
PHYSICAL REVIEW B 106, 125142 (2022)

Attractive multicomponent Gaudin-Yang model: Three roads to the energy gap
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We analytically determine the energy gap at weak coupling in the attractive multicomponent Gaudin-Yang
model, an integrable model which describes interacting fermions in one dimension with κ components. We use
three different methods. The first one is based on a direct analysis of the Bethe ansatz equations. The second
method uses the theory of resurgence and the large order behavior of the perturbative series for the ground
state energy. The third method is based on a renormalization group analysis. The three methods lead to the
same answer, providing in this way a nontrivial test of the ideas of resurgence and renormalons as applied to
nonrelativistic many-body systems.
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I. INTRODUCTION

One of the most important nonperturbative effects in quan-
tum theory is the energy gap of many-fermion systems with an
attractive interaction. This gap, which is exponentially small
in the coupling constant, is a universal feature of these sys-
tems, and it is at the origin of conventional superconductivity.
However, being a nonperturbative effect, it is not easy to com-
pute. One possibility is to use Bardeen-Cooper-Schrieffer-like
mean field theory, which provides an approximate expression
for the gap. Another possibility is to use renormalization
group (RG) methods. In exactly solvable models, one can
often calculate the gap exactly, and this provides a useful test
of approximate methods.

Recently, it has been pointed out that the leading behavior
of the energy gap at weak coupling can be obtained from
the large order behavior of the perturbative expansion for the
ground state energy [1–3]. This is an example of the general
connection between perturbative series and nonperturbative
effects pointed out in quantum mechanics in Refs. [4,5].
The relationship between perturbative and nonperturbative
sectors has evolved into a general framework to understand
nonperturbative effects in mathematics and physics, some-
times called the theory of resurgence (see Refs. [6–9] for
reviews). In the case of many-fermion systems with an at-
tractive interaction, it has been argued in Refs. [1,2] that the
energy gap is structurally very similar to a renormalon effect
[10] in an asymptotically free theory. Therefore, one can use
renormalon techniques, like all-order calculations based on
particular families of diagrams, to obtain information on the
energy gap. These ideas were tested in two integrable models:
the Gaudin-Yang model [1,2] and the one-dimensional (1D)
Hubbard model [3], in the case of attractive fermions with two
components.
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In this paper, we consider the Gaudin-Yang model with
κ components and SU (κ ) symmetry, which was briefly ad-
dressed in Ref. [1]. This model is integrable [11,12] and has
many interesting features. First of all, it might be relevant to
the study of ultracold atoms with higher hyperfine spin in
1D traps (see, e.g., Refs. [13,14] and references therein). In
addition, it displays qualitative phenomena: the ground state
consists of bound states of κ elementary fermions, which gen-
eralize the familiar Cooper pairs occurring when κ = 2 (when
κ = 3, these bound states are sometimes called trions). More
generally, one finds bound states of 1 � n � κ fermions, lead-
ing to a rich phase structure. From a more theoretical point
of view, this model might be an interesting testing ground
for approximations based on a large number of components
(large N).

Here, we are interested on the nonperturbative aspects of
the model, and for this reason, we will focus on its energy gap,
in the weak coupling regime. In principle, the energy gap can
be determined from the Bethe ansatz (BA) solution, as pointed
out in Ref. [15] in the case of κ = 2. However, an analytic
calculation at weak coupling has not been performed for κ >

2 since it requires a detailed study of the BA equations like
what was done in Ref. [1]. Our first result is then a formula
for the energy gap, at next-to-leading order in the coupling
constant, including the precise, κ-dependent prefactor.

According to the conjecture of Ref. [1], we expect the en-
ergy gap to control the large order behavior of the perturbative
series for the ground state energy. Such a connection was
established numerically in Ref. [1] for κ = 2, and we check in
detail that this connection persists for general κ . This provides
a precision test of the ideas of resurgence since the growth of
perturbation theory at next-to-leading order in the number of
loops predicts the dependence of the gap on the coupling at
next-to-leading order. In fact, in the case of general κ , we first
found this dependence by looking at the large order behavior
of the perturbative series, and only later, we verified it with
the BA calculation presented here.

