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Especially in one dimension, models with discrete and continuous symmetries display different physical prop-
erties, starting from the existence of long-range order. In this work, we that, by adding topological frustration, an
antiferromagnetic XY Z spin chain, characterized by a discrete local symmetry, develops a region in parameter
space that mimics the features of models with continuous symmetries. For instance, frustration closes the mass
gap and we describe a continuous crossover between ground states with different quantum numbers, a finite
(Fermi) momentum for low energy states, and the disappearance of the finite order parameter. Moreover, we
observe nontrivial ground-state degeneracies, nonvanishing chirality, and a singular foliation of the ground-state
fidelity. Across the boundary between this chiral region and the rest of the phase diagram, any discontinuity in
the energy derivatives vanishes in the thermodynamic limit.
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I. INTRODUCTION

One-dimensional spin-1/2 systems have always repre-
sented a fundamental field of study for the physics of quantum
many-body systems but, quite surprisingly, nowadays their
relevance is still growing. Indeed, while in the past they have
represented toy models to detect features to embed into frame-
works of more realistic systems, recently, the development
of novel experimental devices [1–4] have disclosed the path
toward direct tests of theoretical predictions. Assuming in-
variance under spatial translation and limiting to systems with
finite range interactions, in agreement with Goldstone’s theo-
rem [5,6], they are usually classified into two large families.

The first includes models in which Hamiltonians show lo-
cal continuous symmetries. In these cases, the systems admit
sets of quantum numbers, i.e., sets of distinct eigenvalues
of operators commuting with the Hamiltonian, whose size
scales with the chain length. In these models, properly or-
dered phases are absent [7] even at zero temperature, due to
quantum fluctuations. Another remarkable property of these
system is that, at criticality (that is, when the mass gap van-
ishes) a parameter change can trigger continuous cross-overs
between nondegenerate ground states with different quantum
numbers. To fix the ideas let us consider the example of
the XXZ spin-1/2 chain. Such a model holds a continuous
U(1) rotational symmetry along the z axis and, due to such
symmetry, the eigenstates of the Hamiltonian can be classified
by their total magnetization in the z direction. In a region of
small interaction along z (in modulus) without local fields,
the ground state has a vanishing total magnetization, and the
energy spectrum is gapless in the thermodynamic limit [8].
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Turning on a magnetic field along z induces a finite magne-
tization in the ground state preserving the criticality of the
system up to a critical value. Moreover, together with the
nonvanishing magnetization, the ground state also acquires a
nonzero momentum, although not a macroscopic one. Usu-
ally, the ground state is static, in order to minimize the kinetic
energy, but here we show that, in presence of topological
frustration, the lowest energy state of a system can be just
stationary. Moreover, since low energy excitations are also
characterized by momenta close to that of the ground state,
this constitutes a Fermi momentum. Note that, contrary to what
happens in higher-dimensions, 1D models with continuous
symmetry posses a Fermi momentum independently from the
statistics of the microscopical degrees of freedom [9]. Thus,
by changing the external field, the system undergoes a series
of ground-state crossovers between nondegenerate states with
different values of the total magnetization, i.e., different quan-
tum numbers, that are clearly mutually orthogonal. Hence, in
the thermodynamic limit, systems like the XXZ chain in this
regime show an extreme case of orthogonality catastrophe
[10,11]: Ground states of arbitrarily similar Hamiltonian are
not only orthogonal in the thermodynamic limit, but at any
finite size, any change in the Hamiltonian parameters contin-
uously moves between states with zero overlap [12].

On the opposite side, the second family of one-dimensional
models is made by systems whose Hamiltonians display only
discrete local symmetries, so that its eigenstates are charac-
terized just by finite sets of quantum numbers. The physical
properties of this second family are different from those
above. In their gapless regimes, that is when the mass gap
closes algebraically with the system size, one cannot define
a Fermi momentum for low energy excitations, and in the
gapped case, these systems can develop a finite order pa-
rameter as a reflection of a spontaneously broken (discrete)
symmetry. In fact, few nearly degenerate low-energy states,
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possessing different quantum numbers, are separated by a
finite energy gap from the rest of the spectrum. The gap
between these states closes exponentially with the system
size [8,9] and in the thermodynamic limit the system can
select a superposition of them as a ground state that violates
a Hamiltonian’s symmetry. Such state is thus characterized by
a nonzero order parameter, i.e., a nonvanishing expectation
value for an operator that should otherwise vanish due to
symmetry.

In this paper, we will show that it is possible to simulate
the physics of models with continuous symmetries using mod-
els whose Hamiltonians possess only discrete symmetries.
The key ingredient will be the introduction of a frustration
[13–19] of topological origin in the latter models. Topolog-
ical frustration can be induced in a system with short-range
antiferromagnetic interactions through a special set of bound-
ary conditions, the so-called frustrated boundary conditions
(FBC) [20–25]. They are realized assuming periodic boundary
conditions in a system made of an odd number of spins. In
this setting, as described in detail in the rest of this work, the
ground-state is described by an excitation delocalized along
the whole chain. As a consequence, the length of the chain
becomes a relevant scale for the system and, despite being just
boundary conditions, FBCs can actually affect the thermody-
namic limit and thus the physics of the system.

We will show that moving in a region of phase space,
these systems undergo repeated crossovers between exactly
orthogonal states. Since the discrete local symmetries of
these models separate states only into finite sets (of quantum
numbers), frustration further uses the representation of spa-
tial translation to differentiate between the different ground
states. Namely, depending on the Hamiltonian parameters,
the ground states acquire finite momenta. As discussed in a
series of recent works, unless higher symmetries are consider
which constrain the ground-state momenta to specific values,
FBC prevent the formation of a finite order parameter in the
thermodynamic limit [24–26], again mimicking the behavior
of continuous symmetry systems.

We will illustrate this phenomenology in the framework
of the topologically frustrated short-range anisotropic XY Z
chain, a prototypical model featuring a Z2 symmetry, realized
by the parity of the magnetization. With the help of both
numerical diagonalization and analytical evaluations, we will
prove that it presents a region of parameter space, which
we name chiral region, in which even at finite sizes several
twofold degenerate manifolds play, alternatively, the role of
ground states. Such manifolds, whose elements belong to
the same parity, are completely identified by two eigenstates
with opposite quantum numbers for the momentum operator.
Increasing the size of the system, the number of possible
eigenvalues of the momentum grows, hence increasing also
the number of crossovers in the chiral region. Thereby, in
the thermodynamic limit, this system will show a behavior
mimicking the critical phase of models with local continu-
ous symmetry. Moreover, these ground-state momenta act as
Fermi points, and low energy excitations lie close to them.
The chiral region is separated from the rest of the parameter
space by a line at which the degeneracy of the ground-state
changes. However, none of the derivatives of the energy show
nonanalytic behavior. On the other hand, consistently with the

fact that this transition is induced by the particular choice of
boundary conditions, all the parameters we have analyzed in
the attempt to classify the chiral region vanish algebraically
with the chain length. The latter two properties support the
idea that we are looking at a boundary-BKT-like phase transi-
tion, but we are not aware of such occurrence in the literature,
in any model.

