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Disentanglement, disorder lines, and Majorana edge states in a solvable quantum chain
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We study the exactly solvable one-dimensional model: the dimerized XY chain with uniform and staggered
transverse fields, equivalent upon fermionization to the noninteracting dimerized Kitaev-Majorana chain with
modulation. The model has three known gapped phases with local and nonlocal (string) orders, along with the
gapless incommensurate (IC) phase in the U (1) limit. The criticality is controlled by the properties of zeros
of model’s partition function, analytically continued onto the complex wave numbers. In the ground state they
become complex zeros of the spectrum of the Hamiltonian. The analysis of those roots yields the phase diagram
which contains continuous quantum phase transitions and weaker singularities known as disorder lines (DLs)
or modulation transitions. The latter are shown to occur in two types: DLs of the first kind with continuous
appearance of the IC oscillations, and DLs of the second kind corresponding to a jump of the wave number
of oscillations. The salient property of zeros of the spectrum is that the ground state is shown to be separable
(factorized), and the model is disentangled on a subset of the DLs. From analysis of those zeros we also find the
Majorana edge states and their wave functions.
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I. INTRODUCTION

Arguably the most rigorous and fundamental approach to
study phase transitions was pioneered by Yang and Lee [1].
They related transitions to zeros of model’s partition func-
tion, so the theory is applicable whatever the nature of order
parameter or symmetry breaking is. The original analysis
of Yang and Lee of the statistical mechanics of the Ising
model was further extended for various models, including
those out of equilibrium. See, e.g., papers [2–7], and more
references in there. The requirement of the Lee-Yang zero
of the partition function at the critical point of continuous
thermal transition becomes the condition for zero of the spec-
trum (gap closure) at the quantum phase-transition point. In
both cases the zeros must occur in the real range of physical
parameters.

In 1970 Stephenson [8,9] found a new type of transi-
tions in classical Ising models which he called “disorder
lines” (DLs). The transition consists in modulation of the
monotonic exponential decay of the correlation functions by
incommensurate (IC) oscillations. At zero temperature similar
modulation was later found by Barouch and McCoy [10] in
the XY quantum chain with transverse field. Disorder lines,
or modulation transitions are quite general phenomena oc-
curring in a large variety of models [11–16]. Whether one
can define the modulation as a transition is a subtle issue

*Deceased.

[17] since DL is a weak feature lacking identifiable diver-
gencies in the derivatives of thermodynamic potential. A
nonanalyticity is manifested in the behavior of the correlation
length, which remains finite but demonstrates a cusp at the DL
point.

Important progress was reported recently in Refs. [14,16]
where the origin of DLs was understood within the Lee-Yang
formalism: the DLs and the IC oscillations were related to
the complex conjugate zeros of the partition function. The
conventional phase transitions are well understood as oc-
currence of zero(s) z of the partition function Z (z) = 0 in
the real range of physical parameters: temperature, field,
coupling, wave number, etc. Here z stands for some con-
veniently chosen function of physical quantities, such as,
e.g., fugacity, eik , spectrum of the transfer matrix. The DL
corresponds to the pair of merging complex conjugate roots
Z (z) = Z (z∗) = 0 occurring at complex values of physical
parameters. For instance, the infinite cascades of DLs found
in the classical Ising chain [14], correspond to zeros of the
partition function Z (h) in the range of complex magnetic-field
h ∈ C; modulations revealed in various free fermionic models
in the spatial dimensions d = 1–3 correspond to zeros1 of the
partition function Z (q) in the range of complex wave-vectors
|q| ∈ C [16].

1The zeros are defined for the partition function of the finite-size
system before the thermodynamic limit is taken [5].
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An interesting aspect of the critical properties on the DL is
factorization of the ground state (GS) found in the transverse
field XY quantum chain [10,18] leading to constant corre-
lation functions, the hallmark of disentanglement. Since the
possibility to interpret the disentanglement point as a transi-
tion of some kind is actively studied in the literature [19–22],
it is a very pertinent problem to clarify the relation between
the zero-temperature limit of the Lee-Yang zeros,

Z (z) = 0 at T → 0, (1)

and disentanglement. It was shown in the recent analysis
[16] of the well-known quantum XY chain in the uniform
transverse field, that the DL which is also the line of dis-
entanglement in that model, correspond to the line of the
merging complex roots of (1). The important question is to
clarify whether the merging complex roots (DLs) necessarily
signal the factorized ground states (disentanglement) in other
models.

To this end we analyze in this paper the dimerized quan-
tum XY spin chain in the uniform and staggered transverse
fields. This is an exactly solvable free fermionic model with
a rich phase diagram [23–25]. The DLs and disentanglement
in this model were not studied before. The DL as a modu-
lation transition is also manifested in the IC oscillations of
the wave function of the Majorana edge states as reported
in Ref. [26] for the homogeneous transverse XY chain. After
the work by Kitaev on that model [27], the Majorana modes
in quantum condensed-matter systems became a very active
topic of research, for reviews, see, e.g., Refs. [28,29]. The
existence of those edge modes in quantum chain was linked
to the localization of zeros of the resolvent of the transfer

matrix on the complex plane in earlier studies [30,31]. The
resolvent as was shown earlier for the special case [32] does
not provide an independent information since the eigenvalues
of the transfer matrix for the localized Majorana states are
zeros of the spectrum, i.e., the zero-temperature limit of the
roots (1), lying within the unit circle on the complex plane.
This result, identifying the eigenvalues of the transfer matrix
and the complex roots of the spectrum, is shown to be valid
for the more general model studied in this paper.

The main goal of the present paper is to demonstrate from
the systematic analysis of zeros z± of the spectrum of the ex-
actly solvable model (2), which are also the zero-temperature
limit of the Lee-Yang zeros (1), that z± control the criti-
cal points, modulation transitions, disentanglement, winding
numbers, and the Majorana edge modes.

The rest of the paper is organized as follows: In Sec. II we
introduce the model to be studied and give an account on its
spectrum and the ground-state phases. In Sec. III we present
our findings on the disorder lines of the model and give the
results on the correlation functions and other thermodynamic
parameters in all regions of the phase diagram. The factorized
disentangled ground states of the model occurring on a subset
of the disorder lines are analyzed in Sec. IV. The regions
on the phase diagram where the zero-energy edge Majoranas
exist and their wave functions are presented in Sec. V. The
results are summarized in the concluding Sec. VI.

