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We describe a mechanism for order fractionalization in a two-dimensional Kondo lattice model, in which
electrons interact with a gapless spin liquid of Majorana fermions described by the Yao-Lee model. When the
Kondo coupling to the conduction electrons exceeds a critical value, the model develops a superconducting
instability into a state with a a spinor order parameter with charge e and spin § = % The broken symmetry state
develops a gapless Majorana Dirac cone in the bulk. By including an appropriate gauge string, we can show that
the charge e, spinorial order develops off-diagonal long-range order that allows electrons to coherently tunnel

arbitrarily long distances through the spin liquid.
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I. INTRODUCTION

One of the fascinating properties of quantum materials
is the phenomenon of fractionalization, whereby excitations
break up into emergent particles with fractional quantum
numbers. Well-established examples of fractionalization in-
clude anyons in the quantum Hall effect and the breakup
of magnons into § = % spinons in the one-dimensional (1D)
Heisenberg spin chain. There is great current interest in the
possibility that patterns of fractionalization can lead to more
kinds of quantum phases and quantum materials. There are
some important parallels between second quantization and
fractionalization. We recall that, even though a many-body
electron wave function evolves in a Hilbert space of rigorously
fixed particle number, physical quantities such as density:

px) =Y 8(x —x;) — YY), M
J

factorize into creation and annihilation operators ¥i(x) and
¥ (x) that link Hilbert spaces of different particle numbers
(see Fig. 1). Thus, the description of particles requires an
expansion of the Hilbert space into a larger Fock space. Nor-
mally, we take this for granted; we are quite accustomed to
the notion that photons create particle-hole pairs, content in
the understanding that gauge invariance [{ — explic(x)]r,
A — A + Va(x)] preserves particle number. In a similar fash-
ion, fractionalization can be regarded as an emergent second
quantization, in which the microscopic variables, such as
the spin, factorize into operators that describe fractionalized
quasiparticles (see Fig. 2); thus, in a spin liquid, a spin-flip
creates a pair of spinons. Such fractionalized particles live
within an emergent Fock space and, like their vacuum coun-
terparts, move under the influence of a gauge field which
preserves the constraints of the physical Hilbert space.
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One of the most dramatic manifestations of second quan-
tization is the formation of superfluid condensates, in which
the field operators develop off-diagonal long-range order
(ODLRO), manifested as a factorization of the density matrix
in terms of the order parameter (¥ (x)) = W(x):

W) S weow)*. @)
The description of superconductors is more subtle, for now
the condensate field operator carries charge and transforms
under a gauge transformation ¥ (x) - exp[ioe(x)]lﬁ(x), A—>
A+ Va, so that (U(x)) vanishes after averaging over the
gauge fields, a result known as Elitzur’s theorem. A sharper
definition of ODLRO [1] then requires the introduction of a
gauge invariant boson field [2]:

Yn(x) = ¥ (x) exp [i / d*rA(r) - Eg(r — x)], 3)

where E(r) is the classical eleictric field of a point charge at
the origin, i.e., V - E = §(r), Eq(r) = f'/(4nr2), and A is the
fluctuating, quantum vector potential. ODLRO is then defined
by

(W OPE () 2225 wix)w(y)”, )

where W(x) = (@[AIN(X)). The massive nature of the vector po-
tential inside a Meissner phase guarantees that this result holds
true, even when quantum fluctuations are included. These
considerations lead us to ask: If fractionalization is a kind of
emergent second quantization, is there a fractionalized analog
of superfluidity or superconductivity?

Early theoretical studies of a possible interplay between
fractionalization and broken symmetry were inspired by the
resonating valence bond theory of cuprate superconductivity
[3-5]; in those papers, fractionalization appears under the
guise of spin-charge separation. The appearance of a charge
e boson in the slave-boson decomposition of the electron

©2022 American Physical Society
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FIG. 1. In second quantization, the physical Hilbert space of
definite particle numbers is expanded to a Fock space that allows
the description of particle fields

operator c f b; raised the early intriguing possibility
of order parameters associated with spin-charge separation.
Although the presence of an emergent U (1) gauge field as-
sociated with spin-charge separation appeared to forestall a
superconducting, charge e condensate, it was soon realized
[6,7] that there might be a topological effect. In the topological
interplay of the electromagnetic and emergent U (1) gauge
fields, Wen and Zee [6] identified a two-parameter family of
vortices, and subsequently, Sachdev [7] proposed a possible
stabilization of //e vortices near a superconductor, pseudogap
phase boundary. The modern term fractionalization appeared
in a second generation of theories [8,9] that were inspired by
the pseudogap phase of cuprate superconductors. These theo-
ries identified the fractionalization of electrons and spins with
an emergent Z, gauge field. Senthil and Fisher [9] introduced
the term vison to describe the vortices of the Z, field. In their
theory, the development of a gap in the vison spectrum gives
rise to fractionalized insulator-gapped vison excitations.

In this paper, we return to these early lines of investigation,
taking crucial advantage of the Kitaev approach to introduce a
platform for the discussion in the form of a family of models
which control the gauge fields that are at the heart of fraction-
alization. The Kitaev approach with its static Z, gauge fields
now makes it explicitly clear that fractionalization is physical.
This then leads us to reconsider the question of whether the
condensation of fractionalized bosons can actually give rise
to alternative forms of order parameters. This could happen,
for instance, if a spinon binds to an electron. The resulting
order parameter has the potential to carry fractional quantum
numbers with order parameter topologies and symmetries,
giving rise to a conjectured order fractionalization [10].

Here, we explore the idea of order fractionalization within
the context of the Kondo lattice model. The Kondo lattice
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FIG. 2. Fractionalization involves the breakup of physical oper-
ators such as spin into excitations with fractional quantum numbers
which require an emergent Fock space for their description.

Physical Hilbert space
(eg spin system)

has a venerable history: written down by Kasuya [11] and
later proposed by Mott [12] and Doniach [13] to explain
heavy fermion materials. The Kondo lattice describes a lat-
tice of local moments, coupled to conduction electrons via
an antiferromagnetic superexchange of strength J. When J
is sufficiently large, the local moments become screened by
conduction electrons, liberating their entangled spin degrees
of freedom into the conduction sea as a narrow band of heavy
electrons.

From a modern perspective, the Kondo lattice effect can be
understood as a spin fractionalization of localized moments.
In a heavy Fermi liquid, local moments split into spin-% heavy
fermions, conventionally described as a bilinear of § = %
Dirac fermions [14-18]:

sw) = 11.(%) T )

In this scenario, a spin-flip creates a pair of spinons moving
in an emergent U (1) gauge field which enforces their in-
compressibility [19]. When the Kondo effect takes place, the
coherent exchange of spin between the electron and spin fluid
Higgses the U (1) gauge field, locking it to the electromagnetic
field and converting the neutral spinons into charged heavy
fermions [20]. This Dirac fractionalization of spins provides
a natural way to understand the expansion of the Fermi sur-
face in the Kondo lattice, described by Oshikawa’s theorem
[21,22].

Here, we study an unconventional spin fractionalization
into Majorana fermions, proposed in Refs. [23,24]:

S(x;) — —é(zj X %) 6)

where ¥; = (X, X] X; 3) is a spin-1 majorana [25] that moves
in a Z, gauge field. In this alternate scenario, a spin-flip pro-
duces a pair of majoranas. Majorana fractionalization gives
rise to a gapless band of neutral excitations and has been pro-
posed as a driver of odd-frequency pairing [23] and the origin
of Kondo insulators with neutral Fermi surfaces [24,26,27].

