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Local dynamics and thermal activation in the transverse-field Ising chain
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There has been considerable recent progress in identifying candidate materials for the transverse-field Ising
chain (TFIC), a paradigmatic model for quantum criticality. Here, we study the local spin dynamical structure
factor of different spin components in the quantum disordered region of the TFIC. We show that the low-
frequency local dynamics of the spins in the Ising- and transverse-field directions have strikingly distinctive
temperature dependencies. This leads to the thermal-activation gap for the secular term of the nuclear magnetic
resonance 1/T ′

2 relaxation rate to be half of that for the 1/T1 relaxation rate. Our findings reveal a surprise in
the nonzero-temperature dynamics of the venerable TFIC model and uncover a means to evince the material
realization of the TFIC universality.
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I. INTRODUCTION

While classical matter freezes at zero temperature, quan-
tum many-body systems often display multiple ground states
due to the competition between different couplings. Upon a
continuous transformation from one ground state to another,
quantum criticality develops. It is anchored by a quantum
critical point (QCP) at zero temperature, in contrast to a clas-
sical critical point that appears at a thermally induced phase
transition. Quantum criticality has emerged as a general orga-
nizing principle to understand many of the richest phenomena
that have been observed in quantum materials [1,2]. These
include the cuprates [3,4], heavy fermion metals [5–7], and
iron pnictides [8,9]. One of the prominent features of quantum
criticality is that it mixes spatial and temporal fluctuations
[10,11]. While this intermixing complicates the description of
quantum criticality, it also implies that dynamical properties
can be used to characterize the nature of quantum critical-
ity. As another outstanding feature of quantum criticality,
approaching the QCP by a nonthermal control parameter (g)
and by temperature (T ) represent two independent ways to
examine its universal behavior. As such, it is instructive to
probe quantum criticality by analyzing dynamical properties
as a function of temperature, which can be conveniently stud-
ied experimentally.

A paradigmatic model for continuous quantum phase tran-
sitions is the transverse field Ising model in one spatial
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dimension [11–17]. It represents a prototype setting to ex-
plore the properties of quantum criticality. Yet, in spite of
its venerable status, there is much about it that remains to
be understood. Suitable materials to study this model have
only been emerging recently [18–22]. They have allowed new
experiments that are providing puzzling experimental results,
especially on dynamical properties at nonzero temperatures.
At the same time, calculating dynamical quantities near a
QCP (gc) are always challenging. That is also the case for the
transverse field Ising chain, notwithstanding the considerable
efforts [12,13,23]. One of the particularly interesting quan-
tities is the local dynamical structural factor [24–26], which
can be measured by the longitudinal relaxation rate 1/T1 in
the nuclear magnetic resonance (NMR) experiment [27].

In this work, we begin the investigation by focusing on
the quantum disordered region of the transverse-field Ising
chain (TFIC) (g > gc). The critical behavior of the transverse
and longitudinal dynamical structure factors, Sxx and Szz, are
analytically determined at low frequency. Our result shows
that Sxx has a thermally activated behavior with one single
particle gap, since Pauli matrix σ x is Z2 symmetric in TFIC.
In contrast, the thermal-activation energy in Szz is twice as
large as that of Sxx since σ z is not Z2 invariant [25,26]. This
characteristic contrast is very unique and can serve as a telltale
sign to ascertain whether candidate materials realize the TFIC
universality. Accordingly, we propose an experimental signa-
ture for the TFIC realization, viz. that the activation gap for the
secular term of 1/T2, named 1/T ′

2 (Ref. [28]), will be half of
its counterpart for 1/T1 in NMR relaxation rate measurements.

The remainder of the paper is organized as follows.
Section II introduces the lattice Hamiltonian of TFIC and
its field theory description in the scaling limit. Section III
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specifies the expression of the dynamical structure factor.
The results of local dynamics at low frequency in transverse
and longitudinal directions are obtained in Sec. IV and are
discussed in detail in Sec. V. The proposal for using NMR
experiments as a means of identifying candidate materials for
the TFIC universality is presented in Sec. VI. Finally, Sec. VII
contains the conclusion and discussions.

II. MODEL

The Hamiltonian of the transverse field Ising chain is given
by [13]

HI = −J
N∑

i=1

(
σ z

i σ z
i+1 + gσ x

i

)
, (1)

where σ x
i and σ z

i are Pauli matrices associated with the spin
components Sμ = σμ/2 (μ = x, y, z) on site i and g is the
coupling with the transverse field. Below we shall refer to the z
(Ising) direction as longitudinal and to the x direction as trans-
verse. At zero temperature, the system undergoes a quantum
phase transition when the transverse field is tuned across its
QCP g = gc = 1. The Hamiltonian can be conveniently con-
verted to fermionic operators ci and c†

i through Jordan-Wigner
transformation. After introducing a Bogoliubov rotation, the
Hamiltonian takes the canonical form HI =∑k εk (γ †

k γk − 1
2 )

with single-particle energy dispersion

εk = 2J
√

1 + g2 − 2g cos k, (2)

where momentum k is dimensionless in all calculations. At
zero momentum, the gap, � = 2J|g − gc|, vanishes at gc.

In the vicinity of the QCP, the low energy effective descrip-
tion of the system is given by an Ising field theory obtained as
the scaling limit of the lattice Hamiltonian (cf. Appendix A).
In this limit the lattice spacing goes to zero, a → 0, while
J → ∞ and g → 1 such that the energy gap and the “speed
of light” are kept fixed, 2J (1 − g) = �, 2Ja/h̄ = c. The re-
sulting Hamiltonian describes a relativistic field theory of free
Majorana fermions with mass m = �/c2

HI =
∫

dx

[
h̄c

i

2

(
ψ

∂ψ

∂x
− ψ̄

∂ψ̄

∂x

)
± �

i

2
(ψ̄ψ − ψψ̄ )

]
,

(3)
where the sign of the second term is + (−) for the param-
agnetic (ferromagnetic) phase, corresponding to g > gc (g <

gc) in the lattice model. The field operators are related

to the lattice operators as
(−)

ψ( ja) = 1√
2a

(e∓iπ/4c j + e±iπ/4c†
j ).

Correspondingly, the single-particle energy Eq. (2) becomes
relativistic,

ε(p) =
√

�2 + p2c2 = � cosh θ, (4)

where p = h̄k/a and θ is the relativistic rapidity parameter.
In the scaling limit, the σ x

j operator is related to the energy
density operator ε(x) through the following relation:

σ x
j = −2a ε(x = ja) ≡ −2a i ψ̄ (x)ψ (x), (5)

where ε(x) = iψ̄ (x)ψ (x) is quadratic in fermion operators.
And σ z

j is related to the magnetization density operator σ (x)

as (h̄ = c = 1) [13]

σ z
j = s̄−1J−1/8σ (x = ja), (6)

where s̄ = 21/12e−1/8A3/2 and A = 1.2824271291 . . . is
Glaisher’s constant. The σ (x) operator corresponds to the
order parameter after taking its expectation value with respect
to the vacuum. Note that σ (x) is nonlocal in the fermion
operators and cannot be simply expressed in terms of the
latter.

III. DYNAMIC STRUCTURE FACTOR

In the quantum disordered region of TFIC (g > gc), we
compute the local spin dynamical structure factor (DSF) at
low frequency ω � kBT , which are relevant to the NMR
relaxation rates [28,29]. The DSF with spin component α =
x, y, z is given by (kB = 1)

Sαα (ω, q) = −2

1 − e−ω/T
Im χαα (ω, q)

(7)

=
∑

l

∫ ∞

−∞
dt eiωt−iqla

〈
σα

l+1(t )σα
1 (0)

〉
T ,

where χαα (ω, q) is the dynamical spin susceptibility at the
transferred energy ω and momentum q. In the field theory,
we consider the continuum operators ε(x), σ (x) and the sum-
mation over lattice sites in Eq. (7) is replaced by an integral
over x. The local DSF is Sαα (ω) = ∫ dq

2π
Sαα (ω, q). Using field

theory language [30], the DSF can be written in Lehmann
spectral representation as

Sαα (ω, q) = 1

Z

∞∑
r,s=0

Cαα
r,s (ω, q), (8)

where Z is the partition function and

Cαα
r,s (ω, q) =

∫
dθ1 . . . dθr

(2π )rr!

