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Excitations and spectra from equilibrium real-time Green’s functions
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The real-time contour formalism for Green’s functions provides time-dependent information of quantum
many-body systems. In practice, the long-time simulation of systems with a wide range of energy scales is
challenging due to both the storage requirements of the discretized Green’s function and the computational
cost of solving the Dyson equation. In this paper, we apply a real-time discretization based on a piecewise
high-order orthogonal-polynomial expansion to address these issues. We present a superconvergent algorithm
for solving the real-time equilibrium Dyson equation using the Legendre spectral method and the recursive
algorithm for Legendre convolution. We show that the compact high-order discretization in combination with
our Dyson solver enables long-time simulations using far fewer discretization points than needed in conventional
multistep methods. As a proof of concept, we compute the molecular spectral functions of H2, LiH, He2, and
C6H4O2 using self-consistent second-order perturbation theory and compare the results with standard quantum
chemistry methods as well as the auxiliary second-order Green’s function perturbation theory method.
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I. INTRODUCTION

The finite-temperature real-time Green’s function formal-
ism of equilibrium quantum statistical mechanics [1] has
several advantages over the commonly used real-frequency
and imaginary-time formalisms [2]. Unlike in the imaginary-
time formalism, spectral functions can be extracted from
real-time Green’s functions without the need of ill-posed
analytical continuation [3]. Unlike in the real-frequency for-
malism, there is no explicit dependence on the location of
poles on the real axis. This allows one to solve self-consistent
diagrammatic equations without further approximations [4,5],
which may violate conservation laws [6,7]. However, to de-
scribe systems with disparate energy scales both high time
resolution and long-time propagation are needed.

This requires a compact representation of data on the
real-time axis in combination with an accurate solver for the
real-time Green’s function equation of motion, the Dyson
equation. The final time accessible and hence the energy reso-
lution of a simulation critically depend on the efficiency with
which this equation can be solved. Current methods are built
on an equidistant discretization in real time which evolved
from second-order explicit methods [8,9] to the current state-
of-the-art 6th-order multistep method [10]. For two-time
arguments, history truncation [11] and matrix compression
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techniques have been developed [12], as well as adaptive
time-stepping methods [13].

In this paper we take a different approach and discretize the
real-time axis in terms of a piecewise high-order orthogonal-
polynomial expansion on sequential panels. Since the Green’s
function is smooth, the polynomial expansion converges expo-
nentially with the expansion order N [14], yielding a compact
representation. Using the discretization to represent the mixed
Green’s function, we develop a superconvergent [15] Dyson
equation solver for equilibrium real-time propagation, with
2N th-order global convergence at the panel boundaries. The
compactness and high-order accuracy allows us to use large
panels with comparably low polynomial degree and enables
access to unprecedentedly long times.

As a proof-of-concept benchmark of the real-time panel
representation and the high-order Dyson equation solver,
we perform equilibrium real-time propagation using self-
consistent second-order perturbation theory (GF2) [16–23]
of molecules and compare our results to standard quantum
chemistry methods and the recently developed approximation
to GF2, auxiliary GF2 (AGF2) [24,25]. We also bench-
mark the state-of-the-art Nevanlinna analytical continuation
method [26].

This paper is organized as follows: In Sec. II we intro-
duce the contour real-time Green’s function formalism, the
Dyson equation of motion, and their application to the case
of equilibrium real-time propagation. The real-time panel
discretization is introduced in Sec. III with a preamble on
imaginary-time discretization. Using the compact representa-
tion, a high-order algorithm for solving the Dyson equation of
motion is developed in Sec. IV. The algorithmic asymptotic
convergence properties and computational complexity are
compared to state-of-the-art multistep methods in Sec. V and
Sec. V A. Proof-of-concept benchmarks on molecular systems
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FIG. 1. Real-time contour for systems in initial thermal equilib-
rium at inverse temperature β.

using GF2 are shown in Sec. VI. Section VII is devoted to
conclusions and an outlook.

II. REAL-TIME GREEN’S FUNCTIONS

The general theory of nonequilibrium real-time Green’s
functions is built on the real-time contour formalism [1]. For
systems that start in initial thermal equilibrium and evolve
according to a time-dependent Hamiltonian, the time propa-
gation is performed along the L-shaped time contour C; see
Fig. 1. The contour C consists of three branches C = C+ ∪
C− ∪ CM , where the branch C+ is the forward propagation
in real time from the contour time z = 0 to some maximal
time z = tmax, C− is the backward propagation in real time,
and CM is the propagation in imaginary time to the final time
z = −iβ, where β is the inverse temperature of the initial state
[1]. In order to describe both thermal and temporal quantum
correlations, we introduce the single-particle Green’s function
G that depends on two contour times z and z′,

Gab(z, z′) = −i〈TCca(z)c†
b(z′)〉, z, z′ ∈ C, (1)

where TC is the contour time ordering operator, the operator
c†

a(z′) (cb(z)) creates (annihilates) an electron in the orbital
a (b) at the contour time z′ (z), and 〈·〉 is an ensemble expec-
tation value; see Ref. [1]. In the following derivations we will
suppress the orbital indices a and b for readability.

The equation of motion for the contour Green’s function
G(z, z′) is the integro-differential Dyson equation

[iS∂z − F (z)]G(z, z′) −
∫
C

dz̄ �(z, z̄)G(z̄, z′) = δC (z, z′),

(2)

where S is the overlap matrix, F (z) is the Fock matrix [27],
�(z, z′) is the dynamic self-energy, and δC is the contour
Dirac-delta function [1].

By constraining the time arguments z and z′ of the Green’s
function G(z, z′) to one of the three parts (C+, C−, CM) of the
real-time contour C, we can use the symmetry properties of
G to work with a reduced set of components. One possible
choice is

GM (τ − τ ′) = −iG(z, z′), z, z′ ∈ CM, (3a)

G>(t, t ′) = G(z, z′), z ∈ C−, z′ ∈ C+, (3b)

G<(t, t ′) = G(z, z′), z ∈ C+, z′ ∈ C−, (3c)

G�(t, τ ′) = G(z, z′), z ∈ C±, z′ ∈ CM, (3d)

where GM (τ ) is the imaginary time, G≷(t, t ′) the
greater/lesser, and G�(t, τ ′) the mixed Green’s function. For
the resulting coupled Dyson equations for this set of Green’s
function components, see Ref. [28].

A. Equilibrium real-time Green’s functions

We will only consider the case of equilibrium real-time
evolution [29,30], when the time evolution of the system is
governed by the same time-independent Hamiltonian as the
initial thermal equilibrium state. In this case the greater and
lesser Green’s functions G≷ are time translation invariant,
G≷(t, t ′) = G≷(t − t ′), and can be inferred from the mixing
Green’s function G� as

G<(t ) = G�(t, 0), G>(t ) = ξG�(t, β ), (4)

where ξ = −1(+1) for fermions (bosons). In equilibrium, the
spectral function A(ω), related to the photoemission spectrum,
is given by the retarded Green’s function GR in real frequency,

A(ω) = − 1

π
Im[GR(ω)]. (5)

In real time GR is determined by G≷ through the relation

GR(t ) = θ (t )[G>(t ) − G<(t )]

= −θ (t )[G�(t, β ) + G�(t, 0)]. (6)

Therefore, with an initial state determined by GM , all real-time
behavior can be determined by G�(t, τ ′), and it is sufficient to
solve the Dyson equations for GM and G�.