In this paper, we show the Kondo coupling of electrons
to a gapless spin liquid in which Majorana fractionalization
is rigorously established. We combine a variant of the Ki-
taev honeycomb model [28], called the Yao-Lee (YL) model
[29-34], with a corresponding lattice of mobile electrons.
Like the Kitaev model, the YL model is exactly solvable,
which allows a nonperturbative treatment of the fractionaliza-
tion, i.e., the strongest correlations in the model. The weaker
Kondo exchange is then treated within mean-field approxi-
mation in the manner of the Bogoluibov—de Gennes theory.
Unlike the original Kitaev model, in which spin excitations
create gapped Z, vortices [28], the YL model describes a
spin liquid in which spin-flips fractionalize into gapless Ma-
jorana fermions, leaving the static Z, gauge field unaffected.
This radically affects the character of the Kondo interaction
between the conduction electrons and the local moments,
opening up the possibility of a fractionalized order parameter
formed from a pair condensation of electrons and Majorana
fermions.
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(a)

FIG. 3. Schematic of the Kitaev-Kondo model showing (a) the x,
v, and z bonds of the lattice and (b) the structure. The lower layer is a
Yao-Lee spin liquid with gapless spin (S ;) and gapped orbital degrees
of freedom (%;). The upper layer is a honeycomb lattice of conduction
electrons, coupled to the spin liquid via a Kondo interaction.

In the YL model, the motion of the Majorana fermions is
described by the Hamiltonian:

Hyp =Ky uijifi - %))- @)
(i,J)

where u;; = £1 is the static gauge field. The exchange-
coupling of a YL spin liquid to electrons on an adjacent
honeycomb layer (Fig. 3) now forms a Kondo lattice where
the absence of gauge fluctuations establishes an order-
fractionalized state [10] in which electrons and majoranas
combine into charge e, S = % bosons:

R L 0jit
D) = (Gap - Xj)cip=1| . |- (8)
Vjy
Here, c; is an electron operator at site j. When this boson
condenses, it gives rise to a state in which triplet pairs have
fractionalized into condensed bosonic spinors, forming a well-
defined order parameter with charge e and spin %

Since the fractionalized fields x; and ¥(x) carry a Z,
charge, a gauge invariant definition of ODLRO follows a
similar procedure to a superconductor, introducing a string of
Z, gauge fields:

P&y = [] uarrn ©)

leP;,;

along a path P;_,;, linking sites j and i [35], giving rise to the
asymptotic factorization:

WEPE Y ) S vxfy). (10)

As in a superconductor, the Z, vortices, or visons, are ab-
sent in the ground state, so one can adopt an axial gauge where
ug,jy = 1 and the string becomes unity. The development of
this ODLRO with fractional quantum numbers constitutes
order fractionalization [10,36].

One of the most dramatic consequences of this ODLRO
is that electrons can tunnel over arbitrarily large distances
through the spin liquid [Fig. 4(a)]. The amplitude X(x', x) for
this process is directly proportional to the spinor order at the
entry and exit points x and x':

1 Il
———vf (). (11)

T, x) ~ v(x)
X" — x|
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FIG. 4. (a) Development of a charge e condensate v(x) permits
the coherent tunneling of electrons through the spin liquid over
arbitrary distances. (b) The mismatch between the three Majorana
components of the spin liquid and the four Majorana components
of the conduction electrons in Eq. (52) leads to a decoupled neu-
tral conduction-electron Majorana-Dirac cone with a gap to charged
electron excitations.

The long-range coherence of this process reflects the order
fractionalization. The neutral character of the Majoranas in
the spin fluid has two interesting consequences: first, it means
that, when electrons emerge from this tunneling process, they
can reappear into the conduction fluid as either electrons
or holes, giving rise to both normal and Andreev scatter-
ing processes. Secondly, the mismatch between the quantum
numbers of electrons and Majorana fermions then gaps out
three Majorana components of the conduction sea, leaving
behind a neutral Majorana cone of conductionlike excitations
[Fig. 4(b)]. The sharp coherence of this neutral band reflects
the phase coherence of the charge e spinor order.

If we sample the spinor field locally, we can construct a
composite order parameter:

(T (X)icdv(x)) o (4 (X)ey (X)S(x))
= U(x)(di(x) + idr(x)),  (12)

representing the local binding of a Cooper pair to a spin,
where d' and d* are members of an orthogonal triad of unit
vectors (d', d?, d*). However, this is not the primary order
parameter of the physics, as can be seen by observing that the
gap in the spectrum is proportional to |v| rather than |v|%.

The structure of this paper is as follows. Section II in-
troduces the Kitaev-Kondo model. Section III reviews the
properties of the YL spin liquid. Section IV introduces the
mean-field theory for the order-fractionalizing transition. Sec-
tion V discusses the quantum critical transition at half-filling
and the first-order, order-fractionalizing transition that devel-
ops with finite doping. Section VI discusses the nature of the
off-diagonal fractionalized long-range order. Section VII dis-
cusses the nature of the triplet pairing and its odd-frequency
character. Section VIII discusses the phase diagram and long-
wavelength action. Finally, Sec. IX discusses the broader
implications of our results.

II. KITAEV-KONDO MODEL

Coupling a YL spin liquid to a conduction sea forms a
Kondo lattice with Hamiltonian H = H¢c + Hy; + Hg (see

125144-3



ALEXEI M. TSVELIK AND PIERS COLEMAN

PHYSICAL REVIEW B 106, 125144 (2022)

Fig. 3), where
=—t Z(chﬂ’ +H.c)— chmcw, (13)

Hy, = ( )Z(a, FAIAL, (14)

HK=JZSj~cjacj. (15)
J

Here, (i, j) denotes a pair of neighboring sites, with i on
the even (A) and j on the odd (B) sublattice. Also, Hc is
a tight-binding model of conduction electrons moving on
the honeycomb lattice with hopping matrix element —¢. Fur-
thermore, Hy; is the YL model, a version of the Kitaev
honeycomb model in which each site has both an orbital de-
gree of freedom, denoted by three Pauli orbital )»‘}(a =1,2,3)
operators, and a spin degree of freedom, denoted by the Pauli
matrices &; [37]. Here, S; = G;/2 are the normalized spins
for the localized moments, and «;; = x, y, z along the x, y,
and z bonds of the honeycomb lattice (Fig. 3). Finally, Hg
describes an antiferromagnetic exchange interaction between
the electrons and the spin liquid.

Several earlier variants of Kitaev-Kondo lattices have been
considered, including models that couple the original, spin-
gapped Kitaev spin liquid to a conduction sea [32,38,39] and
models that couple a YL spin liquid to a conduction sea via an
anisotropic, octupolar coupling [40]. The current model builds
on these earlier treatments, isotropically coupling electrons to
a solvable gapless spin liquid to preserve the SU (2) spin sym-
metry, leading to a fluid in which, crucially, the gapped visons
decouple from the low-energy spin and charge fluctuations.

