “two” from ri. Indeed, in Eqs. (A49)–(A52) we identify
each of the contributions of the last right branch of Fig. 1
given by ρ

(3)
eii , ρ

(3)
eie , ρ

(3)
eei , and ρ (3)

eee. As we show in Sec. III, ρ
(3)
eii

dominates the 2PA response for the semiconductors used in
this paper.

III. RESULTS

The self-consistent ground state and the Kohn-Sham states
were calculated in the DFT framework using the plane-wave
ABINIT code [32]. In what follows, we calculate the results for
2PA using different pseudopotentials within several approxi-
mations, in order to determine which scheme gives the best
results. For LDA, we used Troullier-Martins pseudopotentials
[33] that are fully separable nonlocal pseudopotentials in the
Kleinman-Bylander form [34] [LDA with norm-conserving
pseudopotentials (LDA-PSPNC)]. To include the spin-orbit
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FIG. 1. Tree diagram of the electronic density ρ
(N )
i,e and its in-

traband ri and interband re contributions to every order in the
perturbation scheme presented in Sec. II B. The ρ

(3)
eii , ρ

(3)
eie , ρ

(3)
eei , and

ρ (3)
eee are given in Eqs. (A49)–(A52), respectively. The only contribut-

ing term to 2PA susceptibility of the tree is the term ρ
(3)
eii , circled

in violet, which is composed of only two-band transitions. The ρ
(3)
eie ,

ρ
(3)
eei , and ρ (3)

eee branches are related to three- and four-band transitions,
and although finite, they are negligible, as shown in Sec. III. For a
semiconductor, the left branch of the tree in red vanishes identically.

coupling (SOC) effect, we used Hartwigsen-Goedecker-
Hutter (HGH) relativistic separable dual-space Gaussian
pseudopotentials (LDA-HGH) [35]. To go beyond the LDA
approximation, we use the generalized-gradient approxima-
tion (GGA) [36,37] and the meta-GGA (mGGA) [38].

We used 58 415 k-points in order to have well-converged
results for the irreducible Brillouin zone (IBZ) integration,
as given in Eq. (41), using the linear analytic tetrahedron
method of Ref. [39]. Also, a cutoff energy of 24 hartrees was
used for the plane waves, and nine conduction bands (c) were
used for the summations in Eq. (41). BeTe, diamond, GaP,
GaAs, GaSb, Ge, InAs, InSb, Si CdTe, ZnS, and ZnSe have
eight valence bands (v); all the semiconductors have been
studied with their corresponding experimental lattice constant
a0 and band-gap Eg, as shown in Appendix B for a non-SOC
calculation (Table II) and for a SOC calculation (Table III).
For GaAs, Si, and GaP, there are experimental data with which
we compare our theoretical results, and we discuss them in
detail; for all the other semiconductors mentioned above we
only present the 2PA spectra as obtained within the SOC
approach.

We start by comparing the results for
χ abcd

2ω (−ω; −ω,−ω,ω), using the several pseudopotential
schemes described in the first paragraph of this section.
All the semiconductors studied in this paper are fcc, and
thus the only components that are different from zero due
to their cubic F -43m space group are the xxyy, xyyx, and
xxxx components (and the cyclic x → y → z change). From
here on, we suppress the (−ω; −ω,−ω,ω) argument for
ease of presentation. We chose only the xxyy component as
an example; on the one hand, it gives the largest value for
χ abcd

2ω , and on the other hand it conveys the same conclusions
that the xxxx and xyyx components lead to. We chose GaAs,
since the 2PA for this semiconductor has been recently
measured [13], and it is a representative example of all

FIG. 2. Im[χ xxyy
2ω ] for GaAs using the different sets of pseudopo-

tentials described in the text. Eg = 1.424 eV is the experimental
energy gap of GaAs, and Eg/2 is half the gap where 2PA becomes
finite. No spin-orbit coupling is used in these results.

the semiconductors used in this paper. In Fig. 2, we show
Im[χ xxyy

2ω ] vs the photon energy (h̄ω) for GaAs using the
LDA-HGH, GGA-HGH, GGA-PSPNC, LDA-PSPNC, and
mGGA-HGH. This sequence of pseudopotentials goes from
the highest to the smallest magnitude of Im[χ xxyy

2ω ]. The energy
value where Im[χ xxyy

2ω ] is abruptly finite corresponds to Eg/2;
as expected then, Im[χ xxyy

2ω ] shows first a very well defined
resonant peak and then other resonances that are below
Eg. Also, the theoretical value of Eg/2 for each approach
increases towards the experimental 2PA gap Eexpt/2. Indeed,
we see that for mGGA-HGH, the 2PA gap Eg/2 = 0.617 eV is
very similar to the experimental value of Eexpt/2 = 0.707 eV.
As we see from Table II of Appendix B, the mGGA-HGH
gaps are much closer to the experimental values than
the LDA gaps are. We also notice that the magnitude of
Im[χ xxyy

2ω ] for mGGA-HGH is much smaller than for the other
pseudopotentials. Due to the fact that mGGA-HGH gives the
best energy gap Eg, in the following results we only use these
pseudopotentials to calculate 2PA. In this section, we present
the results without the inclusion of the SOC effect, leaving its
inclusion to Sec. IV A.

In Fig. 3, we show Im[χ abcd] as a function of h̄ω, where
the 2ω response is different from zero just at Eg/2 as expected
and then it goes through a maximum and decreases as h̄ω

approaches Eg. Also, we see that Im[χ xxxx
2ω ] and Im[χ xxyy

2ω ]
are positive, whereas Im[χ xyyx

2ω ] is negative below Eg. In the
same figure, we only show Im[χ xxxx

1ω ], as it is the largest of
the three components related to 1ω resonances, as explained
in Appendix A, in particular, in Eqs. (A47) and (A48). We
see that Im[χ xxxx

1ω ] is finite around Eg, as it must be, and
although it is a factor of 2 larger than Im[ χ abcd

2ω ], Im[χ abcd
1ω ], it

does not contribute to 2PA below the gap Eg, which makes it
unnecessary in this paper.

As is well known, the pseudopotential schemes underesti-
mate the energy gap Eg, as clearly seen in Fig. 2. To correct
this deficiency within the scissors approximation, one needs
to apply the scissors shift, as prescribed in Eqs. (42) and (43).
For GaAs, a value of � = 0.189 eV is required to bring the
mGGA-HGH gap to 1.424 eV, which is the experimental value

125201-6



AB INITIO CALCULATION OF TWO-PHOTON … PHYSICAL REVIEW B 106, 125201 (2022)

FIG. 3. Im[χ abcd
2ω ] for GaAs, where we see that the 2ω response

starts at Eg/2, while the 1ω response starts at Eg = 1.235 eV, which
is the mGGA gap.

at room temperature. We mention that this value of � is rather
small as compared with what would be needed for the other
pseudopotential schemes presented in Fig. 2. In Fig. 4, we
show Im[χ abcd

2ω ] for the nonscissored case, i.e., � = 0, and the
scissored case of � = 0.189 eV. Both spectra are roughly the
same, as if the scissors correction rigidly shifted the spectra
from lower energies to higher energies; however, the scissors
operator also lowers the intensity of the 2PA susceptibility
by a factor of ∼0.73. In Sec. IV, where the theoretical 2PA
absorption is compared with experimental results, it is shown
that the scissors correction yields the correct experimental
values.

