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Superconducting pairing from repulsive interactions of fermions in a flat-band system
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Fermion systems with flat bands can boost superconductivity by enhancing the density of states at the Fermi
level. We use quasiexact numerical methods to show that repulsive interactions between spinless fermions in
a one-dimensional (1D) flat-band system, the Creutz ladder, give a finite pairing energy that increases with
repulsion, though charge quasiorder remains dominant. Adding an attractive component shifts the balance in
favor of superconductivity and the interplay of two flat bands further yields a remarkable enhancement of
superconductivity, well outside of known paradigms for 1D fermions.
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I. INTRODUCTION

Systems with flat-band dispersions have recently attracted
much theoretical and experimental attention [1–13], because
when the kinetic energy of quantum particles is constant for a
range of momenta or even all them, interactions become com-
pletely decisive for the many-body ground state. In particular,
a major line of work has been devoted to the enhancement of
superconductivity in electronic systems with flat bands near
the Fermi level [6–14]. While a significant boost to supercon-
ductivity is generally found in flat-band systems due to the di-
verging density of states, previous works have predominantly
inserted the electron pairing, which is at the root of supercon-
ductivity, just by hand, i.e., only using an assumed effective
attractive interaction between electrons. However, micro-
scopic interactions are primarily repulsive between electrons.
In non-flat-band systems, electron pairing, and subsequently
superconductivity, might emerge from repulsive interactions,
but charge or magnetic orders are also closely competing,
making reliable results on unconventional and high-Tc super-
conductivity extremely challenging to obtain [15].

How the competition between superconducting and charge
or magnetic orders plays out in flat-band systems with repul-
sive electron interactions is an almost unexplored area, which
the present work addresses. Mean-field results have shown
that superconductivity is more robust than charge orders when
doping away from the flat band [11], further motivating us to
study the competition between different orders using the most
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reliable approaches possible. For this purpose, 1D systems
are ideal targets, as density-matrix renormalization group
(DMRG) techniques [16–19] yield quasiexact results. It also
allows us to study the effect of flat bands in 1D systems
specifically, a burgeoning field in itself [4,14,20–22]. In par-
ticular, flat-band systems might fall outside the widely used
low-energy Luttinger liquid (LL) description of 1D fermions,
as the necessary linearization of the dispersion breaks
down [23].

In this work, we use DMRG numerics to provide
quasiexact results on multiple ways in which flat bands
give rise to and enhance superconductivity for fermions with
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FIG. 1. (a) Creutz ladder with sites aj and bj in the jth unit cell
with hopping and interaction parameters given by the Hamiltonian
Eq. (1). (b) Phase diagram of the purely repulsive model (PRM)
with V1 > 0 and V2 = 0 as a function of density n. For n � 1/3 the
physics is captured by the lower flat band (FB) without interactions.
For n > 2/5 an itinerant-paired (IP) phase of fermions exists with
dominant charge quasiorder (QO). In between we find a coexistence
regime. (c) Phase diagram of the mixed interaction model (MIM)
with V1 = −V2 > 0 with a pair Luttinger liquid (PLL) for V1/�ε �
1/2, with phase (charge) QO for lower (higher) densities marked
by three points. Around V1/�ε � 1/2 an IP with highly enhanced
superconducting correlations exists for n � 0.73. Larger interactions
give phase separation.
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partially or fully repulsive interactions. In particular, we show
clearly that pairing of fermions in a flat band can arise from
purely repulsive interactions and that this pairing surprisingly
even grows with the strength of the repulsion. We further
show that these paired fermions form an itinerant-paired
(IP) phase for a wide range of densities, which may have
dominant charge quasiorder (QO) [24] for pure repulsion,
but clearly has dominant superconducting phase QO for
interactions with both repulsive and attractive components.
In the weak-interaction regime, the latter case realizes a
previously proposed state of hole-based superconductivity,
i.e., a pair Luttinger liquid (PLL) [23,25]. However, by adding
a second flat band in close energetic proximity, we find a
massive increase in superconducting QO, far beyond known
1D paradigms. To obtain these results we study the 1D Creutz
ladder [26], depicted in Fig. 1(a), as it allows us to both study
the effect of one flat band and two interacting flat bands.
Ultracold quantum matter moving in this particular lattice
has already been experimentally realized using a parametric
cavity for bosons [2] and an optical lattice for fermions [27].
The physics of repulsively interacting bosons has recently
also been studied theoretically for this lattice [4,20–22].