To highlight this peculiar picture, in the beginning, we
will focus on different observables, such as chirality and
the ground-state momentum. Such observables are known, in
some cases, to be different from zero in systems with con-
tinuous symmetry such as the Heisenberg chain [27–29], but
have never previously been observed in systems with discrete
symmetries. Moreover, to have a more direct characterization
of the ground states in this region, we focus our attention on
the ground-state fidelity. This is a quantity directly borrowed
from quantum information theory and it allows to appreciate
how a system reacts to a small change of the Hamiltonian
parameters [30–36].

The paper is organized as follows. In the second section,
we present several numerical results, obtained with an exact
diagonalization approach, that depicts the main features of
the chiral region. In the third section, we study both the total
ground-state fidelity, which drops to zero in the chiral region
and the reduced one, obtained by considering the overlap
between the reduced density matrices obtained by tracing out
from the ground state all degrees of freedom but those at
two sites. To better analyze how these features scale in the
thermodynamic limit, we restrict to the XY chain in which we
can exploit the fact that the model can be exactly mapped to
a free-fermionic system and hence can be solved analytically.
By employing such analytical solution, in the last section we
show that both the violation of the invariance under spatial
translation and the chirality vanish in the thermodynamic limit
and that, at the boundary of the chiral region, none of the
energy derivatives show nonanalyticities. In the end, we draw
our conclusions.

II. ANISOTROPIC XYZ CHAIN

Let us start by introducing the model that we use in this
paper as an example of the phenomenology we are presenting.
The model is a very general short-range anisotropic Heisen-
berg chain with a local field that, without losing generality,
we assume to align with the z axis. To induce topological frus-
tration, we consider only the cases made of an odd number of
sites with periodic boundary conditions in which the dominant
interaction is antiferromagnetic. The Hamiltonian of such a
system reads

H =
N∑

j=1

∑
α=x,y,z

Jασ α
j σα

j+1 − h
N∑

j=1

σ z
j , (1)

where σα
j , for α = x, y, z, are Pauli matrices and periodic

boundary conditions require σα
j = σα

j+N . Moreover, we as-
sume that Jx �= Jy to avoid that, the system acquires a
continuous rotational symmetry around the z axis, like the
XXZ chains shortly described in the introduction. As a con-
sequence, the system holds only the discrete parity symmetry
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FIG. 1. Dependence of the threshold value h∗ as a function of
Jy ∈ (−1, 1) and Jz ∈ (−1, 1) for N = 15 and Jx = 1. For |h| < h∗

(the chiral region), the ground-state manifold is at least twofold de-
generate and spanned by states with finite and opposite momentum.

along z (�z = ∏N
i=1 σ z

i , [�z, H] = 0) that, independently of
the system size, admits only two quantum numbers (±1).

Despite its apparent simplicity, the model in (1) does not
admit any analytical solution. Therefore all our analyses are
based on a numerical approach based on the Lanczos algo-
rithm [37,38] for the exact diagonalization of the Hamiltonian.
Keeping Jx = 1 and assuming Jx > |Jy|, |Jz|, we obtain that,
for several odd N , in the region Jz > −Jy there is a thresh-
old value of the local field h∗ > 0, which delimits the chiral
region, such that for each h ∈ (−h∗, h∗) the ground-state
manifold is at least twofold degenerate (see Fig. 1). Such a
manifold can be completely described in terms of the eigen-
states of the momentum operator P that is the generator of
the translation operator T , i.e., T = eıP, whose action shifts
all the spins by one site in the lattice. For a one-dimensional
system with periodic boundary condition, the operator T can
be written in terms of the Pauli ones as [8,39]

T =
N−1⊗
i=1

1

2

(
I +

∑
α=x,y,z

σα
i σα

i+1

)
, (2)

From the numerical analysis, we have that the ground-state
manifold admits a basis made by the two eigenstates of the
momentum |±p〉 with opposite quantum number ±p(h), as it
can be seen in Fig. 2. Moreover, the momentum p(h) acts as a
Fermi point, in a system whose discrete symmetry should not
allow for its existence, as low energy excitations lie nearby.
Moving h throughout the region (−h∗, h∗), the system visits
all possible values of the momentum quantum number. Since
states with different quantum numbers are exactly orthogonal
to each other and the size of the set of the momentum quantum
numbers scales with the chain length, the number of differ-
ent crossovers occurring in the region (−h∗, h∗) increases
with N .

FIG. 2. Ground-state momenta p(h) in unit of π as a function of
the local field amplitude h for different sizes of the chain at fixed val-
ues of the anisotropies (note that momenta are compactified between
−π/2 and π/2). The data are obtained setting Jx = 1.0, Jy = 0.6,
and Jz = 0.2. Note that, except in the cases of a zero ground-state
momentum, the ground-state manifold is always twofold degenerate
with the two ground states carrying opposite momenta. Moving in
phase space, the ground-state vectors acquire all momenta allowed
by the quantization rule.

The presence of degeneracy in the ground-state manifold of
systems with only local discrete symmetries is not rare and it
is at the basis of the mechanism of the symmetry violation.
However, in the present case, we have two relevant pecu-
liarities. First, the exact degeneracy is present even for finite
sizes, while it usually appears, only in the thermodynamic
limit. Second, the degeneracy involves states of the same
parity, hence not allowing the system to violate the parity
symmetry, as it happens in the ordered phase of unfrustrated
systems. On the contrary, such degeneracy stems from the
mirror symmetry (that is, a reflection with respect to any site),
which implies that each eigenstate has to be at least twofold
degenerate, with the only exception of zero momentum states
[24,40].

This structure of the ground-state manifold has some in-
teresting implications. Since in the chiral region (−h∗, h∗)
the ground states typically have a nonvanishing momentum,
they are expected to be characterized by a nonzero expectation
value of the chiral operator τ̂ ≡ −→σ i−1 ·−→σ i×−→σ i+1 [27,41]. In
Fig. 3, we plot the behavior of the site independent expecta-
tion value τ ≡ 〈±p|τ̂ |± p〉. On the other side, a ground state
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FIG. 3. Ground-state chirality τ , evaluated on the elements of
the ground-state manifolds that are also eigenstates of the lattice
momentum operator. The results are plotted as a function of the local
field amplitude h for different sizes of the chain at fixed values of the
anisotropies. A finite chirality reflects the finite momentum carried
by the ground-state vector, indicating that, in its lowest energy state,
the system moves in a stationary way. The data are obtained settings
Jx = 1.0, Jy = 0.6, and Jz = 0.2.

that is a linear superposition of |±p〉, violates the invariance
under the spatial translation of the Hamiltonian. This fact
is not expected, at the ground-state level, in models pos-
sessing only discrete symmetries, and can be highlighted by
analyzing the variance of the spatial distribution of the two-
body next-neighbor spin correlation function along x, i.e., the
expectation values of σ x

i σ x
i+1, on the state 1√

2
( |p〉 + |−p〉 ).