Equation (A48) shows all the terms that contribute to
χ abcd

pω , where p = 1 refers to the 1ω processes that are
different from zero above the gap and thus, as explained
before, are of no interest for this work. For p = 2,
we get the 2ω processes that are finite below the gap,
where χ abcd

1,1,2ω, χ abcd
1,2,2ω, χ abcd

2,1,2ω, χ abcd
2,2,2ω are the terms that

contribute the most to χ abcd
2ω and which all come from

transitions between two bands only. Indeed, the terms that

FIG. 4. Im[χ abcd
2ω ] for GaAs, with and without the contribution

of the scissors operator. The experimental gap of GaAs at room
temperature is 1.424 eV, and with � = 0.189 eV, it is enough to get
the 2PA susceptibility to the experimental Eexpt/2.

FIG. 5. Im[χ xxyy
2ω ] for GaAs corresponding to transitions of two

bands, and Im[χ xxyy
3&4 ] corresponding to transitions among three bands

and four bands. The latter is smaller by a factor of 10−6.

involve transitions among three bands and four bands are
negligible, as shown in Fig. 5, where we show χ

xxyy
2ω =

χ
xxyy
1,1,2ω + χ

xxyy
1,2,2ω + χ

xxyy
2,1,2ω + χ

xxyy
2,2,2ω, corresponding to two

bands, and χ
xxyy
3&4 = χ

xxyy
1,3,2ω + χ

xxyy
2,3,2ω + χ

xxyy
3,1,2ω + χ

xxyy
3,2,2ω +

χ
xxyy
3,3,1,2ω + χ

xxyy
3,3,2,2ω + χ

xxyy
4,1,2ω + χ

xxyy
4,2,2ω + χ

xxyy
4,3,1,2ω + χ

xxyy
4,3,2,2ω,

corresponding to three bands and four bands; there, we see
that these terms are a factor of 10−6 smaller, and therefore
they can be neglected. We mention that calculating these
terms takes a factor of ≈300 times longer than the calculation
of χ abcd

2ω ; the latter takes ≈210 min in 64 cores of an Intel
processor for ≈58 415k points, which gives well-converged
results for the IBZ integration, as given in Eq. (41). Therefore
the fact that χ

xxyy
3&4 is negligible eases the burden of numerical

calculation.

IV. COMPARISON WITH EXPERIMENTS

In Ref. [13], the 2PA of GaAs, GaP, and Si was experimen-
tally measured using femtosecond pump-probe modulation
spectroscopy. For GaAs, which is a direct-gap semiconductor,
the measurements were done for photon energies h̄ω such that
Eg/2 < h̄ω < Eg, where Eg is the gap energy of GaAs. For
GaP, which is an indirect-gap semiconductor, the measure-
ments were done for photon energies h̄ω such that Eg/2 <

h̄ω < Eg, where Eg is the direct-gap energy of GaP. However,
for Si, which is also an indirect-gap semiconductor, the mea-
surements were done only for photon energies h̄ω such that
Ei

g/2 < h̄ω < Ei
g, where Ei

g is the indirect-gap energy of Si.
Therefore, for such photon energies, the indirect transitions
are most likely due to phonon-assisted processes, and since
our theoretical framework only considers direct transitions, it
does not apply to this experimental situation. Nevertheless,
we use the results for Si of Ref. [40] that were measured
for photon h̄ω such that Eg/2 < h̄ω < Eg, with Eg being the
direct-gap energy of Si.

2PA is characterized by a pump-probe β
‖
11 coefficient,

where ‖ indicates the copolarized beams used in the experi-
ment and the subscript 11 means that the two photons have the
same energy. As explained in Ref. [13], after solving the non-
linear wave equation on a plane-wave basis under the slowly
varying field amplitude approximation, for a monochromatic
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and linearly polarized incident field, one gets a relation be-
tween the 2PA β

‖
11 coefficient and the imaginary part of the

third-order nonlinear susceptibility, as follows:

β
‖
11(ω) = 3ω

2ε0n2(ω)c2
Im

[
χXXXX

2ω

]
, (44)

where χXXXX
2ω is given in the XY Z laboratory coordinate sys-

tem. Indeed, in the experiments, the beams propagate along
Z = 110 in crystallographic coordinates, with X = 1̄10 and
Y = 001, which defines a basis of linear polarization direc-
tions. Therefore we have to rotate χ abcd

2ω to the crystallographic
coordinates by applying the following rotation:

χABCD
2ω = Ra

ARb
BRc

CRd
Dχ abcd

2ω , (45)

using the rotation matrix that applies to the experimental con-
ditions of Ref. [13], i.e.,

R =
⎡
⎣− cos θ cos θ

√
2 sin θ

sin θ − sin θ
√

2 cos θ

1 1 0

⎤
⎦, (46)

where θ is the sample rotation angle in order to express
Eq. (44) in terms of χ2ω tensor components in crystallographic
coordinates. This enables us to take advantage of the 4̄3m
(GaP and GaAs) or m3m (Si) crystal symmetry, for which
there are only three independent, nonvanishing components,
χ aaaa

2ω , χ aabb
2ω = χ abab

2ω , and χ abba
2ω , where a �= b. Then [13],

β
‖
11(ω) = 3ωIm

[
χ xxxx

2ω (ω)
]

32εon2(ω)c2
((3 cos(4θ ) − 4 cos(2θ ) − 7)σ (ω)

+ 16), (47)

and

σ (ω) = 1 − 2Im
[
χ

xxyy
2ω

] + Im
[
χ

xyyx
2ω

]
Im

[
χ xxxx

2ω

] (48)

is known as the anisotropy parameter, with θ being the sample
rotation angle, which, from Ref. [13], is equal to zero. Thus
the three independent components of Im[χ abcd

2ω ] of a 4̄3m or
m3m crystal contribute to the measurement of two-beam 2PA
while rotating the sample about Z = 110 in copolarized ge-
ometry. Finally, n(ω) = √

ε(ω) is the index of refraction with
ε(ω) being the dielectric function, which for the 4̄3m and m3m
crystal symmetries ε(ω) = εxx(ω) = εyy(ω) = εzz(ω).

In Fig. 6, we show the convergence of β
‖
11(ω) as a function

of the number of k points required for the integration over the
IBZ. We mention that as seen in Eqs. (47) and (48), β

‖
11(ω)

depends on χ xxxx
2ω , χ

xxyy
2ω , and χ

xyyx
2ω and the index of refraction

n(ω). As it turns out, n(ω) converges much faster than χ abcd
2ω ,

and a rather large number of k points are needed in order to
get converged results for β

‖
11(ω). As a compromise for the

numerical burden, we chose 58 415 k points for the integration
over the IBZ of the results shown below.