As discussed in Refs. [1,3], the nonperturbative scale lead-
ing to the energy gap can be regarded as a renormalon effect.
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A renormalon effect is a nonperturbative phenomenon mani-
fested in the Feynman diagrams which contribute to the large
order behavior of the perturbative series. By definition, it ap-
pears as a family of diagrams which diverges factorially after
integration over the momenta (this contrasts with instantons,
which relate to the factorially large number of diagrams at
each order). As shown in Ref. [1], the ring diagrams domi-
nating at large κ are renormalon diagrams, and they lead to
the right value for the leading order dependence of the gap
on the coupling constant. However, we check explicitly that
they fail to capture the next-to-leading dependence, which
is to be expected since this dependence is subleading in the
1/κ expansion. It is well known however that, in asymp-
totically free quantum field theories, the coupling constant
dependence of the nonperturbative scale can be determined
by a RG analysis. The leading, exponential dependence of the
nonperturbative scale is a one-loop effect, while the next-to-
leading dependence requires knowledge of the beta function
at two loops (see, e.g., Ref. [10]). In many-fermion systems, a
similar argument linking the energy gap to a RG analysis was
presented by Larkin and Sak [16], again in the case κ = 2.
In view of this connection, the results that we have obtained
for the gap predict the form of the two-loop beta function of
the Gaudin-Yang model, as a function of κ . We verify this
prediction by a direct calculation with RG techniques.

The agreement between these three answers provides a
further test of the idea put forward in Refs. [1–3] that the
energy gap in interacting many-fermion systems can be un-
derstood by using the theory of resurgence and the physics of
renormalons.

The paper is organized as follows. In Sec. II, we review the
multicomponent Gaudin-Yang model and its BA solution. In
Sec. III, we calculate the energy gap from the BA equation at
weak coupling, extending the results of Ref. [15] to the multi-
component case. In Sec. IV, we study the large order behavior
of the perturbative series, and we show that it reproduces
correctly the weak-coupling behavior of the energy gap, in
agreement with the conjecture in Ref. [1]. In Sec. V, we
compute the beta function of the model by using the RG at
two loops, and derive the expression for the gap. Finally, in
Sec. VI, we present some conclusions and prospects for future
work.

There are in addition two Appendixes. In the first one, we
show that ring diagrams lead to an approximate expression for
the gap which is correct to leading order in the coupling con-
stant but not to next-to-leading order. In the second Appendix,
we show that the relativistic model obtained in Sec. V by using
the approach of Refs. [16,17] is closely related to the chiral
Gross-Neveu model and leads to the same beta function up to
two loops.

II. MULTICOMPONENT GAUDIN-YANG MODEL
AND ITS BA SOLUTION

The Hamiltonian for the Gaudin-Yang model is given by

H = −
N∑

i=1

∂2

∂x2
i

− 2c
∑

1�i< j�N

δ(xi − x j ). (1)

We will consider the case of an attractive interaction, which
corresponds to a positive coupling constant c > 0. We also
consider the multicomponent case, so that each fermion has κ

possible internal states |1〉, . . . , |κ〉. The number of fermions
in the ith internal state |i〉 will be denoted by Ni. We will
choose the labels of the states, i = 1, . . . , κ , in such a way that
the numbers of particles are ordered as N1 � N2 � · · · � Nκ .

The eigenvalue problem for this many-body system can be
solved with the BA. We consider the system in an interval
of length L, and we impose periodic boundary conditions. In
the case of κ = 2, the solution was obtained by Gaudin [18]
and Yang [19]. The generalization to arbitrary κ > 2 is due
to Sutherland [11] and Takahashi [12]. The solution can be
characterized by a system of nested BA equations. To write
down these equations, we introduce

Mi =
κ−1∑
j=i

N j+1. (2)

Then the equations read

exp(ikiL) =
M1∏
α=1

ki − λ(1)
α + ic′

ki − λ
(1)
α − ic′ ,

i = 1, . . . , M0, (3)

Ml∏
η=1

λ(l )
α − λ(l )