III. YL SPIN LIQUID

We begin by recapitulating the key features of the YL spin
liquid [29-34]. The first step is to transmute the spin and
orbital operators into fermions, expanding the Hilbert space
into a Fock space by adding two ancillary Majorana fermions
CDS and CDT equivalent to one ancillary qubit at each site. We
use the normahzmg convention (CDS e = throughout this
paper for all majoranas. The spin and 0rb1ta1 majoranas are

defined as a fusion of the Pauli operators with the ancillars
[41]:

'_(DSoz baz

T
S, LI0ES (16)

These satisfy canonical anticommutation algebras {x . Xb} =
{b9, b5} = 6°°8;; and {x{, b} =0. Using the fact that
o*oYo* = A*AYA* = i, we obtain the reverse transformations:

= —2ib' b} (17)

S
q)j __ZIXJXJX]’ i7ivi

which enable us to write the spins and orbitals as
—inXXj, ijchfgj‘:—l.bijj,
(18)

o S
O'j qu)ij =

-

where we use vector notation X; = = (! (j x? X J) and b =
", b2 b3) It follows that oA = —21Djx“b"‘ where

D —21<I>S®T = 81)(1 X; X;bjbibi (19)

Now D ;, with eigenvalues D; = £1, commutes with H, and
the constraint D; = 1 selects a physical Hilbert space:

1
1) =1:[5<1+D,,~>|w>. (20)
in which
oj‘-‘)»‘}‘ = —21)(]“17‘;‘, (21)

which enables us to rewrite Eq. (14) in the expanded Fock
space of majoranas as

Hyp =K i(i%i - X))- (22)
(i,
Here, the i and j sites are on the A and B sublattices, respec-
tively, and 2; ; = —2ib;"b;” are gauge fields that live on the
bonds, with eigenvalues u;; = 1. (Note the negative sign in
the bond operator, which simplifies later calculation of string
variables.) The remarkable feature of Kitaev models, making
them so useful for our analysis, is that the gauge fields i;; are
completely static variables, rigorously commuting with H and
the constraint operators D).
Like the Kitaev honeycomb model, Hy; describes a Z, spin
liquid with the gauge symmetry:

X —)ZXJ, ﬁij—>Z,‘I//\t[ij, (Zj::tl) (23)

The product:

W= [ fen=]]27. (24)

(I+1,l)ep Jjep

around a hexagonal plaquette p, where a; denote the direc-
tions exterior to the plaquette, commutes with H and D;,
forming a set of gauge-invariant constants describing static
Z, fluxes (visons). Note our use of the parentheses around the
indices of #(;4+1,;), which re-arranges the subscripts so that the
A sublattice index is first.

In the ground state, the eigenvalues W, =1 on every
plaquette, while plaquettes where W, = —1 describe gapped
vison excitations. Since A ; flips a bond, it creates two visons,
so the orbital degrees of freedom are gapped. This is then a
Higgs phase for the Z, fields, in which the Z, gauge field
has become massive. However, unlike the Kitaev honeycomb
model, there are three gapless ¥ majoranas which describe the
fractionalization of the spins S i = —(i/2)X; x X;- The action
of S’j does not create visons, leading to a spin liquid with
gapless spin excitations.

Although the vector Majorana fermions are not gauge in-
variant, they can be made so by attaching a gauge string to
them to create a Z,-neutral field:

xn (@) = X ()P (x;, —00), (25)

where P(X, y) is the Z, string defined in Eq. (9).

It is convenient to choose an axial gauge in which ;" = 1
along the x and y bonds, leaving the z bonds as the dependent
variables [42]. Visons are present at a plaquette containing two
uf] of opposite sign, so we can set all bonds to unity u;; = 1,
causing the strings to vanish, establishing an equivalence:

Xn () ~ X (@), (26)
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in the axial gauge. The key point is that, in the ground state,
the majoranas x; can be treated as physical fields that describe
the gapless spin excitations. We can also transform back to
the original spin variables, writing the majorana in terms of a
Jordan-Wigner string:

(j €B),

27
(J €A), @0

1 -
— () =5\ [[+*®

o {k’“(j),
ﬁ leP;

A (),

where the string takes a product of A*(j) along the path
P consisting of sites to the left and below site j (see
Appendix A).

In the axial gauge, Eq. (22) becomes

K I
Hy; = 3 Z[V(Ri —R)Xa() - Xs(j) +H.c.], (28)

ij

where R; is the location of the unit cell. The hopping ampli-

tude ¥ (R) = i(Sr0 + SR R, + SR R, ) Where Ry 5 = (743, 3

are the Bravais lattice vectors. We now Fourier transform the
Majorana fields, defining a vector majorana on each sublat-
tice:

x4 (K)
xea = | xz(K)
x5 (K)
XA
= WXJ: X/j\(J.) exp(—ik - R)),
xa ()
A € (A, B), (29)

where N is the number of unit cells. Finally, combining xxa
and xkp into a six-component vector:

i = (X"“‘), (30)
XkB

the Hamiltonian becomes

HYL=§Z

0wl
X' . Xks (3D
kgo Vk lv 0

where yx = i[1 + exp(ik - R;) + exp(ik - R;)], and the mo-
mentum sum runs over the original hexagonal Brillouin zone
(O). Now the real nature of the Majorana fermions means
that XI?AT = x> so the two halves of the Brillouin zone
are equivalent, allowing us to truncate the Brillouin zone to
a triangular region (<1) that surrounds the Dirac cone at K
and spans half the hexagonal Brillouin zone (see Fig. 5). In
terms of this reduced Brillouin zone, the real-space fields can
be written

1
xa(j) = N Z [xica exp(ik - R)

ke«

+ x“ka exp(—ik - R))], (32)

FIG. 5. The hexagonal Brillouin zone of the honeycomb lattice,
where nodes of the dispersion €(k) = |yk| lie at the vertices K and
K'. Majorana excitations are independently defined over one half the
Brillouin zone, described by the green triangle centered at K.

and the Hamiltonian becomes

Hyr =K s’ G- @t (33)
ke«

where ¥k = (Reyk, —Imyy, 0), and & = (o, a2, @3) ® 13
are Pauli matrices acting in sublattice space.
Diagonalizing Eq. (33) then gives

Hyp =) &)y - T — i, - k), (34)
ke«

where €,(k) = K|yx|, describing a Dirac cone of majorana ex-
citations centered at K. The quasiparticle operators are given
by

Tk = Uk Xka + Vk XkB

fika = — Vi Xka + Ui Xkb> (35)

where ux = 1/+/2 and vx = /(2| ). In the ground-state
|¢yL), all negative energy states are filled:

[T 7Ll (36)

ae(1,3}, ke

lpye) =

The presence of a triplet of gapless majoranas means that the
energy cost of visons is three times larger than in the Kitaev
spin liquid, and given by ~0.4K per vison pair [28].
IV. MAJORANA KONDO EFFECT
A. Mean-field Hamiltonian

We now examine the effect of the Kondo interaction on
the spin liquid. If we rewrite this interaction in terms of the
majoranas ¥, it becomes

- o
Hg = JXj:(c;ocj)<—§Xj X Xj)
Jw— :[.. _ 3
=—§Zc}[(a-xj)2—§}cj. (37)
J

The last term in Eq. (37) can be absorbed by a shift in the
electron chemical potential, allowing us to write

J ATA
Hy = =3 Xj:(ujvj), (38)
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where visa § =
Eq. (8):

%, charge e spinor boson given originally in

N 1)
Uj—(O’aﬂ-Xj)Cjﬁ—<AA ) (39)
Vjy
Thus, the fractionalization of the spins into majoranas trans-
forms the Kondo interaction into an attraction that favors the
condensation of a charge e spinor boson.

At temperatures low enough to suppress visons, there are
no residual Z, gauge-field fluctuations, and we can conse-
quently treat 9; as a gauge-neutral field. Taking advantage of
the bilinear form of the Kondo interaction, we now carry out
a Hubbard-Stratonovich transformation:

J Lo
Hyg = —3 XJ:C;[(U : Xj)z]cj

F

Vv
—>Z{[Vj(&.xj)cj+H.c.]+2 : ’}, (40)
j
where
Viy J
V= (Vj ) =-3JY (41)

is a spinor order parameter. The equivalence between V; =
—(J/2)v; holds at the saddle point.

It proves convenient to make a global gauge transformation
on the even (A) sublattice, (caq, Cy) —> (—iCao, Cps ), and
similarly, (Vas, Vo) = (—iVas, Vo). The conduction elec-
tron Hamiltonian then takes the form:

He = —it Z(ciﬁ,cj(7 —Hec)—pu Zc}dcﬂ,. 42)
(i J) J

In this gauge at = 0, the conduction and Majorana Hamil-
tonian have the same form, with opposite signs. Moreover,
in the lowest energy configuration, the Kondo bosons 9; then
conveniently condense into a uniform condensate.