∫
dθ ′

1 . . . dθ ′
s

(2π )ss!
e−Er/T (2π )2

× δ(ω + Er − Es)δ(q + Pr − Ps) |〈θ1 . . . θr |
× σα (0, 0)|θ ′

1 . . . θ ′
s〉|2, (9)

where the energy and momentum eigenvalues of the multi-
particle states |θ1, . . . , θn〉 are En = �

∑n
i cosh θi and Pn =

�
∑n

i sinh θi. The term Cαα
r,s carries a factor e−Er/T < e−r�/T ;

thus the small expansion parameter is e−�/T . Its dependence
on s is less obvious but thanks to the energy conserving
Dirac delta, the energies of the two states with r and s
particles are related. For a fixed frequency ω and at low
temperature one can truncate the double sum in both r and
s. As shown in Appendix B, Eq. (8) is a low-temperature
expansion which has term-by-term divergences that can be
regularized in a linked cluster expansion [31,32], Sαα (t, x) =∑∞

r=0,s=0 Dαα
r,s (t, x), where the finite terms Dαα

r,s are certain lin-
ear combinations of Cαα

r,s and terms appearing in the expansion
of the partition function.

IV. LOCAL DYNAMICS AT LOW FREQUENCY

Let us first consider the leading critical behavior of Sxx(ω)
in the quantum disordered region with ω � T � �. Since σ x

j
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and ε(x) are quadratic in the fermionic operators, Eq. (9) has
nonzero matrix elements between states that either have an
equal number of particles or the particle number difference
is 2.

The first term in Eq. (8) is the vacuum contribution Cxx
00 =

|〈0|ε|0〉|2δ(ω)δ(k), i.e., 0 particle–0 particle (0p-0p) contri-
bution. In the field theory this is a divergent contribution
and requires renormalization (e.g., by normal ordering) [32].
However, since we are interested in the finite (but small)
ω domain, we ignore this term. The terms Dxx

0,s and Dxx
s,0

contribute to frequencies ω � s� outside of our domain of
interest, 0 < ω � �. Thus the first contributing term is the
1p-1p term,

Cxx
11 (ω, q) =

∫∫
dθ

2π

dθ ′

2π

∣∣F ε
2 (θ |θ ′)

∣∣2e−� cosh θ/T (2π )2

× δ[q + �(sinh θ − sinh θ ′)]

× δ[ω + �(cosh θ − cosh θ ′)], (10)

where the 1p-1p form factor F ε
2 (θ |θ ′) is F ε

2 (θ |θ ′) ≡
〈θ |ε(0)|θ ′〉 = −i� cosh( θ−θ ′

2 ) , as can be obtained from the
plane wave expansion of the fields in a straightforward way
(cf. Appendix C). Then, after performing two integrals of
Eq. (10), the leading contribution to local transverse DSF at
ω � T � � region is

Cxx
11 (ω) ≈ −�

π
e−�/T

[
ln
( ω

4T

)
− T

2�
+ γE

]
, (11)

where γE is Euler’s constant. The main features of the result
are the ∼e−�/T temperature dependence and the ∼ ln(ω/T )
logarithmic frequency dependence. From Eq. (9) the higher
particle number contributions Dxx

r,s with max(r, s) � 2 contain
the factor e−Er/T δ(ω + Er − Es), so they are exponentially
suppressed at low temperature T � � for frequencies ω �
�; in particular, Dxx

r,s ∼ e−max(r,s)�/T . So we find that the lead-
ing order contribution to the local transverse DSF Sxx(ω) in
the quantum disordered region with ω � T � � is given by
the 1p-1p term, i.e., Eq. (11).

Because the σ x
j operator is local and quadratic in terms of

the fermion operators, it is promising to calculate the trans-
verse DSF Sxx from the discrete spin chain directly without
taking the scaling limit. As shown in Appendix E, we further
utilize two methods: one is an exact lattice calculation and the
other is the truncated form factor expansion. Both of them give
the same leading behavior for Sxx(ω) as Eq. (11) obtained by
using field theory.

We next turn to the leading critical behavior of Szz in the
quantum disordered region with ω � T � �. Following the
same strategy for calculating Sxx(ω) in the scaling limit, we
can obtain (cf. Appendix F)

Szz(ω) ≈ σ̄ 2

�

3
√

3

2π

(
T

�

)2

e−2�/T , (12)

where σ̄ = �1/8s̄. This result exhibits a characteristic
thermal-activation gap, i.e., 2�, which agrees with the scaling
limit of the corresponding result found in Refs. [25,26].

FIG. 1. Local transverse DSF Sxx vs frequency (blue dots) at
fixed � = 0.1J and T = 0.01J . The logarithmic frequency depen-
dence is well fitted by the red solid line.

Figure 1 shows the frequency dependence of Sxx(ω) and
its fitting function with parameters � = 0.1J and T = 0.01J .
The data points are calculated by numerically integrating out q
from Sxx(ω, q) (cf. Appendix E) and the fitting function gives
the expected logarithmic divergence in ω: 106 × Sxx(ω) =
−2.08 − 1.39 ln(ω/�). This agrees well with the asymptotic
result Eq. (11), 106 × Sxx(ω) = −1.99 − 1.38 ln(ω/�).

We also study the temperature dependence of Sxx with
ω = 10−4J and � = 0.1J . The data points shown in Fig. 2 are
calculated by numerically integrating out q from Sxx(ω, q) (cf.
Appendix E) and the corresponding fitting function Sxx(T ) =
e−�/T [0.24 + 0.03 ln(T/�)] indicates that the thermal be-
havior of Sxx(T ) is dominated by the 1p-1p term and the
activation gap is �. This fitting conforms with the result
obtained from the asymptotic expression Eq. (11), Sxx(T ) =
e−�/T [0.23 + 0.02(T/�) + 0.03 ln(T/�)]. In the fitting, the

FIG. 2. Contrast of the thermal-activation gaps between Sxx (blue
dots) and Szz (black dots). The exponential decay behaviors of Sxx

and Szz are well fitted by red and orange lines, respectively, showing
the gap for Sxx is half of that for Szz.
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T/� term is not taken into account since it is negligible
compared with other terms in the considered region.

Similarly, we show the temperature dependence of Szz

by numerically integrating out q from Szz(ω, q) with fixed
frequency ω = 0.1� (cf. Appendix F). The fitted line
Szz(T ) = 0.87(T/�)2.06e−1.99�/T , which is consistent with
the prediction of Eq. (12), Szz(T ) = 0.83(T/�)2e−2�/T . Here
Szz(T ) exhibits a distinct thermal behavior with the activation
gap being 2� compared with Sxx(T ).

V. CONTRASTING THERMAL ACTIVATIONS
OF Sxx AND Szz

Our key result is the different exponential temperature
dependence, e−�/T vs e−2�/T , for Sxx and Szz, respectively.
This is eventually a consequence of the Z2 symmetry of the
model, i.e., σ x → σ x and σ z → −σ z. For large transverse
fields g  1, the ground state corresponds to spins pointing in
the x direction, so intuitively excitations in the paramagnetic
phase can be thought of as spin flips in the transverse direction
generated by σ z. This means that σ z creates and destroys
particles that carry the same quantum numbers as the operator
itself, i.e., they are odd under spin reversal in the z direction.
As a consequence, the nonzero matrix elements of σ z in the
paramagnetic phase are between states with different particle
number parity [33,34]. For σ x it is the opposite: Its only
nonvanishing matrix elements are between states of the same
parity because it is quadratic in the fermionic operators.

As for the discussion about Eq. (11), at low frequen-
cies ω � � only those matrix elements can contribute to
the Lehmann representation where the energies of the two
states are close to each other due to the Dirac-delta express-
ing energy conservation. This implies that matrix elements
between the ground state and the excited states do not con-
tribute. Moreover, independent of which state carries the
Boltzmann factor, the contribution of the matrix element will
be ∼ e−n�/T , where n is the larger of the particle numbers
in the two states. Together with the parity property of σ z,
this implies that the leading temperature dependence of the
longitudinal DSF is e−2�/T coming from 1p-2p contributions,
while that of the transverse DSF is e−�/T coming from 1p-1p
matrix elements. Therefore, this characteristic contrast of the
temperature dependence of Sxx and Szz can serve as a universal
behavior of TFIC and can also be verified in NMR experi-
ments.