In imaginary time the Dyson equation for GM (τ ) is given
by [28]

(−S∂τ − F )GM (τ ) −
∫ β

0
d τ̄ �M (τ − τ̄ )GM (τ̄ ) = 0, (7)

with the boundary condition [GM (0) + GM (β )]S = −1 and
the dynamic imaginary-time self-energy �M (τ ). For the con-
nection to the imaginary-frequency Matsubara formalism see
Ref. [27]. The solution GM (τ ) provides the initial condition

G�(0, τ ) = −iGM (β − τ ) (8)

for the real-time evolution of G�. The Dyson equation for G�

is given by

(iS∂t − F )G�(t, τ ) −
∫ t

0
dt̄ �R(t − t̄ )G�(t̄, τ ) = Q�(t, τ ),

(9)

where the right-hand side Q� accounts for the temporal corre-
lations with the initial imaginary-time state

Q�(t, τ ) =
∫ β

0
d τ̄ ��(t, τ̄ )GM (τ̄ − τ ) (10)

through its dependence on GM (τ ). In Eq. (9) the retarded self-
energy integral kernel �R is given by

�R(t ) = ξ��(t, β ) − ��(t, 0), t � 0. (11)

Combining the Dyson equations (7) and (9) with expres-
sions for the self-energies

�M = �M[GM], �� = ��[G�] (12)
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gives the closed set of equations (7), (9), and (12) that can be
solved first in imaginary time for GM (τ ) and then in real time
for G�(t, τ ). For an explicit example of such a self-energy
expression see Eq. (51) in Sec. VI where the self-consistent
second-order self-energy approximation (GF2) [16–23] is in-
troduced.

III. HIGH-ORDER DISCRETIZATION

Solving the Dyson equations [Eqs. (7) and (9)] numeri-
cally requires a precise representation of the imaginary-time
Green’s function GM (τ ) and self-energy �M (τ ) as well as
their mixed counterparts G�(t, τ ), ��(t, τ ).

For entire functions, finite orthogonal polynomial expan-
sions converge supergeometrically [14]; i.e., the polynomial
coefficients decay faster than exponentially with polynomial
order. Stable high-order integro-differential solvers can be
formulated for this class of expansions [31,32]. Building on
our previous work [27], we use a high-order Legendre ex-
pansion for the imaginary-time τ axis. The real-time t axis
is subdivided into panels, each containing a Legendre ex-
pansion in real time. This panel approach is inspired by the
higher-order elements employed in the spectral/hp element
methods in computational fluid dynamics [33,34]. For the
mixed Green’s function G�(t, τ ) we use a direct product basis
of the imaginary-time and real-time representations.

We employ the Legendre polynomial basis since it is possi-
ble to express the Fredholm and Volterra integrals in Eqs. (7)
and (9) directly in Legendre coefficient space, using a recur-
sive algorithm [35].

A. Imaginary-time Legendre polynomial expansion

We represent the functions GM (τ ) and �M (τ ) with one
imaginary-time argument τ using a finite Legendre polyno-
mial expansion of order Nτ

GM (τ ) ≈
Nτ −1∑
m=0

GM
m Pm[ψM (τ )], (13)

where GM
m are the Legendre polynomial expansion coefficients

of GM (τ ), Pm(x) is the Legendre polynomial of order m de-
fined on x ∈ [−1, 1], and the linear function

ψM (τ ) = 2τ

β
− 1 (14)

maps imaginary time τ ∈ [0, β] to ψM (τ ) ∈ [−1, 1]. For
Green’s functions and self-energies the expansions converge
faster than exponential with Nτ since both these classes of
functions are infinitely derivable in imaginary time τ [27,36].

We note that several other representations for imaginary
time have been explored, including power mesh discretiza-
tions [37–41], pole expansions [42,43], spline grids [20],
Chebyshev orthogonal polynomials [44], numerical basis
functions from singular value decomposition of the analytical
continuation kernel (also known as the intermediate repre-
sentation basis) [45–47], and analytical basis functions from
interpolative decomposition of the same kernel [48,49].

FIG. 2. Real-time panel representation.

B. Imaginary-time Dyson equation solver

The solution of the imaginary-time Dyson equation (7) can
be formulated directly in terms of the Legendre polynomial
coefficients GM

m in Eq. (14), as shown in Ref. [27].
The resulting linear system can be solved iteratively for GM

m
using the generalized minimal residual algorithm (GMRES)
[50] and a Matsubara-frequency sparse sampling [51,52]
preconditioner using the Legendre sparse sampling points
derived in Appendix B. The imaginary-time convolution in-
tegral in Eq. (7) is computed in the Legendre coefficient space
using the recursive convolution method [27,35], scaling as
O(N2) with the polynomial order N . The recursive convolu-
tion method, in combination with the preconditioned iterative
linear solver, gives a Dyson equation solver algorithm with the
same O(N2) quadratic scaling.

For the benchmarks presented in Sec. VI the solution from
the Matsubara sparse sampling method also reaches machine
precision when using roughly twice the number of Legendre
coefficients required by the Legendre spectral algorithm of
Ref. [27].

C. Real-time Legendre panel expansion

To represent functions with one real-time argument, like
the retarded self-energy �R(t ), we construct panels by divid-
ing the real-time t axis using equidistant points tp = �t × p,
with p = 0, 1, . . . , Np; see Fig. 2. For this segmentation we
define the real-time panels Tp as the subintervals

Tp ≡ [tp, tp+1] = [p�t, (p + 1)�t], p ∈ 0, 1, . . . , Np − 1.

For t on a given panel p, t ∈ Tp, the real-time-dependent
self-energy �R(t ) can be discretized using the finite Legendre
expansion �R

p (t ) on panel p

�R(t ) ≈ �R
p (t ) =

Nt −1∑
n=0

�R
p,nPn[ψp(t )], (15)

where �R
p,m are the Legendre coefficients, and the linear

function

ψp(t ) = 2
( t

�t
− p

)
− 1 (16)

maps times t ∈ Tp back to the interval ψp(t ) ∈ [−1, 1].
The self-energy �R(t ) for all t can be expressed as the

direct sum of the panel expansions �R
p (t )

�R(t ) ≈
Np−1∑
p=0

�R
p (t ) =

Np−1∑
p=0

[
Nt −1∑
n=0

�R
p,nPn[ψp(t )]

]
, (17)

by defining Pn(x) = 0 for x /∈ [−1, 1].

D. Imaginary- and real-time product basis

Since the equilibrium real-time evolution is described
by the mixed Green’s function G�(t, τ ), we combine the
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FIG. 3. Real- and imaginary-time panel representation of the
mixed Green’s function G�(t, τ ) for a H2 dimer at hydrogen distance
r = 0.5 Å and (for visualization purposes) the low inverse temper-
ature β = 2 Ha−1. Upper panel: Product representation using four
panels (blue, yellow, green, and red surfaces). Each panel has a prod-
uct basis with eighth-order polynomials both in time t and imaginary
time τ , Nt = 8, Nτ = 8. The corresponding collocation nodes are
also shown (dark circle markers). Lower left panel: Initial imaginary-
time solution at t = 0, where Im[G�(0, τ )] = −GM (β − τ ) in terms
of its polynomial expansion (red) and collocation nodes (dark blue).
Lower right panel: Time evolution of G�(t, τ ) at τ = 0 and β (cyan
and magenta lines, respectively) related to the lesser and greater
Green’s functions; see Eq. (4).

Legendre expansion in imaginary time τ and the Legendre
panel based expansion in real time t by forming a direct prod-
uct basis of Eqs. (13) and (17). The resulting representation of
G�(t, τ ) takes the form

G�(t, τ ) ≈
Np−1∑
p=0

G�
p(t, τ )

=
Np−1∑
p=0

[
Nt −1∑
n=0

Nτ −1∑
m=0

G�
p,nmPn[ψp(t )]Pm[ψM (τ )]

]
,

(18)

where G�
p,nm is a rank-3 tensor of Legendre polynomial coef-

ficients. Since G�(t, τ ) is an entire function, the polynomial
coefficients decay supergeometrically [14] with n and m, and
the discretization converges faster than exponentially with
respect to Nt and Nτ . As an example the product representation
of G�(t, τ ) for the hydrogen dimer is shown in Fig. 3.