The hybridization with the spin liquid induces triplet
pairing, so to proceed further, we define a four-component
Balian-Werthammer spinor on each sublattice:

CkAt
CkA|

I,”kA = F s
—C kAl

(A = A, B). (43)

[
C_xat

We then merge the two sublattice spinors into an eight-

component operator:
Via
— ( . (44)
7 v

In this basis, the sublattice («), charge (t), and spin (o)
operators are denoted by three sets of Pauli operators given
by the outer products:

qs) = Ay ® 12 @ 1y,
Tis) = 1) @ T ® 11y, (45)
G151 = 112 ® 112 ® G2y,

where the bracketed subscripts denoting the dimensions of
the operator will be dropped in the future. We shall use the
transposed Pauli matrices for the isospin degrees of freedom
T = 8[51 = (o1, —02, 03), a choice that simplifies later ex-
pressions. In this notation,

He =) ¥i(~tP- @ — pts)v. (46)
ke«

We now introduce a four-component spinor to describe the
Kondo hybridization:

Vay
V
Va=| 20 | =Vaza, 47)
-Vi,
VKT
where
A1
1 ZAy
Zy= — N (48)
V2| 2
Zap

is normalized to unity ZZZA =1, and we use a Roman V,
to denote the magnitude of the hybridization. The hybridized
Kondo term then becomes

t o - A\
Hyg = Z {Z[(l/kaUVA)‘XkA +H.C.]+2N7A},
A=A,B ke«

(49)
We shall focus on the uniform case, where V4 = Vg =
V, which creates the largest hybridization gap. Combining
Egs. (46), (49), and (33), the mean-field Hamiltonian can be
compactly written as

—t(Yk - @) — Ut A% V2

5 Jic -
- Vie KOk -a J
(50
where
Wy = (‘”“>, (51)
Xk

where Y is defined in Eq. (44), and yj is defined in Eq. (30).
In the off-diagonal components of Eq. (50), we have used
the short-hand ¥,V =¥, (G - 7))V and ) ViGyx =
V(i - ).

B. The case of half-filling (1 = 0)

If we now split the conduction sea into scalar and vector
components,

I/II?A =z" Yka» ‘ﬁkA =z Yka, (52)
then from Eq. (49), we can decouple
(WiaGV) - Kkn = VI AG 2) - Fia = Vi, - Hia)- (53)

In other words, only the vector Majorana components of the
conduction sea hybridize with the spin liquid, and the scalar
part is unhybridized. At particle-hole symmetry p = 0, the
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(a) (b) E(k)
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k

FIG. 6. (a) Spectrum of the Kitaev-Kondo lattice for u = 0, tak-
ing units K = 1, ¢t = 2K, and V = 1.5K. Thick orange lines denote
gapped conduction electron lines, thick blue lines denote the gapped
Majorana spin excitations, while thin blue lines denote the single
gapless Majorana conduction band. (b) Schematic three-dimensional
(3D) plot of spectrum in the vicinity of the K point.

Hamiltonian decouples into a gapless scalar conduction sea
and gapped vector sea of excitations:

o \a
H =) Y (i @foc+ 4N —

ke«
+ > G XE)(ﬁVk'& Y ﬁ)@") (54)
i v Ky -a ) \

The 14 eigenvalues of this Hamiltonian involve a single Dirac
cone with the two eigenvalues +e.(k) of the original conduc-
tion sea (light blue curve in Fig. 6) and four triply degenerate
gapped excitations [blue (4) and red (—) curves in Fig. 6] with
eigenvalues :tEl:r and £E,_, where

2
Elzt — \/VZ + [Ec(k);es(k)] + |:€c(k) ; 6S(k)]~ (55)

Here, €.(k) = t|yk| and €;(k) = K|yk| in Eq. (34).

Figure 6 shows a representative spectrum. The Dirac con-
duction band is composed of four degenerate majoranas: three
of these hybridize with the spin liquid, pushing the Dirac cone
intersection to a finite energy V, while the fourth Majorana
component decouples from the spin liquid as a single gapless
Dirac cone.

From these dispersions, we can calculate the mean-field
free energy to be

FIT]=~T Y In [ZCosh (ﬂz")]

keO

BEZ V2
—3r Z ln[2cosh< 5 >}+4N (56)

ke O .+

so the ground-state energy per unit cell is
2

77

E_ 4 @k +3(E +Ep)
—_ = —_—— €
N~ 2 heo Qo2 [F

3f

(57)

where A, is the area of the unit cell.

2.0

L.5¢

~ 1.0

0.5}

0.0 0.5 1.0 1.5 2.0
g

FIG. 7. Plot of v =V/(t + K) vs g =J/3(t + K) predicted by
Eqgs. (59) and (60). The dashed line gives the asymptotic large g limit
v = (9/8)g of the phase boundary.

Differentiating with respect to V2 leads to a gap equation:

Ac / d’k 1 _ 4 (58)
2 Jkeo @1 V2 4 [6,(K) + e (K)P/4 3T

If we introduce the scaled quantities g = J/[3(t + K)] (note
3¢t and 3K are the half-band widths of the conduction and
Majorana bands, respectively) and v = V/(t 4+ K), then the
mean-field equation for the gap becomes

! = ®(v), (59
8
where
9A. d*k 1
) . 60
)= 4 /keO (27m)? /402 + |2 (©0)

A quantum critical point (QCP) separating spin liquid/metal

from the an order-fractionalized phase is located at g, =
1/®(0) = 0.5. Figure 7 shows a plot of the hybridization vs
coupling constant predicted by the mean-field theory.

V. VICINITY OF THE QCP

The vicinity of the QCP at g = g., u = 0 is of particular
interest. Phase transitions in systems with a Dirac spectrum
lie in the class of Gross-Neveu-Yukawa models [43]. Renor-
malization group analyses of this class of models indicate that
the QCP acquires full Lorentz invariance (which in mean-field
theory corresponds to the case ¢+ = K). The corresponding
long-wavelength action for our case is the deformation of
Eq. (50):

H=) v

ke«

—it@ - V) — uts oV ”
Vi it@- V)

+ EW(—VZ +m?)V + 2(VV. (61)
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FIG. 8. (a) Mean-field phase diagram as a function of chemical
potential . At u = 0, the quantum phase transition from the spin
liquid to the Kondo phase is a quantum critical point. (b) Repre-
sentative plot of mean-field energy E[V] vs V illustrating first-order
minimum that develops at finite . (c) Critical value V.. at first-order
quantum phase transition, showing that V,./u ~ 0.5, corresponding
to a direct transition into a state with a single neutral majorana cone
of excitations. Calculations were made using K = 1,1 = 2.

The survival of a relativistic majorana in the broken-symmetry
phase is a rather striking consequence of the mismatch be-
tween the number of electron and majorana channels. These
features may be of interest in the generalization of these
ideas from quantum materials to exotic scenarios of broken
symmetry in a vacuum.

Finite doping u # 0

At finite doping, away from charge neutrality, the decou-
pled conduction sea develops a Fermi surface. In principle,
the excitation spectrum of the condensate becomes more
complex, for at V = 07, there are three Fermi surfaces: two
derived from the conduction electrons and one derived from
the x fermions. In principle, as the hybridization is increased
from zero, the Fermi surfaces undergo a sequence of Lifschitz
transitions, until entirely disappearing; once |V| ~ |u|/2, they
entirely vanish, entering the phase with a single neutral Majo-
rana excitation cone, qualitatively identical to that obtained at
u = 0 (see Fig. 8).