II. THE MODEL

We study interacting spinless fermions on the Creutz lad-
der, comprised of sites a j and b j in the jth unit cell, with
annihilation operators f̂a, j and f̂b, j . The Hamiltonian we focus
on is

Ĥ =
∑

j

t (i f̂ †
b, j+1 f̂b, j − i f̂ †

a, j+1 f̂a, j + H.c.)

− t ( f̂ †
b, j+1 f̂a, j + f̂ †

a, j+1 f̂b, j + H.c.)

+ V1(n̂b, j n̂b, j+1 + n̂a, j n̂a, j+1)

+ V2(n̂b, j n̂a, j+1 + n̂a, j n̂b, j+1), (1)

where n̂a/b, j = f̂ †
a/b, j f̂a/b, j , V1 denotes the nearest-neighbor

(NN) interaction along the legs, and V2 next-nearest-neighbor
(NNN) interaction along the diagonals. We set the overall
energy scale by fixing t = 1.

The flat-band dispersion becomes explicit by rewriting
Eq. (1) in the basis diagonalizing the kinetic energy, using the
maximally localized Wannier basis [4,20,21]

ĉ±, j = 1
2 [( f̂a, j − i f̂b, j ) ∓ ( f̂a, j+1 − i f̂b, j+1)]. (2)

In this basis, the kinetic energy terms give two flat bands at
energies ε± = ±2, with a gap �ε = 4. Focusing on the lower
band (upper band behaves similarly) and including interac-
tions, we arrive at the single-band projected Hamiltonian

Ĥ− =
∑

j

ε−n̂−, j + tp(ĉ†
−, j+1ĉ†

−, j ĉ−, j ĉ−, j−1 + H.c.)

+ U1n̂−, j n̂−, j+1 + U2n̂−, j n̂−, j+2, (3)

where tp = (V1 − V2)/8, U1 = 2U2 = (V1 + V2)/4, and
n̂−, j = ĉ†

−, j ĉ−, j . This representation makes it explicit that in
the single-band limit the physics is that of density-assisted
tunneling, equivalent to tunneling of NN pairs of fermions,

with a purely interaction-set amplitude tp, plus remnant
short-range interactions U1 and U2.

In terms of interactions, we first study a purely repul-
sive model (PRM), where we set V1 > 0,V2 = 0, generating
U1,U2 > 0 in the single-band limit. Later, we expand our
focus by adding an attractive interaction V2 < 0, resulting in
U1 = U2 = 0, which we name the mixed interaction model
(MIM). We solve the full Hamiltonian, Eq. (1), numerically
using two DMRG codes [28,29] to quasiexactly obtain the
many-body ground states. Here, we exploit the conserved
particle number, such that our results are presented as a
function of density n = N/Lx, where N is the total number
of fermions and Lx is the ladder’s linear size, restricted to
0 < n � 1 due to particle-hole symmetry of the Hamiltonian.
Observables, apart from gap extrapolations, are computed at
Lx = 100 with the default bond dimension χ = 512 leading to
a truncated weight 10−9, but we ascertained convergence us-
ing up to χ = 1024, decreasing the truncated weight to 10−12.
Alongside these quasiexact DMRG results, we also study the
single-band projected Hamiltonian, Eq. (3), to provide further
insights.