II. MODEL, SPECTRUM, AND ITS ZEROS

In the spin representation the model is the dimerized quan-
tum XY chain in the presence of uniform (h) and alternating
(ha) transverse magnetic fields with the Hamiltonian,

H = −
N∑

n=1

J{[1 + γ + δ(−1)n]Sx
nSx

n+1 + [1 − γ + δ(−1)n]Sy
nSy

n+1} + [h + (−1)nha]Sz
n. (2)

Here the spin operators Sα
n = 1

2σα
n are expressed via the standard Pauli matrices, coupling J > 0 is ferromagnetic. We assume

in our formulas 0 � δ � 1 and γ � 0. The range of negative γ is readily available under exchange γ ↔ −γ and x ↔ y. The
Jordan-Wigner (JW) transformation [18,33] maps (2) onto the free Hamiltonian of spinless fermions,

H = −
N∑

n=1

J

2
{[1 + δ(−1)n](c†

ncn+1 + H.c.) + γ (c†
nc†

n+1 + H.c.)} + [h + (−1)nha]

(
c†

ncn − 1

2

)
, (3)

sometimes called in recent literature the (modulated) Kitaev
chain [27]. In the fermionic representation (3) the chain has
dimerized hopping and modulated chemical potential. So,
whether we deal with spins or with fermions is a matter of
convention. For the comprehensive analysis of the present
model at zero temperature, including its phase diagram, local
and nonlocal order parameters for each phase, we refer readers
to the recent work [25]. In this paper we follow the notations
of Ref. [25].

The model can be brought to the Bogoliubov–de Gennes
spinor form with the 4 × 4 Hamiltonian matrix (we set J = 1),

Ĥ(k) =
(

Â B̂
B̂† −Â

)
, (4)

where

Â ≡
(

h + cos k ha + iδ sin k
ha − i δ sin k h − cos k

)
, (5)

and

B̂ ≡
(−iγ sin k 0

0 iγ sin k

)
, (6)

With a unitary transformation, the Hamiltonian (4) can be
brought to the block off-diagonal form

Ĥ′(k) =
(

0 D̂(k)
D̂†(k) 0

)
(7)
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used in the following. Here we defined the operator,

D̂(k) ≡ Â(k) + B̂(k), (8)

which has two eigenvalues,

�±(k) = h ± 1√
2

(1 + 2h2
a + δ2 − γ 2

+(1 − δ2 + γ 2) cos 2k − 2iγ sin 2k)1/2. (9)

The spectrum of this Hamiltonian consists of four eigenvalues
±E± [23],

E±(k) = 1√
2
|√C2(k) + |�+�−| ±

√
C2(k) − |�+�−||,

(10)
with

C2(k) ≡ h2 + h2
a + cos2 k + (δ2 + γ 2) sin2 k. (11)

The eigenvalues of Ĥ and D̂ are related by useful formula,

E+E− = |�+�−|. (12)

To extend the earlier analysis [25] of the model to incorpo-
rate within the same framework the DLs and the ground-state
factorization [16], we perform analytical continuation of the
wave numbers onto the complex plane as (eik )2 ≡ z. Then
the first Brillouin zone (BZ) k ∈ [−π/2, π/2] maps onto unit
circle |z| = 1. Equation (12) allows us to relate the zeros of
the spectra of Ĥ and D̂ as

E2
+(z)E2

−(z) = det D̂(z)det D̂†(z), (13)

whereas the zeros of the spectra of Â ± B̂ are readily found
yielding

det D̂†(z) = − (1 + γ )2 − δ2

4z
(z − z+)(z − z−), (14)

det D̂(z) = − (1 − γ )2 − δ2

4z
(z − z−1

+ )(z − z−1
− ). (15)

Note that D̂ ↔ D̂† when γ ↔ −γ , and the zeros of determi-
nants of those matrices are mutually reciprocal,

z±(−γ ) = z−1
∓ , (16)

with their explicit expressions given by

z± = [(h2 − h2
−)1/2 ± (h2 − h2

+)1/2]2

(1 + γ )2 − δ2
≡ e2ik± , (17)

and

h2
± ≡ h2

a + 1

2
{1 + δ2 − γ 2

± [
(1 + γ )2 − δ2]1/2[(1 − γ )2 − δ2]1/2}. (18)

A word of caution: the above notation h2
± is introduced for

further convenience only and, in general, h2
± ∈ C.

Quantum phase transitions of the model (2) correspond to
the case when roots (17) lie on the unit circle |z±| = 1. For
reader’s convenience we recapitulate below the properties of
the model’s phase diagram analysed in detail in Ref. [25]:

(i) At |h| >
√

h2
a + 1 the model is in the polarized or para-

magnetic (PM) phase. At its boundary, shown as bold blue

FIG. 1. The ground-state phase diagram on the (h, γ ) plane for
the case of zero dimerization δ = 0 and nonzero staggered field
ha 
= 0. The bold solid lines denote the phase boundaries: PM-FM
in blue; FM-Oz in brown; gapless IC in magenta. The disorder lines
are localized within the ferromagnetically ordered phase and shown
in dashed green. The regions with IC oscillations, labeled by (C) are
shown in light green; (B) regions shown in light yellow contain no
oscillations since q = 0; in regions labeled by (D) and shown in light
blue, the oscillations are commensurate with q = π/2.

solid lines in Figs. 1, 5, 8, the root z+ = 1, and the gap in the
spectrum vanishes at the center of the BZ k = 0.

(ii) At |h| <
√

h2
a + 1 the model is in the ferromagnetic

(FM) phase with the spontaneous longitudinal magnetization
mx 
= 0 at γ > 0 and my 
= 0 at γ < 0.

(iii) The circle on the (h, γ ) plane with the radius R◦ =√
h2

a + δ2, shown as a bold brown solid line in Figs. 1, 5, 8,
corresponds to the boundary of the topological phase Oz(π/2)
with the oscillating string order. At this critical line one of the
roots z± = −1, and the gap vanishes at the edge of the BZ
k = ±π/2.

(iv) Two line segments at γ = 0, shown as bold magenta
solid lines in Figs. 1, 5, 8, correspond to the IC gapless
phase with the complex conjugate roots |z±| = 1, and the gap
vanishing at the IC wave vector,

q = ± arcsin

√
1 + h2

a − h2

1 − δ2
. (19)

This wave-vector (19) varies continuously from q = 0 at the
intersection of γ = 0 and h = ±√

h2
a + 1 to q = ±π/2 where

the critical segments end at the intersections with the bound-
ary of the topological phase Oz(π/2).

The roots (17) contain also the information about another
class of solutions, corresponding to DLs [8,9]. These lines,
shown in dashed green in Figs. 1, 5, 8, correspond to the
points where the roots z± acquire imaginary parts and become
complex conjugate [14,16,34]. See Figs. 2 and 6. The regions
of the phase diagram bounded by the DLs correspond to the
so-called oscillating phases (regimes) where the monotonous
exponential decay of the correlation functions is modulated by
IC oscillations. In the present model the oscillating regions are
localized within the FM phase and smoothly connected to the
IC gapless (critical) lines. In addition we found the disorder
lines of the second kind when the regime changes abruptly
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FIG. 2. The roots z± and eik± (z± ≡ ei2k± ) determined by
Eqs. (17) and (21) for δ = 0 and ha 
= 0 in the first quadrant of the
phase diagram (see Fig. 1). The positions of the roots are shown on
the complex plane with respect to the unit circle |z| = 1 drawn by
solid blue line.

from no oscillations (q = 0) to the commensurate oscillations
(q = π/2). Our new results presenting the detailed analysis of
the model’s DLs for three special cases are given in Sec. III.