In Fig. 7, we show β
‖
11(ω) for the different pseudopotential

schemes used in this paper, all calculated with 58 415 k points.
Just as in Fig. 2, we see a similar spectral shape with the big
difference that the result for mGGA-HGH now has the same
order of magnitude as the results for the other approaches.
This comes from the fact that β

‖
11(ω) is a ratio between χ abcd

2ω

and n(ω), and n(ω) is larger for LDA-HGH, GGA-HGH,

FIG. 6. Convergence of β
‖
11(ω) as a function of the number of k

points required for the integration over the IBZ. As a compromise for
the numerical burden, we chose 58 415 k points for the calculations.

GGA-PSPNC, and LDA-PSPNC than for mGGA-HGH, thus
giving a similar magnitude for β

‖
11(ω).

In Fig. 8, we compare our results of β
‖
11(ω) with the cor-

responding experimental results of Ref. [13] for GaAs. The
theoretical results have � = 0.189 eV, which corresponds to
the scissors shift to bring the mGGA-HGH gap to the experi-
mental gap, as given in Table II of Appendix B. We mention
that � shifts 2PA by �/2, since below the gap, only 2ω tran-
sitions are finite. As with the results presented in Fig. 4, where
the scissors shift lowers the magnitude of χ abcd

2ω , the magnitude
of β

‖
11(ω) also decreases as � increases; in this case, n(ω)

also contributes to this effect, as it also decreases as � in-
creases, and since β

‖
11(ω) ∝ 1/n2(ω), as seen from Eq. (47),

the overall effect of increasing � is that β
‖
11(ω) diminishes

more than χ abcd
2ω does. From Fig. 8, we find a reasonable match

between the theoretical results and the experimental results, as
far as the spectroscopic signature is concerned. To wit, there
is a clear maximum in both, and although the width of the
2PA peak is not equal, the theoretical results clearly show a

FIG. 7. β
‖
11(ω) for the different pseudopotential schemes used in

this paper, calculated with 58 415 k points for the integration over
the IBZ.

125201-8



AB INITIO CALCULATION OF TWO-PHOTON … PHYSICAL REVIEW B 106, 125201 (2022)

FIG. 8. Theoretical 2PA β
‖
11(ω) coefficient for GaAs vs photon

energy, where the scissors shift � = 0.189 eV takes the theoretical
gap energy Eg/2 of the mGGA-HGH scheme to the experimental
value. The theoretical results of Murayama and Nakayama [21] are
shown by the green line. The squares are the experimental results for
β

‖
11(ω) of Furey et al. [13]. See text for details.

resonance in the response. Also, both the experimental and
theoretical spectra are of the same order of magnitude for both
values of �. In Fig. 8, we also compare our results with the
theoretical results of Murayama and Nakayama [21]. We see
that the results of Murayama and Nakayama do not present a
resonance and are a factor of ∼6 smaller than the experimental
results. Although the object of this paper is not to analyze why
Ref. [21] gives such results, we mention that their expression
for Im[χ abcd(−ω; −ω,−ω,ω)] diverges at ω = 0, does not
include the intraband r̂i contribution of the r̂ position operator,
and only presents ω resonances. We emphasize that from
Fig. 1, our expression for χ abcd

2ω depends mainly on ρ
(3)
eii , which

includes contributions from both ri and re, and that below
the energy gap Eg, only 2ω resonances contribute, in contrast
to the expression of Ref. [21]. As shown in Fig. 8, the 2ω

resonance qualitatively matches the experimental results.

A. Spin-orbit coupling effects

In Fig. 9, we show β
‖
11(ω) vs photon energy with and

without the inclusions of the spin-orbit coupling (SOC) in-
teraction for GaAs. For this case we have used � = 0.65 eV
(with SOC) and � = 0.540 eV (without SOC) as the scissors-
shift values needed to bring the theoretical with-SOC and
without-SOC results to where the experimental 2PA rises from
near-zero values to finite values. We see that the SOC theoreti-
cal spectrum shows a small shift to larger photon energies and
a larger magnitude, as compared with the result without SOC.
The second broad resonance obtained in the result without
SOC for β

‖
11(ω) is absent in the result with SOC, and the

magnitude of the SOC result is much closer to that of the
experimental results shown in the same figure.

In Fig. 10, we compare our 2PA Im[χ abcd
2ω ] for GaAs in-

cluding SOC with the experimental results of Ref. [13] and
those of Ref. [41]. As we did in Fig. 9, we use � = 0.65 eV
to bring the theoretical SOC results to where the experimental
2PA rises from near-zero values to finite values. The results
of Ref. [13] give Im[χ xxyy

2ω ] ≈ Im[χ xxxx
2ω ], and Im[χ xyyx

2ω ] is

FIG. 9. 2PA GaAs coefficient β
‖
11(ω) vs photon energy with and

without the spin-orbit coupling (SOC) effect. The blue squares are
the experimental results of Furey et al. [13]. See text for details.

smaller, whereas for Ref. [41], the results are only for a pho-
ton energy of 1.3 eV, and Im[χ xxxx

2ω ] > Im[χ xxyy
2ω ] ≈ Im[χ xyyx

2ω ].
The relative size of our theoretical results follows Im[χ xxyy

2ω ] >

Im[χ xxxx
2ω ] > Im[χ xyyx

2ω ]; then, only Im[χ xxyy
2ω ] and Im[χ xyyx

2ω ]
follow the experimental trend of Ref. [13]. We remark that
the experimental values of Im[χ abcd

2ω ] are inferred from the
measurement of the β

‖
11 coefficient, and judging from the

experimental error bars, they may not be precise. Finally,
we see that the orders of magnitude of the theoretical and
experimental values for Im[χ abcd

2ω ] are similar.
In Fig. 11, we compare our 2PA β

‖
11(ω) results for Si,

with and without SOC, with the experimental results βeff (ω)
of Ref. [40]. The values of � are those required to get the
theoretical half gap of Si to its experimental value of 1.7 eV,
as given in Table II of Appendix B. Our results show an abrupt
rise in β

‖
11(ω) just above Eexpt/2 and then several resonances.