η + 2ic′

λ
(l )
α − λ

(l )
η − 2ic′ = −

Ml−1∏
β=1

λ(l )
α − λ

(l−1)
β + ic′

λ
(l )
α − λ

(l−1)
β − ic′

×
Ml+1∏
δ=1

λ(l )
α − λ

(l+1)
δ + ic′

λ
(l )
α − λ

(l+1)
δ − ic′ ,

α = 1, . . . , Ml ,

l = 1, . . . , κ − 1, (4)

where c′ = c/2. The quasimomenta k j appearing in Eq. (4)
determine the energy eigenvalues through

E =
N∑

j=1

k2
j , (5)

while the Bethe roots λ(l )
α are auxiliary variables.

The solutions k j to the BA equations form strings in the
complex plane, corresponding to bound states of m particles,
where 1 � m � κ . The number of bound states with m parti-
cles Nm is related to the numbers of particles in the ith state
Ni by

Nm = Nm − Nm+1, m = 1, . . . , κ − 1, (6)

and Nκ = Nκ . The strings of quasimomenta, corresponding to
a bound state of m particles labeled by j = 1, . . . , Nm, have
the form:

km,q
j = λm

j + i(m + 1 − 2q)c′ + O[exp(−L)],

q = 1, . . . , m. (7)
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For each set of these k′s, one has a set of m − l complex roots
λ

(l )m,q
j at the levels l = 1, . . . , m − 1, with the form:

λ
(l )m,q
j = λm

j + i(m − l + 1 − 2q)c′ + O[exp(−L)],

q = 1, . . . , m − l, l = 1, . . . , m − 1. (8)

All the roots associated with the jth bound state of size m,
i.e., all km,q

j and λ
(l )m,q
j , share the same real part λm

j , which
corresponds to the unique real root at level m − 1. These
roots characterize the eigenstate made out of Nm bound states
of size 1 � m � κ . They can be found from the following
approximate version of the BA equations, which is correct up
to exponentially small corrections in L (see, e.g., Ref. [20]):

mλm
j L = 2πKm

j +
m−1∑
p=1

κ∑
q=p

Nq∑
l=1

2 tan−1

[
λm

j − λ
q
l

(q + m − 2p)c′

]

+
κ∑

q=m+1

Nq∑
l=1

2 tan−1

[
λm

j − λ
q
l

(q − m)c′

]
,

m = 1, . . . , κ j = 1, . . . , Nm. (9)

In these equations,

Km
j = −Nm − 1

2
+ j − 1. (10)

In terms of the roots λm
j , the energy of such a state is given by

E (N1, . . . , Nκ ) =
κ∑

m=1

Nm∑
j=1

m

[(
λm

j

)2 − (m2 − 1)c2

12

]
. (11)

The ground state of the system is found when all N
fermions are in bound states of κ particles, which correspond
to the 1D fully antisymmetric, or singlet, representation of the
su(N ) algebra (in the κ = 2 case, these are the Cooper pairs).
In that case, N = κNκ , and Eq. (9) reduces to

κλκ
j L = 2πKκ

j +
Nκ∑

l=1

m−1∑
p=1

2 tan−1

[
λκ

j − λκ
l

(2κ − 2p)c′

]
. (12)

In the thermodynamic limit

L → ∞, N → ∞,
N

L
= n, (13)

the position of the roots becomes a continuous variable λκ
j →

λ. The state number Kκ
j → K (λ) gives rise to a state den-

sity function f (λ) = L−1dK (λ)/dλ. Taking a derivative of
Eq. (12) with respect to λ, we find

κ

2π
= f (λ) + 1

2π

∫ Q

−Q
dλ′ f (λ′)

κ−1∑
p=1

2pc

(pc)2 + (λ − λ′)2
,

(14)
where Q is implicitly defined through∫ Q

−Q
f (λ) dλ = n

κ
. (15)

The ground state energy per unit length is then given by

E = κ

∫ Q

−Q

(
λ2 − κ2 − 1

12
c2

)
f (λ)dλ. (16)

These integral equations were found in Ref. [12].
It is convenient to change variables as