From a symmetry perspective, σ z can also have a nonzero
1p-1p matrix element if the Z2 symmetry of the system is bro-
ken. One such case is the quantum E8 integrable model, which
emerges from longitudinal-field perturbed quantum critical
TFIC [35]; the additional longitudinal field breaks the Z2

symmetry. In the model, the low-temperature DSF Szz exhibits
e−m/T (where m is the mass of the lightest E8 particle) [24];
we stress, however, that it is due to a physical mechanism of
broken Z2 symmetry that is completely different from what
happens in the present work.

VI. NMR RELAXATION RATES

The transverse field applied along the x axis in the TFIC
serves as the applied static magnetic field in an NMR setup

[27]. The longitudinal NMR relaxation rate 1/T1 of TFIC is
given by [28,29]

1

T1
∼ |Ay|2Syy(ωn) + |Az|2Szz(ωn). (13)

Here, Aj ( j = x, y, and z) is the scalar hyperfine coupling,
which we take as constants for simplicity, and ωn is the
resonant frequency (∼MHz) of NMR measurements. There-
fore, 1/T1 probes local spin dynamics through Szz and Syy

along the two orientations orthogonal to the transverse-field
direction x. In the TFIC, we have Syy(ω) = Szz(ω)ω2/[4(gJ )2]
[24], so the contribution from Syy can be ignored in an NMR
setup (at a very low frequency). As such, we expect 1/T1 ∼
Szz(ω = ωn) ∼ e−2�/T , where the thermal-activation gap is
2� [26,27].

To probe Sxx(ω), we consider the transverse NMR relax-
ation rate 1/T2 of TFIC, which is given by [28,29]

1

T2
= 1

T ′
1

+ 1

T ′
2

, (14a)

1

T ′
1

= A
1

T1
, (14b)

1

T ′
2

= |Ax|2Sxx(ωn). (14c)

Here, the nonsecular contribution 1/T ′
1 can be estimated

from the result of 1/T1 measurement and the prefactor A is
calculated based on Bloch-Wangsmann-Redfield theory (cf.
Appendix I). Then, the secular term 1/T ′

2 can be determined
from Eq. (14a) by subtracting 1/T ′

1 from 1/T2. Therefore, at
relatively low temperature, 1/T ′

1 is exponentially suppressed
by the larger gap 2� of Szz but 1/T ′

2 ∼ Sxx(ω = ωn) ∼ e−�/T

still remains sizable with a thermal-activation gap �. Since
1/T1 and 1/T2 measurements are two independent NMR
experiments, we predict that the ratio of extracted thermal-
activation gaps for 1/T1 and 1/T ′

2 is 2.

VII. CONCLUSION

To conclude, we determined the leading behavior of the
local transverse DSF in the quantum disordered region of the
TFIC at small transfer energy with temperature much smaller
than the gap. It is shown that when the transfer energy is
much smaller than the temperature the local transverse DSF
exhibits a logarithmic singularity. We found that the extracted
thermal activation gap from the local transverse DSF is half
of that for the longitudinal one, which can be attributed to
the different parities of σ x and σ z in the quantum disordered
region of the TFIC. This sharp contrast can be directly tested
in a proper NMR setup through 1/T1 and 1/T2 relaxation
rate measurements. In addition, it is worth noticing that for
unpolarized-spin measurements, our results unveil the under-
lying physical mechanism for the observed single-particle gap
in the thermal activation [36,37], where the transverse DSF is
expected to dominate the low-energy behavior.

It is known that a thermodynamic quantity of the TFIC,
the Grüneisen ratio—the ratio of magnetic expansion coef-
ficient to specific heat—exhibits a unique quantum critical
behavior [23]. Here, our work reveals a sharp contrast of
the temperature dependence of the transverse and longitudi-
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nal local DSFs of the TFIC, which represents a unique and
surprising dynamical feature for the TFIC. Furthermore, ac-
cessing the universality of the TFIC in experiments is a crucial
step toward a realization of the exotic quantum phenomena
such as the E8 particles in the quantum E8 integrable model
[21,22,24,38]. Our work implies that combined measurements
of the dynamical and thermodynamic quantities provide tell-
tale experimental signs for the class of TFIC universality.
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APPENDIX A: DIAGONALIZATION OF THE LATTICE
AND FIELD THEORY HAMILTONIANS

After Jordan-Wigner transformation, σ x
i = 1 − 2c†

i ci and
σ z

i = −∏ j<i (1 − 2c†
j c j )(ci + c†

i ), the TFIC Hamiltonian
Eq. (1) becomes

HI = −J
N∑

i=1

[(c†
i ci+1 + c†

i c†
i+1 + H.c.) + g(1 − 2c†

i ci )]

(A1)
in terms of the fermionic operators ci, c†

i . After Fourier
transformation, c j = 1√

N

∑
k ckeik j, the Hamiltonian is diago-

nalized by a Bogoliubov rotation γk = ukck − ivkc†
−k , where

uk = cos(θk/2), vk = sin(θk/2) with the Bogoliubov angle
tan(θk ) = sin k

g−cos k . After these steps, we arrive at

HI =
∑

k

εk

(
γ

†
k γk − 1

2

)
, (A2)

with single-particle energy dispersion εk =
2J
√

1 + g2 − 2g cos k.

The field theory Hamiltonian Eq. (3) can be diagonalized
by the plane wave expansion of the Majorana fields which in
the paramagnetic phase reads (setting h̄ = 1)

ψ (x, t ) =
√

mc

2

∫
dθ

2π
e−θ/2[αa(θ )eipθ x−iεθ t

+ α∗a†(θ )e−ipθ x+iεθ t ], (A3a)

ψ̄ (x, t ) = i

√
mc

2

∫
dθ

2π
eθ/2 [αa(θ )eipθ x−iεθ t

− α∗a†(θ )e−ipθ x+iεθ t ], (A3b)

where α = e−iπ/4, and pθ = mc sinh(θ ) and εθ =
mc2 cosh(θ ) are the momentum and energy in terms of
the rapidity variable θ. The creation/annihilation operators
obey the algebra

{a(θ ), a†(θ ′)} = 2πδ(θ − θ ′) (A4)

and diagonalize the Hamiltonian, which becomes

HI =
∫

dθ

2π
a†(θ )a(θ ) mc2 cosh θ. (A5)

APPENDIX B: FORM-FACTOR METHOD AND LINKED
CLUSTER EXPANSION

Exploiting the local nature of the transverse magnetization
in terms of the fermions, the transverse DSF Sxx(ω, q) can be
obtained exactly. This is however not true for the longitudinal
DSF Szz(ω, q). Still, in both cases one can give a systematic
low-temperature expansion [31,32]. As we are mainly inter-
ested in the low-temperature NMR relaxation rates, we first
discuss this more general approach, applicable both in the spin
chain and in the field theory. We shall use the field theory
notations but everything can be translated to the spin chain in
a straightforward manner.

Our starting point is the Lehmann spectral representation,

Sαα (ω, q) =
∑

l

∫ ∞

−∞
dt eiωt−iql

〈
σα

l+1(t )σα
1 (0)

〉
T

= 1

Z
∑
n,m

e−βEn (2π )2δ(h̄ω + En − Em)

× δ(q + Pn − Pm)|〈n|σα
1 (0)|m〉|2. (B1)

Using the multiparticle energy eigenstates1 |θ1, . . . , θn〉 in the
Lehmann representation (B1) leads to

Sαα (ω, q) = 1

Z

∞∑
r,s=0

Cαα
r,s (ω, q), (B2)

with α = x, y, z and

Cαα
r,s (ω, q) =

∫
dθ1 . . . dθr

(2π )rr!