The first one is a strong narrow resonance that starts just above
1.8 eV, rises sharply as the photon energy increases, and then
encounters a second sharp resonance, albeit with a smaller
intensity; this second resonance is much stronger for the SOC
case. Then, around 2.2 eV, both the SOC and the non-SOC

FIG. 10. Theoretical 2PA Im[χ abcd
2ω ], including SOC for GaAs,

compared with the experimental results of Furey et al. [13] (F) and
Dvorak et al. [41] (D). See text for details.
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FIG. 11. Theoretical β
‖
11(ω) (left axis) and experimental βeff (ω)

(right axis) 2PA coefficient for Si vs h̄ω, where the red squares are
the experimental results of Reitze et al. [40]. See text for details.

spectra show signatures that resemble the experimental re-
sults, as far as the spectral features are concerned. Indeed, the
experimental results of Ref. [40], which cover a limited energy
range, show a clear resonance that resembles our theoretical
calculations, and the overall spectrum follows reasonably well
the theoretical trend; we mention, though, that the SOC results
better resemble the experimental spectrum. The magnitude of
the theoretical results differs from that of the experimental
results. This could be related to the fact that βeff (ω) was
measured in such a way that the crystallographic contribu-
tions of the several components of χ abcd

2ω were not taken into
account, thus giving a 2PA that comes from the experimental
“averaging” of the mixing of different Si χ abcd

2ω components.
Indeed, as explained in Ref. [40], an “effective” βeff (ω) was
extracted by measuring the intensity I (ω) dependence of an
effective absorption coefficient αeff (ω), whose derivative with
respect to I (ω) gives the 2PA βeff (ω), whereas, in Ref. [13],
it is the 2PA β

‖
11(ω) of Eq. (47) which is measured. This

could lead to the different magnitudes of 2PA measured in the
two experiments; nevertheless, the spectroscopic experimen-
tal signature is similar to our 2PA β

‖
11(ω) theory.

Likewise, in Fig. 12, we show the 2PA β
‖
11(ω) for GaP. The

two values of � take the corresponding calculation without
SOC and with SOC to the experimental 2PA gap. We see,
at the onset of the two-photon transitions, a modest rise in
the 2PA, followed by an almost constant 2PA and an intense
and broad resonance at ∼1.7 eV. In this case, the first two
experimental points seem to follow the monotonic increase of
the theoretical result, and the third experimental point misses
the strong theoretical resonance. This shows how theory could
guide the experiments; had the experiment been carried out at
around 1.7 eV, the resonance could have been detected.

Finally, in Appendix B, we show a comparison of the 2PA
β

‖
11(ω) coefficient and Im[χaa(ω)] for GaAs, Si, and GaP

(Fig. 16), and most importantly, we show β
‖
11(ω) for several

semiconductors (Fig. 17), where it is worth mentioning that
the 2PA energy range spans from ∼0.1 for InSb to ∼6.5 eV for
diamond, and the intensity in mW−1 × 10−8 goes from ∼0.4
for ZnS to ∼70 for InSb. Our theoretical formulation leads to

FIG. 12. Theoretical and experimental β‖
11(ω) 2PA coefficient for

GaP vs h̄ω, with and without SOC. The squares are the experimental
results of Furey et al. [13]. See text for details.

results that would certainly enhance the applicability of 2PA,
as it permits predictions that compare qualitatively well with
available experiments.

B. Si band structure

In Fig. 13, we show the band structure for Si including
SOC, where the thick and thin lines represent degenerated
states due to high-symmetry lines in the irreducible Brillouin
zone (IBZ). We mention that for the energy scale used in
Fig. 13, the SOC-split bands, whose energy splitting is small,
are not discernible. However, in Fig. 15 of Appendix B, for
GaAs, the SOC-split bands are readily seen. The arrows rep-
resent the h̄ω photons, two of them per transition, that go from
valence (v) to conduction bands (c), covering the energy range
of the experimental data shown in Fig. 11, which goes from
2.05 to 2.35 eV. The 2ω transitions around � in the L-�-X
path go from v = 2 to degenerated c = 2&3 and from de-
generated v = 3&4 to c = 1, c = 2&3, and c = 4, where we
have used “&” to denote the band degeneracy. The next sets of
transitions are those away from � along the �-X path. The first
set goes from v = 3&4 to c = 2, and then there are two sets of
transitions (violet-blue arrows) whose energy is 2.2 ± .05 eV,
with the first set going from v = 2 to c = 1 and the second
set going from v = 3&4 to c = 1. Along K-�, valence bands
v = 2, 3 and v = 4, as well as conduction bands c = 1, 2 and
c = 3 are nondegenerated. The first set of transitions goes
from v = 4 to c = 1, 2, 3, and then a second set of transitions
goes from v = 3, 4 to c = 1, 2, 3. Finally, very close to � and
the last path, �-L is the mirror image of L-�. A full view of
the L-�-X -K-�-L path for the bands and its 2ω arrows is given
in Fig. 14 of Appendix B. All these transitions contribute to
the theoretical spectrum shown in Fig. 11, within ±0.15 eV
of the experimental peak at 2.2 eV, and we see that most of
the transitions are away from the � point, as expected since
the peak is away from where β

‖
11(ω) becomes finite close to

the band gap of Si. It is interesting to see that the peak at
2.2 eV comes from electronic transitions that originate among
different bands and in different zones of the IBZ, where those
close to X in the �-X path dominate. The same analysis was
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FIG. 13. Band structure of Si for � = 1.32 eV, where each pair of arrows denotes the corresponding 2ω transitions that contribute to 2PA
around 2.2 ± 0.15 eV, which is the peak energy of the spectrum of Fig. 11. The two ω photons that are absorbed go from a valence band (red,
green, cyan) to a conduction band (blue). See text for details.

carried out for GaAs, and the band structure, along with the
main results, is given in Fig. 15 of Appendix B.

V. CONCLUSION

Within the independent-particle approach, we have pre-
sented a theoretical derivation of two-photon absorption (2PA)
from semiconductors based on the length gauge formalism,
where the contributions of the intraband ri part and the
interband re part of the position operator r are properly
accounted for and the scissors operator is included. Us-
ing time-reversal symmetry, we obtained an expression for
χ abcd(−ω; −ω,−ω,ω) that avoids nonphysical divergences
presented in previous calculations when ω → 0 [21]. Within
the independent-particle approximation, ab initio band struc-
ture calculations using several pseudopotential schemes that
include the SOC interaction were used to calculate the 2PA
coefficient, β

‖
11(ω), below the band gap of several semicon-

ductors. In particular, β‖
11(ω) was calculated for GaAs, Si, and

GaP and compared with available experimental results. Using

FIG. 14. Band structure of Si for � = 0.519 eV, where each pair
of arrows denotes the corresponding 2ω transitions that contribute to
2PA around 2.2 ± 0.15 eV, which is the peak energy of the spectrum
in Fig. 11. The two ω photons that are absorbed go from a valence
band (red, green, cyan) to a conduction band (blue).

different values of the scissors correction, we were able to
reproduce the experimental results qualitatively, showing that
our calculations follow the trend of the experimental spectra
signatures reported in GaAs and Si, giving a resonant behavior
in the spectrum of β

‖
11(ω) for Eg/2 < h̄ω < Eg. The spectrum

reported for GaAs mainly comes from the last valence band
to the first conduction band around the � point of the IBZ; in
contrast, for Si there are transitions from the second, third,
and fourth valence bands to the second, third, fourth, and
fifth conduction bands, which are spread over the IBZ, in
particular, along the �-X path, thus explaining the complexity
of the 2PA spectrum for this material. Moreover, the 2ω and
1ω terms of χ abcd(−ω; −ω,−ω,ω) are analyzed to obtain
a complete third-order optical response. The position matrix
elements are distinguished in the intraband ri part and the
interband re part, allowing us to disregard numerically neg-
ligible terms in χ abcd(−ω; −ω,−ω,ω) that come from three-
and four-band transitions. To strengthen our results, a full GW
calculation, which goes beyond the scissors approximation,
would be able to produce a band structure that, through our
expression for χ abcd(−ω; −ω,−ω,ω), could match the ex-
periment on firmer grounds; however, the large number of k
points needed to achieve convergence (∼60 000) represents a
numerical challenge in its own terms. Moreover, it would be
desirable to go beyond the independent-particle approxima-
tion and develop the 2PA theory including the electron-hole
interaction. However, including the electron-hole interaction
even for the linear response is a very demanding problem, not
only with regard to the theoretical part, but also with regard
to the numerical computation, as described in Refs. [26,42];
this would constitute a very challenging problem that ought
to be pursued in the future. Nonetheless, our results show the

TABLE I. Relations obtained from time-reversal symmetry [43].