Fixing Jx = 1, Jy = 0.6, and Jz = 0.2 the variances as a func-
tion of the local field obtained with the exact diagonalization
approach are depicted in Fig. 4.

All these behaviors have already been previously observed
in systems with continuous local symmetries, such as the
isotropic Heisenberg model [27–29], but they turn out to be
completely new for systems with only local discrete symme-
tries.

III. GROUND-STATE FIDELITY

The analysis of the different quantities we have shown
so far provides indirect information on the behavior of the
ground state. To access more directly the crossovers between

FIG. 4. Variance σxx (h) of expectation values of σ x
i σ x

i+1, which
varies in space, as function of the external field h for Jx = 1.0,
Jy = 0.6, and Jz = 0.2. The data are obtained using the ground-state
vector 1√

2
(|p〉 + |−p〉. The variance is finite for |h| < h∗, although

decreasing with the chain length, indicating that indeed the two point
function is not translational invariant.

the ground states of the topological frustrated XY Z chain,
in this section, we will analyze a quantity derived from the
quantum information theory, namely the ground-state fidelity,
which will give us a clearer picture of how the system re-
sponds to small changes in its parameters.

For a parameters-dependent Hamiltonian H (
−→
λ ), the

ground-state fidelity is defined as the square modulus of the
overlap between two ground-states associated with slightly
different sets of parameters, i.e.,

F (
−→
λ ) = |〈G(

−→
λ )|G(

−→
λ + d

−→
λ )〉|. (3)

The ground state fidelity has already been widely used
to analyze in detail the properties of the ground state of
different one-dimensional systems [30–36]. Since, in the ther-
modynamic limit, two neighboring ground state are always
orthogonal, as a consequence of what is commonly referred
to as Anderson’s orthogonality catastrophe [10,11], the most
interesting quantity to consider is the finite size rate of
change, the so called fidelity susceptibility. In systems with
only discrete local symmetries, this quantity is continuous
and diverges only approaching a quantum phase transition.
It has thus been argued that it is a good quantity to use to
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detect criticality. On the contrary, in systems with continuous
symmetry, certain change in the system parameters trigger
crossovers between states with different quantum numbers
and the ground-state fidelity presents as many points of dis-
continuity as the number of sites in the chain. For the XXZ
chain discussed above, these discontinuities are induced by
changes in the external magnetic field and it represent an
extreme case of orthogonality catastrophe because two neigh-
boring ground states are exactly orthogonal even for small
system sizes because they carry different quantum numbers.
In our case, the ground-state fidelity behaves exactly like
this: moving in almost every direction in the parameter space,
the system changes the ground-state momentum, making the
fidelity drop to zero. But there exists a particular direction
along which the momentum stays constant and the fidelity
shows a more regular behavior.

To study how these properties scale with the system size,
we need to consider much longer chains than those treatable
within an exact diagonalization approach. Even advanced nu-
merical methods, such as DMRG are not easily applicable
to models showing topological frustration, especially in the
region of interest of the present work, due to the simultaneous
presence of both a degeneracy between ground states in the
same parity sector and the closing of the energy gap be-
tween the ground states and the immediately overlying excited
states. Therefore, to push our study towards larger sizes, we
now focus on the case Jz = 0 which can be mapped into a
free-fermionic model, thus disclosing the possibility for an
analytical solution. Introducing the anisotropic parameter γ

and defining Jx = 1+γ

2 and Jy = 1−γ

2 , the Hamiltonian of the
model in (1) reduces to the one of the XY chain in a transverse
field

H =
N∑

j=1

[
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 − hσ z

j

]
. (4)

This is a prototypical exactly solvable model which, through
a series of exact, although nonlocal, transformations can be
brought into a free fermionic form. Its method of solution
is known since the famous 1961 paper by Lieb, Schutz, and
Mattis [42] and since then many interesting observables have
been calculated for it, including the fundamental correlation
functions [43], establishing it as a corner stone in many-body,
strongly correlated quantum systems. However, virtually all
these works have been interested in bulk properties deemed
independent from the boundary conditions and have thus been
quite cavalier in this respect (notice that, without a proper
account of boundary conditions it is not possible even to estab-
lish the asymptotic ground-state degeneracy of this model in
its ordered phase [8,44]). As a matter of fact, as it is has been
only recently appreciated, FBC induce several subtle differ-
ences in the solution of the XY chain which yield surprising
outcomes [22–25], such as those that we discuss in this work.
The exact analytical solution of this model is presented in
the Appendix, while here we focus on the physical results.
In complete agreement with the previous numerical results,
we find that it exists a chiral region, defined for |h| < h∗ =
1 − γ 2, were the ground state possesses a nonzero momentum

q̃ which depends on the driving parameters as

q̃ = arccos

(
h

γ 2 − 1

)
. (5)

In this situation, we have two different possibilities for
ground-state fidelity: the states |G(

−→
λ )〉 and |G(

−→
λ + d

−→
λ )〉

can either be exactly orthogonal, or not. The first happens ei-
ther because they live in different parity sectors and hence are
characterized by a different number of fermions, or because
the fermions occupy different fermionic modes.

Instead, if we move the parameter along one of the parabo-
las h = c(1 − γ 2), the two ground states have the same parity
and the and their fidelity can be written as (see Appendix for
details)

F =
∏

q∈	+
2 /{q̃+}

cos(θ̃q − θq), (6)

for the even parity and

F =
∏

q∈	−
2 /{q̃−}

cos(θ̃q − θq), (7)

for the odd one. These expressions are very similar to the
ones characterizing the ground-state fidelity of both the un-
frustrated systems and the region with |h| > h∗.

Along these parabolas it is also possible to evaluate the
fidelity susceptibility χ that, by definition, is equal to the
leading order of the expansion of the ground-state fidelity in
the parameter change:

F ≈ 1 − 1
2χ dγ 2, (8)

Such quantity has been widely studied in the context of the
unfrustrated XY chain [31,32], proving to be able to cor-
rectly predict the phase transition at h = ±1 and γ = 0 [35].
In agreement with the Anderson orthogonality catastrophe
[10,11], the fidelity susceptibility always tends to diverge in
the thermodynamic limit. However, while at a regular point,
this divergence is only extensive, it becomes superexten-
sive close to a quantum phase transition [32]. Therefore, to
study the behavior of the fidelity susceptibility in the ther-
modynamic limit let us introduce the renormalized fidelity
susceptibility χ̃ obtained by dividing χ by the system volume.
After a long but straightforward evaluation it is possible to
prove (see Appendix for details) that, independently from the
parity sector, the normalized fidelity susceptibility is

χ̃ = 1

16

1 + c2(1 + γ )3(3γ − 1)

γ (1 + γ )2(1 − c2(1 − γ 2)2)
. (9)

One can check, and Fig. 5 confirms, that the renormalized
fidelity susceptibility diverges at γ → 0, hence signaling the
presence of the critical phase of the quantum XX chain, i.e.,
the continuous symmetry model emerging by setting γ = 0.