∫
dθ ′

1 . . . dθ ′
s

(2π )ss!
e−βEr

× (2π )2δ(h̄ω + Er − Es)δ(q + Pr − Ps) |
× 〈θ1 . . . θr |σα (0, 0)|θ ′

1 . . . θ ′
s〉|2 , (B3)

1More generally, in interacting field theories the basis of asymptotic
scattering states is used.
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where the energy and momentum eigenvalues are En =
mc2∑n

i cosh θi and Pn = mc
∑n

i sinh θi.

This series is a low-temperature expansion in the following
sense. The term Cr,s (we omit the αα superscript) carries a
factor e−βEr < e−rβm; thus the small expansion parameter is
e−βm. Its dependence on s is less obvious but note that, thanks
to the energy conserving Dirac delta, the energies of the two
states with r and s particles are related. For a fixed frequency
ω and at low temperature one can truncate the double sum
in both r and s. The partition function can also be written as
Z =∑∞

n=0 Zn, where Zn has a factor of e−βEn .
Now the main problem to be solved is the regularization

of the singularities present in the partition function and in the
matrix elements (form factors) of the operators in question.
In infinite volume all Zn are singular due to the fact that they
contain a scalar product of two momentum eigenstates. Sim-
ilarly, Cr,s inherits the kinematical poles of the form factors
whenever two rapidities in the two sets coincide, i.e., θi = θ ′

j
for some i, j. Since the structure factor is a well-defined
physical quantity, these singularities must cancel each other.
In order to make this manifest we reshuffle the infinite series
in a linked cluster expansion [31,32]

χαα (t, x) =
∞∑

r=0,s=0

Dαα
r,s (t, x), (B4)

where the terms

D0,s = C0,s, (B5)

D1,s = C1,s − Z1C0,s−1, (B6)

D2,s = C2,s − Z1C1,s−1 + (Z2
1 − Z2

)
C0,s−2 + · · · (B7)

are supposed to be finite and equivalent relations hold with
the indices interchanged. In order to obtain a finite result one
needs to regularize the divergencies either in a continuum
scheme by adding infinitesimal imaginary parts to the rapidi-
ties [31] or by going to a large but finite volume L that satisfies
1 � mL � emβ , so that the density of thermally excited parti-
cles is small [31,32]. The singularities manifest themselves
as positive powers of L, while the final result for the Dr,s

should be ∼ O(L0). All the D1n(t, x) terms are given for any
massive relativistic diagonal scattering theory in Ref. [32],
while the general expression for D22(t, x) can be found in
Ref. [39].

The resulting series still can have diverging terms, signal-
ing that the zero temperature quantity is already singular. This
happens around the single particle dispersion relation h̄ω ∼
ε(k), where the zero temperature DSF is proportional to an
on-shell Dirac delta which broadens at nonzero temperatures
[31]. In these cases a resummation of infinitely many terms is
necessary in order to obtain the finite result. However, if we
are interested in the small-ω behavior in the disordered phase
of the Ising model, then due to h̄ω � mc2 we are far from the
mass shell. In this case the individual terms are not singular
and the truncated series should give a good approximation.

APPENDIX C: DETAILED FIELD THEORY
CALCULATION OF LOCAL TRANSVERSE DSF

In this Appendix we provide the details of the calculations
leading to Eq. (11). Our starting expression is Eq. (10) from
the main text,

C11(ω, q) =
∫∫

dθ

2π

dθ ′

2π
|F ε

2 (θ |θ ′)|2e−βm cosh θ (2π )2

× δ[q + m(sinh θ − sinh θ ′)]

× δ[ω + m(cosh θ − cosh θ ′)]. (C1)

Both integrals can be performed using the Dirac-delta con-
straints. The system of equations can be brought to the
following form in terms of x = eθ ′

and y = eθ :

x − y = ω̃ + p̃ ≡ A, (C2a)

1

x
− 1

y
= ω̃ − p̃ ≡ B, (C2b)

where ω̃ = ω/m, q̃ = q/m. This leads to the two solutions
{x+, y+} and {x−, y−}

x± = AB ± √
AB(AB − 4)

2B
, (C3a)

y± = −AB ± √
AB(AB − 4)

2B
. (C3b)

These roots must be real and positive, so their product must
be positive, implying

x+y+ = x−y− = −x+x− = −A

B
= q̃ + w̃

q̃ − w̃
> 0, (C4)

so q̃2 − w̃2 > 0. Their sum is also positive, leading to

x± + y± = ±√
AB(AB − 4)

B
, (C5)

so only the “+” solution is valid for B = ω̃ − q̃ > 0 and
only the “−” solution is valid for B = ω̃ − q̃ < 0. Note that,
since AB < 0, the expression under the square root is always
positive so the reality condition is automatically satisfied.
Summarizing,

eθ± = q2 − ω2 ±
√

(q2 − ω2)(q2 − ω2 + 4m2)

2m(ω − q)
, (C6)

eθ ′
± = −q2 + ω2 ±

√
(q2 − ω2)(q2 − ω2 + 4m2)

2m(ω − q)
, (C7)

where the “+” roots are valid for q < −|ω| and the “−” roots
are valid for q > |ω|. The Jacobian of the change of variables

{m(cosh θ ′ − cosh θ ), m(sinh θ ′ − sinh θ )} → {θ, θ ′} (C8)
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is m2 sinh(θ − θ ′). Conveniently,

cosh(θ − θ ′) = 1 + (q2 − ω2)/(2m2),

cosh θ± = (−ω ∓ q
√

1 + 4m2/(q2 − ω2))/(2m). (C9)

Using |F (ε)(θ |θ ′)|2 = m2[1 + cosh(θ − θ ′)]/2 we obtain

C11(ω, q) = e−mβ cosh θ± q2 − ω2 + 4m2

2
√

(q2 − ω2)(q2 − ω2 + 4m2)

= 1

2
eβω/2

√
1 + 4m2

q2 − ω2
e
− β

2 |q|
√

1+ 4m2

q2−ω2
, (C10)

where we used ±q = −|q|. The local dynamic structure factor
is given by

C11(ω) =
∫

dq

2π
C11(ω, q) = 2

∫ ∞

|ω|

dq

2π
C11(ω, q). (C11)

Note that, as long as ω is nonzero, the exponential cuts off the
diverging prefactor and the integrand remains finite. This is no
longer true for ω = 0, which signals a logarithmic singularity.
We can extract the leading behavior in the small-ω (and low-
T ) limit as

C11(ω) ≈ 1

2
eβω/2

∫ ∞

|ω|

dq

π

(
2m

q
+ q

4m

)
e
− βm

2 ( q2

4m2 +2+ ω2

q2 )

≈ 1

2
eβω/2

∫ pm

ω

dq

π

(
2m

q
+ q

4m

)
e
− βm

2 (2+ ω2

q2 ) + 1

2
eβω/2

∫ ∞

pm

dq

π

(
2m

q
+ q

4m

)
e− βm

2 ( q2

4m2 +2)

= eβω/2e−mβ

32π

{
2ω

m
e− βm(m+ω)

2m+ω

(
e

βm
2 (2m + ω) − ω e

βmω

4m+2ω

)
+ (16m − βω2)[�(0,

mβω

4m + 2ω

)
− �

(
0,

mβ

2

)]}

≈ −m

π
eβω/2e−mβ

[
ln

(
βω

4

)
− 1

2mβ
+ γE

]
, (C12)

where the incomplete gamma function �(a, z) =∫∞
z t a−1e−t dt , Euler’s constant γE ≈ 0.57712, and

pm = √
ω(2m + ω) is the extreme point of the exponent.