E. Legendre collocation points

While we will solve the Dyson equation in Legendre co-
efficient space, it is also important to be able to transform
between the Legendre coefficients of the Green’s function

G�
p,nm and the Green’s function G�

p(tp,i, τ j ) on a grid of real
time tp,i and imaginary time τ j , for evaluating self-energy with
approximations given by direct products of Green’s functions
in time, like GF2. For this purpose we use a set of collocation
points [31] that have stable linear transformations from and to
Legendre coefficient space.

In this work we use the Legendre-Gauss-Lobatto colloca-
tion points [31] x(N )

i given by the roots of (1 − x2)PN (x) = 0
for 0 < i < N − 1 and the points at the interval boundaries
x(N )

0 = −1, x(N )
N = 1. The linear transforms are given by the

Legendre Vandermonde matrix P(N )
in and its inverse S(N )

ni

P(N )
in = Pn

(
x(N )

i

)
, S(N )

ni = ωi

Wn
Pn

(
x(N )

i

)
, (19)

where Wn = 2/(2n + 1) = ∫ 1
−1 P2

n (x) dx and ωi = 2/(N2 +
N ) × P−2

N (xi ) [31].
Given the collocation points on the fundamental interval

[−1, 1], the real- and imaginary-time collocation points tp,i

and τ j are given by the inverse of the linear maps in Eqs. (14)
and (16)

tp,i = ψ−1
p

(
x(Nt )

i

)
, τ j = ψ−1

M

(
x(Nτ )

j

)
. (20)

The explicit linear transformations take the form

GM (τ j ) =
Nτ −1∑
m=0

P(Nτ )
jm GM

m , GM
m =

Nτ −1∑
j=0

S(Nτ )
m j GM (τ j ) (21)

for the imaginary-time Green’s function GM , and for the
mixed Green’s function G� the product basis gives

G�(tp,i, τ j ) =
Nt −1∑
n=0

Nτ −1∑
m=0

P(Nt )
in P(Nτ )

jm G�
p,nm,

G�
p,nm =

Nt −1∑
i=0

Nτ −1∑
j=0

S(Nt )
ni S(Nτ )

m j G�(tp,i, τ j ), (22)

together with analogous relations for the self-energy compo-
nents �M and ��.

IV. DYSON EQUATION SOLVER

Given the real-time panel discretization (Fig. 2) and the
Legendre real- and imaginary-time product basis [Eq. (18)],
we will now reformulate the Dyson equation [Eq. (9)] in
Legendre coefficient space, also known as a Legendre spectral
formulation [31]. In Sec. IV A we first express the history
integral term in the Dyson equation (9) using the real-time
panel representation of �R and G�. Then, in Sec. IV B, we
adapt the recursive Legendre convolution algorithm [35] to
evaluate each nonzero combination of self-energy and Green’s
function panels in the integral. Finally, in Sec. IV D we map
the remaining terms in the Dyson equation (9) to Legendre
coefficient space, arriving at a complete Legendre spectral
formulation.
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A. Real-time panel history integral

Using the real-time panel notations in Sec. III C, the history
integral I (t, τ ) in the Dyson equation (9)

I (t, τ ) =
∫ t

0
dt̄ �R(t − t̄ )G�(t̄, τ ) (23)

can be written as a sum of functions Ip(t, τ ) supported on
panel p, i.e.,

I (t, τ ) =
Np−1∑
p=0

Ip(t, τ ), with Ip(t, τ ) ≡ 0, ∀t /∈ Tp. (24)

Each function Ip(t, τ ) can in turn be written as a sum of
integrals over the mixed Green’s function’s panel components
G�

p(t, τ ) defined in Eq. (18)

Ip(t, τ ) =
p∑

k=0

∫ t

0
dt̄ �R(t − t̄ )G�

k (t̄, τ ), (25)

where G�
k (t̄, τ ) is nonzero for t̄ ∈ Tk . The finite support in t

and t̄ restricts the integration argument of �R(t − t̄ ) in each
term of Eq. (25) since

t ∈ Tp and t̄ ∈ Tk ⇒ t − t̄ ∈ Tp−k−1

⋃
Tp−k . (26)

Hence, only two �R panels contribute in Eq. (25)

t ∈ Tp ⇒
∫ t

0
dt̄ �R(t − t̄ )G�

k (t̄, τ )

=
∫ t

0
dt̄ �R

p−k−1(t −t̄ )G�
k (t̄, τ )

+
∫ t

0
dt̄ �R

p−k (t −t̄ )G�
k (t̄, τ )

= �R
p−k−1

>∗ G�
k + �R

p−k
<∗ G�

k , (27)

where in the last step we have introduced a short notation to
represent these two types of panel integrals. Using this short-
hand notation, the history integral Ip(t, τ ) in Eq. (25) can be
written as

Ip(t, τ ) = Ip(t, τ ) + �R
p

<∗ G�
0 + �R

0
<∗ G�

p, (28)

where the integrals depending on �R
p and G�

p have been sepa-
rated from the integrals over earlier panels

Ip(t, τ ) ≡
p−1∑
k=0

(
�R

p−1−k
>∗ G�

k

) +
p−1∑
k=1

(
�R

p−k
<∗ G�

k

)
. (29)

The separation in Eq. (28) is prepared for direct use in the
panel formulation of Dyson equation (9), where G�

p will be
solved for and �R

p will be iteratively updated using Eq. (12).

B. Legendre-spectral panel integrals

For the panel-history integral Ip(t, τ ), the two types of
panel integrals appearing in Eq. (25) can be readily computed
in Legendre coefficient space.

In both cases the integral bounds are determined by the
support of the �R and G� panel components

�R
p−k−1

>∗ G�
k ≡

∫ t

0
dt̄ �R

p−k−1(t − t̄ )G�
k (t̄, τ )

=
∫ min(tk+1,t−tp−k−1 )

max(tk ,t−tp−k )
dt̄ �R

p−k−1(t − t̄ )G�
k (t̄, τ )

=
∫ tk+1

t−tp−k

dt̄ �R
p−k−1(t − t̄ )G�

k (t̄, τ ), (30)

and analogously

�R
p−k

<∗ G�
k ≡

∫ t

0
dt̄ �R

p−k (t − t̄ )G�
k (t̄, τ )

=
∫ t−tp−k

tk

dt̄ �R
p−k (t − t̄ )G�

k (t̄, τ ). (31)

Hale and Townsend [35] have derived a recursive method for
these kinds of Volterra type convolution integrals, with an
external time argument in the integration bounds and in the
integration kernel �R.

The linear operator corresponding to the integration and
the integration kernel is given by

[
�R

q

≶∗ ] = �t

2
B≶[

�R
q

]
, (32)

where B≶ is a matrix in Legendre coefficient space con-
structed via the recursion relation [27]

B≶
n,m+1 = −2m + 1

2n + 3
B≶

n+1,m + 2m + 1

2n − 1
B≶

n−1,m + B≶
n,m−1 (33)

and the starting relations

B≶
n,0 =

{
f0 ∓ f1

3 , n = 0,

±( fn−1

2n−1 − fn+1

2n+3 ), n � 1,

B≶
n,1 = ∓B≶

n,0 + B≶
n−1,0

2n − 1
− B≶

n+1,0

2n + 3
, n � 1, (34)

with the special case, B≶
0,1 = −B≶

1,0/3, for n = 0. The recur-
sion relation in Eq. (33) is only stable in the lower triangular
part of the coefficient matrix, and the upper triangular coeffi-
cients are computed from

B≶
n,m = (−1)m+n 2n + 1

2m + 1
B≶

m,n. (35)

In the case of Eq. (32), the Legendre coefficient vector fn in
Eq. (34) is given by the real-time panel Legendre coefficients
of the self-energy �R on panel q [Eq. (15)], fn = �R

q,n.
Using the integral operator construction of Eq. (32), the

product basis Legendre coefficients Ip,nm [Eq. (18)] of the his-
tory integral Ip(t, τ ) can be calculated using matrix products
in Legendre coefficient space according to