However, as noted above, if we do not assume that
−→
λ and−→

λ + d
−→
λ are on the same parabola, the ground-state fidelity

vanishes identically as it occurs within the gapless phases of
systems with continuous symmetries. In the latter case, to
avoid the problem associated with the scaling analysis of such
a ground-state fidelity, it is normal to resort to the reduced
fidelity [12,34,45,46]. The reduced fidelity can be seen as a
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FIG. 5. Thermodynamic limit of the global state fidelity suscep-
tibility χ̃ along manifolds of constant momentum q̃ obtained moving
along the parabola h = c(1 − γ 2) as a function of γ . Going towards
γ = 0 the fidelity susceptibility diverges signaling the presence of
the quantum phase transition between the anisotropic XY chain and
the isotropic XX one.

generalization of the ground-state fidelity, and it represents
the overlap between the reduced density matrices for a fixed
subsystem, obtained from the ground states corresponding to
different parameters, i.e.,

FRA = Tr
√

ρA(�λ)1/2ρA(�λ + �dλ)ρA(�λ)1/2. (10)

Here ρA(�λ) (ρA(�λ + �dλ)) denotes the reduced density matrix
of the ground state |G(�λ)〉 (|G(�λ + d�λ)〉), obtained by tracing
out all the degrees of freedom associated to sites outside
the chosen subset A: ρA(�λ) ≡ trB|G(�λ)〉〈G(�λ)|(ρA(�λ + �dλ) ≡
trB|G(�λ + �dλ)〉〈G(�λ + �dλ)|). Among all the possibilities we
decided to focus on the reduced matrix obtained by project-
ing the ground state on two nearest-neighbor spins, but we
checked that other choices lead to similar results. The reduced
density matrix on two nearest-neighbor sites can be written in
terms of the spin correlation functions [47] as

ρi j = 1

4

∑
α,β=0,x,y,z

〈
σα

i σ
β
j

〉
σα

i ⊗ σ
β
j , (11)

where σ 0 denotes the identity and the analytic expressions for
the correlation functions appearing in (11) are presented in
Appendix.

The results obtained for the reduced fidelity, in a system
composed of 1001 sites, by keeping the value of γ fixed and
changing h with uniform steps equal to 10−4 are shown in
Fig. 6.

In the chiral region h < h∗, we plot two sets of points:
The lowest ones refer to the reduced fidelity while moving
along one of the parabolas which keep the occupied modes
in the ground state fixed, while the higher ones represent
a generic change for which neighboring ground states have
vanishing overlaps and even the reduced fidelity gets signifi-
cantly dampened. Note that a clear discontinuity is observable
at the boundary of the chiral region for h = h∗, where an
isolated point develops, which reflects the fact that outside
the chiral region the ground state is a vacuum and thus has

FIG. 6. Reduced fidelity obtained projecting a ground-state
eigenstate of the momentum operators into the Hilbert space defined
by two nearest neighbor spins. The data are obtained considering
and XY spin chain made of 1001 spins, fixing γ = 0.6 and moving
h from 0 to 1.25. For h < h∗, the lower points refer to movement
along a parabola h = c(1 − γ 2), while the higher values represent a
generic flow in which neighboring ground states are characterized by
different occupied modes.

different correlation functions compared to those for h < h∗.
However, in Fig. 7, we can observe that the value of this
discontinuity decreases proportionally to 1/N2 and therefore
disappears in the thermodynamic limit. Similar analysis can
be performed for all other points in which the reduced fidelity
shows a discontinuity, always yielding discontinuities which
vanish algebraically with the chain length and hence, in the
thermodynamic limit, the behavior of the reduced fidelity for
the topologically frustrated spin models is indistinguishable
from the one of the unfrustrated models. We should remark,
here, that in systems with continuous symmetry, although the
discontinuities in the reduced fidelity susceptibility between
neighboring state also vanish in the thermodynamic limit, the

FIG. 7. Reduced fidelity at the line h = h∗ obtained projecting a
ground-state eigenstate of the momentum operators into the Hilbert
space defined by two next neighbor spins as function of the size of
the system. The data are obtained considering γ = 0.6. Although at
finite sizes a discontinuity is evident, in the thermodynamic limit it
vanishes algebraically.
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FIG. 8. Behavior of the jump in the energy derivatives �(n), for
n = 1, 2, 3 as a function of the inverse chain length, in logarithmic
scale, obtained crossing the threshold h = h∗ along a line with con-
stant γ . The data are obtained setting γ = 0.6. All derivatives display
a vanishing discontinuity in the thermodynamic limit.

region of crossovers between different ground states is a true
quantum phase and thus the discontinuity at the boundary
survives the thermodynamic limit [12].

Clearly, since on one side the whole ground-state fidelity is
singular and produces a foliation of the phase space, while the
two sites reduced fidelity becomes continuous in the thermo-
dynamic limit, a crossover is expected between two behaviors
if more sites are included in the subset A, ideally scaling
with the total chain length. However, such analysis cannot be
carried out analytically and requires too heavy of a numerical
study, which is beyond the scope of the current work.

IV. CHARACTERIZATION OF THE CRITICAL LINE

Thanks to the analytical solution of the XY chain it is
possible to study how all the other features of the chiral region
scale in the thermodynamic limit, namely, the chirality and the
breaking of translational invariance. Hence, we can address
the question of whether this represents a different thermody-
namic phase or not.

For h∗ < h < 1, one can show that the ground state is
always represented by the fermionic vacuum state, while in
the chiral region the ground-state manifold keeps changing its
parity and momenta. Even increasing the chain length without
moving h and γ can switch the ground-state parity, because
of the shift in the momenta quantization. Moreover, the gap
between the alternating ground-states in different parity sec-
tors closes exponentially with the chain length, which means
that in the thermodynamic limit the two manifolds become
effectively degenerate: crossing the line h = h∗ the ground-
state degeneracy thus grows from 1 to 4, which could indicate
a first-order quantum phase transition. However, analyzing the
free energy derivatives (which at zero temperature coincide
with the ground-state energy) we cannot detect any disconti-
nuity that remains finite in the thermodynamic limit, as shown
in Fig. 8. This fact implies that in the thermodynamic limit all
derivatives are analytical and hence that if h = h∗ represents
a quantum phase transition, it has to be one akin to a BKT
transition [48–50]. This result is in stark contrast with the

other phase transition induced by topological frustration dis-
covered in models without external field [24]. In fact, in that
transition, the first derivative of the ground-state energy shows
a discontinuity that stays finite even in the thermodynamic
limit. The reason behind this different behavior is that the
transition point in Ref. [24] possesses a higher symmetry that
produces a massive (thermodynamically large) ground-state
degeneracy. In this way, crossing this point, there is a true
discontinuity and, for instance, the mode occupied in the odd
parity sector of the ground state has momentum close to ±π

2 ,
instead of ±π as we have here.