1. Alternative derivation of the local transverse DSF

Another way to obtain the result in Eq. (11) is to focus on
the local DSF from the start, defined as

Sε(ω) =
∫

dt eiωt 〈ε(0, t )ε(0, 0)〉T . (C13)

This contains a disconnected piece proportional to δ(ω). The
first nontrivial term in the expansion of the connected part is

C11(ω) =
∫

dθ

2π

∫
dθ ′

2π

∣∣F ε
2 (θ |θ ′)

∣∣2e−βm cosh θ2πδ

× [ω + m(cosh θ − cosh θ ′)]. (C14)

Let us assume that ω > 0 so the energy conservation condition
has two real solutions θ+ and θ− = −θ+ for all θ, where we
denote the positive solution by

θ+ = arccosh(cosh θ + ω/m) > 0. (C15)

Now δ[ω + m(cosh θ − cosh θ ′)] = 1
m sinh θ+

[δ(θ ′ − θ+) +
δ(θ ′ + θ+)], so

C11(ω) = m
∫

dθ

2π

e−βm cosh θ√
(cosh θ + ω/m)2 − 1

× [1 + cosh θ (cosh θ + ω/m)], (C16)

where we used the identity cosh2[(θ − θ+)/2] + cosh2[(θ +
θ+)/2] = 1 + cosh θ cosh θ+. Introducing the shorthand no-
tation ω̃ = ω/m and changing the integration variable to u =

cosh θ,

C11(ω) = m

π

∫ ∞

1
du e−mβu

× u2 + ω̃u + 1√
(u − 1)(u + 1)(u − 1 + w̃)(u + 1 + w̃)

.

(C17)

The integral is singular for ω = 0. To extract the small-ω
behavior, we can approximate the integral by

C11(ω) ≈ m

π

∫ ∞

1
du e−mβu u2 + 1

(u + 1)
√

(u − 1)(u − 1 + w̃)

≈ m

π

∫ ∞

0
dv e−mβ(1+v) 1 + v/2√

v(v + w̃)

= m

π
e−mβ

[
eβω/2K0

(
βω

2

)
+

√
π

4mβ
U (1/2, 0, βω)

]
,

(C18)

where K0(x) is the modified Bessel function of the second
kind and U (a, b, z) is the confluent hypergeometric function.
Expanding the result for small ω we find

C11(ω) ≈ m

π
e−mβ

[
− ln

(
βw

4

)
+ 1

2mβ
− γE

]
, (C19)

which agrees with the result in Eq. (C12).

APPENDIX D: CALCULATIONS OF LOCAL TRANSVERSE
DSF IN THE SPIN CHAIN: TRUNCATED FORM FACTOR

SERIES METHOD

In this Appendix we present the form factor calculation,
analogous to that in Appendix C, in the spin chain. The
transverse magnetization on the lattice is given in terms of
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the Jordan-Wigner fermions as

σ x
j = 1 − 2c†

j c j . (D1)

The Hamiltonian is quadratic in these fermionic operators and
it is diagonalized by going to momentum space and perform-
ing the Bogoliubov transformation

1√
L

L∑
j=1

c je
ik j = c(k) = cos(ϑk/2)α(k)

+ i sin(ϑk/2)α†(−k),

(D2a)

1√
L

L∑
j=1

c†
j e

ik j = c†(−k) = i sin(ϑk/2)α(k)

+ cos(ϑk/2)α†(−k),

(D2b)

with

eiϑk = g − eik√
1 + g2 − 2g cos k

= 2J (g − eik )

ε(k)
. (D3)

The ground state expectation value of σ x
j is then easily calcu-

lated to be

〈σ x〉 ≡ 〈0∣∣σ x
j

∣∣0〉 = 1 − 2
1

L

L∑
n=1

sin2(ϑk/2)

= 1

L

L∑
n=1

[1 − 2 sin2(ϑk/2)]

= 1

L

L∑
n=1

cos(ϑk ) −→
∫ π

−π

dk

2π
cos(ϑk ). (D4)

We can also compute the matrix elements〈
0
∣∣σ x

j

∣∣k, k′〉≡ 〈0∣∣σ x
j α

†
k α

†
k′
∣∣0〉= 2i

L
e−i(k+k′ ) j sin

(
ϑk − ϑk′

2

)
,

(D5)〈
k
∣∣σ x

j

∣∣k′〉 ≡ 〈0∣∣αk σ x
j α

†
k′
∣∣0〉

= − 2

L
ei(k−k′ ) j cos

(
ϑk + ϑk′

2

)
+ δk,k′ 〈σ x〉. (D6)

The first contributions to the local DSF in the Lehmann
representation are

C00(ω) = 2πδ(ω)〈σ x〉2
, (D7)

C11(ω) =
∑
n,m

e−βεn 2πδ(ω + εn − εm)

[
δ(ω)〈σ x〉2

δn,m +
(

2

L

)2

cos2

(
ϑkn − ϑkm

2

)
− δn,m

4

L
cos

(
ϑkn − ϑkm

2

)]
, (D8)

where εn = ε(kn) with kn = 2πn/L, n = −L/2 + 1, . . . , L/2 (Ramond sector). When calculating D11(ω), the first term in
C11(ω) cancels exactly Z1C00(ω). The remaining terms containing δn,m contribute to the ω = 0 response. Let us focus on the
first nontrivial term contributing at finite ω,

F (ω) ≡
(

2

L

)2∑
n,m

e−βεn 2πδ(ω + εn − εm) cos2

(
ϑkn − ϑkm

2

)

−→ 4
∫ π

−π

dk

2π

∫ π

−π

dk′

2π
e−βε(k)2πδ(ω + ε(k) − ε(k′)) cos2

(
ϑ (k) − ϑ (k′)

2

)
. (D9)

The energy Dirac delta can only be satisfied if

εmin = 2J|1 − g| � ε(k) + ω � 2J (1 + g) = εmax, (D10)

which implies

cos k0 ≡ −1 + 1 + g

g
ω̃ − ω̃2

2g
� cos k � 1 + |1 − g|

g
ω̃ − ω̃2

2g
, (D11)

where ω̃ ≡ ω/(2J ). Note that for ω < 0 the first inequality is automatic, while for 0 < ω < 2� the second inequality is
automatically satisfied. We focus on the latter case from now on. Then cos k′ is given by

cos k′ = 1 + g2 − [ω + ε(k)]2/(4J2)

2g
= cos k − ω̃

g

√
1 + g2 − 2g cos k − ω̃2

2g
, (D12)

which has two solutions which we denote by k′
1 > 0 and −k′

1. Changing variables and performing the integration over k′ we
obtain

F (ω) = 2

π

∫ k0

−k0

dk e−βε(k) ε(k′
1(k))

4J2g sin(k′
1(k))

[
cos2

(
ϑ (k) − ϑ (k′

1(k))
2

)
+ cos2

(
ϑ (k) + ϑ (k′

1(k))
2

)]
. (D13)
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Now we use the identity cos2[(x − y)/2] + cos2[(x + y)/2] = 1 + cos(x) cos(y), the explicit forms of ε(k) and

cos ϑ (k) = g − cos k√
1 + g2 − 2g cos k

, (D14)

together with ε(k′
1) = ε(k) + ω to arrive at

F (ω) = 1

Jhπ

∫ k0

−k0

dk e−βε(k) 2ε̃(k)[ε̃(k) + ω̃] − sin2 k − ω̃/g cos k[ε̃(k) + ω̃/2] + ω̃2/2

ε̃(k)
√

1 − [cos k − ω̃/gε̃(k) − ω̃2/(2g)]2
, (D15)

where ε̃(k) = ε(k)/(2J ). We would like to obtain an approximate analytical result in the ω → 0 limit. Then we can keep only
the O(ω̃0) terms in the numerator. Changing variables to u = cos k,

F (ω) ≈ 2

Jgπ

∫ 1

−1+(1+g)/g ω̃−ω̃2/(2g)
du e−β2Je(u) 2 e(u)2 − (1 − u2)√

1 − u2e(u)
√

1 − [u − ω̃e(u)/g − w̃2/(2g)]2

∼ 4

π

|1 − g|
2Jg

e−β� ln ω̃ = 1

π

�

J2g
e−β� ln ω̃,

(D16)

with e(u) =
√

1 + g2 − 2gu. It is not surprising that the same
logarithmic divergent behavior appears as in Eq. (E13) and
Eq. (11). Comparing to the field theory we have to keep in
mind that between ε and σ x there is a rescaling factor of
−2a = −h̄c/J , which leads to a perfect match of the pref-
actors of ln ω.

APPENDIX E: TRANSVERSE DSF Sxx(q, ω)
IN THE SPIN CHAIN

In this section we discuss the transverse DSF in the
spin chain. In this section, we report the calculation of the
exact transverse DSF and specify its low temperature and
low frequency behavior at the end of the calculation. The

analogous derivation in the scaling limit can be found in
Appendix G.