III. DISORDER LINES

A. Special case: ha �= 0 and δ = 0

The boundaries of the oscillating regions (18) (DLs) are
quite simple in this case,

h2 = h2
± =

{
1 + h2

a − γ 2,

h2
a.

(20)

The roots (17) are given by

z± =
[

(h2 − h2
a )1/2 ± (h2 + γ 2 − 1 − h2

a )1/2

1 + γ

]2

. (21)

The phase diagram including the DLs for this case is depicted
in Fig. 1. The complex-valued roots z± are localized between
intersections of the “disorder circle” of radius RDL = √

1 + h2
a

and the lines h = ±ha. They are shown in the dashed green
in Fig. 1. The radius of the topological circle R◦ = ha. Note
that in the limit ha → 0 one recovers the results of Barouch
and McCoy [10] with a single DL determined by the circle
h2 + γ 2 = 1. With parametrization of the roots (17) as z(k),
where k ∈ C and

k ≡ q + iκ, z = e2(iq−κ ), (22)

q yields the wave number of oscillations, whereas κ is the
inverse correlation length [14,16]. Evolution of the roots (21)
on the complex plane and dependencies of q and κ along
several paths on the (h, γ ) plane (see Fig. 1) are presented in
Figs. 2 and 3. As expected from general arguments, the lines
of quantum criticality correspond to the roots z± (21) lying
on the unit circle on the complex plane and vanishing κ . DLs
are weaker singularities, and they are accompanied by cusps
in the correlation length.

FIG. 3. The modulation wave-number (q) and the inverse cor-
relation length (κ) along several paths indicated on the (h, γ ) plane,
see Fig. 1 for the case δ = 0 and ha 
= 0. The disorder lines bounding
the regions of the IC wave-numbers q are accompanied by the cusps
of κ , whereas the quantum phase transitions PM-FM and FM-Oz

correspond to κ = 0.

The IC oscillations with complex conjugate roots z± are
localized in the regions colored in green in Figs. 1 and 2. For
those regions in the first quadrant one can find explicitly,

q =
⎧⎨
⎩arcsin

√
1+h2

a−h2−γ 2

1−γ 2 , [h > ha] ∪ [h2 + γ 2 < R2
DL],

arcsin
√

h2
a−h2

γ 2−1 , [h < ha] ∪ [h2 + γ 2 > R2
DL],

(23)

and

κ = −1

2
ln

|γ − 1|
γ + 1

. (24)

The DLs found for this case (see Fig. 1) are of the first kind
since the wave number of the IC oscillations changes contin-
uously between the boundaries of commensurate regions, see
Fig. 3. Outside of the IC regions (FM phase) the wave number
is as follows:

q =
{

0, [h > ha] ∪ [h2 + γ 2 > R2
DL],

π/2, [h < ha] ∪ [h2 + γ 2 < R2
DL].

(25)

These two regions are labeled B (q = 0) and D (q = π/2) in
Figs. 1 and 2.

The results for the correlation functions in different phases
and regimes of oscillations are collected in Fig. 4. It has been
checked by explicit calculations that the types of behaviors
are qualitatively equivalent for all spin-spin and string-string
correlation functions. In Fig. 4 we plot the representative
numerical results for the string correlation function,

Dzz(L, R) ≡
〈

R∏
l=L

σ z
l

〉
=

〈
R∏

l=L

[iblal ]

〉
. (26)
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FIG. 4. The characteristic behavior of the string-string correlation function Dzz in different phases and regimes of oscillations shown in the
phase diagram, see Fig. 1. Panels (a), (d), and (e) show the correlation functions in the PM, gapless IC, and oscillating string-ordered Oz(π/2)
phases, respectively. Panels (b), (c), and (f) correspond to three regions of the FM phase: (b) q = 0, no oscillations; (c) gapped IC oscillations;
(f) q = π/2 oscillations. More explanations are given in the text.

Dzz is defined in terms of the original spin operators σ z
l or

Majorana fermions related to the JW fermions as

an + ibn ≡ 2c†
n. (27)

The correlation function (26) is calculated numerically from
the determinant of the block Toeplitz matrix whose elements,
i.e., the two-point Majorana correlators 〈ibnam〉 are explicitly
given in Ref. [25].

As one can see from Fig. 4, the behavior of the correla-
tion function is easily understood from the structure of the
complex roots depicted in Figs. 2 and 3. Plot (a) corresponds
to the PM phase where Dzz(1, n) monotonously decays to the
limiting value O2

z , where Oz can be identified as a single string
order parameter of the PM phase [35].

In panel (b) of Fig. 4 the string correlation function is
shown for region (B) on the phase diagram in Fig. 1 where
oscillations are absent. This is the ferromagnetic phase where
the order parameter is the spontaneous longitudinal magneti-
zation mx, whereas the string order is absent, and accordingly,
Dzz decays to zero [25]. The exponential decay of Dzz modu-
lated by the IC oscillations, shown in panel (c) corresponds to
the IC region (C) of the FM phase, see Fig. 1.

The IC gapless phase shown in magenta in Fig. 1 is alge-
braically ordered, Dzz demonstrates the power-law decaying
oscillating behavior [36],

Dzz(1, n) = A√
n

cos(kF n). (28)

The wave number of oscillations in this phase is also the Fermi
wave number of the JW fermions q = kF , given by Eq. (19).
The explicit formula for the amplitude A is unavailable. For a

particular choice of parameters yielding kF = π/4, the results
are shown in Fig. 4(d) with the fit A ≈ 0.72. We found an
excellent agreement between Eq. (28) and direct numerics.

Panel (e) of Fig. 4 shows the characteristic behavior of
Dzz in the phase labeled as Oz(π/2). The correlation function
oscillates with the period of four lattice spacings, and its lim-
iting value yields the string order parameter, see Ref. [25] for
details. In panel (f) we show the correlation function in region
(D) of the phase diagram: the four-site oscillations (q = π/2)
are present, but the string order vanished (Dzz → 0) since it is
the FM phase (mx 
= 0).