Ip,nm = Ip,nm +
Nt −1∑
n′=0

[
�R

p
<∗ ]

nn′G
�
0,n′m

+
Nt −1∑
n′=0

[
�R

0
<∗ ]

nn′G
�
p,n′m, (36)
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where G�
p,nm are the real-time panel Legendre coefficients of

G� on panel p, and Ip,nm are the product basis Legendre
coefficients of Ip(t, τ ) in Eq. (29) given by

Ip,nm =
p−1∑
k=0

Nt −1∑
n′=0

[
�R

p−1−k
>∗ ]

nn′G
�
k,n′m

+
p−1∑
k=1

Nt −1∑
n′=0

[
�R

p−k
<∗ ]

nn′G
�
k,n′m. (37)

C. Real-time panel right-hand side

To formulate the real-time Dyson equation (9) using the
real-time panel representation, the right-hand side Q�(t, τ )
in equation (9) also has to be expressed as a sum of panel
restricted functions

Q�(t, τ ) =
Np−1∑
p=0

Q�
p(t, τ ), with Q�

p(t, τ ) ≡ 0, ∀t /∈ Tp,

(38)
where Q�

p(t, τ ) is given by

Q�
p(t, τ ) =

∫ β

0
d τ̄ ��

p (t, τ̄ )GM (τ̄ − τ ). (39)

This class of integrals can be computed in imaginary-time
Legendre coefficient space using the recursive algorithm of
Eq. (33) as shown in Ref. [27]. Accounting for the sign in the
convolution argument of Eq. (39) gives the real-time panel
Legendre coefficients of Q�

p as

Q�
p,nm =

∑
m′

[G̃M∗]mm′��
p,nm′ , (40)

where the integral operator [G̃M∗] is given by

[G̃M∗] = β

2

(
B<[G̃M] + ξB>[G̃M]

)
(41)

with B≶ given by Eqs. (33), (35), and (34) using the
modified Legendre coefficients fn = G̃M

n = (−1)n+1GM
n . See

Appendix A for a derivation.

D. Legendre-spectral panel Dyson equation

With all the terms appearing in the real-time Dyson
equation (9) expressed on the panel subdivision of the
real-time axis, we are now in a position to formulate the
corresponding real-time panel Dyson equation for the mixing
Green’s function panel component G�

p(t, τ ), with t ∈ Tp.
Using the panel expression for both the history integral

I (t, τ ) in Eq. (24) and Eq. (28), and the right-hand side
Q�(t, τ ) in Eq. (38), the real-time panel Dyson equation for
G�

p(t, τ ) becomes

(iS∂t − F − �R
0

<∗)G�
p(t, τ )

= Q�
p(t, τ ) + Ip(t, τ ) + [

�R
p

<∗ G�
0

]
(t, τ ), (42)

with the boundary conditions

G�
p(0, τ ) = iξGM (β − τ ), for p = 0,

G�
p(tp, τ ) = G�

p−1(tp, τ ), for p > 0, (43)

given by the initial boundary condition in Eq. (8) and the
continuity of G�(t, τ ) between panels.

We now reformulate all terms in Eqs. (42) and (43) in
the panel Legendre product basis. The goal is to translate all
expressions containing G�

p(t, τ ) in terms of the polynomial
coefficients G�

p,nm defined in Eq. (18).
The boundary conditions in Eq. (43) can be reformulated

using Pn(±1) = (±1)n:∑
n

(−1)nG�
p,nm = iξ (−1)mGM

m , for p = 0,

∑
n

(−1)nG�
p,nm =

∑
n

G�
p−1,nm, for p > 0. (44)

The action of the partial derivative ∂t on the real-time
Legendre polynomial basis functions Pn(ψp(t )) of panel p in
Eq. (42) is given by

∂t Pn[ψp(t )] = 2

�t
∂xPn(x) =

∑
n′

Dnn′Pn′ [ψp(t )],

where Dnn′ is the upper triangular matrix [31]

�t

2
Dnn′ ≡

{
2n′ + 1, 0 � n′ � n, n′ + n odd,

0, elsewhere. (45)

Using the expressions in Legendre coefficient space for the
derivative [Eq. (45)], the history integral [Eq. (36)], and right-
hand side [Eq. (40)], the panel Dyson equation (42) can now
be written entirely in Legendre coefficient space∑

n′

(
iSDnn′ − Fδnn′ − [

�R
0

<∗ ]
nn′

)
G�

p,n′m

= Q�
p,nm + Ip,nm + [�R

p
<∗ G�

0 ]p,nm. (46)

Equation (46) is a linear matrix equation of size Nt for G�
p on

each panel p.

E. Time propagation of the real-time Dyson equation

We summarize the algorithm for time propagation of the
equilibrium real-time problem formulated in Sec. II A. The
goal is to determine the mixed Green’s function G�(t, τ )
by self-consistently solving the real-time Dyson equation (9)
in combination with the self-energy relation �� = ��[G�]
of Eq. (12).

The real-time panel subdivision of Sec. III C gives a real-
time Dyson equation (42) that can be solved successively for
each panel p, and its reformulation in Legendre coefficient
space [Eq. (46)] produces a linear system equation for G�.
The required calculational steps for the time propagation on
panel p are shown in Fig. 4.

For each panel p, the history integral Ip given by Eq. (37) is
only computed once, since it depends on the Green’s function
G�

q and self-energy ��
q on earlier panels q < p. For p > 0,

an initial guess for the panel self-energy �p is obtained by
extrapolation of �p−1 using linear prediction [53], in order to
reduce the number of the self-energy self-consistent steps. To
emphasize that these two steps are only performed once per
panel they are shown as orange boxes in Fig. 4.

The Dyson equation and self-energy self-consistency is
performed by the steps represented as green boxes in Fig. 4.
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FIG. 4. Schematic real-time panel propagation of G�
p with self-

energy self-consistency imposed per panel. The history integral and
extrapolation (orange boxes) is performed once per panel, while the
Dyson equation and self-energy (green boxes) are iterated to self-
consistency in �p.

First, given the self-energy �p on the current panel p, the
right-hand side terms in the Dyson equation (46), Qp[��]

and [�R
p

<∗ G�
0 ], are constructed. Then the panel Dyson

equation (46) is solved for the panel Green’s function G�
p,

which in turn is used to compute the self-energy �p using
Eq. (12). If the induced change in the self-energy �p is
above a given threshold another self-energy self-consistent
iteration is performed. For the systems considered here, the
relative change in the self-energy per iteration reaches ma-
chine precision in less than ten self-consistent iterations. Once
the self-energy is converged, the calculation for panel p is
complete and the time propagation proceeds to the next panel
p + 1.

For long-time simulations we observe spectral aliasing in
the Legendre coefficients in imaginary time of G�(t, τ ) (not
shown). This phenomenon is well understood [14,54] and
is resolved by using spectral blocking in terms of Orzag’s
two-thirds rule [14]. In other words, the self-energy ��(t, τ )

is evaluated on a denser collocation grid in imaginary time
and only 2/3 of the resulting Legendre coefficients are used in
the solution of the Dyson equation. This prevents the spectral
aliasing and gives stable time-panel stepping.

V. RESULTS: ASYMPTOTIC CONVERGENCE

To benchmark the convergence properties of the Legendre-
panel based Dyson solver, we use an analytically solvable
two-level system with energies ε1 and ε2 and hybridization
V , giving the matrix-valued quadratic Hamiltonian

h =
[
ε1 V
V ε2

]
. (47)

The matrix-valued contour Green’s function Gi j for this non-
interacting system is given by

(i1∂z − h)G = δC (48)

and is solvable by explicit diagonalization. The G11 com-
ponent of the Green’s function also obeys the scalar Dyson
equation of motion

(i∂z − ε1)G11 −
∫
C

dz̄�(z, z̄)G11(z̄, z) = δC (49)

with the self-energy � given by � = V g2V with g2 the solu-
tion of (i∂z − ε2)g2 = δC . To derive Eq. (49) from Eq. (48) the
inversion formulas for 2 × 2 block matrices can be used.