The transverse DSF follows by

Sxx(ω, q) =
N∑

l=1

∫ ∞

−∞
dt eiωt−iqla

[〈
σ x

l (t )σ x
0

〉
T

− 〈σ x
l (t )

〉
T

〈
σ x

0

〉
T

]
, (E1)

where h̄ω and h̄q are transferred energy and momentum, re-
spectively. In the following we set the lattice spacing as a = 1
and h̄ = 1. Starting from σ x

i = 1 − 2c†
i ci, going to momentum

space, and performing the Bogoliubov rotation, the thermal
expectation values can be calculated in a straightforward way
using the Hamiltonian Eq. (A2) and Wick’s theorem. The
resulting expression for Sxx(ω, q) reads

Sxx(ω, q) = 4

N

∑
k

[
2πδ(ω − εk+q/2 + εk−q/2)

(
u2

k+q/2u2
k−q/2 − uk+q/2vk+q/2uk−q/2vk−q/2

)
(1 − nk+q/2)nk−q/2

+ 2πδ(ω + εk+q/2 + εk−q/2)
(
u2

k−q/2v
2
k+q/2 + uk+q/2vk+q/2uk−q/2vk−q/2

)
nk+q/2nk−q/2

+ 2πδ(ω − εk+q/2 − εk−q/2)
(
u2

k+q/2v
2
k−q/2 + uk+q/2vk+q/2uk−q/2vk−q/2

)
(1 − nk+q/2)(1 − nk−q/2)

+ 2πδ(ω + εk+q/2 − εk−q/2)
(
v2

k+q/2v
2
k−q/2 − uk+q/2vk+q/2uk−q/2vk−q/2

)
nk+q/2(1 − nk−q/2)

]
=
∫ π

−π

dk{2[1 + f (k, q)]δ(ω − εk−q/2 + εk+q/2)(1 − nk−q/2)nk+q/2 + [1 − f (k, q)]

× [δ(ω − εk−q/2 − εk+q/2)(1 − nk−q/2)(1 − nk+q/2) + δ(ω + εk−q/2 + εk+q/2)nk−q/2nk+q/2]}, (E2)

with Fermi distribution function nk = [eεk/(kBT ) + 1]−1 and

f (k, q) = 4J2{[g − cos(k − q/2)][g − cos(k + q/2)] − sin(k − q/2) sin(k + q/2)}/(εk−q/2εk+q/2). (E3)

Here we have taken advantage of particle and energy conservation during the derivation, for example,∫∞
−∞ dt eiωt 〈eiHtγk−q/2γ

†
k+q/2e−iHtγk+q/2γ

†
k−q/2〉T = 2πδ(ω + εk+q/2 − εk−q/2)(1 − nk−q/2)nk+q/2. Focusing on the ω > 0 region,

after integration, we obtain

Sxx(ω, q) =
∑
s=±

[
2[1 + f (ks, q)]

(1 − nks−q/2)nks+q/2

|D−+
ks

(ω, q)| + [1 − f (ks, q)]
(1 − nks−q/2)(1 − nks+q/2)

|D−−
ks

(ω, q)|
]
, (E4)

125149-9



YANG, YUAN, IMAI, SI, WU, AND KORMOS PHYSICAL REVIEW B 106, 125149 (2022)

FIG. 3. (a) Transverse DSF (J/h̄)Sxx (ω, q) for ω > 0 at � = 0.1J and kBT = 0.01J . qIR/a = �/(h̄c) = (g − 1)/a is the infrared wave
number scale. The continuum above 2� is contributed from the second term of Eq. (E4). (b) The enlarged view of the small rectangular region
in (a) exhibits Sxx (ω, q) in the small momentum and low energy region, which comes from the first term in Eq. (E4).

where k± are solutions of energy conservation constraint

cos(k±) = ω2 cos
( q

2

)
16J2g sin2

( q
2

) ±
(

ω2

16J2 sin2
( q

2

) − 1

)1/2(
ω2

16J2g2 sin2
( q

2

) − 1

)1/2

(E5)

and the Jacobians are

|D−−
ks

(ω, q)| =
∣∣∣∣4J2g

(
sin
(
ks + q

2

)
εks+q/2

+ sin
(
ks − q

2

)
εks−q/2

)∣∣∣∣, s = ±, (E6)

|D−+
ks

(ω, q)| =
∣∣∣∣4J2g

(
sin
(
ks + q

2

)
εks+q/2

− sin
(
ks − q

2

)
εks−q/2

)∣∣∣∣, s = ±. (E7)

The transverse DSF, measured in units of h̄/J , is plotted in Fig. 3 as a function of dimensionless variables using the infrared
frequency and wave number scales �/h̄ and �a/(h̄c), respectively. The upper threshold in Fig. 3(a) is given by

ωup(q) = 2εq/2±π = 4J
√

g2 + 2g cos (q/2) + 1, (E8)

while the lower thresholds are

ωlow1(q) = 2εq/2 = 4J
√

g2 − 2g cos (q/2) + 1, (E9)

ωlow2(q) = ε0 + εq = 2J (
√

g2 − 2g cos q + 1 + |g − 1|). (E10)

In Fig. 3(b), the thresholds are ωlow′ (q) = εq/2+k and ωup′ (q) = εq/2−k with k = arccos[cos(q/2)/g].

1. Low temperature behavior of the local transverse DSF

We now focus on the local transverse DSF in the quantum
disordered region with gap much larger than the temperature,
i.e., kBT � �. The leading contribution in Eq. (E4) is of the
order e−�/(kBT ) and is given by the first term of Eq. (E4). Then
the local transverse DSF follows immediately,

Sxx(ω) =
∫ π

−π

dq

2π
Sxx(ω, q) =

∫ π

qc

dq

π
Sxx(ω, q)

≈
∫ π

qc

dq

π

∑
s=±

2[1 + f (ks, q)]
(1 − nks−q/2)nks+q/2

|D−+
ks

(ω, q)|
(E11)

≈
∫ π

qc

dq

π

∣∣∣∣∣∣
√

1 + g2 − 2g cos q
2

gJ sin q
2

∣∣∣∣∣∣ e−εk−+q/2/(kBT ), (E12)

where qc ≈ ω/2J is the lower bound obtained from ω =
ωup(q) at ω → 0 limit. The asymptotic behavior of the integral
in the ω � kBT � � regime is determined in Appendix H
with the result

Sxx(ω) ≈ e− �
kBT

π

{
− 2�

J (� + 2J )

[
ln
( ω

4kBT

)
+ γE

]

+ �2 + 12J2 + 6�J

6J2(� + 2J )2
kBT

}
. (E13)

The asymptotic result Eq. (E13) shows that finite tempera-
ture local transverse DSF diverges logarithmically as ω → 0.
The energy conservation constraints in Eq. (E4) imply only
the first term of Eq. (E4) can contribute to such low-energy
behavior. Furthermore, the energy conservation leads to a
constraint for the phase space. After integration of Eq. (E2),
the constraint gives rise to the 1/q dependency in the integrand
of Eq. (E12) for small q, which is just the case for the lower

125149-10



LOCAL DYNAMICS AND THERMAL ACTIVATION IN THE … PHYSICAL REVIEW B 106, 125149 (2022)

FIG. 4. Local transverse DSF as a function of temperature at
fixed � = 0.1J and ω = 10−4J .

bound dependent on the frequency. This finally results in the
logarithmic behavior. The temperature dependence shows an
exponential decay together with a logarithmic correction in
the prefactor. In the scaling limit we obtain

Sxx(ω) ≈ �

πJ2
e− �

kBT

[
− ln

(
ω

4kBT

)
+ kBT

2�
− γE

]
. (E14)

Using J = c/(2a) and recalling the rescaling factor 2a be-
tween the σ x and the field theory operator ε, we find perfect
agreement with the result (11).

In the kBT � ω � � region, we can simply approximate
the integral by the steepest descent method and obtain the
asymptotic result

Sxx(ω) ≈ 1

π
e−�/(kBT )

√
πkBT

ω

2�

J (2J + �)
. (E15)

In the high T region it clearly deviates from the exponentially
decaying behavior, as shown in Fig. 4.