To determine the characteristics of the many-body ground
states, we first show that single-particle excitations are gapped
and that low-lying excitations consist of fermion pairs by
computing the one- and two-particle gaps (m = 1, 2)

�m(n) = E0(nLx + m) + E0(nLx − m) − 2E0(nLx ), (4)

where E0(N ) denotes the ground-state energy of N fermions.
These gaps are computed at different Lx and then extrapolated
to 1/Lx → 0. We also obtain important information by focus-
ing on the lower band. Here, we study both the phase (ph) and
charge-density (ch) correlation functions

G−,ph(r) = |〈ĉ†
−, j ĉ

†
−, j+1ĉ−, j+1+r ĉ−, j+r〉|, (5)

G−,ch(r) = |〈n̂−, j n̂−, j+r〉 − 〈n̂−, j〉〈n̂−, j+r〉|, (6)

particularly extracting their power-law decay exponents
α−,ph/ch to determine whether phase or charge QO is slowest
decaying and thus dominant. We also compute the single-
particle density matrix of the lower band

G−(r) = |〈ĉ†
−, j ĉ−, j+r〉|, (7)

to verify that its single-particle excitations are gapped. As
a further marker of fermion pairing [30–33], we calculate
the Fourier transform of the fluctuations of the local density,
FT [δ〈n̂−, j〉]. In the case of strong interactions, we addition-
ally find it useful to analyze the density-density correlation
function across the diagonal links of the ladder in the original
two-band basis

Gdiag(r) = 〈n̂b, j n̂a, j+1n̂b, j+r n̂a, j+1+r〉
− 〈n̂b, j n̂a, j+1〉〈n̂b, j+r n̂a, j+1+r〉. (8)

Finally, for complementary information, we obtain the bipar-
tite entanglement entropy S(l ) = −Tr[ρ(l ) ln ρ(l )] for 1 �
l < 2Lx, where ρ(l ) is the reduced density matrix of the first
l sites [34].
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FIG. 2. PRM results. (a) Single-particle gap �1 as a function of
interaction V1 for various densities n in the IP phase. Inset shows
same data with the role of n and V1 interchanged, with V1 increasing
in direction of the arrow. (b) Power-law decay exponents α−,ph(ch) for
phase (charge) correlations as a function of density n in the IP phase
at V1 = �ε/2.

III. PRM RESULTS

The complete many-body phase diagram for the purely re-
pulsive model (PRM) with V1 > 0 and V2 = 0 is summarized
in Fig. 1(b), with a large part of the phase diagram covered
by an itinerant-paired (IP) phase. This is consistent with the
single-band Hamiltonian, Eq. (3), displaying explicit pairing
physics through the nonzero tp term.

Specifically, we find that by obtaining the ground state of
the full Hamiltonian Eq. (1), densities n � 2/5 give �1 > 0
and G−(r) decaying exponentially with distance r. Thus,
single-particle excitations play no role, in strong contrast to
repulsively interacting spinless fermions on ladders with non-
flat bands [23]. Even more remarkably, the pairing energy
�1 increases approximately linearly with the repulsion V1

across the entire range �ε/16 � V1 � �ε/2, as summarized
in Fig. 2(a). This is also in contrast to the behavior of other
1D spinless-fermion systems, such as the two-leg Hubbard
ladder [23]. We further find �2 = 0 in the thermodynamic
limit and that the peak of FT [δ〈n̂−, j〉] occurs at momentum
k = 2π (n/2) (see the Supplemental Material (SM) [35] for
the details), indicating that the low-energy degrees of freedom
are effectively halved and thus those of fermion pairs. These
results clearly indicate the existence of an IP phase with
fermion pairs, and not any other higher-order bound states,
at densities n � 2/5.

Within the IP phase, we find that the strong repulsion
results in a dominant charge QO in the lower band for all
n � 2/5. This is quantified in Fig. 2(b), where we plot the
power-law decay exponents α−,ph(ch) for phase (charge) cor-
relations and find the charge-density correlations decaying
slowest (see the SM [35] for the fitting procedure). These
results are obtained at V1 = �ε/2, but are virtually identical

at lower V1 values. As a consequence, for interactions up to
V1 = �ε/2, the only energy scale in the system is V1, as
also evident in the projected Hamiltonian Eq. (3) and in the
linear scaling of �1 in Fig. 2(a). Spot checks at V1 = �ε, i.e.,
when the repulsion can couple to the upper flat band, show
strong deviations from these lower V1 results [not included in
Fig. 1(b)].