However, the mean-field theory predicts that these interme-
diate phases are entirely bypassed by a first-order transition
into the high-V state. This can be qualitatively understood
from the dependence of the Ginzburg Landau free energy on
w and V, which in the vicinity of the © = 0 QCP is given by

E =ap’V + V2 + bV, (62)

where T o (g, — g). The coefficients a and b depend on the ra-
tio t /K and can be evaluated explicitly for the relativistic case

t/K =1, confirming that they are both positive. The linear
term in V results from the development of a gap V' in the elec-
tron Dirac cones. Since the density of states is proportional to
energy, in the normal state, there is a Fermi surface containing
O(u?) electrons, giving rise to an increase in energy of order
w?|V|, so that a > 0. This energy is reminiscent of the van
der Waals equation of state in the vicinity of the liquid-gas
critical point and gives rise to a first-order phase transition
at T = —2|u|v/ab into a state with V, = |1ul\/%. Figure 8
displays a detailed calculation of the mean-field free energy
at finite doping, showing that, at the critical g, a minimum in
the free energy degenerate with the ground state develops at
finite V. ~ 0.5|u|.

VI. FRACTIONALIZED ORDER

We now address the nature of the long-range order associ-
ated with the hybridization between electrons and Majorana
fermions. Since the hybridization carries Z, gauge charge, the
definition of long-range order requires the insertion of a gauge
string. We can construct the following density matrix:

up(x,y) = Vax)Px, )V (), (63)

where P(x,y) = [, #a+1,p) is the string operator linking the
sites x and y, and V(x) is the four-component Kondo hy-
bridization introduced in Eq. (47):

v4(x)
Py = | 64
® =7l i | (64)
vl (x)

Here, ¥,,(x, y) determines the amplitude for an electron to
coherently tunnel through the spin liquid from y to x.

Like the underlying gauge fields, the gauge strings P(x, y)
are constants of motion, commuting with the Hamiltonian and
the constraints. The energetic cost of visons allows us to safely
set all u;, j, = 1 in the ground state, so the string variable is
simply unity:

P(x,y) =1, (axial gauge), (65)

and in this gauge, ¥(x, y) reverts to a conventional two-point
function. This is precisely the gauge we have used for the
mean-field theory, so the mean-field density matrices factorize
into a product of the spinors:

ap(x,y) = Vo)V, (). (66)

Importantly, since this factorization occurs in a Z, gauge-
invariant quantity, it is true in all gauges and is thus immune
to the average over gauge orbits that annihilates gauge-
dependent quantities (the origin of Elitzur’s no-go theorem).
Of course, mean-field theory is corrected by Gaussian fluctu-
ations of the fields, but these Z, gauge-invariant corrections
are no different to the corrections that occur in conventional
ODRLO, so we expect that, beyond a coherence length, the
factorization will be preserved as an asymptotic long-distance
property, i.e.,

=yl =00

V)P, )V ) V)WV (). (67)
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JEP

FIG. 9. An example of the string operator P’ in Eq. (73).

This is the phenomenon of order fractionalization.
We can extract two interesting quantities from this density
matrix, a Z, string-expectation value:

Z(x,y) = Tr[Z(y, )] = VT 0P, y)VO)), (68)
and an SO(3) matrix:
Dup(x,y) = Tr[Z(y, x)0t"] = (VT ()a TP V()P (x, y)),
(69)

The local density matrix D,(x, x) = v? /J )[ﬁb (x)], deter-
mines the composite magnetism and pairing at site x, where
(d"), = Z'(x)o*t?Z(x) is the triad of local vectors intro-
duced in Eq. (12), and we have normalized the spinors using
Egs. (41) and (47). The composite order D ;(x, x) only deter-
mines the spinor order up to a sign. However, the factorization
of the scalar Z(x, y):

[x=y|—>00

Z(x,y) VIOVo), (70)

is sensitive to the relative sign of the order parameter v(x) at
sites x and y.

We can further emphasize the physical nature of these
results by rewriting the order parameter and the gauge string
in terms of variables from the original model. Using Eq. (8)
and the constraint —2i®3®% = 1 in Eq. (19), we can rewrite
the hybridization field in terms of the composite operator
.7:j = (6‘ 'S:j)Cj as

0= (5 - %j)c; = 2i®] F;. (71)
By substituting u jy = —2i€y,,b;"b;’, where
1 1 1 (eA),
€y = - (72)
: —1 -1 1 (' eB),

into the string 75(x’, x) =[], #q+1,), then using the relation
):j = —il;j X l;j in Eq. (18) at the bond intersections and bf;f =
QDJT)»‘; in Eq. (16) at its two ends, we can rewrite the string as
P = —2i0T ®TP’, where

P x) =5 0 []AY (73)

JjeP
is a product of A operators taken along directions a; extremal
to the path P (see Fig. 9), including an initial A" and final 1Y
operator, oriented along the initial and final bonds. The parity
s(x’, x) = £1 is determined by the relative directions of the

Kx+ a,x)
C ¥ C
v
4
vT
ux+a,x
xta x

FIG. 10. Kondo plaquet. The energetic cost of flux through the
blue area favors a uniform arrangement of the spinor order parameter.

initial and final bond vectors 9 and 9’:

, €x' x> (i) SV = O),
s(x', x) = e » . (74)
{Sgn[(v/ x0)-2], (0-0" #0),

where Z is normal to the plane.
In the ground state, P does not depend on the path, so

[x—yl—

—2i(F,)FL 0P (x, y)) 25 0, 0vf (). (75)

In other words, the composite fermions have developed a
gauged ODLRO. By Eq. (71), the composite fermions split up
into a bosonic spinor with long-range order and an ancillary
majorana that decouples from the Hilbert space:

‘F]' = (G- S.]‘)Cj = —l.U(X)(DT(x)- (76)

This remarkable transmutation in the statistics of the compos-
ite fermions is a direct consequence of order fractionalization.

Topology and vison confinement

The YL and Kitaev spin liquids have a topological degener-
acy. We now discuss how this is modified by the presence of a
Kondo hybridization. Suppose we have a domain across which
the Z, string in Eq. (68) Z(x, y) changes sign. At the domain
boundary, there is a Kondo flux identified with an interlayer
plaquette that links the conduction and spin fluids:

K(x+a,x) = (' x4+ a)E+a)u a0 @ew).  (77)

Here, K(x + a, x) describes the amplitude for an electron to
traverse a rectangular path entering the spin liquid at x, exiting
at x + a, and returning via the conduction sea (see Fig. 10).
This favors a ground state with a spinor v(x) that is uniform
in both direction and sign.

If we separate two visons without allowing the spinor
background to deform, then we create a ladder of bonds with
u;; = —1. The reversed sign in the ladder then gives rise
to a Kondo domain wall with cost E(L) o« L proportional
to its length. In this situation, the visons would be linearly
confined, and the cost of a Z, vortex through the torus would
be proportional to the circumference of the torus Ez, o L¢
(Fig. 11). This is the situation we would expect if the Kondo
hybridization were a Z, scalar [a situation that would occur
if the conduction band were made of three rather than four
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V(P) = €77,

(a) (b)

i\ 3 _UAB='1
(™

-1 ExL
o o (4]

FIG. 11. (a) When two visons are separated by a distance L, they
introduce a ladder of u;; = —1, giving rise to a Kondo domain wall
whose energy grows linearly with length E(L) o L. (b) If each vison
binds to a 2w vortex of the V field, the domain wall is eliminated,
so the vison-vortex combination is logarithmically confined, with an
energy E(L) o< InL.

majoranas, giving rise to an O(3) rather than an SU(2) Kondo
model.]