APPENDIX F: DETAILED FIELD THEORY
CALCULATION OF LONGITUDINAL DSF

In this section we turn to the DSF of the order parameter
field. This operator is highly nonlocal in terms of the Jordan-
Wigner fermions prohibiting an exact calculation based on
free fermion techniques. However, one can still use the trun-

cated form factor series approach. This approach has been
used in the study of local spin DSF and NMR relaxation rate
1/T1 in Refs. [24–26]. The calculations of the form factors
of σ z are far from being trivial, but are known exactly even
on the finite spin chain [34]. Here we perform the calculation
in the paramagnetic phase in the scaling limit, focusing on
the DSF of the continuum spin operator σ (x) in Eq. (6). In
the disordered phase, the σ (x) operator creates and destroys
particles, so its only nonzero matrix elements are between
states with particle numbers of different parity, that is, the total
number of particles in the two states must be odd. The vacuum
form factors are given by [33]

F σ
n (θ1, . . . , θn) = 〈0|σ |θ1, . . . , θn〉 = σ̄

∑
i< j

tanh

(
θi − θ j

2

)
,

(F1)
with σ̄ = s̄m1/8, where s̄ is defined in Eq. (6) and we work
with h̄ = c = 1 for the following field theory calculation. All
other matrix elements can be obtained by the crossing relation.
For example,

〈θ |σ |θ1, . . . , θn〉 = 〈0|σ |θ + iπ, θ2, . . . , θn〉 (F2)

whenever θ �= θ j , which will be the case in our calculations.
Thus the first contributions to the DSF come from

D01(t, x) = C01(t, x) and D10(t, x) = C10(t, x), yielding

Szz
01(ω, q) = σ̄ 2

∫
dθ

2π
(2π )2δ(ω − m cosh θ )δ(q − m sinh θ )

(F3)
and S10(ω, q) = eβωS01(−ω,−q). Due to the energy conserv-
ing Dirac delta, both S10 and S01 are zero for ω < m. It is clear
that all D0,s and Dr,0 will also give zero contribution, which
reflects the fact that the zero temperature result is identically
zero.

Energy conservation at small frequencies also leads to a
great simplification in higher orders, similar to the case of
the transverse magnetization in the previous sections. Because
of the Dirac delta and ω ≈ 0 the two states in each matrix
element must have almost equal energies, so Sr,s(ω ≈ 0, q) ∼
e−max(r,s)βm. This implies that the classification in terms of
orders of e−βm is simplified, because in every order there is
only a finite number of terms. For instance, in the second order
one has S12 + S21, in the third order S23 + S32, in the fourth
S14 + S41 + S34 + S43, and so on.

Thus up to the second order one needs only two terms, S12

and S21. We use the expression for D12 given in Ref. [31] that
can be shown to be equivalent to the more general formula in
Ref. [32],

D12 = 1

2

∫
dθ

2π

∫
C+

∫
C−

dθ1

2π

dθ2

2π
|F σ

3 (θ + iπ, θ1, θ2)|2e−βm cosh θ

× 2πδ[q + m(sinh θ − sinh θ1 − sinh θ2)]2πδ[ω + m(cosh θ − cosh θ1 − cosh θ2)]

− σ̄ 2
∫

dθ

2π
e−mβ cosh θ2πδ(ω − m cosh θ )2πδ(q − m sinh θ ), (F4)

where the contours C± are running above and below the real axis, respectively, to avoid the kinematical poles of the form factors.
But θ = θi (i = 1, 2) is impossible for ω < m, so the integrals avoid the poles even for real rapidities and there is no need to
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FIG. 5. Leading O[e−2�/(kBT )] contribution to the longitudinal dynamic structure factor in the scaling limit, �2/(h̄2c σ̄ 2)Szz, at kBT = �/10.

shift the contours off the real axis. The last term is proportional to D01 so it does not contribute for ω < m and we are left with

Szz
12(ω, q) = 1

2

∫
dθ

2π

∫
dθ1

2π

∫
dθ2

2π

∣∣F σ z

3 (θ + iπ, θ1, θ2)
∣∣2e−βm cosh θ

× 2πδ[q − m(sinh θ1 + sinh θ2 − sinh θ )]2πδ[ω − m(cosh θ1 + cosh θ2 − cosh θ )]. (F5)

Exploiting the Dirac deltas we perform the integrals
over rapidities θ1,2. The Jacobian of the transformation is
m2 sinh(θ1 − θ2). The set of two constraint equations coming
from the Dirac deltas has two solutions, {θ1, θ2} = {θ+, θ−}
and {θ1, θ2} = {θ−, θ+}, where

θ± = ln

⎡
⎣1

2

⎛
⎝ωθ + qθ ±

√(
ω2

θ − p2
θ

)(
ω2

θ − q2
θ − 4

)
ωθ − qθ

⎞
⎠
⎤
⎦,

(F6)
with qθ ≡ q/m + sinh θ, ωθ ≡ ω/m + cosh θ. The rapidities
θ1,2 must be real, which gives restrictions on the remaining
rapidity θ. The reality condition of θ1,2 is equivalent to the

condition that eθ1 + eθ2 and eθ1 eθ2 must be positive, which
gives ωθ + qθ > 0, ωθ − qθ > 0. Moreover, the combination
under the square root must also be positive, ω2

θ − q2
θ > 4. One

of the first two conditions, e.g., ωθ − qθ > 0, can then be
dropped, which leaves us with two conditions. The solution
of ω2

θ − q2
θ > 4 for |ω| < m is the following:

< θ (−), |ω| < q, (F7a)

θ > θ (+), −|ω| > q, (F7b)

θ < θ (−) or θ > θ (+), −ω < q < ω, (F7c)

and for ω < q < −ω (ω < 0) there is no solution. Here

θ (±) = ln

[
q2 − ω2 + 3m2 ±

√
(q2 − ω2 + m2)(q2 − ω2 + 9m2)

2m(ω − q)

]
. (F8)

It turns out that the other condition, ωθ + qθ > 0, is automatically satisfied, so Eqs. (F7) give the integration domain of θ in the
various cases depending on ω and q. Thus we find

Szz
12(ω, q) = 2

∫
D

dθ

2π

e−βm cosh θ
∣∣F σ

3 [θ + iπ, θ+(θ ), θ−(θ )]
∣∣2

m2
√(

ω2
θ − q2

θ

)(
ω2

θ − q2
θ − 4

) , (F9)

where D denotes the domain given in Eqs. (F7) and we used sinh(θ1 − θ2) =
√

(ω2
θ − q2

θ )(ω2
θ − q2

θ − 4)/2. It is easy to see that

S21(ω, q) = eβωS12(−ω, q), so we have the total leading O(e−2mβ ) contribution to the DSF. The result Szz
12(ω, q) + Szz

21(ω, q) is
plotted in Fig. 5.

The corresponding local DSF reads

Szz
12(ω) = 1

2

∫
dθ

2π

∫
dθ1

2π

∫
dθ2

2π
e−βm cosh θ

∣∣F z
3 (θ + iπ, θ1, θ2)

∣∣22πδ[ω − m(cosh θ1 + cosh θ2 − cosh θ )]

= 1

2

∫
dθ1

2π

∫
dθ2

2π

eβω−βm(cosh θ1+cosh θ2 )√
(m cosh θ1 + m cosh θ2 − ω)2 − m2

[∣∣F σ
3 (θ0 + iπ, θ1, θ2)

∣∣2 + {θ0 → −θ0}
]
,

(F10)

where θ0 = arccosh(cosh θ1 + cosh θ2 − ω/m) > 0. At the second order we also need S21(ω) = eβωS12(−ω).
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We can give approximate expressions for S12 and S21. For βm  1 only a small region around the origin in the (θ1, θ2) plane
contributes, so we can expand both the exponent and the rest of the integrand to second order using the explicit form factors.
Performing the resulting Gaussian integrals, and expanding the result in ω/m (with T/m � 1) we obtain the result in Eq. (12):

Szz(ω) ≈ Szz
12(ω) + Szz

21(ω) ≈ σ̄ 2

m

3
√

3

4π

(
1

mβ

)2

e−2mβ
[
eβω
(

1 + 2
ω

m

)
+
(

1 − 2
ω

m

)]

≈ σ̄ 2

m

6
√

3

4π

(
T

m

)2

e−2 m
T = σ̄ 2

�

3
√

3

2π

(
kBT

�

)2

e−2 �
kBT .