To check whether the IP phase is a LL described by a
conformal field theory with central charge c = 1 [23,36],
we study the entanglement entropy. We find significant fluc-
tuations, which cannot be captured by the Calabrese-Cardy
formula [37–39]. Still, performing a naive fit yields a central
charge either with a large uncertainty or clearly different from
c = 1. Thus, we cannot identify the IP phase as a PLL (see the
SM [35] for details).

Complementing the IP phase, we find for lower densities
a fully or partially localized flat-band behavior that is not
sensitive to the repulsive interactions. At n � 1/3, we find
that the many-body ground state is completely localized. We
ascertain this by running ground-state searches with three
different initial conditions: (1) initially localized particles,
(2) random initial matrix-product states, and (3) adiabatic
transition of Hamiltonian parameters from a closed ring to
the Creutz ladder. All three approaches result in different but
fully localized states with the same Wannier orbital energy
E0 = nLxε− for n � 1/3, while all three yield the same state
for n > 2/5 [40]. This numerical finding agrees with the ana-
lytical study of the projected Hamiltonian Eq. (3), that a pair
of adjacent fermions with center-of-mass momentum k has an
effective dispersion U1 − 2tp cos k. Thus, with U1 = 2tp for
the PRM, a pair always adds a positive amount of energy to
the system. For densities n < 1/3, it is possible to keep this
kinetic energy cost to zero by not creating any fermion pairs,
while simultaneously making the remnant interaction U2 zero
by putting at most one fermion in every three unit cells. We
therefore designate this phase as flat band (FB) in Fig. 1(b).

Finally, at n = 1/3, our numerics show a transition into a
coexistence regime between the flat band and the IP phases
for 1/3 < n < 2/5 (see the SM [35] for details). At these
densities, placing two fermions adjacently cannot be fully
avoided, and, as a consequence, it is favorable to create some
itinerant pairs. At the same time, low-density patches can still
exist intermittently, where both repulsive interactions and pair
formation are avoided, resulting in fully localized fermions,
overall yielding a mixture of IP and FB phases.

IV. MIM RESULTS

Since we find an IP phase with dominant charge QO within
the PRM, we next seek to enhance the superconducting cor-
relations by reducing the remnant single-band interactions
U1,2. We do this by additionally switching on an attractive
interaction V2 across the diagonals of the Creutz ladder. In
particular we investigate the case where U1,2 are tuned to
zero by setting V2 = −V1, which we designate as the mixed
interaction model (MIM). The complete many-body phase
diagram is summarized in Fig. 1(c), capturing the behavior
for both V1 below as well as when comparable with the
gap �ε.
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Starting with small interactions, we note that for V2 = −V1,
only the pair hopping survives in the single-band projected
Hamiltonian Eq. (3). We additionally note that by performing
a particle-hole transformation, ĉ−, j → ĉ†

−, j , Eq. (3) reduces
to a model recently solved exactly by mapping to a system of
hard-core bosons representing two-fermion composites [25].
For V1 = �ε/8,�ε/4, we find that the ground-state energies
for the full system [Eq. (1)] numerically agree very well
with the energies of this analytical solution at all densities
0 < n � 1 (see SM [35]). Furthermore, based on the exact
solution [25] and its LL description [23], G−,ph(r) is expected
to scale as ∼r−1/(2K ). Here K is the Luttinger parameter, equal
to 1 in the limit of n → 0 and approaching 1/4 as n → 1,
with K � 1/2 giving superconducting phase QO [23]. Our
numerics matches this behavior very closely, finding domi-
nant superconducting QO for all densities where K � 1/2, as
marked in Fig. 1(c). In addition, we find a finite value for �1,
an exponential decay of G−(r), and a peak of FT [δ〈n̂−, j〉]
at momentum k = 2π (n/2), all further confirming that the
MIM realizes a PLL in the small-interaction, single-band
limit.