On the other hand, phase transitions are associated with
a macroscopic reordering of the system properties that can
be detected by opportunely chosen quantities. From what we
have seen in the previous section, among others, two possi-
ble quantities can be considered: the chirality parameter that
detects the existence of ground states with a nonvanishing
momentum and the spatial variance of local observables that
highlights the violation of the invariance under spatial trans-
lation. Both quantities, and in general each spin correlation
function on a ground-state with a fixed parity, can be obtained
analytically in the framework of the analytical approach that
we are using. The key point is the introduction of two sets of
Majorana operators so that each spin correlation function can
be mapped to a string of Majoranas [8]. By exploiting Wick’s
theorem, the expectation value of these correlation functions
can be reduced to the evaluation of Pfaffians whose elements
are the expectation values of two Majorana operators. As we
show in the Appendix, for h > h∗ these expectation values
can be classified into two different families: (a) when the two
Majorana operators come from the same set, the expectation
value vanishes unless the two operators coincide; and (b)
when the two Majorana operators come from different sets,
the expectation value assumes values in the range [−1, 1]
and are invariant under spatial translation. Entering the region
h < h∗ both these properties are changed. Indeed, the expec-
tation values of Majorana operators coming from the same
set but defined on different fermionic sites assume values
proportional to 1/N that hold the property to be invariant
under spatial translation. On the other hand, the expectation
values for Majorana in different sets acquire corrections pro-
portional to 1/N that explicitly violate the invariance under
spatial translation.

These two corrections and their proportionality to 1/N
explain why both the chirality and the variance of the dis-
tribution of local quantities are different from zero in a finite
frustrated system but disappear when the thermodynamic limit
is taken into account. Indeed, using Wick’s theorem, the ex-
pectation value of the chirality operator τ can be reduced
to a sum of products of expectations of pairs of Majorana
fermions, with the peculiarity that each term in the sum con-
tains at least an expectation on pairs of Majorana belonging
to the same set, thus providing an algebraic decay with the
system size to the whole expression. On the other hand, since
all the site-dependent contributions to a local quantity scale
with 1/N , the variance is also vanishing in the thermodynamic
limit. Both these behaviors should be compared to other ob-
servables calculated in presence of topological frustration in
[24,25]: There the 1/N corrections coming from frustration
appeared in combination with finite terms present also in
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FIG. 9. Behavior of the chirality τ for ground states that are
eigenvalues of the momentum operator as a function of the length of
the chain N . The data are obtained for the XY chain setting γ = 0.6
and h = 0.4.

absence of frustration and when an expectation value involved
a sufficiently high number of corrections (also scaling with
N), the resulting expression brought finite contributions. The
analytic derivation of both quantities can be found in the Ap-
pendix while in Figs. 9 and 10, their dependence on the chain
length is depicted for some relevant ground states choice. The
disappearance in the thermodynamic limit of both properties
that characterize this region of the parameter space, associated
with the absence of any local discontinuity in the energy
derivatives on the line h = h∗ support the idea that we are
looking at a boundary transition whose effects disappear when
the size of the system diverges.

V. CONCLUSIONS

In conclusion, we have seen how, in presence of topo-
logical frustration, an anisotropic Heisenberg chain, which
presents only discrete rotational symmetries associated with

FIG. 10. Variance of the spatial distribution for the two-point
spin correlation functions 〈σ x

i σ x
i+1〉 for ground states obtained as a

real symmetric combination of the two ground states with a definite
momentum, as a function of the length of the chain N . The data are
obtained for the XY chain setting γ = 0.6 and h = 0.4.

finite sets of quantum numbers, is characterized by a region
of parameter space (chiral region)in which the system mim-
ics that of a system with continuous symmetries. In fact, in
analogy with the latter, the system not only presents a gapless
energy spectrum with a finite Fermi momentum but shows,
in the thermodynamic limit, a ground-state characterized by
a continuous cross-over between two-dimensional mutually
orthogonal manifolds. Each one of these manifolds is spanned
by eigenstates of the lattice momentum with the same eigen-
values but opposite signs. This fact has several interesting
consequences. At first, since these states are characterized
by a nonzero momentum when the system is made of a
finite number of spins, they show a nonzero chirality that
vanishes in the thermodynamic limit. At the same time, any
nontrivial linear combination of such states produces a new
ground-state violating the invariance under spatial translation,
which, in the case of finite systems, can be observed through
the variance associated with the spatial distribution of local
observables, but which are zeroed when the dimension of
the system diverges. This chiral region is separated from the
rest by a threshold line that separates it from a region in
which the system is still gapless but the ground state is unique
and characterized by zero momentum. Our analysis clearly
shows that such change in the ground-state degeneracy is not
mirrored in the behavior of the energy. Indeed, in the thermo-
dynamic limit, all energy derivatives are analytical, and hence
the transition has to be akin to a BKT transition. However, the
disappearance in the thermodynamic limit of both properties
that characterize this region of parameter space supports the
idea that we are looking at a boundary transition whose effects
disappear when the size of the system diverges. Indeed, to the
best of our knowledge, boundary BKT transitions have not
been observed before.

Consistently with this picture, the ground-state fidelity ob-
tained by continuously varying the parameters of the system,
in the thermodynamic limit, is identically zero in almost all
directions. The only exception is obtained when the change of
the Hamiltonian parameters is carried out in such a way as to
keep the momenta characterizing the ground-state manifold
constant, which, in the particular case of the XY chain for
which it is possible to carry out an analytical treatment, occurs
when the ratio h/(1 − γ 2) is kept constant.