θ = λ

c
, B = Q

c
, ρ(θ ) = π f (λ). (17)

In these variables, the integral in Eq. (14) characterizing the
ground state reads

ρ(θ ) +
∫ B

−B
dθ ′K (θ − θ ′)ρ(θ ′) = κ

2
, (18)

where the kernel can be written in terms of the digamma
function as follows:

K (θ ) = 1

2π
[ψ (κ + iθ ) + ψ (κ − iθ )

− ψ (1 − iθ ) − ψ (1 + iθ )]. (19)

The integral in Eq. (18) was studied in Refs. [1,2] with the
techniques developed in Refs. [21,22]. Let us introduce the
dimensionless coupling:

γ = c

n
. (20)

Then from the normalization of the ground state distribution
function:

1

π

∫ B

−B
ρ(θ )dθ = 1

κγ
, (21)

one finds the following weak coupling expansion for B:

B = π

γ κ
+ κ

2π
log(κ )

− κ − 1

2π

[
log

(
4π2

γ κ

)
+ 1

]
+ O(γ ). (22)

III. ENERGY GAP FROM THE BA

The BA solution summarized in the previous section makes
it possible to calculate the energy gap of the model. In the case
of the Gaudin-Yang model with κ = 2 components, the gap
was calculated in this way by Krivnov and Ovchinnikov [15]
(see also Ref. [23]). We will now extend this calculation to the
case of arbitrary κ .

To find the energy gap, one must identify the first excited
state, which involves breaking one of the bound states with κ

fermions in the ground state. From Eq. (11), we can see that
the binding energy of a bound state of m particles is

Em ∼ −
[

m
(m2 − 1)c2

12

]
. (23)

Thus, the first excited state, at weak coupling, consists of a
free fermion (i.e., a 1 bound state) and a bound state of κ − 1
fermions. The energy gap is given by

�κ = E (1, 0, . . . , 0, 1, Nκ − 1) − E (0, 0, . . . , 0, 0, Nκ ),
(24)

which we will compute in the thermodynamic limit in
Eq. (13). We can do this by perturbing the ground state
problem. In the ground state, we have Nκ bound states char-
acterized by the Bethe roots λκ

j , which satisfy Eq. (12). In the
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first excited state, we have

λ1
1 ≡ k, λκ−1

1 ≡ �, λ̄κ
j ≡ λκ

j + ξ j

L
,

K̄κ
j = Kκ

j + 1

2
. (25)

The perturbed BA equations in Eq. (9) become

κ
(
Lλκ

j + ξ j
) = 2πKκ

j + π + 2 tan−1

[
λ̄κ

j − k

(κ − 1)c′

]

+
κ−1∑
p=1

2 tan−1

[
λ̄κ

j − �

(2p − 1)c′

]

+
κ−1∑
p=1

Nκ−1∑
l=1

2 tan−1

(
λ̄κ

j − λ̄κ
l

2pc′

)
, (26)

Lk = 2 tan−1

[
k − �

(κ − 2)c′

]

+
Nκ−1∑
l=1

2 tan−1

[
k − λ̄κ

l

(κ − 1)c′

]
, (27)

(κ − 1)L� = 2 tan−1

[
� − k

(κ − 2)c′

]

+
Nκ−1∑
l=1

κ−1∑
p=1

2 tan−1

[
� − λ̄κ

l

(2κ − 2p − 1)c′

]
.

(28)

The last two equations are easy to solve. In the thermody-
namic limit, one has

k = 2
∫ Q

−Q
dλ f (λ) tan−1

[
k − λ

(κ − 1)c′

]
+ O

(
1

L

)
, (29)

� = 2

κ − 1

κ−1∑
p=1

∫ Q

−Q
dλ f (λ) tan−1

[
� − λ

(2κ − 2p − 1)c′

]

+O
(

1

L

)
. (30)

Since tan−1 is odd and f is even, k = � = 0 solves these
equations.