The behavior changes drastically in a regime around
V1 � �ε/2 where we start seeing the upper flat band affecting
the physics. Our DMRG numerics find the occupation of the
upper band, previously reaching at most 1.3% and typically
much less, now boosted to 3.5%–8.5%. Most interestingly,
we find for n � 0.73 both a strong enhancement of the su-
perconducting correlations and the effective physics being
very different from the PLL found at lower V1. For example,
while still decaying largely with a power law, G−,ph(r) now
shows an extremely slow decay, especially at smaller den-
sities as illustrated in Fig. 3(a) (see SM for V1 dependence
[35]). This decay is much slower than typically found for
interacting fermions in 1D [23]. We also find the entanglement
entropy to be very different compared to smaller V1, as shown
in Fig. 3(b), saturating to a constant value inside the bulk.
Moreover, for n � 0.47 we find no peak at finite momentum in
FT [δ〈n̂−, j〉] due to complete vanishing of real-space density
fluctuations. A peak at k = 2π (n/2), indicating pairing, only
appears suddenly for n > 0.47. At the same time, we find
�1 > 0 as expected, and �2 = 0, showing that the attractive
component of the interaction does not give rise to multiparti-
cle bound states beyond pairs.

To better understand the ground state in the regime around
V1 � �ε/2, we analyze the correlation function Gdiag(r), as
illustrated in Fig. 3(c). While we find the expected short-
range correlation hole for composite hard-core bosons for
V1 = �ε/8,�ε/4, the behavior at V1 = �ε/2 is very differ-
ent, with a much deeper and wider correlation hole, explaining
why we see no higher-order bound states beyond pairs. There
is now also a positive correlation for finding pairs at distance
r = 2 which can explain the major boost in superconducting
correlations. We interpret these results as the upper flat band
providing a strong additional short-range attraction for pairs
in the lower flat band through virtual processes, rendering a
substantial boost to superconductivity, well beyond the known
PLL regime for pairing in 1D fermion systems.

While superconducting correlations are boosted for
V1 � �ε/2 in a broad density range, we eventually find charge
QO dominating for n > 0.73. In this high-density regime the
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FIG. 3. MIM results. (a) Power-law decay exponents α−,ph(ch) for
phase (charge) correlations as a function of density n at V1 = �ε/2.
(b) Entanglement entropy S(l ) as a function of subsystem size l at
density n = 0.36 for different V1. (c) Diagonal correlation function
Gdiag(r) as a function of distance r at density n = 0.36 for different
V1. Inset shows a zoom-in at small r.

entanglement entropy approaches the Calabrese-Cardy pat-
tern, although never quite obtaining it, pointing to significant
remnants of non-LL physics. Finally, for strong interactions
V1 > �ε/2, we find phase separation where also higher-order
bound states are formed. In the SM we provide additional
numerical data showing that the conclusions for the MIM
model extend also beyond the fine-tuned condition V2 = −V1

[35].

V. DISCUSSION

Using quasiexact many-body methods, we show how flat
bands give rise to fermion pairing from purely repulsive inter-
actions, with pairing strength even increasing with repulsion.
Although we find charge-density QO ultimately dominating
for pure repulsion, it would be premature to conclude that
2D or 3D arrays formed from Creutz ladders will necessar-
ily have a charged-ordered ground state, as weak interladder
coupling could help stabilize the superconducting phase. Our
work also highlights the great potential of multiple flat bands
to strongly stabilize superconductivity, establishing a regime
beyond known paradigms for pairing in 1D systems. Creutz
ladders have already been realized with ultracold fermionic
atoms via optical potentials [27]. At the same time, ultracold
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atoms with magnetic dipole moments offer a range of NN
repulsion strengths in line with the V1 values for which we
simulated the PRM [41,42], and our work is thus accessible to
direct experimental tests.
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