However, the two visons can remove the domain wall by
binding themselves to a 2w or h/2e vortex in which the
principle axes d® rotate about some axis through 27. A 2n
rotation of the spinor V(6) = exp(—i %‘L’Z)Vo causes it to pick
up a minus sign: V(2w ) = —V. In isolation, such a vortex
would give rise to a sharp discontinuity in the spinor, but if the
jump in V is located along the ladder where the gauge field
u;; changes sign, then the Kondo domain is now removed,
and the gauged density matrix X,,(x, y) remains a smooth,
single-valued function. Since the energy cost of separating
two vortices grows as In L, the resulting vortex-vison bound
state is logarithmically confined.

In a similar fashion, if we create two visons, separate them,
and re-annihilate them after passing one around a ring of the
torus, we create a Z, vortex through the torus, with a Kondo
domain wall that passes right around it [see Fig. 12(a)]. This
process costs no energy in a pure Kitaev or YL model and is
the origin of their topological degeneracy. Let us now consider
the influence of the Kondo effect. In a model where the Kondo

(a) To=- (b) 22
+ 21 vortex

V() = e 17,

E=0(1)

— Upg=-1

FIG. 12. (a) A Z, vortex through the torus is formed by a row
of u = —1 bonds. In the Yao-Lee model, the domain wall costs no
energy, but in the presence of a uniform order parameter V, the
domain wall costs an energy E(L) & L¢, where L¢ is the circum-
ference of the torus. (b) When the Z, vortex binds a 27t vortex of the
hybridization, the domain wall is removed, giving rise to an energy
E ~ O(1) which is intensive in the torus dimensions, restoring the
single-valued character of the gauged off-diagonal long-range order.

coupling were Z, scalar [44] as in the double layer YL model
with the Heisenberg exchange interaction between the layers,
this would cost an energy proportional to the circumference
Lc of the torus. However, if we also introduce a vortex in
which the V(x) rotates through 27, as shown on Fig. 12(b),
the spinor picks up an additional minus sign in passing around
the vortex, and we then remove the discontinuity in the func-
tion X,5(x, y), removing the domain wall. This state with a
combined Z, and 2w vortex only costs the energy to twist
the spinor order through m, which involves an elastic en-
ergy (ps/2)(w/L)* x LLe = 72 ps/2(L¢c /L), where p is the
stiffness, a value which is intensive in the linear size. Since
this configuration cannot be smoothly returned to the original
ground state without creating a Kondo domain wall, the bound
combination of a 27 vortice and vison pairs is a topologically
distinct excitation of the ground state.

VII. TRIPLET-PAIRING CONDENSATE

A. Electron self-energy

Once the spinor ¥; condenses (dark blue region of Fig. 8),
the resulting condensate will coherently scatter electrons
through the spin liquid. The order fractionalization means that
an electron can remain submerged within the spin liquid over
arbitrarily long distances. When a Majorana spinon resurfaces
into the electron fluid, it can do so as either a particle or a hole,
so the scattering amplitude of electrons via the spin liquid
develops both normal and anomalous (Andreev) scattering
components (Fig. 13). To examine these processes, consider
the conduction electron self-energy that results from integrat-
ing out the majoranas xk.

From Eq. (33), the propagator for the majoranas in the
unhybridized spin liquid is

1

Gk )= ————
W= Vsk - &

(78)

where 7k = (Reyk, —Impk,0) and yx = Ky = iK[1 +
exp(ik - Ry) 4+ exp(ik - Ry)]. Integrating out the majoranas
in Eq. (50) then introduces a self-energy to the conduction
electrons given by

1

2k, 0) = o VGV (k, w)V'0" = 0V——— V0",
W= Vsk - &
(79)
where we sum over the repeated index a.
By commuting V = V Z through &, we obtain
V2 .
E(k, a)) = T(G“ZZ'O'H). (80)
W= Vsk - &
k
(8) Znw) = —+—ewo—r—
(b) Ak w) = .

FIG. 13. When an electron scatters through the spin liquid, it can
emerge (a) as an electron, giving rise to resonant scattering, and (b) as
a hole, giving rise to resonant Andreev reflection.
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Using the identity ZZT + 09ZZ%6% = 1, we can then write
the conduction self-energy in the form:

2

\%
——— ({1 =P), (81)
W= Yk -

E(k, (,()) =

where P = ZZ' projects onto the zeroth Majorana compo-
nent of the conduction sea, which consequently does not
hybridize with the spin liquid. Without the projector P, this
scattering would describe a Kondo insulator on a honey-
comb lattice: The introduction of the projector breaks both
time-reversal and gauge symmetry by decoupling a specific
Majorana component of the conduction sea.

To examine the pairing components of the self-energy,
we write ZZ" = 1(1 +du,0°t?), where dy = (d°), =
ZT0%" Z are the triad of orthogonal vectors (d', d?, d*) that
define the composite SO(3) order [see Eq. (12)]. For the
choice Z = Z, = \%(1, 0,0, 1)7, the d vectors align with the

coordinate axes (d', d2, d°) = (x, ¥, z). The resonant scatter-
ing off the spin liquid takes the form:
W+ Y - @

1
2k, 0) =V -[3 - (d" o)’ 2
4 @ — |yskl

(82)

We can divide the self-energy into normal and pairing compo-
nents:
T =Xy + Ak, o)ty + ATk, 0)T_, (83)

where

Iy, 0) = 13— (@ - 0)13] Do (k, ), Ak, ®)

=~ 1@ +id) - o]0 (k, w). (84)
Here,
o= Vz(%) (85)
" — |Vsk|

Here, X describes a kind of odd-frequency magnetism (with
no onsite magnetic polarization). The second term A(K, w) in
Eq. (84) describes a triplet gap function, with a complex d
vector d' + id? which breaks time-reversal symmetry.

The frequency, momentum, and sublattice structure of the
pairing is an interesting illustration of the SPOT = —1 [45]
acronym for the exchange-antisymmetry of pairing, where
S, P, O, and T are the parities of the pairing under spin
exchange, spatial inversion, sublattice exchange, and time
inversion, respectively. Here, since the pairing is triplet and
spin symmetric (S = 1), POT = —1: there are in fact three
separate odd-frequency, odd-parity, and odd-sublattice com-
ponents. The term proportional to w is odd frequency (T =
—1, P = O = +1), while the even-frequency component (T
= +1) divides into two parts yy - & = (yxlkal + ysiozz) which
are, respectively, odd parity, sublattice even (P = —1, O =
+1), and even parity, sublattice odd (P = +1, 0 = —1).

B. Long-range tunneling

The structure of the self-energy reflects the long-range
tunneling of electrons through the spin liquid. If the order
parameter V(x) varies slowly in space and time, the electron

self-energy takes the form:

2(x, x) = o Vx)G(x — X)WV (X))o, (86)
where
) dk 1 ,
Gx—x)= an ) (w_%k.&>exp[z(k-x—wt)]

87
is the majorana propagator for the spin liquid. At long
distances, this propagator is dominated by the relativistic
structure of the excitations around the Dirac point at K, where
Vsk+K = ic(k, +ik,) (c = 3K/2 ). The approximate structure
of X(x, x’) can be obtained by power counting: since G(k) ~
1/k in Fourier space, G(x) ~ 1/x?, so we expect that

(x, x') ~ [GGV(X);VT(X/)GCJ} expliK - (x—x)],

lx — x'|2
(88)
where |x|> = x> — ¢%t2. A more detailed calculation gives
l‘ u— .
6.0 = L= P ek - x), (89)
4 |x|3

where B = (a,, ) defines the sublattice structure of the tun-
neling.

This infinite-range, power law decay of the tunneling am-
plitude means that, in the ground state, the tunneling electrons
sample the fractionalized order at arbitrarily large distances.
In this way, we see that the development of a decoupled,
coherent, neutral Dirac cone is a direct consequence of the
fractionalization of the order at infinite length scales.