ωnm(−k) = ωnm(k),
ra

nm(−k) = ra
mn(k)

ra
nm(−k);kb = −ra

mn(k);kb

va
mn(−k) = −va

nm(k)
va

mn(−k);kb = va
nm(k);kb


a
nm(−k) = −
a

nm(k)
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correct order of magnitude and spectral features with which
an adequate semiconductor could be chosen for myriad of
applications of 2PA. Thus our predictions of 2PA that cover
both a wide spectral range and a wide intensity range for the
semiconductors which are commonly used in semiconductor
technology will certainly motivate 2PA experimental investi-
gation for these materials.
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APPENDIX A: DERIVATION OF χabcd(−ω; −ω,−ω, ω)

In this Appendix, we give the main steps to obtain the 2PA χ abcd(−ω; −ω,−ω,ω) susceptibility of Eq. (40). Using Eq. (36)
and the chain rule,

ρ
(2)
nm;kd (−2ω, k) = e2

h̄2

(
Gbc

nm;kd (−ω, k)

ωnm(k) − 2ω̃
+ Gbc

nm(−ω, k)

(
1

ωnm(k) − 2ω̃

)
;kd

)
, (A1)

which from Eq. (40) leads to

χ abcd(−ω; −ω,−ω,ω) = ie4

h̄3ω̃

∫
dk

8π3

∑
m �=n �=


(
va

mn(k)rd
n
(k)Gbc


m(−ω, k)

ω
m(k) − 2ω̃
− va

mn(k)Gbc
n
 (−ω, k)rd


m(k)

ωn
(k) − 2ω̃

+ i
va

mn(k)Gbc
nm;kd (−ω, k)

ωnm(k) − 2ω̃
+ iva

mn(k)Gbc
nm(−ω, k)

(
1

ωnm(k) − 2ω̃

)
;kd

)
1

ωnm(k) − ω̃
. (A2)

Integrating by parts the last term of the above equation, we obtain that

χ abcd(−ω; −ω,−ω,ω) = ie4

h̄3ω̃

∫
dk

8π3

∑
m �=n

[(
− i

va
mn;kd (k)Gbc

nm(−ω, k)

(ωnm(k) − 2ω̃)(ωnm(k) − ω̃)
‖1 + i

va
mn(k)
d

nm(k)Gbc
nm(−ω, k)

(ωnm(k) − 2ω̃)(ωnm(k) − ω̃)2 ‖2

)

+
∑


 �=m,n

(
− va

mn(k)rd
n
(k)Gbc


m(−ω, k)

(ω
m(k) − 2ω̃)(ωnm(k) − ω̃)
‖3 + va

mn(k)rd

m(k)Gbc

n
 (−ω, k)

(ωn
(k) − 2ω̃)(ωnm(k) − ω̃)
‖4

)]
, (A3)

where we have labeled the four terms from 1 to 4 and used the fact that [27]

ωm;ka (k) = va
mm(k) (A4)

is the velocity of band m, and we defined


a
mn(k) ≡ va

mm(k) − va
nn(k). (A5)

From Eq. (19),

va
nm;kb = i
b

nmra
nm + iωnmra

nm;kb, (A6)

where [18,31]

rb
nm;ka = ra

nm
b
mn + rb

nm
a
mn

ωnm
+ i

ωnm

∑

 �=m,n

(
ω
mra

n
rb

m − ωn
rb

n
ra

m

)
. (A7)

Apparently, Eq. (A3) diverges as ω goes to zero; however, in what follows, this divergence will be shown to cancel out
by invoking time-reversal symmetry (TRS) [43]. To show the mathematical steps involved in reducing Eq. (A3) into a 1/ω-
divergent-less expression, we take as an example its second term, χ abcd

2 (omitting the ω arguments), and write

χ abcd
2 = − e4

h̄3ω̃

∫
dk

8π3

∑
m �=n

va
mn(k)
d

nm(k)Gbc
nm(−ω, k)

(ωnm(k) − 2ω̃)(ωnm(k) − ω̃)2 , (A8)

where from Eqs. (27) and (37), we obtain that

Gbc
nm = i fmnrc

nm;kb

ωnm − ω̃
− i fmnrc

nm
b
nm

(ωnm − ω̃)2
+

∑

 �=mn

(
fm
rc


mrb
n


ω
m − ω̃
− f
nrc

n
rb

m

ωn
 − ω̃

)
, (A9)
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where we omitted the (−ω, k) and (k) arguments to save space. After substituting Eq. (A9) into (A8), we split the result into
three terms and perform a partial fraction expansion on ω, for each of the three terms. For the first term, we obtain that

χ abcd
2,1 ∝ 1

ω̃(ωnm − 2ω̃)(ωnm − ω̃)3
≡ W̃ (2,1)

nm = 1

ω4
nmω̃

+ W (2,1)
nm,ω + W (2,1)

nm,2ω, (A10)

where

W (2,1)
nm,ω = − 7

ω4
nm(ωnm − ω̃)

− 3

ω3
nm(ωnm − ω̃)2

− 1

ω2
nm(ωnm − ω̃)3

(A11)

and

W (2,1)
nm,2ω = 16

ω4
nm(ωnm − 2ω̃)

. (A12)

In Eq. (A10), the 1/ω̃ divergent term is isolated from the rest of the nondivergent ω̃ and 2ω̃ terms given in W (2,1)
nm,ω and W (2,1)

nm,2ω,
respectively. Using the TRS relations shown in Table I, we obtain that

χ abcd
2,1 = −i

e4

h̄3

∫
k>0

dk
8π3

∑
m �=n

fmn(k)W̃ (4,1)
nm (k)

(
rc

nm;kb (k)va
mn(k)
d

nm(k) + rc
nm;kb (−k)va

mn(−k)
d
nm(−k)

)

= e4

h̄3

∫
dk

8π3

∑
m �=n

fmn(k)W̃ (4,1)
nm (k)
d

nm(k)Im[rc
nm;kb (k)va

mn(k)], (A13)

and using
∑

mn Fmn = ∑
m<n(Fmn + Fnm), the above equation is converted into

χ abcd
2,1 = e4

h̄3

∫
dk

8π3

∑
m<n

fmn(k)
d
nm(k)Im[rc

nm;kb (k)va
mn(k)]