However, despite these results, several points concerning
this new region of the parameter space of topologically frus-
trated systems still remain unanswered. For example, it is not
yet clear whether it is possible to characterize this new phase
from the topological point of view. Most of all, it is impor-
tant to test the resilience of the described phenomenology
to the presence of localized defects, in view of its possible
exploitation for quantum technologies. These and other top-
ics will be dealt with in future papers which are already in
preparation.
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APPENDIX A: SOLUTION OF THE TOPOLOGICALLY
FRUSTRATED XY CHAIN

The XY chain in Eq. (4) can be diagonalized exactly. For the
sake of simplicity, we limit our analysis to the case with h � 0
and 0 < γ � 1, but our results can be easily extended also to
the other regions of parameters space. The standard procedure
prescribes a mapping of spin operators into fermionic ones,
which are defined by the Jordan-Wigner transformation:

σ−
j =

∏
l< j

σ z
l ψ

†
l , σ+

j =
∏
l< j

σ z
l ψ j, σ z

j = 1 − 2ψ
†
j ψ j,

(A1)
where ψl (ψ†

l ) are fermionic annihilation (creation) operators.
In terms of such operators, taking into account the peri-
odic boundary conditions and discarding constant terms, the
Hamiltonian thus becomes

H =
N−1∑
j=1

[ψ†
j+1ψ j + ψ

†
j ψ j+1 + γ (ψ†

j ψ
†
j+1 + ψ j+1ψ j )]

+ 2h
N∑

j=1

ψ
†
j ψ j + �z[ψ†

1 ψN + ψ
†
Nψ1

+ γ (ψ†
Nψ

†
1 + ψ1ψN )]. (A2)

The latter expression is not quadratic itself, but reduces to a
quadratic form in each of the parity sectors of �z. Therefore
it is convenient to write it in the form

H = 1 + �z

2
H+ 1 + �z

2
+ 1 − �z

2
H− 1 − �z

2
,

where both H± are quadratic. Hence we can bring the
Hamiltonian into a free fermion form by means of two final
steps. First, we perform a Fourier transform

ψq = e−ıπ/4

√
N

N∑
j=1

e−ıq jψ j . (A3)

It is worth noting that, due to the different quantization con-
ditions, H± are defined on two different sets of fermionic
modes, respectively q ∈ 	− = { 2πn

N }N−1
n=0 in the odd sector and

q ∈ 	+ = { 2π
N (n + 1

2 )}N−1
n=0 in the even one. Finally a Bogoli-

ubov rotation in Fourier space

bq = cos θqψq + sin θqψ
†
−q, (A4)

with momentum-dependent Bogoliubov angles

θq = 1

2
arctan

(
γ sin q

h + cos q

)
q �= 0, π , θ0,π = 0, (A5)

leads to the Hamiltonians

H− =
∑

q∈	−/{0}
�(q)

(
b†

qbq − 1

2

)
+ ε(0)

(
b†

0b0 − 1

2

)
,

(A6a)

H+ =
∑

q∈	+/{π}
�(q)

(
b†

qbq − 1

2

)
+ ε(π )

(
b†

πbπ − 1

2

)
.

(A6b)

Here bq (b†
q) are the Bogoliubov annihilation (creation)

fermionic operators. The dispersion relation �(q) for q �=
0, π obeys

�(q) =
√

(h + cos q)2 + γ 2 sin2 q, (A7)

while for the two specific modes q = 0 ∈ 	− and q = π ∈
	+, we have

ε(0) = h + 1, ε(π ) = h − 1. (A8)

Having brought the Hamiltonian in the form of a free
fermionic system, although with a nontrivial single particle
spectrum, we can construct the Hilbert space of the spin chain
in terms of the Fock space of the fermionic one, starting
from the vacuum states |∅±〉, defined separately in each par-
ity sector as the states annihilated by all the corresponding
destruction operators: bq |∅±〉 = 0,∀q ∈ 	±, and by applying
creation operators, always respecting the parity constraint.

It is important to observe that, having assumed h > 0,
all fermionic modes in the odd sector are associated with
a positive energy, while in the even sector there is also a
(single) negative contribution to the total energy coming from
a fermion with momentum q = π if h < 1. As depicted in
Fig. 11, we can then partition the phase diagram with h � 0
and 0 � γ � 1 into three regions.

FIG. 11. Phase diagram in the (γ , h) space of the frustrated XY
chain: the line at h = 1 is the phase transition separating the frus-
trated phase from a phase where FBC do not affect the behavior
of the system. The parabola h = 1 − γ 2 separates the chiral region
from the region with a unique ground state. Instances of the single
particle dispersion relation Eq. (A7) are plotted in the various re-
gions together with the energy of the π mode (dashed line), whose
occupation lowers the energy of the system for h < 1.
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(I) h > 1. In this case, every excited mode brings a positive
energy to the system and hence the lowest energy state is
the Bogoliubov vacuum state |∅+〉 falling in the even parity
sector. Such a state is separated from the rest of the spectrum
by a finite amount of energy equal to the minimum energy
carried by the presence of a single Bogoliubov fermion in the
system.

(II) 1 − γ 2 � h � 1. In this region, the presence of a
fermion in the π mode, differently from all other modes in the
system, is associated with a negative contribution to the total
energy. Hence, when populated, the π mode lowers the energy
of the system by a finite amount of energy equal to |ε(π )|.
Therefore it would be energetically favorable to populate this
fermionic mode. However, the π mode exists only in the
even parity sector where the addition of a single excitation
is forbidden by the parity constraint. Therefore, to obtain a
physical state in which the π mode is populated, we have to
consider a state with two fermions in which the second lives
in a different fermionic mode. However, the addition of such a
second fermion raises the energy by an amount that is greater
than ε(π ). For this reason, the lowest energy state of the even
sector in this region is still its Bogoliubov vacuum |∅+〉. In
the odd sector, states with a single excitation are allowed, but
all fermionic modes hold positive energy and, it is easy to
check that each state that can be defined in this sector has
an energy greater than the one associated to |∅+〉. Despite
this, the lowest admissible states in this sector, those with one
occupied mode with momentum closest to π (exactly π is not
possible because of the quantization rule of this sector) have
an energy gap closing as 1/N2 compared to |∅+〉.

Therefore the ground state of the whole Hamiltonian is
still the Bogoliubov vacuum |∅+〉. However, differently from
the previous case, the ground state is no longer separated by
a finite energy gap. In fact, due to the form of the disper-
sion relation, one can easily see that the energy gap closes
quadratically in the thermodynamic limit and that there is an
alternation between states with different parity.