VIII. STATISTICAL MECHANICS AND
LONG-WAVELENGTH ACTION

A. Statistical mechanics and phase diagram

We now discuss the statistical mechanics and long wave-
length of the order-fractionalized phase. When we integrate
out the fermions from the model, we are left with a Z, lattice
gauge theory of the spin liquid, coupled to the matter fields
provided by the Kondo spinors v;:

H = —JZUITM,']‘UJ‘ +U Z(U;U‘/‘ - 1)2 — kK ZH”({,m)a
r O

i) i
(90)

where the U term constrains v; to fixed magnitude, and the
final plaquette term ascribes an energy cost of 2« to each
vison. Here, we have used our earlier notation u; ), where
the parentheses order the site indices so that the A sublattice
is first. The condensed v spinors are the Higgs fields for the
Z, gauge field u, transforming its uncontractible Wilson loops
into Kondo domain walls of finite energy density (Fig. 12).
At finite temperatures, we expect no phase transitions, for
the orientational degrees of freedom are eliminated by the
Mermin-Wagner theorem, and the presence of small but finite
concentrations of visons eliminates the possibility of a Z,
phase transition [46].

There is an interesting issue of to what extent charge e
bosons may survive as excitations at nonzero 7. This depends
on the ratio of J to the vison gap of order x. Consider the
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FIG. 14. Schematic phase diagram for the three-dimensional
(3D) classical gauged spinor model from Eq, (90). White arrow
shows the order-fractionalization transition.

average of a large Wilson loop of area S. Its value for a con-
figuration with n visons is (—1)". At Jx = 0, the gauge field
is not higgsed, the excitations are pointlike visons. The prob-
ability of such a configuration is ~Cy exp[—nk /T], where
C¢ = n!(S — n)!/S!is a combinatoric prefactor. The sum over
configurations gives

(W(S) =D (=1)'C§ = [1 —oXPp (‘;)]S

=exp(— 5 ) 1)

7 R?

giving rise to an area-law confinement at finite 7 with a
confinement area wR> ~ 1/In[1 — exp(—« /T)] ~ exp(x /T)
proportional to the inverse vison density. On the other hand,
the correlation length & of the v(x) fields calculated in the
limit k — oo is & ~ exp(J/T). Thus, if J < «, then § K R,
and finite-temperature confinement effects are superceded by
the finite orientational correlation length of the order parame-
ter and are thus unimportant.

However, the quantum model for the Kitaev-Kondo lattice
at zero temperature is equivalent to the statistical mechanics
of the above Z, gauged spinor lattice in 3D [47]. In the
absence of the matter fields, the pure 3D Z, lattice gauge
theory develops an Ising phase transition for sufficiently large
Kk, into a phase where visons are absent [48]. At small finite
J, the Ising transition persists, even though the orientational
order of the spinors will be absent, corresponding to an entry
into the Higgs phase of the gauged Ising model. This phase
corresponds to the YL model at zero temperature (gray region
of Fig. 14). At still larger J, ¥ will develop orientational order
in which %,,(x, y) ~ V(x)V'(y) factorizes at long distances,
corresponding to a state of fractionalized order. This is the
phase transition described by our mean-field theory (orange
region of Fig. 14). Lastly, we note that, in the region of large
J but small « (which is not applicable to the Kitaev-Kondo
model), the local quantity X,;(x, x) is expected to develop
long-range order in the presence of deconfined visons, cor-
responding to unfractionalized vector order. In this phase,
the order parameter is the unfractionalized composite order
parameter in Eq. (12) (blue region of Fig. 14). The conjectured
phase diagram for the model is shown in Fig. 14.

B. Long-wavelength action

A discussion of the long-wavelength action of the order-
fractionalized phase is simplified by taking the special case,
where K =, leading to a relativistic field theory with an
effective speed of light cgx = (%)K governing all excitations
[see Eq. (61)]. If there are no domain walls, the relativistic,
coarse-grained action for slow variations in the spinor v(x, 7)

is
.e
(2)“ + zﬁAﬂ>v(x)

where 9, = (1/cg0;, %). It is convenient to rewrite this in
terms of the four-component spinor Z, as
2

S:px/dedt (Bu—i—i%Aﬂ‘Q)Z .

If we write Z in terms of Euler angles:

Z = exp (—i%n) exp <—igr2> exp <—i%l’3>2@, %94)

then 9, Z = —%(w”)uoaz defines the components of the an-
gular velocity &, = w“,d* measured in the body-axis frame,
ie. 9,d” = @, x d”. It follows that

2

S = p, / d*xdt , (92)

93)

) e 1/, 2,
(18M - EA,J3>Z = (e - ZA07)uz. 09
allowing us to rewrite the long-wavelength action in the the
form of a principle chiral action:

; 2¢
S = % dzxdr[(aﬂﬁ)z 4 <wa - {AH) } (96)

where we have made the substitution (a)}t )+ (a)ﬁ > = (3,n)°
andai=d® = 27613 2.
The action in Eq. (96) resembles the action of a supercon-
ductor. However, there are a number of important differences.
(1) In contrast to a superconductor,

7 = 8§  2eps ([ 4 2eA
T G
2ep; 2e
= BMW—?AM—kcosGaﬂqb )

contains an additional term cos #9,,¢, derived from rotations
of 71, so the magnetic aspects of the phase associated with 7
are intertwined with the superconducting properties.

(2) The first homotopy class 7;[SU (2)] = 0 is empty, im-
plying that there are no topologically stable vortices of an
SU(2) order parameter. Thus, in general, any current loop can
be relaxed by the rotation of the magnetic vector 71 out-of-
plane. Magnetic anisotropy is required to stabilize superfluid
or superconducting behavior [23].

(3) Although the vorticity of a screening current has no
topological protection, for the case of charged conduction
electrons, a fragile Meissner phase is expected [49] because
the relaxation of surface screening currents requires the pas-
sage of skyrmions into the condensate. The energy of a single
skyrmion is 47 py, so their penetration into the bulk needs to
offset by a finite external field. Thus, we expect that, below a
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critical field, this paired state will exhibit a fragile Meissner
effect [27].

Finally, we note that a magnetic field introduces a Zeeman
coupling to the electrons and the underlying spin liquid. The
YL spin liquid now acquires a Fermi surface. The effective
action now contains terms of the form —gugv’o,v, which
convert the physics into that of an x-y model with a finite tem-
perature Berezinskii-Kosterlitz-Thouless transition associated
with the binding of vortices. One of the interesting questions
is whether this state will exhibit //e vortices characteristic
of a charge e condensate. In fact, the development of these
vortices depends subtly on the energetics of the visons [7].
The composite order parameter:

(W (X)iordv(x)) ~ [d(x) + ida(X)], (98)

carries charge 2e. If we rotate the vectors d;(x) and ﬁz(x)
through 27 about the ds(x) axis, we create an h/2e vortex.
Such a vortex rotates the underlying spinor order through 27,
causing it to pick up a minus sign, so that two //2e vortices
are connected by a Kondo domain wall whose energy grows
with length, which would a priori bind two h/2e vortices into
a single h/e vortex. However, the naked domain wall can be
removed by binding a vison to the #/2e vortex. The confine-
ment of the //2e vortices into h/e vortices thus depends on
whether the binding energy is negative or

) Al m] o o

For small enough superfluid stiffness, this quantity is neces-
sarily negative, so that in the vicinity of the quantum phase
transition into the order-fractionalized state, we expect h/e
vortices to be stable in the fractionalized condensate.