B. Special case: ha = 0 and δ �= 0

In this case the IC oscillating region shown in green in
Fig. 5 is bounded by two DLs,

h2 = h2
± = 1

2
{1 + δ2 − γ 2 ± [(1 + δ2 − γ 2)2 − 4δ2]1/2}

(29)

depicted by dashed green lines. In (h, γ ) upper half-plane
shown in Fig. 5, the DLs (dashed green) are located between
the paramagnetic phase h > 1 and the topological circle of
radius R◦ = δ,

At γ = 0: h± =
{

1,

δ,
(30)

and two curves h±(γ ) smoothly intersect (h+ = h−) at γ =
±(1 − δ).
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FIG. 5. The ground-state phase diagram on the (h, γ ) plane for
the cases δ 
= 0 and ha = 0. The bold solid lines denote the phase
boundaries: PM-FM in blue; FM-Oz in brown; gapless IC in ma-
genta. The disorder lines are localized within the FM phase. The
disorder lines of the first kind determined by the real solutions of
(29) are shown in dashed green. They bound the region with IC
oscillations (C) shown in green. (B) regions with no oscillations
(q = 0) shown in light yellow; (D) regions with the commensurate
oscillations (q = π/2) shown in light blue. Regions (B) and (D) are
separated by the disorder lines of the second kind given by (35) and
plotted in dotted green.

The inverse correlation length inside the IC oscillating
region (C), shown by green, is

κ = −1

4
ln

(1 − γ )2 − δ2

(1 + γ )2 − δ2
, (31)

whereas the wave number of oscillations grows continuously
from q = 0 on the upper boundary of the IC region to q = π/2
on its lower boundary, following the formula:

q = arcsin

√
h2+ − h2

h2+ − h2−
. (32)

The oscillating IC phase becomes gapless on the critical line
γ = 0 shown by bold magenta on the phase diagram in Fig. 5.

We have also found the so-called disorder lines of the sec-
ond kind (DL2) [9] such that the wave vector of modulations
changes discontinuously [11,12,16] upon crossing those lines.
In the case under consideration the modulation transition with
a jump from q = 0 to q = π/2 occurs when

h2
± ∈ C, h+ = h∗

−. (33)

The DLs of the first kind analyzed above, are characterized by
continuous appearance of the IC modulation when the roots
(17) expand onto complex values such that z+ = z∗

− and the
continuous evolution of the modulation wave-number q fol-
lows the smooth growth of the phase of the complex numbers
z±, see Figs. 6 and 7.

The mechanism of the discontinuous modulation (DL2) is
quite different: one can check that in the range where h2

±’s are
complex conjugate, one root of (17) eik+ = a is real, whereas
the second root eik− = ib is purely imaginary (a, b > 0), and
the transition of the regime occurs when

|eik+| = |eik−|, (34)

FIG. 6. The roots z± and eik± (z± ≡ ei2k± ) determined by
Eqs. (17) and (29) for δ 
= 0 and ha = 0 in the first quadrant of the
phase diagram (see Fig. 5) are shown on the complex plane with
respect to the unit circle |z| = 1 drawn by solid blue line. Two roots
on the DL2 (35) when the condition (34) is satisfied are drawn for a
particular point γ = 1.005, δ = 0.3: |eik± | = 0.389.

see Fig. 6. At this point the correlation length demonstrates
a cusp as at other DLs (see Fig. 7), whereas q under-
goes an abrupt jump following the phase of the root: from
Im(eik+ ) = 0 to Im(eik− ) = π/2, see Fig. 7. One can verify
that the condition (34) amounts to h2 = Re(h2

±), yielding the

FIG. 7. The modulation wave-number (q) and the inverse corre-
lation length (κ) along several paths indicated on the (h, γ ) plane,
see Fig. 5 for the cases δ 
= 0 and ha = 0. The disorder lines are
accompanied by the cusps of κ , whereas the quantum phase transi-
tions PM-FM and FM-Oz correspond to κ = 0. The wave number is
continuous, albeit not smooth on the disorder lines of the first kind,
whereas it undergoes a discontinuity on the lines of the second kind.
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equation of the DL2,

h2 = 1

2
(1 + δ2 − γ 2). (35)

These DL2s on the (h, γ ) plane are shown in Fig. 5 in dot-
ted green: they start at the point of intersection of h+ and
h− at h = √

δ and γ = ±(1 − δ), and reach h = 0 at γ =
±√

1 + δ2.
One should keep in mind that the roots solving the equa-

tion for zeros of the spectrum enter the analytic expressions
for correlation functions on the same footing [16]. The asymp-
totes of correlators are controlled, however, by the leading
contribution from the root corresponding to minimal κ which
yields the inverse correlation length. In case of DL2, the roots
eik± resulting in, respectively, the monotonous/oscillating
contributions to asymptotes of correlation functions, are close
in absolute values near DL2, cf. Eq. (34), so their contribu-
tions are comparable, and, thus, appearance and vanishing of
oscillations are smeared across DL2. This analytical conclu-
sion is confirmed by direct numerical calculations of various
correlation functions.

The qualitative behavior of the correlation functions is
controlled by the properties of the roots in different regions
of the phase diagram, see Fig. 6. From comparison of Figs. 2
and 6, one can see that the only difference in the root structure
between case A of the previous subsection and current case B,
is that for the latter the appearance of the real and imaginary
parts of eik± is not synchronized in the regime without oscilla-
tions (q = 0) and with commensurate oscillations (q = π/2).
However, since the asymptotes of correlation functions are
controlled by the root with minimal κ (i.e., the closest to the
unit circle), then the correlation functions in different regions
of the phase diagram have the behavior similar to that shown
in Fig. 4.

One can check that the results of the present subsection
recover those of Barouch and McCoy [10] in the limit δ → 0.

C. General case: ha �= 0 and δ �= 0

The ground-state phase diagram for the general case is
presented in Fig. 8. Similar to the previous case with ha = 0,
it contains the central IC oscillating region shown in green,
bounded by two DLs h = h± [h± ∈ R, cf. definitions (18)] and
located between the paramagnetic phase h >

√
1 + h2

a and the
topological circle of radius R◦ = √

δ2 + h2
a.

In addition, nonzero ha brings about a possibility of an-
other real solutions for h±, engendering two extra IC wings
at |γ | � 1 + δ. The detailed shape of those wings and of the
DL2 depend slightly on the relations between parameters,

(i) ha < δ: In this case the IC oscillating wing is bounded
by h+ � 0 at |γ | � γ◦, where

γ◦ ≡
√

1 + h2
a

√
δ2 + h2

a

ha
, (36)

whereas the other branch h− is not pertinent in this range since
h2

− < 0 at |γ | > 1 + δ. Note that

∀ |γ | > 1 + δ : h2
± ∈ R. (37)

FIG. 8. The ground-state phase diagram on the (h, γ ) plane for
the general cases δ 
= 0 and ha 
= 0. The bold solid lines denote the
phase boundaries: PM-FM in blue; FM-Oz in brown; gapless IC in
magenta. The disorder lines are localized within the FM phase. The
disorder lines of the first kind determined by the real solutions of
(18) are shown in dashed green. They bound the region with IC
oscillations (C) shown in green. (B) regions with no oscillations
(q = 0) shown in light yellow; (D) regions with the commensurate
oscillations (q = π/2) shown in light blue. Regions (B) and (D) are
separated by the disorder lines of the second kind given by (39) and
plotted in dotted green.