To benchmark our real-time panel Dyson equation solver
we solve Eq. (49) for G�(t, τ ) in the equilibrium case ε1 =
−1, ε2 = 5, V = 6 at inverse temperature β = 3 and compare
to the analytical solution obtained from Eq. (48) at the final
time T = 48; see Fig. 5. To be able to compare the results
using different numbers of discretization points Nt per panel,
we study the error as a function of total number NT of time
discretization points used, given by NT = Np × Nt , where Np

is the number of real-time panels. For all Nt we observe the
asymptotic convergence rate

max
τ

|G�(T, τ ) − G�
exact(T, τ )| ∼ O

(
N−2(Nt −1)

T

)
. (50)

We note that there is no inherent limitation of the expansion
order Nt , and a high-order expansion like Nt = 32 gives an
even higher-order convergence rate ∼O(N−62

T ).
We attribute the unexpected factor of two in the expo-

nent of Eq. (50) to the superconvergence phenomenon [15]
present in the family of Galerkin methods of our Dyson solver
[Eq. (46)]. Numerical tests show that the convergence prop-
erties remain the same for � = 0 where Eq. (46) simplifies
to a series of coupled first-order initial value problems. As
shown in the literature [55–58], and confirmed by our nu-
merical tests, the high-order superconvergence of Eq. (50) is
only attained at the panel boundaries, while the remaining
Legendre-Gauss-Lobatto collocation points (used for the self-
energy evaluation) converge as O(N−(Nt +2)

T ). The observed
superconvergence on the panel boundaries is beneficial since
the initial value for each real-time panel [Eq. (43)] is known
to high accuracy.

To put the convergence properties of our real-time panel
Dyson solver in perspective, we also solve Eq. (49) us-
ing the state-of-the-art multistep method for the real-time
Dyson equation of Ref. [10]. The multistep method uses an
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FIG. 5. Error convergence of the equilibrium real-time Green’s
function G�

11(T, τ ) at time T = 48 for a two-level system, as a
function of time discretization points NT . The real-time panel Dyson
solver result for the panel expansion orders Nt = 4, 8, 16, and 32
(diamonds) and the results of the equidistant multistep method of
Ref. [10] up to maximal order Nm = 6 (circles) are shown together
with asymptotic convergence rates (dotted lines).

equidistant real-time discretization, the Gregory quadrature,
and backward differentiation. At order Nm the asymptotic
convergence of the multistep method is given by ∼O(N−Nm

T ).
However, due to the inherent high-order instability of back-
ward differentiation the order Nm of the multistep method
is limited to Nm � 6 [10]. The convergence of the multistep
method at all possible orders Nm applied to the two level
benchmark system is also shown in Fig. 5.

Comparing the performance of the two methods in Fig. 5
explicitly shows the efficiency of high-order polynomial panel
expansions in real time. At equal orders Nt and Nm the asymp-
totic scaling of the multistep solver N−Nm

T is much slower than
the N−2(Nt −1)

T rate of the real-time panel solver. Hence, already
at expansion order Nt = 4 the real-time panel solver (blue
diamonds) has the same asymptotic error scaling O(N−6

T ) as
the maximum order Nm = 6 multistep method (cyan circles);
see Fig. 5. In contrast to the multistep algorithm, the order
Nt of the Legendre-panel solver is not limited. Going to
high polynomial order gives a dramatic reduction in the total
number of time discretization points NT required to reach
high accuracy. For example, reaching an accuracy of 10−11

using expansion order Nt = 4 requires NT ∼ 104 points, while
using expansion order Nt = 32 reduces the required number
of required real-time points to NT ∼ 102, i.e., by almost two
orders of magnitude.

Thus, for a fixed final time T and accuracy, the number of
real-time discretization points NT required to store the equi-
librium real-time Green’s function can be drastically reduced
when using the high-order real-time panel Dyson solver.
This is an important advance since calculations in general
are memory limited, in particular when using the multistep

TABLE I. Asymptotic computational complexity as a function of
time discretization points NT for the multistep method of Ref. [10]
and the real-time panel method at panel expansion order Nt .

Multistep Legendre panel Equation

Linear system NT NT × N2
t

a (46)
History integral N2

T N2
T (37)

aNT × Nt with iterative linear solver.

method. Using the high-order real-time panel expansion will
therefore enable the study of both larger systems and longer
simulation times.

Computational complexity

In the previous section, it was shown that high-order real-
time panel expansions reduce the required number of time
discretization points by orders of magnitude for a fixed level
of accuracy, as compared to the state-of-the-art multistep
method of Ref. [10]. This enhanced performance comes at the
price of a moderate increase of computational complexity in
the linear system solver step; see Table I.

The main difference between the multistep solver and the
real-time panel solver is that the panel-based approach re-
quires solving Eq. (46) for all time points within a panel at
once. This amounts to solving a per-panel linear system with
a naive cubic scaling O(N3

t ), producing the extra prefactor
N2

t in the computational complexity of the linear system in
Table I. Using a preconditioned iterative linear solver may
reduce this by one factor of Nt and is an interesting venue
for further research. Even though this step of the Dyson equa-
tion has a higher computational complexity, this is not an issue
when taking into account the reduction of NT enabled by the
high-order expansion. Furthermore, the solution of the linear
system is in fact not the computational complexity bottleneck
of the Dyson solver.

The main computational bottleneck of the Dyson equa-
tion is the calculation of the history integral [Eq. (37)]. In
the direct multistep method the history integral evaluation
scales quadratically as O(N2

T ), and the real-time panel history
integral in Eq. (37) retains the same scaling O(N2

T ) = O(N2
p ×

N2
t ) by using the recursive Legendre convolution algorithm

[35]. However, in the special case of equilibrium real time
it was recently shown that the scaling of the history integral
can be reduced to quasilinear scaling [30]. The generalization
of this approach to the real-time panel expansion is another
promising direction for further research.

Potential computational complexity gains from the linear
system and the history integral aside, the real-time panel
Dyson solver algorithm presented here is already competi-
tive for memory-limited problems. It extends the range of
applicability of real-time propagation via the drastically lower
number of discretization points NT needed for a given accu-
racy; see Sec. V. The same compactness property also makes
the generalization of the real-time panel discretization from
equilibrium real-time to nonequilibrium real-time propagation
an interesting direction of further research.
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VI. RESULTS: APPLICATION TO MOLECULES

As a proof-of-concept application of the equilibrium
real-time Dyson equation solver, we solve the real-time
propagation of the mixed Green’s function G� for several
molecules, using dressed second-order perturbation theory
(GF2) [16–23]. The calculations are using standard Gaussian
basis functions and matrix elements from the quantum chem-
istry code pySCF [59,60], and the initial condition GM in
Eq. (8) is obtained using our in-house GF2 code implementing
the Legendre spectral algorithm detailed in Ref. [27].

Performing explicit time-propagation enables us to avoid
the ill-posed analytical continuation problem [3,26,61] by
computing the real-frequency spectral function A(ω) as a di-
rect Fourier transform of GR; see Eqs. (5) and (6). The spectral
function is in turn used to determine the electron affinity (EA)
and the ionization potential (IP) given by the first excitation
peaks in A(ω) above and below zero frequency.