Let us now consider Eq. (26). Its last term can expanded as

2 tan−1

(
λ̄κ

j − λ̄κ
l

2pc′

)
∼ 2 tan−1

(
λκ

j − λκ
l

2pc′

)

+ 4pc′

L

ξ j − ξl

(2pc′)2 + (
λκ

j − λκ
l

)2

+ O
(

1

L2

)
. (31)

We need to keep the O(L−1) term because the sum over l is of
the order of Nκ ∝ L. Putting together Eqs. (26) and (31), then

subtracting Eq. (12), we find

κξ j = π + 2 tan−1

[
λκ

j − k

(κ − 1)c′

]
+

κ−1∑
p=1

2 tan−1

[
λκ

j − �

(2p − 1)c′

]

−
κ−1∑
p=1

2 tan−1

(
λκ

j − λκ
Nκ

2pc′

)

+
Nκ−1∑
l=1

κ−1∑
p=1

4pc′

L

ξ j − ξl

(2pc′)2 + (
λκ

j − λκ
l

)2 . (32)

The continuum limit follows naturally,

κξ (λ) = π + 2 tan−1

[
λ

(κ − 1)c′

]

+
κ−1∑
p=1

2 tan−1

[
λ

(2p − 1)c′

]

−
κ−1∑
p=1

2 tan−1

(
λ − Q

2pc′

)

+
κ−1∑
p=1

∫ Q

−Q
dλ′ f (λ′)

2pc[ξ (λ) − ξ (λ′)]
(pc)2 + (λ − λ′)2

. (33)

The last term on the right-hand side can be simplified by using
Eq. (14), and one finds

2π f (λ)ξ (λ) = π + 2 tan−1

[
λ

(κ − 1)c′

]

+
κ−1∑
p=1

2 tan−1

[
λ

(2p − 1)c′

]

−
κ−1∑
p=1

2 tan−1

(
λ − Q

2pc′

)

−
κ−1∑
p=1

∫ Q

−Q
dλ′ f (λ′)ξ (λ′)

2pc

(pc)2 + (λ − λ′)2
.

(34)

We change variables to θ = λ/c, B = Q/c, and introduce the
distribution �(θ ) = f (λ)ξ (λ). We find the following integral
equation for �(θ ):

2π�(θ ) = π + 2 tan−1

(
2θ

κ − 1

)
+

κ−1∑
p=1

2 tan−1

(
2θ

2p − 1

)

−
κ−1∑
p=1

2 tan−1

(
θ − B

p

)

−
κ−1∑
p=1

∫ B

−B
dθ ′�(θ ′)

2p

p2 + (θ − θ ′)2
. (35)

This generalizes a similar equation in Ref. [15] for κ = 2 to
arbitrary κ .
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The energy gap is given by

�κ = k2 + (κ − 1)

[
�2 − (κ − 1)2 − 1

12
c2

]

+
Nκ−1∑
j=1

κ

[(
λ̄κ

j

)2 − κ2 − 1

12
c2

]

−
Nκ∑
j=1

κ
(
λ2

j − κ2 − 1

12
c2

)
, (36)

and in the thermodynamic limit, we find

�κ = −κc2B2 + κ (κ − 1)

4
c2 + 2κc2

∫ B

−B
θ�(θ )dθ. (37)

To tackle the integral in Eq. (35), it is convenient to an-
tisymmetrize it, as in Ref. [15]. We define the odd function:

h(θ ) = �(θ ) − �(−θ )

2
− sgn(θ )

2
. (38)

If we consider that∫ B

−B
dθ ′ p sgn(θ ′)

p2 + (θ − θ ′)2
= 2 tan−1

(
θ

p

)
− tan−1

(
θ + B

p

)

− tan−1

(
θ − B

p

)
, (39)

we find that the sum of Eq. (35) with its reflection yields

h(θ ) + 1

2π

∫ B

−B
dθ ′K (θ − θ ′)h(θ ′)

= τ0(θ ) − 1

2
sgn(θ ), (40)

τ0(θ ) = 1

π
tan−1

(
2θ

κ − 1

)
+ 1

π

κ−1∑
p=1

tan−1

(
2θ

2p − 1

)

− 1

π

κ−1∑
p=1

tan−1

(
θ

p

)
, (41)

where the kernel K (θ ) is given in Eq. (19). The energy gap
has a simple expression in terms of the function h(θ ):