(
W̃ (2,1)

nm (k) − W̃ (2,1)
mn (k)

)
, (A14)

where we used the fact that Onm = O∗
mn, with Ô being a Hermitian operator, and that Im[z∗] = −Im[z]. From Eq. (A10),

W̃ (2,1)
nm − W̃ (2,1)

mn = W (2,1)
nm,ω + W (2,1)

nm,2ω + 1

ω4
nmω

− W (2,1)
mn,ω − W (2,1)

mn,2ω − 1

ω4
mnω

= W (2,1)
nm,ω + W (2,1)

nm,2ω − W (2,1)
mn,ω − W (2,1)

mn,2ω, (A15)

since ω4
nm = ω4

mn, and therefore the divergent 1/ω cancels out due to TRS. Thus

χ abcd
2,1 = e4

h̄3

∫
dk

8π3

∑
vc


d
cv (k)Im[rc

cv;kb (k)va
vc(k)]

(
W (2,1)

cv,ω (k) − W (2,1)
vc,ω (k) + W (2,1)

cv,2ω(k) − W (2,1)
vc,2ω(k)

)
, (A16)

since m < n implies from fmn(k) that m = v and n = c, with v and c being valence and conduction states, respectively. We see
that χ abcd

2,1 could be split into 1ω and 2ω terms, as follows:

χ abcd
2,1,pω = e4

h̄3

∫
dk

8π3

∑
vc


d
cv (k)Im[rc

cv;kb (k)va
vc(k)]

(
W (2,1)

cv,pω(k) − W (2,1)
vc,pω(k)

)
, (A17)

where p = 1, 2 and χ abcd
2,1 = χ abcd

2,1,ω + χ abcd
2,1,2ω.

Since we are mainly interested in 2PA for photon energies below the gap, we focus on the 2ω term. Then, taking η → 0 upon
W (2,1)

vc,2ω(k) leads to a nonresonant denominator, and from W (2,1)
cv,2ω(k), we obtain

Im
[
χ abcd

2,1,2ω

] = πe4

h̄3

∫
dk

8π3

∑
vc

16
d
cv (k)Im

[
rc

cv;kb (k)va
vc(k)

]
ω4

cv (k)
δ(ωcv (k) − 2ω), (A18)

which is a closed expression that can be readily evaluated, and through its Kramers-Kronig transformation, the real part of χ abcd
2,1,2ω

could be calculated.
Using the above procedure, we obtain that

χ abcd
2,2,pω = − e4

h̄3

∫
dk

8π3

∑
vc


b
cv (k)
d

cv (k)Im
[
va

vc(k)rc
cv (k)

](
W (2,2)

cv,pω(k) + W (2,2)
vc,pω(k)

)
, (A19)

with

W (2,2)
nm,ω = − 15

ω5
nm(ωnm − ω)

− 7

ω4
nm(ωnm − ω)2

− 3

ω3
nm(ωnm − ω)3

− 1

ω2
nm(ωnm − ω)4

(A20)
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and

W (2,2)
nm,2ω = 32

ω5
nm(ωnm − 2ω)

. (A21)

The 2ω term is given by

Im
[
χ abcd

2,2,2ω

] = −πe4

h̄3

∫
dk

8π3

∑
vc

32
b
cv (k)
d

cv (k)Im
[
va

vc(k)rc
cv (k)

]
ω5

cv (k)
δ(ωcv (k) − 2ω). (A22)

Lastly,

χ abcd
2,3,pω = − e4

h̄3

∫
dk

8π3

∑
m �=n �=


fm
(k)
d
nm(k)Re

[
rc

m(k)rb

n
(k)va
mn(k)

](
W (2,3,1)

nm
,pω(k) − W (2,3,2)
mn
,pω(k)

)
, (A23)

where

W (2,3,1)
nm
,ω = − 3ω
m − 4ωnm

ω3
nm(ωnm − ω
m)2(ωnm − ω̃)

+ 1

ω2
nm(ωnm − ω
m)(ωnm − ω̃)2

− 1

ω
m(ω
m − ωnm)2(2ω
m − ωnm)(ω
m − ω̃)
, (A24)

W (2,3,1)
nm
,2ω = − 16

ω3
nm(ωnm − 2ω
m)(ωnm − 2ω̃)

, (A25)

W (2,3,2)
nm
,ω = − 3ωn
 − 4ωnm

ω3
nm(ωnm − ωn
)2(ωnm − ω̃)

+ 1

ω2
nm(ωnm − ωn
)(ωnm − ω̃)2

− 1

ωn
(ωn
 − ωnm)2(2ωn
 − ωnm)(ωn
 − ω̃)
, (A26)

and

W (2,3,2)
nm
,2ω = − 16

ω3
nm(ωnm − 2ωn
)(ωnm − 2ω̃)

. (A27)

Then,

χ abcd
2 =

2∑
p=1

(
χ abcd

2,1,pω + χ abcd
2,2,pω + χ abcd

2,3,pω

)
. (A28)

Following the same steps that lead to χ abcd
2 , we obtain that

χ abcd
1 =

2∑
p=1

(
χ abcd

1,1,pω + χ abcd
1,2,pω + χ abcd

1,3,pω

)
, (A29)

where, for χ abcd
1,1,pω, we obtain

χ abcd
1,1,pω = − e4

h̄3

∫
dk

8π3

∑
m �=n

fmnIm
[
va

mn;kd (k)rc
nm;kb (k)

]
W (1,1)

nm,pω, (A30)

with

W (1,1)
nm,ω = −3

ω3
nm(ωnm − ω̃)

− 1

ω2
nm(ωnm − ω̃)2

,

W (1,1)
nm2,ω = 8

ω3
nm(ωnm − 2ω̃)

, (A31)

and

χ abcd
1,1,2ω = − e4

h̄3

∫
dk

8π3

∑
vc

8Im
[
va

vc;kd (k)rc
cv;kb (k)

]
ω3

cv (k)
δ(ωcv (k) − 2ω̃). (A32)

χ abcd
1,2,pω is given by

χ abcd
1,2,pω = e4

h̄3

∫
dk

8π3

∑
m �=n

fmn

b
nmIm

[
rc

nmva
mn;kd

]
W (1,2)

nm,pω, (A33)
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with

W (1,2)
nm,ω = −7

ω4
nm(ωnm − ω̃)

− 3

ω3
nm(ωnm − ω̃)2

− 1

ω2
nm(ωnm − ω̃)3

,

W (1,2)
nm,2ω = 16

ω4
nm(ωnm − 2ω)

, (A34)

and

χ abcd
1,2,2ω = e4

h̄3

∫
dk

8π3

∑
vc

16
b
cv (k)Im

[
rc

cv (k)va
vc;kd (k)

]
ω4

cv (k)
δ(ωcv (k) − 2ω). (A35)