As explained above, the DL2 can occur only in the range
where h2

±’s are complex, which is, according to (18),

∀ 1 − δ < |γ | < 1 + δ : h2
± ∈ C. (38)

The DL2 equation h2 = Re(h2
±) yields the parabola,

h2 = h2
a + 1

2
(1 + δ2 − γ 2). (39)

The DL2s shown in dotted green in Fig. 8 start at h = h+ =
h− = √

h2
a + δ and γ = ±(1 − δ) and reach h = h+ = 0 at

γ = ±√
1 + δ2 + 2h2

a. This is the case plotted in Fig. 8.
(ii) ha > δ: In this case (not shown) not only

h2
+ ∈ R, but also h2

+ > 0 at |γ | > 1 + δ. The other
branch h2

− > 0 at 1 + δ < |γ | < γ◦. The DL2s span
through the whole range of complex-valued h2

±’s,
cf. condition (38). These lines are located between
the points h = h+ = h− = √

h2
a + δ at γ = ±(1 − δ)

and h = h+ = h− = √
h2

a − δ at γ = ±(1 + δ).
The qualitative mechanism for appearance of the DL2s for

ha < δ and ha > δ is the same as explained in the end of the
previous subsection after Eq. (32). The DL2 corresponds to a
jump in the wave vector of oscillations 0 ↔ π/2 and a cusp
of the correlation length, see Figs. 9 and 10. The regions of
the IC oscillations are shown in green on the phase diagram in
Fig. 8. The wave-vector q and the inverse correlation length κ

calculated along several paths shown in Fig. 8 are plotted in
Fig. 10. The qualitative behavior of the correlation functions
is similar to that plotted in Fig. 4 for different regions of the
phase diagram.

To summarize the results of this section: Addition of the
dimerization and the staggered field brings about quite rich
structure of the DLs on the phase diagram of the model, richer
than the simple DL circle h2 + γ 2 = 1 [10] for the known case
ha = δ = 0. The DLs are controlled by the behavior of zeros
of the partition function, which become, in the limit T → 0,
the zeros (z±) of the spectrum. Two kinds of DLs are found in
the model:
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FIG. 9. The roots z± and eik± (z± ≡ ei2k± ) determined by
Eqs. (17) and (18) for δ 
= 0 and ha 
= 0 in the first quadrant of the
phase diagram (see Fig. 8) are shown on the complex plane with
respect to the unit circle |z| = 1 drawn by solid blue line. Two roots
on the DL2 (39) when the condition (34) is satisfied are drawn for a
particular point γ = 1.0, δ = 0.3, and ha = 0.4: |eik± | = 0.4518.

(I). The DL of the first kind (or simply DL) corresponding
to the merging complex conjugate roots z+ = z−. In this case
the wave number of the IC oscillations evolves smoothly in
the oscillating region where z+ = z∗

−.
(II). The DL of the second kind (DL2) occurs at the point

z+ = −z−, where z± ∈ R. The asymptotes of the correlation
functions are controlled by the root z	 closest to the unit circle,

min{‖z+| − 1|, ‖z−| − 1|} �−→ z	. (40)

FIG. 10. The modulation wave-number (q) and the inverse cor-
relation length (κ) along several paths indicated on the (h, γ ) plane,
see Fig. 8 for the general cases δ 
= 0 and ha 
= 0. The disorder lines
are accompanied by the cusps of κ , whereas the quantum phase tran-
sitions PM-FM and FM-Oz correspond to κ = 0. The wave number
is continuous, albeit not smooth on the disorder lines of the first kind,
whereas it undergoes a discontinuity on the lines of the second kind.

DL2 separates the regions without oscillations (q = 0) and
with the commensurate (q = π/2) oscillations. The discon-
tinuity of the wave number at the DL2 can be written as

q = π

4
(1 − sgn z	). (41)

A cusp in the correlation length occurs for the both kinds
of DLs.

IV. GROUND-STATE FACTORIZATION

The systematic method for the search of disentangled (fac-
torized) states in quantum chains was proposed by Müller
and co-workers [37]. The properties of separable states in
various spin models have been actively studied in the litera-
ture, see, e.g., Refs. [20,38–41] and more references in there.
The problem has many facets and potential applications, and
one of the outstanding physical questions is the nature of
the disentanglement points: can it be viewed as a quantum
transition of some kind? See, e.g„ Refs. [19–22].

Very recently [16] the factorization of the GS of the XY
chain in the uniform transverse field was related to a special
class of the complex conjugate zeros z+ = z∗

− of its partition
function (in the limit T → 0). In that model the parametric
line of factorization coincides with the disorder line γ 2 +
h2 = 1 [10,18] where the roots z± merge since their imaginary
parts vanish. The disorder line (factorization) transition is a
very weak feature, and it is not straightforward to classify it
in the standard Ehrenfest scheme. For the quantum XY chain
it was rigorously shown [42] that its GS energy is smooth
and even infinitely differentiable function on the disorder (fac-
torization) line. The gap does not close at those points, and
probably the only clean-cut nonanalytic feature is its cusp.2

The goal of this section is to reveal relation between the
DLs of the model (2) analyzed in Sec. III and the factorized
states yet to be detected. To deal with the latter we follow the
method of Ref. [37] with some modifications. Their original
idea was to rotate each spin of the chain in the xz plane to
make the transformed Hamiltonian ferromagnetic with the
fully separable (factorized) GS. In the Hamiltonian (2) with
δ = 0 we rotate spins by the position-dependent angle ϑn,(

S̃x
n

S̃z
n

)
= U −1

n

(
Sx

n
Sz

n

)
Un =

(
cos 2ϑn sin 2ϑn

− sin 2ϑn cos 2ϑn

)(
Sx

n
Sz

n

)
, (42)

with the rotation matrix,

Un =
(

cos ϑn sin ϑn

− sin ϑn cos ϑn

)
. (43)

2Some time ago Ruelle [17] proposed an alternative definition of
phase transition without invoking nonanalyticities of thermodynamic
potentials. It is defined as a discontinuity in the qualitative properties
of correlation functions. Discontinuity in the derivative of the corre-
lation length in case of DLs qualifies then as a transition in Ruelle’s
classification. Moreover, for the DL as a modulation transition with
the modulation wave vector continuously growing deep into the IC
phase, one can use the notion of the critical index of modulation
νL, defined as q ∝ |hDL − h|νL (with νL = 1/2) by Chakrabarty, and
co-workers [12].
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The transformed Hamiltonian,

H̃ = U −1HU = H (S̃), U ≡
N∏

n=1

Un (44)

can be brought to a desired form with the choice of two angles
of rotation on the even and odd sites,

ϑn =
{
ϑe, n = 2l,
ϑ0, n = 2l − 1.