�κ

c2
= −4

∫ ∞

B
θh(θ )dθ. (42)

At large B, the integral in Eq. (41) can be solved with
the techniques introduced in Refs. [24,25]. First, we consider
Eq. (41) in the strict limit B → ∞, which defines the function
h0(θ ) through the integral equation:

h0(θ ) + 1

2π

∫ ∞

−∞
dθ ′K (θ − θ ′)h0(θ ′)

= τ0(θ ) − 1

2
sgn(θ ), (43)

This equation can be solved by Fourier transform, leading to

h̃0(ω) = − i

ω

1 − exp
(−|ω|

2

)
1 + exp

(− κ|ω|
2

){
1 − exp

[
− (κ − 1)|ω|

2

]}

= − i

π

∞∑
n=−∞

sin
[

2π
κ

(
n − 1

2

)]
(
n − 1

2

)[
ω − 4π i

κ

(
n − 1

2

)] . (44)

From this representation, one can invert the Fourier transform:

h0(θ ) = − 1

π
tan−1

[
sin

(
π
κ

)
sinh

(
2πθ
κ

)]
, (45)

and one has, at large B:

h0(θ + B) ∼ − 2

π
sin

(π

κ

)
exp

[
−2π

κ
(θ + B)

]

+O
[

exp

(
−4π

κ
B

)]
. (46)

However, h0 is not a good enough approximation of h to calcu-
late the gap. Following Refs. [24,25], we have that h(θ + B) ≈
r(θ ), where r(θ ) satisfies the integral equation:

r(θ ) = − 2

π
sin

(π

κ

)
exp

[
−2π

κ
(θ + B)

]

+
∫ ∞

0
dθ ′R(θ − θ ′)r(θ ′). (47)

The first term on the right-hand side of Eq. (47) is the approx-
imate form of h0(θ + B) found in Eq. (46), and the kernel is
given by

R(θ ) = 1

2π

∫
R

dω
exp(iωθ )K̃ (ω)

1 + K̃ (ω)
, (48)

where

K̃ (ω) =
∫
R

dθ exp(iωθ )K (θ )

= exp(−|ω|) − exp(−κ|ω|)
1 − exp(−|ω|) . (49)

One can now use Wiener-Hopf techniques to obtain the
Fourier transform of r(θ ):

F+(ω) =
∫ ∞

0
dθ exp(iωθ )r(θ )

= − 2

π
sin

(π

κ

)
exp

(
−2π

κ
B

)
G+(ω)G+

(
2π i
κ

)
2π
κ

− iω
,

(50)

where

G+(ω) = √
κ

�
(
1 − iω

2π

)
�

(
1 − iκω

2π

)
× exp

{
iω

[
log

(− iω
2π

) − 1
]

2π

− iκω
[
log

(− iκω
2π

) − 1
]

2π

}
. (51)
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In terms of r(θ ), the energy gap at large B, which corresponds
to weak coupling, is then given by

�κ

c2
≈ −4B

∫ ∞

0
r(θ )dθ = −4BF+(0)

= 8B

π
sin

(π

κ

)exp
(

1
κ

− 1
)
κ

1
κ
+1�

(
1
κ

)
2π

× exp

(
−2π

κ
B

)
. (52)

This constant overall factor can be tested by numerically
solving the integral in Eq. (35), which we have done for κ =
2, 3, 4, 7, 8. The result in Eq. (52) generalizes the calculation
of Ref. [15] to arbitrary κ .

It is convenient to express the result in Eq. (52) in terms
of γ . This last step is nontrivial, and in the calculation in
Ref. [15] for κ = 2, it involved a constant which had to
be determined numerically. An analytic expression for this
constant, leading to a complete answer for κ = 2 at next-to-
leading order in γ , was obtained in Ref. [16] by an indirect
argument and later confirmed in Ref. [26] (see Ref. [27]). In
the case of general κ , the methods developed in Refs. [1,2]
lead to the explicit expression in Eq. (22), which make it
possible to obtain the analytic form of the answer for arbitrary
κ . By using that result, we can finally write

�κ

EF
≈

( κ

2π

)2/κ 64

κ2�
(
1 − 1

κ

)γ 1/κ exp

(
−2π2

κ2

1

γ

)
, (53)

where

EF = πn2

4
(54)

is the Fermi energy of the free 1D Fermi gas. This expression
should be understood as the leading asymptotic behavior of
the gap as γ → 0. It can be easily checked that, when κ = 2,
Eq. (53) agrees with the results in Refs. [16,26,27].