χ abcd
1,3,pω is given by

χ abcd
1,3,pω = e4

h̄3

∫
dk

8π3

∑
m �=n �=


fm
Re
[
va

mn;kd rc

mrb

n


](
W (1,3,1)

nm
,pω − W (1,3,2)
mn
,pω

)
, (A36)

where

W (1,3,1)
nm
,ω = 1

ω2
nmωn
(ωnm − ω̃)

− 1

ω
mω
n(ωnm − 2ω
m)(ω
m − ω̃)
,

W (1,3,1)
nm
,2ω = − 8

ω2
nm(ωnm − 2ω
m)(ωnm − 2ω̃)

,

W (1,3,2)
nm
,ω = 1

ω2
nmω
m(ωnm − ω̃)

+ 1

ωn
ωm
(2ωn
 − ωnm)(ωn
 − ω̃)
,

W (1,3,2)
nm
,2ω = − 8

ω2
nm(ωnm − 2ωn
)(ωnm − 2ω̃)

. (A37)

For χ abcd
3 and χ abcd

4 , we write

χ abcd
3 + χ abcd

4 =
2∑

p=1

((
χ abcd

3,1,pω + χ abcd
4,1,pω

) + (
χ abcd

3,2,pω + χ abcd
4,2,pω

) + (
χ abcd

3,3,2,pω + χ abcd
4,3,1,pω

) + (
χ abcd

3,3,1,pω + χ abcd
4,3,2,pω

))
, (A38)

where we have grouped the χ ’s that have common factors within the small parentheses. We have that

χ abcd
3,1,pω + χ abcd

4,1,pω = − e4

h̄3

∫
dk

8π3

∑
m �=n �=l

fnlRe
[
va

nmrd
mlr

c
ln;kb

](
W (4,1)

nml,pω − W (3,1)
nml,pω

)
, (A39)

where

W (3,1)
nml,ω = 1

ω2
nlωml (ωnl − ω̃)

+ 1

ωnmωlm(2ωnm − ωnl )(ωnm − ω̃)
,

W (3,1)
nml,2ω

= − 8

ω2
nl (ωnl − 2ωnm)(ωnl − 2ω̃)

,

W (4,1)
nml,ω = 1

ω2
lnωlm(ωln − ω̃)

+ 1

ωmnωml (2ωmn − ωln)(ωmn − ω̃)
,

W (4,1)
nml,2ω

= − 8

ω2
ln(ωln − 2ωmn)(ωln − 2ω̃)

. (A40)

Now,

χ abcd
3,2,pω + χ abcd

4,2,pω = e4

h̄3

∫
dk

8π3

∑
m �=n �=l

fnl

b
lnRe

[
va

nmrd
mlr

c
ln

](
W (4,2)

nml,pω − W (3,2)
nml,pω

)
, (A41)

with

W (3,2)
nml,ω = − 3ωnm − 4ωnl

ω3
nl (ωnl − ωnm)2(ωnl − ω̃)

+ 1

ω2
nl (ωnl − ωnm)(ωnl − ω̃)2

− 1

ωnm(ωnm − ωnl )2(2ωnm − ωnl )(ωnm − ω̃)
,

W (3,2)
nml,2ω

= − 16

ω3
nl (ωnl − 2ωnm)(ωnl − 2ω̃)

,
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W (4,2)
nml,ω = − 3ωmn − 4ωln

ω3
ln(ωln − ωmn)2(ωln − ω̃)

+ 1

ω2
ln(ωln − ωmn)(ωln − ω̃)2

− 1

ωmn(ωmn − ωln)2(2ωmn − ωln)(ωmn − ω̃)
,

W (4,2)
nml,2ω

= − 16

ω3
ln(ωln − 2ωmn)(ωln − 2ω̃)

. (A42)

Next,

χ abcd
3,3,1,pω = χ abcd

4,3,2,pω = e4

h̄3

∫
dk

8π3

∑
m �=n �=l �=q

fql Im
[
va

nmrd
ml r

c
lqrb

qn

](
W (4,3,2)

nmlq,pω + W (3,3,1)
nmlq,pω

)
, (A43)

where

W (3,3,1)
nmlq,ω

= 1

ωnm(2ωnm − ωnl )(ωnm − ωql )(ωnm − ω̃)
+ 1

ωql (2ωql − ωnl )(ωql − ωnm)(ωql − ω̃)
,

W (3,3,1)
nmlq,2ω

= 8

ωnl (ωnl − 2ωnm)(ωnl − 2ωql )(ωnl − 2ω̃)
,

W (4,3,2)
nmlq,ω

= 1

ωmn(2ωmn − ωln)(ωmn − ωlq)(ωmn − ω̃)
+ 1

ωlq(2ωlq − ωln)(ωlq − ωmn)(ωlq − ω̃)
,

W (4,3,2)
nmlq,2ω

= 8

ωln(ωln − 2ωmn)(ωln − 2ωlq)(ωln − 2ω̃)
. (A44)

Finally,

χ abcd
3,3,2,pω + χ abcd

4,3,1,pω = − e4

h̄3

∑
m �=n �=l �=qk

fnqIm
[
va

nmrd
mlr

c
qnrb

lq

](
W (4,3,1)

nmlq,pω + W (3,3,2)
nmlq,pω

)
, (A45)

where

W (3,3,2)
nmlq,ω

= 1

ωnmωqm(2ωnm − ωnl )(ωnm − ω̃)
+ 1

ωnqωmq(2ωnq − ωnl )(ωnq − ω̃)
,

W (3,3,2)
nmlq,2ω

= 8

ωnl (ωnl − 2ωnm)(ωnl − 2ωnq)(ωnl − 2ω̃)
,

W (4,3,1)
nmlq,ω

= 1

ωmnωmq(2ωmn − ωln)(ωmn − ω̃)
+ 1

ωqnωqm(2ωqn − ωln)(ωqn − ω̃)
,

W (4,3,1)
nmlq,2ω

= 8

ωln(ωln − 2ωmn)(ωln − 2ωqn)(ωln − 2ω̃)
. (A46)

TABLE II. Room-temperature experimental lattice constant a0 in bohrs along with the experimental and theoretical direct-band-gap
energies Eg in eV of the semiconductors studied in this paper without SOC. For the indirect semiconductors, we only report the direct gap. We
mention that for InSb, InAs, and Ge the notation “≈0” means that the theoretical gaps are of the order of ≈10−11 eV.