(45)

Assuming an even number of sites N and periodic boundary
conditions Sα

N+1 = Sα
1 , the transformed Hamiltonian written in

terms of the original spins reads

H̃ = −
N∑

n=1

[(1−γ )(Sx
nSx

n+1+Sy
nSy

n+1)+sin 2ϑe sin 2ϑoSz
nSz

n+1]

+
N/2∑
l=1

[(h − ha) cos 2ϑoSz
2l−1 + (h + ha) cos 2ϑeSz

2l ],

(46)

where the other terms of H̃ (not written explicitly) vanish in
its GS if the conditions,

cos 2ϑe cos 2ϑo = 1 − γ

1 + γ
, (47)

and

(1 + γ ) sin 2ϑe cos 2ϑo = (h − ha) sin 2ϑo, (48)

(1 + γ ) sin 2ϑo cos 2ϑe = (h + ha) sin 2ϑe (49)

are satisfied. The solution of Eqs. (47)–(49) exists for h2 +
γ 2 = 1 + h2

a, thus, the factorization occurs on the DL circle
(see Fig. 1). Introducing the factorization field h f , we find

h f = h(1)
DL = ±

√
1 + h2

a − γ 2, (50)

whereas the other DL field h(2)
DL = ±ha does not solve

Eqs. (47)–(49), thus, h f 
= h(2)
DL . The factorizing field (50) and

the angles of spin rotation are related as

cos2 2ϑe/o = (
√

1 + h2
a − γ 2 ± ha)2 + (1 − γ )2

(
√

1 + h2
a − γ 2 ± ha)2 + (1 + γ )2

. (51)

These angles in their turn are related to the roots (21) merging
on the DL circle as

z+ = z− ≡ zDL = cos 2ϑe cos 2ϑo. (52)

The Hamiltonian (46) is the XXZ chain with the interaction
parameter (� ≡ Jz/J),

� = sin 2ϑe sin 2ϑo

1 − γ
(53)

generated by the transformation of the original noninteracting
model (2). This XXZ chain is subjected to the uniform and
staggered transverse fields h̃ and h̃a, respectively, defined as

(h − ha) cos 2ϑo

1 − γ
≡ h̃ − h̃a, (54)

(h + ha) cos 2ϑe

1 − γ
≡ h̃ + h̃a. (55)

The above equations together with Eq. (47) lead to

h̃2 = 1 + h̃2
a. (56)

An important conclusion then follows from the above equa-
tions and the rigorous results [43] for the XXZ chain: with
the fields satisfying (56) and � > 0 (53), the GS of H̃ (46) is
ferromagnetic with the state ket,

|FM〉 =
N∏

n=1

| ↑〉n =
N∏

n=1

(
1
0

)
n

. (57)

From (44) the GS of H is obtained as

|
〉 = U |FM〉. (58)

Note that the expression on the right-hand side of Eq. (51) is
positive and less than one, so cos 2ϑ	 is real, whereas its sign
depends on whether γ < 1 or γ > 1, cf. Eq. (47). Assuming
γ < 1, we can localize the solutions in the range |2ϑ	| � π/2.
So, for cos 2ϑ	 we choose the positive branch of the square
root in Eq. (51) as well as for cos ϑ	 = √

(1 + cos 2ϑ	)/2,

whereas we allow two signs of sin ϑ	 = ±
√

1 − cos2 ϑ	 to
account for the twofold degeneracy of the GS. (Here 	 = e/o
for even/odd sites, respectively.) Then,

|
±〉 =
N/2∏
l=1

(cos ϑo|↑〉2l−1 ± sin ϑo|↓〉2l−1)

× (cos ϑe|↑〉2l ± sin ϑe|↓〉2l ), (59)

with

〈
±
±〉 = 1, 〈
+
−〉 =
(

1 − γ

1 + γ

)N/2

. (60)

The factorized state (59) is maximally disentangled. To put it
more quantitatively let us invoke the two-site concurrence C
introduced by Wootters [44] as a measure of entanglement. It
can be calculated as [16]

C =
∑
m 
=n

〈
|iσ y
miσ y

n |
〉. (61)

For states (59) one can easily verify

〈
±|σ y
m|
±〉 = 〈
±|σ y

mσ y
n |
±〉 = 0, ∀ m 
= n, (62)

thus, C = 0 on the factorized DL circle (50) as expected [20].
To obtain the longitudinal magnetization we find

〈
±|σ x
m|
±〉 = ± sin 2ϑ	. (63)

Thus two degenerate ground-states |
±〉 can be linked to two
possible orientations of the spontaneous order parameter mx.
Similarly,

〈
±|σ z
m|
±〉 = cos 2ϑ	. (64)

A hallmark of the ground-state factorization are the constant
correlation functions. For the disentangled state they are found
in a closed form

〈σα
mσα

n 〉 = 〈σα
m〉〈σα

n 〉, ∀ m 
= n, (65)

with the average values 〈σα
m〉 given by Eqs. (63), (64), and

(51). The above analytical results are in agreement with the
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FIG. 11. Constant spin-spin correlation functions at three points on the circle of disentanglement (50). Panels (a) and (d): 〈σ x
mσ x

m〉 and
〈σ z

mσ z
m〉 at a point on the boundary between regions (B) and (C) of the FM phase, see Fig. 1; (b): point of intersection of two DLs: (50) and

h = ha; (c): point on the boundary between (D) and IC oscillations.

direct numerical calculations of the correlation functions via
the Toeplitz determinants with the explicit formulas provided
in Ref. [25]. The representative plots of those functions for
three points on the line of disentanglement are shown in
Fig. 11. For comparison we also show in Fig. 12 the spin-spin
correlation function on the disorder line h = ha where the GS
is not disentangled.

FIG. 12. Spin-spin correlation function 〈σ x
mσ x

m〉 on the disorder
line h = ha where the GS is not disentangled. Contrary to the case
shown in Fig. 11, the correlation functions are not constant.