(III) h < h∗ = 1 − γ 2. Here, the dispersion relation (A7)
develops two symmetric minima at q = ±(̃q), with

q̃ = arccos

(
h

γ 2 − 1

)
. (A9)

Note that the threshold parabola h = 1 − γ 2 differs from
the usual circle h2 + γ 2 = 1 that encloses the region with
oscillatory contributions to the correlation functions in the
nonfrustrated XY chain. In general, for finite size systems, q̃
is not an allowed lattice momentum of the system. Therefore
let us define q̃+ and q̃− as the momenta in the even and in the
odd sectors closest to q̃. Since in the odd parity sector, there is
no fermionic mode with a negative energy contribution, the
lowest energy is associated to the states |±q̃−〉 = b†

±q̃− |∅−〉.
On the contrary, in the even parity sector, the energy of
the ±q̃+ modes is smaller than 1 − h. Thus, because the
net contribution of the π and the ±q̃+ modes provides am
overall negative energy, the two lowest energy states in the
even sector are |±q̃+〉 = b†

±q̃+b†
π |∅+〉. The four states, i.e.,

|±q̃+〉 and |±q̃−〉 have a lattice momentum respectively equal
to ±(π + q̃+) and ±q̃− [24] and their associated energies

are

Ee = 〈±q̃+| H |±q̃+〉
= �(q̃+) + ε(π )

2
− 1

2

∑
q∈	+/{π}

�(q); (A10a)

Eo = 〈±q̃−| H |±q̃−〉
= �(q̃−) − ε(0)

2
− 1

2

∑
q∈	−/{0}

�(q). (A10b)

In each sector, the lowest energy state is separated from the
other eigenstates by a gap that closes like 1/N2, with the light-
est states having finite momenta close to q̃, as can be easily
understood from the dispersion relation in Eq. (A7). Thus q̃±
act as an effective Fermi momentum and one can think of the
states spanning each ground-state manifold as resulting from a
shell-filling effect that keeps only one of the two Fermi points
occupied. To better understand the ground-state structure, let
us start with the assumption that we choose the parameters
of the Hamiltonian such that q̃ coincides with q̃+. Thus the
ground-state manifold is spanned by the states |±q̃+〉 and
belongs to the even parity sector. A generic change in the
parameters h and γ will move q̃ away from q̃+ and bring it
progressively closer to q̃−. At some point, Eo becomes smaller
than Ee and there will be a crossover between the states |±q̃+〉
and |±q̃−〉, with the ground-state manifold switching to the
odd parity sector. Further moving the parameters in the same
direction, eventually q̃ will come close to a different allowed
momentum in the even sector. Hence the system will face
a second crossover, and this process will continue until the
parameters of the Hamiltonian exit from the chiral region
|h| < h∗ and settle into the even parity fermionic vacuum
as the ground state. Increasing the dimension of the system,
the distance between the different momenta becomes progres-
sively smaller and hence the crossing become denser until
each point in the region will be characterized by a crossover
between two twofold degenerate manifold belonging to two
different parity sectors and having different quantum numbers
of the lattice momentum.

In this portrayal, we have assumed that changes in the sys-
tem parameters always change q̃. However, from Eq. (A9), we
see that we can keep the minimum of the dispersion relation
fixed by moving along the parabola h = c(1 − γ 2), where c
is a constant defined in the interval [0,1]. In chains of finite
length, one can identify a strip around each parabola in which
the ground-state manifold remains constant and this strip be-
comes narrower as the chain length increases. In this way, the
system undergoes a foliation of the ground-state space that
is made of as many manifolds as the number of sites in the
system. Let us stress once more that, any time a change of
parameters changes q̃±, hence crossing a strip, even for small
systems the fidelity suddenly drops to zero, thus representing
an extreme instance of orthogonality catastrophe [10,11].

To address whether the chiral region represents a different
thermodynamic phase or not, we look more closely at the
energies. On one side, although the gap between the ground
state and the first excited state closes as 1/N2 in the whole
frustrated phase for |h| < 1, for h∗ < h < 1 the ground state
is always represented by the fermionic vacuum state |∅+〉,
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FIG. 12. Behavior of �E = |Ee − E0|, for h = 0.4 and γ = 0.6
as a function of the system length N . The red squares represent points
in which the states in the even sector have energy greater than the
ones in the odd sector, while the black circle signals the presence of
a ground-state manifold living in the even sector. The parity of the
ground-state manifold keeps alternating as more sites are added.

while in the chiral region the ground-state manifold keeps
changing its parity and momenta. Even increasing the chain
length without moving h and γ can switch the ground-state
parity (see Fig. 12). Moreover, as can be appreciated from
Fig. 12, the gap between the alternating ground states closes
exponentially with the chain length, which means that in the
thermodynamic limit the two manifold become effectively
degenerate: crossing the line h = h∗ the ground-state degen-
eracy thus grows from 1 to 4, which could indicate a first
order quantum phase transition. However, analyzing the free
energy derivatives (which at zero temperature coincide with
the ground-state energy) we cannot detect any discontinuity
that remains finite in the thermodynamic limit. For h > h∗,
the ground-state energy associated with the fermionic vacuum
|∅+〉 is

E∅ = 〈∅+| H |∅+〉 = −ε(π )

2
− 1

2

∑
q∈	+/{π}

�(q). (A11)

Immediately crossing into the chiral region, the ground-state
energy is the odd state one in Eq. (A10b) with q̃− = π (1 −
1
N ). Starting from these two expressions for the energy below
and above h = h∗ it is possible to study the behavior of the
derivatives at any order at the two sides of this line. Selecting
a curve in the (h, γ ) space, parametrized by a parameter α,
which crosses the h = h∗ curve at α = 0, we compute

�(n) = ∂nEo

∂αn

∣∣∣∣
q̃−=π (1−1/N )

− ∂nE∅
∂αn

, (A12)

which must be finite, in the thermodynamic limit, to signal a
traditional phase transition.

In Fig. 8, we show an instance of the dependence of �(n)
for n running from 1 to 3 when we cross the line h = h∗
keeping γ fixed. As we can see below and above h∗, in the case
of finite size systems, all the derivatives show a nonzero �(n),
but these differences vanish proportionally to 1/N2. This fact
implies that in the thermodynamic limit all the derivatives are

analytical and hence that if h = h∗ represents a quantum phase
transition, it has to be one akin to a BKT transition [48–50].

APPENDIX B: GLOBAL STATE FIDELITY AND FIDELITY
SUSCEPTIBILITY

In order to evaluate the ground-state fidelity in Eq. (3),
we observe that all ground-states can be written starting from
the vacuum states |∅+〉 and |∅−〉. In terms of the Bogoliubov
angles θq, they can be formulated like

|∅+〉 = |0π 〉
⊗
q∈	+

2

(cos θq |0〉q |0〉−q − sin θq |1〉q |1〉−q),

(B1a)

|∅−〉 = |00〉
⊗
q∈	−

2

(cos θq |0〉q |0〉−q − sin θq |1〉q |1〉−q)

(B1b)

where 	+
2 (	−

2 ) is the subset of momenta q ∈ 	+(q ∈ 	−) that
live in the interval q ∈ (0, π ). From these expressions it is
easy to obtain that, in the region h > h∗ where the ground
state coincide with |∅+〉, the ground-state fidelity, becomes

F =
∏

q∈	+
2

cos(θ ′
q − θq), (B2)

where θq (θ ′
q) are the Bogoliubov angles associated to the set

of parameters
−→
λ = {γ , h}(−→λ + d

−→
λ = {γ + dγ , h + dh}).