Eg

a0 Expt. LDA-HGH GGA-HGH GGA-PSPNC LDA-PSPNC mGGA-HGH

Direct semiconductors without SOC
GaAs 10.684 1.424 0.470 0.509 0.572 0.597 1.235
InSb 12.243 0.18 ≈0 ≈0 0.053 0.098 0.305
GaSb 11.519 0.75 0.099 0.113 0.203 0.260 0.613
InAs 11.448 0.345 ≈0 ≈0 0.113 0.128 0.522
ZnS 10.223 3.54 2.642 2.818 2.033 1.698 3.898
ZnSe 10.711 2.82 1.670 1.830 1.253 0.967 2.728
CdTe 12.24 1.5 1.029 1.168 0.7203 0.458 1.772

Indirect semiconductors without SOC
Si 10.26 3.4 2.555 2.610 2.570 2.516 2.880
GaP 10.3 2.78 1.795 1.849 1.978 1.960 2.723
Diamond 6.74 6.5 5.677 5.743 5.664 5.593 5.865
Ge 10.69 0.805 ≈0 ≈0 0.007 0.091 0.516
BeTe 10.61 4.1 3.647 3.744 2.918 2.838 4.221
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TABLE III. Room-temperature experimental lattice constant a0 in bohrs along with the experimental and theoretical direct-band-gap
energies Eg in eV of the semiconductors studied in this paper with SOC. For the indirect semiconductors, we only report the direct gap.
We mention that for InSb, GaSb, InAs, and Ge the notation “≈0” means that the theoretical gaps are of the order of ≈10−11 eV.

Eg

a0 Expt. LDA-HGH GGA-HGH mGGA-HGH

Direct semiconductors with SOC
GaAs 10.684 1.424 0.356 0.394 1.125
InSb 12.243 0.18 ≈0 ≈0 0.069
GaSb 11.519 0.75 ≈0 ≈0 0.385
InAs 11.448 0.345 ≈0 ≈0 0.412
ZnS 10.223 3.54 2.639 2.815 3.892
ZnSe 10.711 2.82 1.524 1.684 2.590
CdTe 12.24 1.5 0.732 0.869 1.493

Indirect semiconductors with SOC
Si 10.26 3.4 2.515 2.569 2.843
GaP 10.3 2.78 1.785 1.838 2.714
Diamond 6.74 6.5 5.666 5.732 5.856
Ge 10.69 0.805 ≈0 ≈0 0.421
BeTe 10.61 4.1 3.297 3.393 3.892

Collecting the above results leads us to write the full 2PA susceptibility as

χ abcd = χ abcd
ω + χ abcd

2ω , (A47)

where

χ abcd
pω =

(
χ abcd

1,1,pω + χ abcd
1,2,pω + χ abcd

1,3,pω + χ abcd
2,1,pω + χ abcd

2,2,pω + χ abcd
2,3,pω + χ abcd

3,1,pω + χ abcd
3,2,pω + χ abcd

3,3,1,pω + χ abcd
3,3,2,pω

+ χ abcd
4,1,pω + χ abcd

4,2,pω + χ abcd
4,3,1,pω + χ abcd

4,3,2,pω

)
, (A48)

FIG. 15. Band structure of GaAs, where the arrows denote the corresponding 2ω transitions that contribute to 2PA around 0.94 ± 0.15 eV
where SOC is included (top panels), and around 0.93 ± 0.15 eV where SOC is not included (bottom panels). These energies correspond to the
peak of the spectra shown in Fig 9. Each arrow represents the two ω photons that are absorbed, thus going from a valence band to a conduction
band. See text for details.
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with p = 1, 2. Using Fig. 1, we identify

ρ
(3)
eii = χ

(3)
21 + χ

(3)
22 + χ

(3)
11 + χ

(3)
12 , (A49)

ρ
(3)
eie = χ

(3)
23 + χ

(3)
13 , (A50)

ρ
(3)
eei = χ

(3)
32 + χ

(3)
42 + χ

(3)
31 + χ

(3)
42 , (A51)

ρ (3)
eee = χ

(3)
331 + χ

(3)
432 + χ

(3)
332 + χ

(3)
431. (A52)

APPENDIX B: EXPERIMENTAL a0 AND EXPERIMENTAL
AND THEORETICAL Eg VALUES AND ADDITIONAL

RESULTS

In Tables II and III, we give the room-temperature ex-
perimental lattice constant a0, in bohrs, along with the
experimental and theoretical band-gap energies Eg, in eV, for
the semiconductors studied in this paper, with and without
SOC. For the indirect semiconductors, we only report the di-
rect gap. It is worth mentioning that the mGGA-HGH scheme
overestimates Eg for InSb, InAs, ZnS, CdTe, and BeTe without
SOC, and only for InAs and ZnS with SOC; this could be
due to the fact that we are using room-temperature lattice
constants instead of 0-K values. In Fig. 14, we show a full
view of the band structure of Si along with the 2PA arrows
around 2.2 ± 0.15 eV, and in Fig. 15, we show the band
structure for GaAs around 0.94 ± 0.15 and 0.93 ± 0.15 eV,
corresponding to the peak energies of the spectra in Fig. 9
(the former is when SOC is included, and the latter is when
SOC is not included). The spin-split bands are very well seen
in the top panels of Fig. 15. For these energies, the only
transitions that contribute to β

‖
11(ω) are from v = 1, 2, 3 to

c = 1.
In Fig. 16, we show a comparison of the 2PA coefficient

β
‖
11(ω) and Im[χaa(ω)] (whose abscissa is rescaled by h̄ω/2)

for GaAs, Si, and GaP. We see that although for Si and
GaP β

‖
11(ω) and Im[χaa(ω)] resemble each other only up to

the first resonance, for GaAs there is no resemblance for
most of the 2PA photon energies, and they only resemble
each other just around Eexpt, where 2PA would compete with
the linear absorption and thus is not interesting for 2PA.
Also, except for the Si resonance of ∼2.6 eV, we do not
find a clear and compelling correlation between β

‖
11(ω) and

Im[χaa(ω)].
In Fig. 17, we show the spectra of the 2PA coefficient

β
‖
11(ω) of several direct and indirect semiconductors, where

the direct-band-gap Eg is used in the calculation. We show
the spectra for energies Eg/2 � h̄ω < Eg, where only 2PA is
present, and thus the linear absorption does not intervene. The
β

‖
11(ω) obtained for the different semiconductors is arranged

from the semiconductor with the highest value (InSb) to the
semiconductor with the lowest value (ZnSe). It is worth men-
tioning that the 2PA energy range spans from ∼0.1 for InSb
to ∼6.5 eV for diamond, and the intensity in mW−1 × 10−8

goes from ∼0.4 for ZnS to ∼70 for InSb. It should be clear
that the particular characteristic of every material determines
the spectral range of absorption and intensity. Moreover, the

spectroscopy 2PA line shape depends on the electron dynam-
ics, mainly that of the electrons in the last valence and first
conduction bands, as explained in the main text.

FIG. 16. 2PA β
‖
11(ω) coefficient and Im[χaa(ω)] (whose abscissa

is rescaled by h̄ω/2) for GaAs, Si, and GaP. The left vertical lines
are at Eexpt/2 whereas the right vertical lines are at Eexpt of the
corresponding material. See text for details.
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FIG. 17. 2PA β
‖
11(ω) coefficient of Eq. (44) for several semiconductors as a function of photon energy h̄ω. The materials are oriented along

the (110) crystallographic direction, and the incident beam is polarized in the (100) direction. The scissors correction � (in eV) is shown for
each material. The vertical black line is at Eexpt/2. All the spectra are calculated with mGGA-HGH including SOC.
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