The behavior of correlators on the generic DLs and on the
DLs with the factorized disentangled GSs is stemming from
the analytical properties of the generating function [16,41,45].
The elements of the Toeplitz determinants yielding various
spin-spin and string-string correlation functions are the two-
point Majorana correlators,

〈ianbm〉 =
∮

|z|=1

dz

2π i
zn−m−1 R(z)

E+(z)E−(z)
, (66)

where the explicit formula for R(z) can be found in Ref. [25].
On the DL two complex conjugate zeros of the spectrum z±
merge into a single real degenerate root zDL, rendering its
contribution to the integrand of (66) meromorphic,

〈ianbm〉 DL=
∮

|z|=1

dz

2π i
zn−m R̃(z)

(z − zDL )(z − z−1
DL )

. (67)

For the limiting case ha = δ = 0 the aforementioned restruc-
turing of singularities of the generating function in (67) in
sufficient to both:

(a) yield the DL as a boundary of the modulated region
with IC oscillations, and

(b) render the appropriate Toeplitz determinants size inde-
pendent on the whole DL such that Eqs. (65) hold and the state
is disentangled (factorized) [16].

An important conclusion from the results of this section
is that occurrence of DL as a point where the complex roots
z± merge does not necessarily lead to a factorized ground
state, i.e., disentanglement. It is true for the case ha = δ = 0,
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but turning on the staggered field ha 
= 0 already changes the
situation. As we have shown, for the factorizing field h f (50)
and the DL field h(2)

DL = ±ha the properties (a) and (b) do not
coincide, however, the DL circle (50) is disentangled. One can
check that in the presence of dimerization δ 
= 0, there are no
solutions of the equations for H̃ with the factorized GS. Thus,
∀ δ 
= 0, the states on the DLs analysed in Sec. III for the cases
B (ha = 0) and C (ha 
= 0) are entangled, in agreement with
general arguments of Refs. [38,40].

V. ZERO-ENERGY MAJORANA EDGE STATES

Let us first find the one-dimensional winding number (or
the Pontryagin index) defined as [46,47]

Nw = 1

2π i

∫
BZ

dk Tr[∂k ln D̂], (68)

where D̂ is introduced in Eq. (8). It can be readily written as

Nw =
∮

|z|=1

dz

2π i
∂z ln det D̂. (69)

Then the topological number (69) is the logarithmic residue of
det D̂. It accounts for the excess of the number of zeros over
the number of poles (weighted with their degrees of multiplic-
ity) of det D̂ inside the unit circle on the complex plane [48].
The zeros of det D̂ are also zeros of the spectra, cf. Eqs. (13)
and (15). Any change in winding number occurs only when a
root (roots) crosses the unit circle |z| = 1, which can happen
only at a point of quantum phase transition [16,49]. By the
same token, Nw does not change upon crossing disorder lines.

From Eq. (15) and known root positions with respect to the
complex unit circle (see Figs. 2, 6, 9), we readily obtain the
winding numbers for the three gapped phases of the model
(2),3

Nw =
⎧⎨
⎩

0, PM phase,
∓1, FM phase, γ ≷ 0,

0, Oz(π/2) phase.
(70)

In the search of the zero-energy Majorana edge states of
the model (2) we will follow the earlier related papers [26,30–
32]. We introduce two zero-energy Majorana operators α̂0 and
β̂0 as

2η̂†
0 ≡ α̂0 + iβ̂0 =

N∑
n=1

[φnân + iψnb̂n], {φn, ψn} ∈ R,

(71)
where η̂†

0 denotes the creation operator of the Bogoliubov
fermion with zero energy. (The Hamiltonian is diagonal
in terms of the Bogoliubov fermions.) The involution of

3The phase of the logarithm is not uniquely defined. In earlier
related work [25,36] the limit of the phase of logarithm in Eq. (68) at
the ends of the BZ was chosen such that Nw differed from the current
result (70) by 1. Note that (68) is defined mod 2. Definition (69) is
robust and more intuitively transparent.

Majorana operators amounts to the requirement of the wave-
function normalization in (71),

α̂2
0 =

N∑
n=1

φ2
n = 1, (72)

β̂2
0 =

N∑
n=1

ψ2
n = 1. (73)

The Heisenberg equations for α̂0 and β̂0 yield

[α̂0, Ĥ ] = [β̂0, Ĥ ] = 0. (74)

Writing the Hamiltonian (3) with open boundary conditions
(N = 2L + 1) via the Majorana operators (27), one can bring
the commutativity condition (74) to the form of the iterative
equation for the Majorana wave function,(

φn+1

φn

)
= T̂n

(
φn

φn−1

)
, (75)

with the transfer matrix,

T̂n =
(

2hn
tn+γ

− tn−1−γ

tn+γ

1 0

)
, (76)

where

hn ≡ h + (−1)nha, tn ≡ 1 + (−1)nδ. (77)

For the other wave function we get(
ψn+1

ψn

)
= T̂n(−γ )

(
ψn

ψn−1

)
. (78)

There are only two distinct matrices T̂n,

T̂2l/2l−1 = T̂±. (79)

Using the period 2 transfer matrix,

T̂ ≡ T̂+T̂− =
⎛
⎝ 4(h2−h2

a )−(1−δ)2+γ 2

(1+γ )2−δ2 − 2(h+ha )(1+δ−γ )
(1+γ )2−δ2

2(h−ha )
1−δ+γ

− 1+δ−γ

1−δ+γ

⎞
⎠, (80)

the solution of (75) can be written as(
φ2m+1

φ2m

)
= T̂ m

(
φ1

0

)
. (81)

Similarly, (
ψ2m+1

ψ2m

)
= T̂ m(−γ )

(
ψ1

0

)
. (82)

To look for the tentative Majoranas localized near the right
end of the chain, we write Eq. (74) in the different iterative
form as (

φn−1

φn

)
= T̂n(−γ ,−δ)

(
φn

φn+1

)
, (83)

leading to the solution,(
φ2L−2m+1

φ2L−2m+2

)
= T̂ m(−γ )

(
φ2L+1

0

)
. (84)

In the same way we obtain(
ψ2L−2m+1

ψ2L−2m+2

)
= T̂ m

(
ψ2L+1

0

)
. (85)
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To advance further [32] we write the transfer-matrix T̂ via
two orthogonal idempotent operators (projectors),

P̂± ≡ ± T̂ − λ∓1

λ+ − λ−
, (86)

as

T̂ = λ+P̂+ + λ−P̂−, (87)

where λ± are two eigenvalues of T̂ . Then,

T̂ m = λm
+P̂+ + λm

−P̂−. (88)

As follows from Eqs. (72), (73), (81), (82), (84), (85),
and (88), for the existence of the normalizable zero-energy
Majorana states in the thermodynamic limit N → ∞, the
eigenvalues of the transfer matrix must lie inside the complex
unit circle |λ±| < 1.