For the small molecules H2 and LiH we compute the total
energy, the spectral function, IP, and EA as a function of the
interatomic separation r and compare with standard quan-
tum chemistry methods like Hartree-Fock (HF), Møller-Pleset
perturbation theory (MP2), coupled-cluster singles-doubles
(CCSD), and full configuration interaction (FCI). In partic-
ular, for HF the spectra are computed using the Koopmans
theorem (HF-KT) [62], and for CCSD we use the equation-of-
motion (CCSD-EOM) technique [63,64]. We also investigate
the approximated GF2 spectral function obtained from the ex-
tended Koopmans theorem (GF2-EKT) [65–70] and compare
to the exact GF2 spectra obtained from the time evolution
(GF2-RT).

For the larger molecule benzoquinone (C6H4O2), out of
reach for the methods CCSD and FCI, we compare with HF
and the AGF2 method [24,25] which is an approximation to
self-consistent GF2.

The reference HF, CCSD, CCSD-EOM, and AGF2 cal-
culations are performed using pySCF [59,60] while the FCI
spectral function is computed using EDLib [71].

A. Real-time second-order self-energy

Within the dressed second-order self-energy approxima-
tion (GF2) [16–18] the mixed self-energy �� is given by the
direct product of three Green’s functions

��
i j (t, τ ) = vilnp(2v jkqm − v jqkm)

× G�
lk (t, τ )G�

pq(t, τ )G�∗
nm(t, β − τ ), (51)

where vi jkl is the electron-electron Coulomb repulsion integral
[1]. The analogous expression for �M in Ref. [27] is obtained
using the initial condition in Eq. (8), and the retarded self-
energy �R is directly given by �� using Eq. (11).

In our GF2 calculations the self-energy calculation step
using Eq. (12) in the real-time panel time propagation
algorithm of Fig. 4 is replaced by the GF2 self-energy expres-
sion [Eq. (51)].

B. Small molecules: H2 and LiH

For the small molecules H2 and LiH we first compute total
energy as a function of interatomic distance r in the cc-pVDZ

FIG. 6. Total energy E of H2 in the cc-pVDZ basis as a function
of interatomic distance r using GF2, CCSD, MP2, and HF. Note that
for H2 with two electrons CCSD is exact.

basis and compare GF2 with HF, MP2, and CCSD, in Figs. 6
and 7. The GF2 total energy E is given by

E = 1
2 Tr[(h + F )P] + Tr[� ∗ G] + E (nn), (52)

where E (nn) is the nuclei-nuclei Coulomb energy and P is
the density matrix given by P = −2GM (β ). The difference
between MP2 and GF2 is the self-consistency, and our results
reproduce the well-known observation [18,24] that the diver-
gence of the total energy of MP2 at large r is not present in
GF2, where the total energy instead levels out for large r; see
Figs. 6 and 7.

In the intermediate range of interatomic separation r there
are two self-consistent GF2 solutions, which are adiabatically
connected to the low- and high-r regimes. The total energies
of the two solutions cross at intermediate values of r [18], and
the curves in Figs. 6 and 7 show the lowest-energy solution.
The coexistence of multiple solutions in dressed perturbation
theory is an active field of research [72–79].

FIG. 7. Total energy E of LiH in the cc-pVDZ basis as a function
of interatomic distance r using GF2, CCSD, MP2, and HF.
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FIG. 8. Upper panel: Spectral function of H2 at equilibrium H-H distance r0 = 0.76 Å, β = 200 Ha−1 using the cc-pVDZ basis. The
GF2 result is compared to Hartree-Fock (HF), the coupled-cluster singles-doubles equation of motion (CCSD-EOM), and full configuration
interaction (FCI). Lower left panel: Electron affinity (EA) as a function of r. Lower right panel: Ionization potential (IP) as a function of r.

At the equilibrium distance r0 the total energy E (r) is
minimized, and for H2 and LiH we observe that the GF2
total equilibrium energy does not improve on the MP2 re-
sult relative to the CCSD result, which is exact for H2 with
only two electrons. This is not generic, since GF2 performs
significantly better than MP2 (relative to CCSD) in other
cases. One example is the dissociation energy of He2 [27];
see Appendix C for a comparison of the spectral functions.

1. Equilibrium spectral function

To determine the equilibrium spectral function A(ω) we
perform GF2 equilibrium time propagation of G� using the
real-time panel algorithm of Sec. IV E and the GF2 self-
energy in Eq. (51). From G� the retarded Green’s function
GR is obtained using Eq. (6) that in turn gives the spectral
function as

A(ω) = − 1

π
Im{Tr[SGR(ω)]}, (53)

where S is the overlap matrix.
For H2 and LiH the time propagation is performed using

real-time panels with 16th-order Legendre expansions (Nt =
16) yielding floating point accuracy for the panel time step
sizes �t ≈ 19 as (0.8 Ha−1) and 15 as (0.6 Ha−1), respec-
tively. The propagation times are tmax ≈ 19 fs (800 Ha−1) and
29 fs (1200 Ha−1), giving the frequency resolutions �ω =
π/tmax ≈ 0.004 Ha and 0.003 Ha, for H2 and LiH, respec-
tively. The resulting spectral functions for H2 and LiH at the
equilibrium atomic distance are shown in the upper panels of
Fig. 8 and Fig. 9, together with the HF-KT, CCSD-EOM, and
FCI spectra at the same energy resolution.

To better reveal many-body effects the spectral function
A(ω) is scaled with

√
2π/(�ω) causing a single-particle-state

peak with a Gaussian broadening of σ = �ω to have unit

height. With this scaling the individual peaks in the HF-KT
spectra all have integer height, while many-body correlations
drive peak height renormalization (away from integer values)
for the methods GF2, CCSD-EOM, and FCI.

Comparing the GF2 spectral function for H2 in Fig. 8 with
HF, CCSD-EOM, and the exact FCI results, we see that GF2
is an overall improvement comparing to HF. The position of
the occupied state at ω ≈ −0.58 Ha is roughly the same for
all methods; however, GF2 is actually slightly worse than HF
when compared to the exact FCI result. For all other spectral
features, GF2 is an improvement compared to HF. In GF2
the two first peaks at positive frequencies are shifted down
relative to HF, in agreement with FCI. For the higher spectral
features the frequency moments of GF2 are improved over
HF, while the peak structure differs from FCI. We also note
that CCSD-EOM agrees remarkably well with the exact FCI
spectra. Thus, for LiH where FCI is out of reach we will use
CCSD-EOM as the base line comparison for GF2.

For LiH the GF2 spectra agree even better with the CCSD-
EOM spectra as compared to HF. Relative to the HF spectra,
the first peak at negative frequencies is shifted up in frequency,
while the peaks at positive frequencies are shifted down, all in
agreement with CCSD-EOM. While the low-frequency peak
heights are only weakly renormalized, we also note that GF2
correctly captures the strong renormalization of the spectral
feature at ω ≈ 0.275 Ha.

The good agreement in equilibrium spectra between GF2
and CCSD-EOM (and FCI) is promising, in particular for
the application of GF2 to investigate nonlinear processes
in molecular systems out of equilibrium [80–83]. However,
for finite systems and small basis sets, care must be taken
with regard to damping effects from infinite diagram re-
summation as seen in simple model systems like Hubbard
clusters [84,85].
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FIG. 9. Upper panel: Spectral function of LiH at equilibrium Li-H distance r0 = 1.62 Å, β = 200 Ha−1 using the cc-pVDZ basis. The GF2
result is compared to Hartree-Fock (HF) and the coupled-cluster singles-doubles equation of motion (CCSD-EOM). Lower left panel: Electron
affinity (EA) as a function of r. Lower right panel: Ionization potential (IP) as a function of r.

2. Comparison with analytical continuation

Within the GF2 self-energy approximation the spectral
function A(ω) is obtained from real-time propagation at en-
ergy resolution �ω = π/tmax. Having the spectral function
enables us to benchmark the Nevanlinna analytical continua-
tion method [26]. Analytical continuation solves the ill-posed
inverse problem of determining an approximate spectral
function using only the imaginary-time Green’s function
GM (τ ) [3].