The energy gap determines the fundamental nonperturba-
tive scale of the theory. It is exponentially small in γ , and its
prefactor scales with γ like γ 1/κ . We will now see how the
main features of this result can be obtained from two different
approaches: the behavior of perturbation theory at large order
and a RG analysis.

IV. ENERGY GAP FROM LARGE ORDER BEHAVIOR

The energy gap in Eq. (53) is clearly a nonperturbative
effect. It has been known for a long time that nonperturba-
tive effects in quantum physics can often be extracted from
the large order behavior of the perturbative series (see, e.g.,
Ref. [28] for a textbook exposition and Ref. [29] for a collec-
tion of articles on the subject). Let us suppose that we have a
perturbative series of the form:

ϕ(z) =
∑
k�0

akzk. (55)

Here, z is the (small) coupling constant of the problem. In
most examples in quantum theory, the coefficients ak grow
factorially with k. More precisely, we have

ak ∼ μ0

2π
A−k−b�(k + b), k � 1, (56)

where A, b, and μ0 are parameters that characterize the growth
of perturbation theory at next-to-leading order in 1/k. This
growth leads to an exponentially small, nonperturbative effect
of the form:

μ0z−b exp
(
−A

z

)
, z → 0. (57)

Therefore, the parameters in the factorial growth in Eq. (56)
determine the strength of the nonperturbative effect. In real
examples, these parameters can be extracted numerically from
the growth of the perturbative series and then compared with
expectations about the presence of nonperturbative effects.
Particularly important are A and b since they determine the
leading dependence of the nonperturbative effect on the cou-
pling constant z. In general, there is a minimal nonperturbative
scale in the problem:

�(z) = z−b exp
(
−A

z

)
, (58)

and a generic nonperturbative effect scales at small z as �d (z),
where d is often an integer. We note that Eq. (58) is often the
leading approximation to the full answer, and it multiplies a
power series in z.

An illustrative example of the considerations above is the
double-well potential in 1D quantum mechanics, of the form:

V (x) = x2

2
(1 + xg1/2)2. (59)

Here, g can be regarded as a coupling constant, and the energy
levels can be computed as formal power series in g by using
standard stationary perturbation theory. In this potential, the
energy gap, i.e., the difference between the ground state en-
ergy and the first excited state, is purely nonperturbative in g.
At leading order, it is given by the scale:

�(g) = g−1/2 exp

(
− 1

6g

)
, (60)

and it is due to tunneling between the two classical vacua
(in the language of instantons, this is a one-instanton effect).
One way to extract this scale is to look at the larger order
behavior of the perturbative series for the ground-state energy.
Its coefficients grow as [30,31]

ak ∼ �(k + 1)3k+1, k � 1, (61)

so they lead to a nonperturbative scale which is the square
�2(g) of the minimal scale in Eq. (60).

It was conjectured in Ref. [1] that precisely this phe-
nomenon occurs in Fermi systems with an attractive interac-
tion: the large order behavior of the perturbative series for the
ground-state energy leads to a nonperturbative scale which is
the square of the scale appearing in the energy gap. This was
verified for the Gaudin-Yang model with κ = 2 components.
We will now provide evidence for the same phenomenon
in the multicomponent case. This will determine a minimal
nonperturbative scale:

�(γ ) = γ 1/κ exp

(
−2π2

κ2γ

)
, (62)

in agreement with Eq. (53).