The key result is that the eigenvalues of the transfer matrix
T̂ (80) are zeros of the spectrum (17),

λ± = z±, (89)

in agreement with the earlier findings [32] for the case ha =
δ = 0. Also, according to Eq. (16), the eigenvalues of T̂ (−γ )
are z−1

± . Thus, the zeros of the spectrum z±, which are also the
zero-temperature limit of the partition function zeros, control
the critical points, modulation transitions, disentanglement,
topological numbers, and the zero-energy Majorana states.
The properties on the edge (T̂ ) are controlled by the bulk
parameters (z±).

Note that counting of the localized Majorana modes from
the number of zeros of the resolvent of the transfer-matrix
T̂ within the unit circle on the complex plane [30,31] is still
valid, however, it does not provide an independent information
after the eigenvalues of the transfer matrix are being identified
as zeros of the spectrum (89).

Since the information on the roots z± (17) is available for
all regions of the model’s phase diagram (see Figs. 2, 6, 9),
we can give the qualitative answers about existence of the
Majorana states prior of any calculations:

(1) PM and Oz(π/2) phases: Among two roots z± one is
always located inside the unit circle and the other one outside
(the same for their reciprocals z−1

± ), thus, none of the four
Eqs. (81), (82), (84), and (85) has a normalizable solution, and
the zero-energy Majorana modes do not exist in those phases.

(2) FM phase with mx 
= 0 (γ > 0): The solution of (81)
for the wave-function φn of the Majorana zero-energy state α̂0

localized near the left end of the chain and the solution of (85)
for ψn of the Majorana state β̂0 localized near the right end,
exist. The zero-energy Bogoliubov (Dirac) fermion η̂†

0 (71) is
a superposition of two Majoranas localized on the opposite
ends of the chain.

(3) FM phase with my 
= 0 (γ < 0): φn ↔ ψn since in this
case Eqs. (82) and (84) have normalizable solutions. The zero-
energy Majoranas α̂0 and β̂0 are now localized near the right
and left ends of the chain, respectively.

From the above equations we readily find the explicit for-
mulas for the wave function of the α̂0 Majorana in the mx-FM
phase,

φ2m+1 = (
T̂ m

)
11φ1, (90)

(T̂ m)11 = (zm
+ − zm

−)T11 − (zm−1
+ − zm−1

− )z+z−
z+ − z−

,

φ2m = (T̂ m)21φ1, (91)

(T̂ m)21 = (zm
+ − zm

−)T21

z+ − z−
,

where the matrix elements T11 and T21 are given in (80). The
normalization condition (72) yields

φ1 =
[

1 +
L∑

m=1

{(T̂ m)2
11 + (T̂ m)2

21}
]−1/2

. (92)

For the wave function of the β̂0 Majorana we get

ψ2L−2m+1 = (T̂ m)11ψ2L+1, (93)

ψ2L−2m+2 = (T̂ m)21ψ2L+1, (94)

with ψ2L+1 determined by the right-hand side of Eq. (92).
The wave functions are exponentially decaying with the

penetration depth (inverse correlation length) determined by
the root z± closest to the unit circle. In the light yellow regions
without oscillations (see Figs. 2, 6, 9) the roots are positive,
whereas the negative root closest to the unit circle results
in the four-periodic oscillations of the wave functions in the
light blue regions of the phase diagram. In the IC oscillating
(light green) regions of the phase diagram where z+ = z∗

− [cf.
notations (22)] the formulas become particularly simple,

(T̂ m)11 = e−2κ (m−1) sin 2qm

sin 2q
T11

−e−2κm sin 2q(m − 1)

sin 2q
, (95)

(T̂ m)21 = e−2κ (m−1) sin 2qm

sin 2q
T21. (96)

The plots of the wave functions for representative cases are
shown in Fig. 13.

VI. CONCLUSION

In this paper we present a detailed study of the exactly
solvable dimerized ferromagnetic XY chain with uniform
and staggered transverse fields, which is equivalent in the
fermionic representation to the noninteracting dimerized
Kitaev-Majorana chain with the modulated chemical poten-
tial. The model has three known gapped phases with local
and nonlocal (string) orders, along with the gapless IC phase
in the U (1) limit. It is shown that the model along with the
continuous quantum phase transitions possesses weaker sin-
gularities known as DLs or modulation transitions. The latter
are localized in the ferromagnetically ordered regions of the
phases diagram. The DLs are shown to occur in this model in
two types: DLs of the first kind with continuous appearance of
the IC oscillations, and DL2 corresponding to a jump of the
wave number which controls the oscillations. A cusp in the
correlation length occurs for the both kinds of DLs.

It is also shown that this model hosts the zero-energy
Majorana edge modes in its ferromagnetic phases. In each
phase there is a couple of the Majorana states localized on
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FIG. 13. Wave-functions φ,ψ of the zero-energy Majoranas a,
b localized near the left and right ends of the chain, respectively.
The functions are calculated in three regions (B), (C), and (D) of the
mx-FM phase (see Fig. 8) with N = 501. Panel (a): region (B) with-
out oscillations; (b) region of the IC oscillations (C) with the wave
number q = 0.1583π ; (c): region (D) with four-periodic oscillations
q = π/2.

the opposite ends of the chain, which can be viewed as a “de-
confined” Bogoliubov (Dirac) fermion with zero energy. The
exactly calculated wave functions of those edge Majoranas are
shown to acquire modulations on the DLs.

It is demonstrated that the DLs are the locus of the sep-
arable ground states. More specifically, the ground state is
proved to be separable (factorized) on a subset of the DLs
(circle) in the case of zero dimerization δ = 0. In this state
the model is disentangled, which is remarkably manifested by
constant correlation functions. With the explicit formula for
the factorized ground state, the correlation functions are cal-
culated exactly analytically, in agreement with the numerical
calculations of the Toeplitz determinants.

From the view point of the general theory of phase transi-
tions, probably the most important advancement made in the
present paper is that all the above results are obtained from
analysis of the properties of zeros of model’s partition func-
tion, analytically continued onto the complex wave numbers.
In the ground state they evolve into complex zeros z± of the
spectrum of the Hamiltonian, such that:

(1) Those zeros signal a quantum critical transition when
one of the roots z± (or both simultaneously) cross the com-
plex unit circle |z±| = 1. In this case (only!) the topological
winding number changes as well.

(2) Merging of the complex conjugate roots z+ = z− sig-
nals the DL (continuous modulation transition) which can
also be accompanied by the ground-state factorization (dis-
entanglement). The DL2 with discontinuous modulation and
without disentanglement, occurs when z+ = −z− and z± ∈ R.

(3) The roots z± are also shown to be the eigenvalues of
the transfer matrix (89), thus, their number inside the unit
circle on the complex plane controls also the existence of the
localized zero-energy edge Majoranas.

We think a very important direction of future analysis is
to get a deeper insight on the analytical properties of generic
disorder lines to single out their subsets where the ground state
is factorized, the model is disentangled, and the appropriate
Toeplitz determinants are size independent.
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