IX. DISCUSSION: BROADER IMPLICATIONS

We have presented a model realization of order fractional-
ization in a Kondo lattice where conduction electrons interact
with a Z; spin liquid. Our theory, which describes the interac-
tion of an emergent Z, gauge theory with matter, has several
distinct features:

( 11) The order parameter, a spinor, carries charge e and spin

(22) The broken-symmetry state has a gapless Majorana
mode in the bulk, which results from a mismatch between the
quantum numbers of the conduction electrons, which carry
spin-%, charge e, and the elementary spin-1 majorana exci-
tations of the Z, spin liquid. This mismatch determines the
quantum numbers of the order parameter formed as a bound
state between conduction electrons and Majorana fermions.

(3) Fractionalized order, in which the spinor order pa-
rameter develops long-range order, allows the electrons to
coherently tunnel through the spin liquid over arbitrarily long
distances.

The condensation of an order parameter carrying a Z,
charge is a direct consequence of the massive Z, gauge field,
which eliminates visons and gives rise to deconfined Majorana
fermions in the spin liquid. Although the models we have
discussed involve a static Z, gauge field, whose excitations—

visons—are immobile, the phenomena we observe in our

model only require that the underlying spin liquid contains
gapped gauge excitations.

Some features of our model are related to its low dimen-
sionality. In two dimensions (2D), fractionalized order is only
strictly present at zero temperature when there are no visons;
however, as we discussed in Sec. VIII A, vestiges of order
fractionalization will persist to finite temperatures provided
the correlation length & of the order parameter is shorter than
the confinement radius R of the gauge field determined by the
density of thermally excited visons. Order fractionalization
is likely to become more robust in higher dimensions. Like
the Kitaev spin liquid, our model serves as a platform for
an entire family of 3D lattices with trivalent coordination
[50], including the hyperoctagonal lattice (the subject of a
forthcoming paper [51]), where the phase transition occurs
at finite temperature and at arbitrarily small Jk, so that all
analytical calculations can be performed in a controllable
manner.

More generally, we expect that the order fractionalization
observed in our model constitutes an emergent phenomenon
with physically observable consequences in the quantum uni-
verse at large, including quantum materials, and in the context
of relativistic theories (see Sec. V). This wider context also in-
cludes the expectation of superconducting phases with gapless
Majorana Fermi surfaces and Z, phase transitions in which the
domain walls associated with an emergent spinor order may
manifest themselves as hidden-order phase transitions. Sev-
eral aspects of quantum materials, including heavy fermion
compounds with hidden order, such as URu,Si, [52], and
superconductors and insulators with signs of an underlying
Fermi surface, such as UTe, [53] and SmBg¢ [54], are interest-
ing candidates for these possibilities.
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APPENDIX: ALTERNATIVE FERMIONIZATION OF THE
YL MODEL USING JORDAN-WIGNER FERMIONS

Like the Kitaev honeycomb model, the YL model can be
solved using a Jordan-Wigner transformation. This alterna-
tive fermionization scheme allows a derivation of the model
that does not involve an expansion of the Hilbert space. The
derivation here is an adaptation of that of Feng et al. [55]
for the Kitaev honeycomb model that incorporates the ad-
ditional degrees of freedom in the YL model. To see how
this works, we first redraw the honeycomb as a brick-wall
lattice, composed of 1D chains with alternating cross-links
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(a)

Jl

o I'<1 FIG. 16. The modified string operator P; incorporates the final

i link on the string as an extremal bond.

FIG. 15. (a) Equivalence between honeycomb and brick-wall lat-
tice. A sites (white circles) correspond to odd j + [, whereas B sites
(black circles) correspond to even j 4 /. (b) Jordan-Wigner string
Pji = expli® ;] snaking along the rows up to site (j, I).

[see Fig. 15(a)], where the horizontal chains are labeled by
the index [, and the position along the chains is labeled by
the index j. The YL Hamiltonian with antiferromagnetic bond
strengths K*, K”, and K is written

J

1 L L , : L L
H=3 > [Kx( )8 G+ K (WA ) G+ KE(55 )G 'ffﬂ*l]’ A
I+jeeven

where X ji and &;; are Pauli matrices for the orbital and spin degrees of freedom, respectively. We label the sites so that, on the A
sublattice, j + [ is odd, while on the B sublattice, j + [ is even.

Following Ref. [55], we carry out a Jordan-Wigner transformation on the frustrated orbital degrees of freedom 1%, as follows:
M i, ST )
= = a = P = b 0 =21, (A2)

where Pj; = exp[i® ;] is a real Z, string operator, where

q>j1 =T Zl’lj/l + Z Z nip. (A3)

j<j i r<l,

The string operator Pj; runs from left to right along each row of the lattice, starting at the bottom left-hand corner, continuing
until it reaches site (j, /) [see Fig. 15(b)]. Here, P;; commutes with the fermions f,, at sites above or to the right of site (j, [),
but anticommutes with all fermions f;,,, along its path, i.e., sites to the left of jI on the same row and sites on any row below
row [. This guarantees that the orbital operators k‘;l commute between sites. Applying the Jordan-Wigner transformation to the
orbital interaction terms in Eq. (A1), we have

W= LU = F0, K W= Ul = DU+ F0, 3585, = Qrjg— 1DQ2nj — 1),

(A4D)
so that the fermionized Hamiltonian becomes
1 X t i = = Al i o o
H = 3 Z [K*(fj + fi) = = [ @i - Gjm1) + K (f = fimd) (S + f)(@ i - Gnr)
I+jeeven
+KQnj — 1)Q2nj 41 — )G - Gj41)]. (AS)

Splitting the fermions into their Majorana components, choosing fj; = (cji—ibj;)/~/2 for even j+ 1, while f; = (b; +
icj1)/~/2 for odd j + 1,50 that c;y = (fj + f})/v/2 (even j + 1), ¢;1 = i(fj1 — f},)/v/2 (0dd j + 1), and

(2nj — 1)(2715,1“ — 1) = icjiq1ujis1,jiCiis (A6)
where ujiy1, i = —2ibji41bj; is a Z, field operator with eigenvalues %1 that lives on the vertical z bonds. The Hamiltonian can
then be written

H = Z i(K*cj_uGj—u+K'cjyubjpu + Kicjip1Gjisitjisr ji) - cjibji. (A7)

Jj+leeven
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Notice that the operators uj; 11, j; = —2ib;;4+1b;; only appear
on vertical bonds in the Hamiltonian, commuting with the
entire Hamiltonian, forming static Z, gauge fields.

Finally, we note that the operators:

Xjt = cjioji, (A8)
are real and satisfy canonical anticommutation relations:
i b b
xi =) s X X} =88, (A9

enabling us to identify them as independent Majorana
fermions [normalized so that ( )(;‘l)2 = %]. The Hamiltonian
thus reverts to the fermionized version of the YL model:

H = "iK"u; j(% - X;). (A10)
(i.)
in th§ gauge where the gauge ﬁelds.u)(‘i’ D= u{”) = l.are set
to unity in the x and y directions. With this gauge choice, the
flux through each hexagon is determined by the vertical bonds
alone. (In our treatment of the model, we set all K¢ = K to be
equal.)
Lastly, note that we can invert the Jordan-Wigner transfor-
mation, identifying
Py =[],

jlrep

(Al1)

as the product of the orbital matrices along the path P of the
string [not including site (j, /)]. The x majoranas can then be
written as

)»;il, (A site j + 1 € odd),

)J]‘.l, (Bsite j + 1 € even).

1 -
—=Xji = SjiPj x { (A12)

V2

We can incorporate the dangling A* operators by regarding
the final link on the string as an extremal bond, defining (see
Fig. 16)

o

le = )\,ﬂﬂ‘ji”le, (A]3)

so that now

1 N
— X1 =8P,

Al4
7 (Al4)

providing a unique, nonlocal expression for the Majorana spin
excitations.
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