In Fig. 10 the GF2 spectral function for LiH (at energy
resolution ω ≈ 0.003 Ha) is compared with the Nevan-
linna spectral function. The Nevanlinna calculation was
performed for each diagonal component of the SGM (τ ) prod-
uct, cf. Eq. (53), using 225 positive Legendre sparse-sampling

Matsubara frequencies (Appendix B) and 25 Hardy basis
functions (see Ref. [26]), evaluated 0.002 Ha above the real-
frequency axis. As seen in in Fig. 10, peaks up to ω ≈ 0.20 Ha
are well captured by the Nevanlinna method. However, some
of the higher-energy correlated resonances are missed or
smeared out, such as the one at ω ≈ 0.275 Ha (black arrow).

We stress that the equilibrium real-time propagation
method proposed in this paper eliminates the need for ana-
lytical continuation.

3. Ionization potential and electron affinity

At positive frequencies ω > 0 the spectral function A(ω)
describes electron addition excitations, while negative fre-
quencies ω < 0 corresponds to electron removal excitations.

FIG. 10. GF2 spectral function (blue) from real-time propagation compared to the spectral function obtained by analytical continuation of
the GF2 solution in imaginary time using the Nevanlinna method (orange) [26], for LiH in the cc-pVDZ basis at β = 200 and equilibrium
interatomic distance r0 = 1.62 Å, on a linear scale (upper panel) and logarithmic y axis (lower panel). The spectral functions are scaled so that
a nondegenerate single-particle state has a peak height of unity.
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Hence, the minimal energy for electron removal, the ion-
ization potential (IP), and the minimal energy for electron
addition, the electron affinity (EA), are given by the first peak
in A(ω) below and above ω = 0, respectively. To investigate
how GF2 performs in both the weakly and strongly correlated
regimes, we study the IP and EA as a function of interatomic
distance r for H2 and LiH. For large interatomic separations
r � r0 the kinetic overlaps become exponentially small while
the long-range Coulomb interaction varies weakly. The GF2
result is compared to the HF-KT and the CCSD-EOM results,
as well as the exact FCI result in the case of H2.

For H2 the IP and EA are shown in Fig. 8 as a function
of r. The overall performance of GF2 relative to the exact
FCI result is better in the weakly correlated regime r � r0,
compared to the strongly correlated regime r � r0. The GF2
behavior relative to HF, however, is different for the IP and
EA even in the weakly correlated regime. For the EA, GF2
constitutes a drastic improvement over HF, while for the IP,
GF2 largely follows the HF result. We note that the exact
FCI result is closely followed by CCSD-EOM, which is used
as baseline comparison for LiH. The IP and EA for LiH
are shown in Fig. 9. For both IP and EA we find that GF2
performs significantly better than HF relative to the CCSD-
EOM result. However, the GF2 behavior as a function of r
differs between IP and EA when entering the strongly cor-
related regime. The EA deviates from CCSD-EOM while
the IP follows the r dependence of CCSD-EOM with small
offset.

In light of the perturbation expansion order, the ob-
served progression from HF to GF2 shows that going from
the first-order dressed perturbation expansion of HF to the
second-order dressed perturbation expansion GF2 improves
the excitation spectra in the weakly correlated regime. How-
ever, in the strongly correlated regime, with larger interaction
to kinetic overlap ratios, also the GF2 second-order pertur-
bation expansion does not suffice. Hence, GF2 is probably
not well suited for studying phenomena in the r � r0 regime
like dynamical atomic dissociation. However, it is a promising
level of approximation to study phenomena at r ∼ r0, like
nonlinear optical-vibronic dynamics, terahertz response, and
high harmonic generation [86].

Finally we connect to previous diagrammatic perturbation
theory works computing IP and EA from the imaginary-
time Green’s function GM (τ ) using the extended Koopmans
theorem (EKT) [65–70]. Within EKT, electron addition and
removal energies are computed from a generalized eigenvalue
problem constructed from GM (τ ) and ∂τ GM (τ ) at τ = 0±; see
Appendix D for details. It has been used to compute IP and
EA both from GW [39] and GF2 [17,41,87] imaginary-time
calculations. However, how accurate the EKT approach is
relative to the actual IP and EA of the spectral function A(ω)
has not been investigated.

The real-time propagation approach presented here directly
gives the spectral function A(ω) and alleviates the need for
using EKT to compute the IP and EA. However, it also makes
it possible to investigate the accuracy of EKT by direct com-
parison to the exact spectral-function derived IP and EA. The
real-time GF2-RT and the GF2-EKT results for the IP and EA
are shown for H2 and LiH in Fig. 8 and Fig. 9, respectively.
In both cases the EA from GF2-EKT fails to reproduce the

TABLE II. HOMO-LUMO gap of benzoquinone (C6H4O2) at
different levels of theory in the STO-3g basis (this work) and the
aug-cc-pVDZ basis from Ref. [25].

Theory/Basis STO-3g aug-cc-pVDZ

HF 0.420 Ha 0.410 Ha
AGF2(1,0)@HF 0.338 Ha 0.372 Ha
GF2 0.189 Ha
Exp. [91,92] 0.299 Ha

GF2-RT result; instead the EKT calculations give EAs that
match the HF results for r � r0. These results raise seri-
ous concerns regarding the use of EKT for computing EAs
in GF2.

C. Intermediate-size molecule: Benzoquinone C6H4O2

To explore the solver in a regime that is not otherwise
accessible, we compute the spectral function of the benzo-
quinone molecule (C6H4O2) in a minimalistic STO-3g basis
(44 basis functions), with optimized MP2 geometry [88]. A
previous density functional study has shown that the HOMO-
LUMO gap of benzoquinone cannot be described by ab initio
density functionals like PBE [89], while HF overestimates
the gap. However, a recent study [25] has shown that a
self-consistent approximate formulation of GF2, called the
auxiliary second-order Green’s function perturbation theory
(AGF2), is able to describe the experimental gap.

For the real-time propagation a 16th-order real-time panel
expansion was used with panel time step size �t ≈ 7.3 as
(0.3 Ha−1) and a total propagation time of tmax ≈ 18 fs
(750 Ha−1). The minimal STO-3g basis prevents direct com-
parison with experiments, and we compare to AGF2 and HF
in this basis. The total memory footprint of the calculation is
on the order of 500 GB. The molecular point group symmetry
is also used to speed up the GF2 self-energy evaluation.

Figure 11 shows the GF2 spectral function of benzo-
quinone together with the corresponding results from HF
and AGF2(1,0)@HF [90]. The corresponding HOMO-LUMO
gaps listed in Table II show that going from first-order HF,
through the approximate second-order AGF2(1,0)@HF result,
to the full second-order self-consistent GF2 result yields a
decreasing HOMO-LUMO gap. Accounting for the aug-cc-
pVDZ results for HF and AGF2(1,0)@HF from Ref. [25], see
Table II, the experimental HOMO-LUMO gap of 0.299 Ha
[91,92] is likely to be underestimated by GF2 also in the larger
aug-cc-pVDZ basis.

Another distinct feature of the full GF2 spectral func-
tion is the large degree of quasiparticle renormalization, as
measured in terms of deviation from unit height in the spec-
tral function; see Fig. 11. This is to be compared with HF
where all individual excitations come with unit height and
the partial self-consistent AGF2 that only yields a small
frequency-independent renormalization. The GF2 spectral
function, on the other hand, displays peak-height renormal-
izations of the order 10%–20% for the HOMO and LUMO
peaks and even a loss of coherence for the spectra at larger
frequencies.
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FIG. 11. Spectral function of benzoquinone (C6H4O2) in the STO-3g basis from HF (upper panel), AGF2(1,0)@HF (middle panel), and
GF2 (lower panel).