The situation completely changes entering in the region
|h| < h∗. In this case, the ground state is no more represented
by the vacuum state in the even sector, but by states obtained
by populating 1 or 2 fermionic levels, depending on the par-
ity sector in which the ground-state manifold lives. In this
situation, we have two different cases. The first is when the
two ground states are characterized by having either different
numbers of fermions or fermions living in different modes.
These occur, in the thermodynamic limit, if the two sets of pa-
rameters are not on the same parabola h = c(1 − γ 2) where c
is a constant obeying to the constraint |c| � 1. In this case, the
overlap between the two states is reduced to the expectation
value of either operators like b†

qbq′ with q �= q′, or of single
creation (annihilation) operators on the vacuum states. But,
from the expression of the vacuum states in Eqs. (B1) it is
easy to see that this expectation value is zero, and therefore
also the ground-state fidelity vanishes. On the contrary, in
the case in which both ground states associated with the two
sets of parameters are obtained from the vacuum states by
exciting the same fermionic levels, i.e., for large N , if they
are both on the same parabola h = c(1 − γ 2), the ground-state
fidelity does not cancel out identically. Hence, depending on
the parity, in the even sector the ground-state fidelity becomes
that in Eqs. (6) and (7).

Differently from all the other paths in the region |h| < h∗,
along these parabolas it is possible to evaluate also the fidelity
susceptibility that, by definition, is equal to the leading order
of the expansion of the ground-state fidelity Eq. (8). The
susceptibility χ is expected to be proportional to the system
size in the non critical phase. In the case the ground states are
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in the even sector, it reads

χ =
∑

q∈	+/{q̃+}

(
sin θq(c(1 + γ 2) − cos θq)

2(γ 2 sin2 θq + (cos θq + c(γ 2 − 1))2)

)2

,

(B3)
while in the odd sector, the expression of the terms inside
the sum is the same with the sum extending to q ∈ 	−/{q̃−}.
By introducing the normalized fidelity susceptibility χ̃ ≡
χ/N , in the thermodynamic limit, we are able to obtain
a result independent from the parity sector of the ground
state

χ̃ = 1

8π

∫ π

0
dx

[
sin x(c(1 + γ 2) − cos x)

[c(γ 2 − 1) + cos x]2 + γ 2 sin2 x

]2

(B4)

This integral can be solved analytically using contour integra-
tion in the complex plane, upon changing variable to z = eix

obtaining Eq. (9).

APPENDIX C: MAJORANA CORRELATION FUNCTIONS

By knowing the ground states in the different regions of
parameter space, it is possible to evaluate the spin correla-
tion functions following the approach described in detail in
Ref. [43]. It is based on the introduction of the Majorana
fermionic operators Ai and Bi defined as

Ai ≡ ψ
†
i + ψi; Bi ≡ ı(ψi − ψ

†
i ), (C1)

and the use of Wick’s theorem [51]. Indeed, each spin cor-
relation function in which we are interested can be mapped,
with the help of the Jordan-Wigner transformation in (A1)
and the definition in (C1) in a string of Majorana operators
on different spins. Then, with the help of Wick’s theorem,
the expectation value of such a string can be reduced to a
Pfaffian in which each single element is the expectation value
of a product of two different Majorana operators. Thereby
each spin correlation function can be reduced to the eval-
uation of a particular function of four kind of expectation
values i.e., 〈Al Aj〉, 〈BlBj〉, 〈AlBj〉, and 〈AjBl〉 = −〈Bl Aj〉,
where 〈·〉 stands for the expectation value on a specific
ground-state and the indices l and j run over all sites of the
system.

For h > 1, the ground state of the system has the form of
Eq. (B1) and it is easy to obtain for the Majorana correlation
functions 〈Bl Aj〉

〈
Bl Aj

〉 = ı

N

∑
q∈	+

[sin 2θq sin (qr) + cos 2θq cos (qr)], (C2)

where, for brevity, we have defined r = j − l , while 〈AlAj〉 =
〈Bl Bj〉 = δl, j . For h∗ < h < 1 the ground state of the sys-
tem still has the form of Eq. (B1), but Majorana correlation
functions change. In fact, moving from values of the local
field greater than 1 to less than 1, we have that while in the
first case the energy associated with the momentum q = π

was positive, now it turns negative. Hence, while 〈Al Aj〉 and
〈Bl Bj〉 remain equal to δl, j , the change in the sign of the
energy of the fermionic mode induces a change in the sign of
its contribution to the Majorana correlation functions 〈AlBj〉

that become

〈BjAj+r〉 = 2ı(−1)r

N
+ ı

N

∑
q∈	+

sin 2θq sin (qr)

+ ı

N

∑
q∈	+

cos 2θq cos (qr). (C3)

For 0 � h < h∗, the situation becomes more complex since
not only we have a dense series of crossovers between even
and odd states, but also because each single ground-state man-
ifold is twofold degenerate even for finite N . Let us consider
the two cases, i.e., the manifold living in the even or the odd
sector, separately. In the latter case, i.e., if the ground-state
manifold falls in the odd-parity sector, all its elements can be
written as

|g−〉 = (ub†
q̃− + vb†

−q̃− ) |∅−〉 , (C4)

where u and v are complex coefficients obeying the normal-
ization conditions |u|2 + |v|2 = 1. Due to the presence of the
fermions in the modes ±q̃− we obtain that the Majorana
correlation functions 〈AlAj〉 and 〈BlBj〉 are no more equal to
zero when l �= j, but become

〈AjAj+r〉 = 〈BjBj+r〉 = δ0,r + 2ı

N
(|v|2 − |u|2) sin (rq̃−).

(C5)
Moreover, also the correlation functions 〈AlBj〉 acquire a state
dependent correction and become

〈
BjBj+r

〉 = ı

N

∑
q∈	−

[sin 2θq sin (qr) + cos 2θq cos (qr)]

−2ı

N
[sin 2θq̃− sin (rq̃−) + cos 2θq̃− cos (rq̃−)]

+4|uv∗| cos(q̃−(r + 2 j) + α), (C6)

where α is the phase of the complex number uv∗.
On the other hand, in the even sector of the parity the

general ground state can be written as

|g+〉 = b†
π (ub†

q̃+ + vb†
−q̃+ ) |∅+〉 . (C7)

Similarly to the odd case we recover

〈AjAj+r〉 = 〈BjBj+r〉 = δ0,r + 2ı

N
(|v|2 − |u|2) sin (rq̃+)

(C8)
and

〈BjAj+r〉 = ı

N

∑
q∈	+

[sin 2θq sin (qr) + cos 2θq cos (qr)]

−2ı

N
[sin 2θq̃+ sin (rq̃+) + cos 2θq̃+ cos (rq̃+)]

+4|uv∗| cos(q̃+(r + 2 j) + α). (C9)
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