(F11)

The correction terms to this result are the third order S23 + S32. However, these terms contain singularities for which the
regularization has not yet been worked out explicitly. But as we discussed, unlike the case of the broadening of the Dirac delta
in the zero temperature DSF, there is no physical reason why unexpected singularities should show up in the higher terms; thus
we stop at the second order.

APPENDIX G: EXACT TRANSVERSE DSF IN THE FIELD THEORY

Using the plane wave expansion Eq. (A3) and ε = iψ̄ψ, the connected correlation function

Cε(x, t ) = 〈ε(x, t )ε(0, 0)〉T − 〈ε(x, t )〉〈ε(0, 0)〉T (G1)

can be written as a fourfold rapidity integral of a linear combination of thermal expectation values of products of four
creation/annihilation operators. Using the thermal Wick’s theorem,

〈a±(θ )b1b2b3〉T = f ±(θ )({a, b1}〈b2b3〉T − {a, b2}〈b1b3〉T + {a, b3}〈b1b2〉T ), (G2)

where a+ = a†, a− = a and f +(θ ) = (1 + eβεθ )−1 = f (θ ), f −(θ ) = (1 + e−βεθ )−1 = 1 − f (θ ), one arrives at

Cε(x, t ) = m2

4

∫
dθ

2π

∫
dθ ′

2π
[ f (θ ) f (θ ′)(eθ−θ ′ − 1)ei(p+p′ )·x + [1 − f (θ )][1 − f (θ ′)](eθ−θ ′ − 1)e−i(p+p′ )·x

+ f (θ )[1 − f (θ ′)](eθ−θ ′ + 1)ei(p−p′ )·x + [1 − f (θ )] f (θ ′)(eθ−θ ′ + 1)e−i(p−p′ )·x], (G3)

where we used the Lorentz product notation, p · x = εt − px. At zero temperature T = 0, f (θ ) = 0 and we obtain the closed
form result

C(x, t ) = m2

4

∫
dθ

2π

∫
dθ ′

2π
(eθ−θ ′ − 1)e−i(p+p′ )·x = m2

4

∫
dθ

2π
eθe−ip·x

∫
dθ ′

2π
e−θ e−ip′ ·x − m2

4

(∫
dθ

2π
e−ip·x

)2

= m2K2
0 (m

√
x2 − t2) − m2K2

1 (m
√

x2 − t2). (G4)

Note that since (p + p′) · x = (εθ + εθ ′ )t − (pθ + pθ ′ )x and εθ + εθ ′ � 2�, after Fourier transformation S(ω, q)|T =0 = 0 for
0 < ω < 2�. At low temperature, the leading order can be obtained by approximating f (θ ) ≈ e−βε(θ ) and keeping only first
powers of f (θ ):

C(x, t ) ≈ m2

4

∫
dθ

2π

∫
dθ ′

2π
[[1 − f (θ ) − f (θ ′)](eθ−θ ′ − 1)e−i(p+p′ )·x

+ f (θ )(eθ−θ ′ + 1)ei(p−p′ )·x + f (θ ′)(eθ−θ ′ + 1)e−i(p−p′ )x]. (G5)

Taking the Fourier transform, for frequencies |ω| < m only the second line gives nonzero contribution and it recovers the
expression Eq. (10).

APPENDIX H: ASYMPTOTIC ANALYSIS OF THE INTEGRAL EQ. (E12)

In this Appendix we report the details of the asymptotic analysis of Eq. (E12) for the local transverse DSF. We approximate

the integral by dividing it into two integrals at the extreme point qm =
√

ω�
J (�+2J ) of the exponent:

Sxx(ω) ≈
∫ π

qc

dq

π

∣∣∣∣∣∣
√

1 + g2 − 2g cos q
2

gJ sin q
2

∣∣∣∣∣∣ e−εk−+q/2/(kBT )

≈
∫ π

qc

dq

π

�
Jq + q

(
J

2�
+ �

24J + 1
2

)
�
2 + J

exp

{
− 1

kBT

[
� + �

4J (� + 2J )

ω2

q2
+ q2J

(
J

2�
+ 1

4

)]}

≈
∫ qm

qc

dq

π

�
Jq + q

(
J

2�
+ �

24J + 1
2

)
�
2 + J

exp

{
− 1

kBT

[
� + �

4J (� + 2J )

ω2

q2

]}
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+
∫ π

qm

dq

π

�
Jq + q

(
J

2�
+ �

24J + 1
2

)
�
2 + J

exp

{
− 1

kBT

[
� + q2J

(
J

2�
+ 1

4

)]}

= 1

π

e− 1
kBT (�+ �J

�+2J + ω
4 )

96�J3(� + 2J )2

{
ω(�2 + 12J2 + 6�J )

(
4�J e

�J
kBT (�+2J ) − ω e

ω
4kBT (� + 2J )

)

−�J e
ω

4kBT + �J
kBT (�+2J )

(
96�J (� + 2J ) − ω2

kBT
(�2 + 12J2 + 6�J )

)[
�

(
0,

J�

kBT (2J + �)

)
− �

(
0,

ω

4T

)]

+ 1

π

e
− 1

kBT

(
�+ π2J (�+2J )

4�
+ ω

4

)

6J2(� + 2J )2

{
6�J (� + 2J )e

1
kBT ( π2J (�+2J )

4�
+ ω

4 )
[

Ei

(
−Jπ2(2J + �)

4�T

)
− Ei

(
− ω

4kBT

)]

+ kBT
(
�2 + 12J2 + 6�J

)(
e

π2J (�+2J )
4�kBT − e

ω
4kBT
)

≈ 1

π
e− �

kBT

{
− 2�

J (� + 2J )

[
ln

(
ω

4kBT

)
+ γE

]
+ �2 + 12J2 + 6�J

6J2(� + 2J )2
kBT

}
+ · · ·

≈ �

πJ2
e− �

kBT

[
− ln

(
ω

4kBT

)
+ kBT

2�
− γE

]
+ · · · , (H1)

with the incomplete gamma function �(a, z) = ∫∞
z dt ta−1e−t and the exponential integral function Ei(z) = − ∫∞

−z
e−t

t dt . The
last line is obtained by taking scaling limit �/J → 0, namely, g → gc, and the result agrees with field theory result Eq. (11).

APPENDIX I: NMR RELAXATION RATES FOR LARGE NUCLEAR SPIN

For nuclear spin I > 1/2, the nuclear quadrupole interaction splits the nuclear spin energy levels and Eq. (14a) needs to be
evaluated based on Bloch-Wangsness-Redfield theory using the density matrix for nuclear spin ραα′ [40–43],

dραα′

dt
=
∑
ββ ′

Rαα′,ββ ′ρββ ′ , (I1)

where α, α′, β, and β ′ specify the nuclear spin energy levels and Rαα′,ββ ′ is the element of the relaxation matrix R. In this
approach, 1/T2 = Rαα−1,αα−1 for the Iz = α to α − 1 transition of a given nuclear spin I [40] and

1

T2
= A

1

T1
+ γ 2

n h2 τo, (I2)

where the prefactor A is a constant that depends on I , γn is the nuclear gyromagnetic ratio of the observed nuclear spin, h2

represents the averaged fluctuating hyperfine magnetic field along the direction of the external magnetic field (i.e., x axis in
the present case of TFIC), τo is the correlation time (ωnτo � 1), and the second term represents 1/T ′

2 within the framework of
Redfield’s theory. In the case of nuclear spin I = 1/2 with no nuclear quadrupole splitting, A = 1/2 [40]. For the Iz = +1/2 to
−1/2 central transition of I = 3/2, earlier work showed that A = 7/2 [41,42]. In the case of I = 9/2 at 93Nb sites in the TFIC
candidate material CoNb2O6, the calculations of A are straightforward but rather tedious, and we obtained A = 49/2.
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