VII. CONCLUSION AND OUTLOOK

We present a panel discretization of the real-time axis
for contour Green’s functions using a piecewise high-order
orthogonal Legendre polynomial expansion. Using this
expansion to represent the mixed Green’s function G�(t, τ )
[Eq. (18)], we show a drastic reduction of the required
number of discretization points needed to reach fixed
accuracy, as compared to state-of-the-art multistep
methods [10].

This result is achieved using a superconvergent [15]
algorithm for solving the equilibrium real-time Dyson equa-
tion of motion which we describe in detail. The algorithm
uses the Legendre spectral method [31] in combination with a
recursive algorithm for Legendre convolution [35]. The super-
convergence [15,55–58] gives a panel-boundary error scaling
O(N−2(Nt −1)

T ) for the total number of real-time discretization
points NT and Nt points per panel. When combined with
analytical self-energy approximations like GF2 [16–23], the
equilibrium real-time propagation of G�(t, τ ) can be used to
determine the real-frequency spectral function to an accuracy
�ω only limited by the total simulation time tmax, �ω ≈
π/tmax.

As proof-of-concept, we compute the molecular spectral
function of H2, LiH, and C6H4O2 by equilibrium real-time
evolution of G�(t, τ ) on the level of dressed second-order
Green’s function perturbation theory (GF2) [16–19], and
compare to standard quantum chemistry methods and the ap-
proximated auxiliary GF2 method [24,25]. Having the GF2
spectral function (up to resolution �ω) also enables stringent
benchmarking of analytical continuation [3], and we present a
comparison of the Nevanlinna method [26] on LiH.

Our molecular GF2 calculations establish the applicability
of the high-order expansion methods for equilibrium real-
time evolution of ab initio systems, showing promise for
applications to periodic systems using, e.g., GW [93,94]. The
compact real-time representation may also find applications in
quantum computing, where the required number of measured
observables scales with the number of time points [95–97].

Finally, the success of the real-time panel expansion,
shown here for equilibrium real-time evolution, is an im-
portant first step toward high-order expansion methods for
nonequilibrium real-time evolution. The presented discretiza-
tion of the mixed Green’s function G�(t, τ ) is directly appli-
cable to the nonequilibrium case, while the generalization of
the high-order expansion idea to the two real-time-dependent
Green’s function components, e.g., G≶(t, t ′) [Eqs. (3b), (3c)],
is yet to be explored.
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APPENDIX A: IMAGINARY-TIME INTEGRAL

The convolution operator in Eq. (41) derived in Ref. [27]
pertains to the imaginary-time convolution integral

[A∗]B ≡
∫ β

0
d τ̄A(τ − τ̄ )B(τ̄ ). (A1)

Comparing with the imaginary-time integral for the right-hand
side term Q�

p(t, τ ) in Eq. (39) we have

A(τ ) ≡ GM (−τ ), B(τ ) ≡ ��
p (t, τ ). (A2)

FIG. 13. Interaction energy Eint ≡ EHe2 − 2EHe (counterpoise
corrected [98]) for He2 using the aug-ccpvdz basis (solid lines), as
a function of interatomic distance r for HF, MP2, CCSD, CCSD(T),
and GF2 (at β = 200 Ha−1); the minima of CCSD and CCSD(T) are
from Ref. [99], and the GF2 minima from Ref. [27] (markers).

The fermionic antiperiodicity GM (−τ ) = −GM (β − τ ) in
combination with the Legendre expansion of GM (τ ) in
Eq. (13) gives

A(τ ) = −
∑

m

GM
m Pm[ψM (β − τ )]

=
∑

m

(−1)m+1GM
m Pm[ψM (τ )]

=
∑

m

AmPm[ψM (τ )], (A3)

where we have used that ψM (β − τ ) = −ψM (τ ), see Eq. (14),
and Pm(−x) = (−1)mPm(x). Hence, with the imaginary-time
convolution operator in Eq. (41), the panel Legendre expan-
sion of Q�

p(t, τ ) can be expressed as

Q�
p,nm =

∑
m′

[A∗]mm′��
p,nm′ , (A4)

where the convolution operator [A∗] is built using the
Legendre coefficients Am of A(τ ) given by Am = (−1)m+1GM

m
in Eq. (A3).

APPENDIX B: LEGENDRE POLYNOMIAL SPARSE
SAMPLING IN MATSUBARA FREQUENCY

The N th-order Legendre-Gauss quadrature nodes xi can
be constructed as the roots of the N th Legendre polynomial,
PN (xi ) = 0. Sparse sampling in Matsubara frequency takes
this idea to the imaginary frequency axis. The approach has
previously been applied to Chebyshev polynomials [51] and
here we extend the approach to Legendre polynomials.

The Fourier transform of Legendre polynomials

∫ 1

−1
eiaxPl (x) = 2il jl (a) (B1)
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FIG. 14. Spectral function of He2 using the aug-ccpvdz basis from HF, CCSD-EOM, and GF2-RT.

can be used to construct the linear transformation [36] Tnl

from Legendre coefficients to Matsubara frequencies ωn,

Tnl = (−1)nil+ζ jl

(
π (2n + ζ )

2

)
. (B2)

The Matsubara frequency sampling points can therefore be
selected as the N first points where the linear transform TnN of
the N th-order Legendre polynomial changes sign.

The resulting Matsubara frequency grids selects a number
of equidistant Matsubara frequencies at low frequencies and
only a few (nonlinearly spaced) points at high frequency; see
Fig. 12.

APPENDIX C: INTERACTION ENERGY AND
SPECTRA FOR He2

The performance of GF2 in the covalently bound systems
H2 and LiH reported in the main text are very different
compared to the case of the noble gases. As an example we
reproduce the result on the diatomic interaction energy of
He2 from Ref. [27] in Fig. 13. For He2 the interaction energy
of GF2 constitutes a drastic improvement compared to MP2,
lying in between the CCSD and CCSD(T) results in a region
around the equilibrium atomic separation.

With the equilibrium real-time propagation we can now
compare the spectral functions for He2 from HF, CCSD-
EOM, and GF2-RT; see Fig. 14. The GF2-RT result agrees
quantitatively with CCSD-EOM while HF gives discernable
shifts and an amplitude change in the occupied resonance at
ω ≈ −0.9 Ha, comprised of two near-degenerate molecular
orbitals.

APPENDIX D: EXTENDED KOOPMANS THEOREM

The Koopmans theorem [62] can—in Hartree-Fock
quadratic mean-field theory—be used to approximate single-
particle excitation energies like the ionization potential (IP)
and electron affinity (EA) by the single-particle eigenstates of
the mean-field Hamiltonian.

The extension to higher-order correlated methods is called
the extended Koopmans theorem (EKT) [65–70]. EKT is
based on the generalized Hartree-Fock one-particle potentials
V ≶ and their corresponding generalized overlap matrices S≶,
where lesser < and greater > denote the occupied and unoc-
cupied states, respectively.

In Green’s function based methods the matrices V ≶ and S≶

are determined by the imaginary-time Green’s function G(τ )
according to [17,39,41]

S≶ = −G(τ )|τ=0± , V ≶ = ∂τ G(τ )|τ=0± . (D1)

The eigenstates ψ
≶
a of the related generalized eigenvalue

problem

V ≶ × ψ≶
a = ε≶a S≶ × ψ≶

a (D2)

are the variationally stable natural transition orbitals with
eigenenergies ε

≶
a .

Using the natural transition orbitals, the ionization poten-
tial EIP and electron affinity EEA can be approximated as

EIP = − max ε<
a , EEA = − min ε>

a , (D3)

and the occupied and unoccupied single-particle spectral
functions A≶ can be approximated as

A≶(ω) ≈
∑

a

|S≶ × ψ≶
a |2δ(ω − ε≶a ), (D4)

which gives the total single-particle spectral function A(ω) as
A(ω) = A>(ω) + A<(ω).
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