125142-6



ATTRACTIVE MULTICOMPONENT GAUDIN-YANG MODEL: … PHYSICAL REVIEW B 106, 125142 (2022)

10 20 30 40

-0.9

-0.8

-0.7

-0.6

-0.5 10 20 30 40

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

(a) (b)

FIG. 1. The sequence t� from Eq. (70) in black dots and its first Richardson transform in red dots, for two values of κ . The horizontal
dashed line is the expected value b(κ ) = −2/κ . (a) Sequence t� for κ = 3 and (b) Sequence t� for κ = 5.

Following Ref. [1], it is useful to introduce the ’t Hooft-like
coupling:

λ =
(κ

2

)2
γ , (63)

and the rescaled ground energy density:

e(λ; κ ) = 1

4

E
κ(

n
κ

)3 , (64)

where E is given in Eq. (16) in terms of the BA solution. This
function has the perturbative expansion:

e(λ; κ ) =
∑
��0

c�(κ )λ�. (65)

The coefficients c�(κ ) can be computed systematically by
using the algorithm presented in Ref. [1]. One finds, for the
very first orders:

c0 = π2

12
, c1 = � − 1, c2 = 1

3
− �

3
,

c3 = 4�(� − 1)ζ (3)

π4
,

c4 = −12�(� − 1)2ζ (3)

π6
, (66)

where we have denoted

� = 1

κ
. (67)

We have computed the first 45 coefficients in Eq. (65), which
turn out to be sufficient to numerically study the large order
behavior of the sequence c�(κ ). We find

c�(κ ) ∼ A−�−b(κ )�[� + b(κ )], (68)

where

A = π2, b(κ ) = − 2

κ
. (69)

The numerical procedure to extract these numbers is standard
(see, e.g., Ref. [32]). For example, to determine b(κ ), we
consider the sequence:

t� = Ac�+1

c�

− �, � � 0, (70)

which should approach b(κ ) as � � 1. The convergence of
the sequence to the expected value can be accelerated with
Richardson transforms. Examples of these numerical deter-
minations are shown in Fig. 1. If we now consider that the
expansion in Eq. (65) is done in the coupling λ, and we go
back to the coupling γ , we find that the large order growth
leads to the nonperturbative scale:

�2(γ ) = γ 2/κ exp

(
−4π2

κ2γ

)
, (71)

which is precisely the square of Eq. (62).
As explained in Ref. [1], the factorial growth of pertur-

bation theory is due to a renormalon effect [10], and ring
diagrams explain the exponential dependence in Eq. (71).
However, as we check explicitly in Appendix A, the prefactor
γ 2/κ is subleading in 1/κ and cannot be explained by ring
diagrams only.

V. ENERGY GAP FROM RG

As it is well known, in relativistic asymptotically free the-
ories, the coupling dependence of the nonperturbative scale
can be determined, at weak coupling, by a RG analysis. The
argument is very simple. Let us assume that we have a running
coupling constant g(μ), depending on a scale μ, and satisfying
a RG equation of the form:

μ
dg

dμ
= β(g) = β0g2 + β1g3 + · · · , (72)

where β0 < 0. Then the following quantity:

I (g) = μ g(μ)β1/β
2
0 exp

[
1

β0g(μ)

]

× exp

{
−

∫ g(μ)

g∗

[
1

β(g)
− 1

β0g2 + β1

β2
0 g

]
dg

}
,

(73)

is invariant under the RG flow, i.e., it is independent of the
scale μ. Here, g� is an arbitrary value, which is equivalent to
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the freedom of multiplying I by an arbitrary μ-independent
constant. Since β0 < 0, I (g) is an exponentially small quan-
tity in the coupling constant, and it can be regarded as the
all-orders generalization of the minimal nonperturbative scale
in Eq. (58) for these theories. We note that A in Eq. (58) is
essentially given by the inverse of the first coefficient of the
beta function, while b involves the first two coefficients β0,
β1. It was pointed out by Parisi [33] that the nonperturbative
ambiguities due to renormalons are given by integer powers
of the scale in Eq. (73), and he conjectured that they govern
the large order behavior of the corresponding perturbative
series.

There are many structural similarities between many-
fermion systems with an attractive interaction and asymp-
totically free field theories. One could then use the RG
equations to determine the coupling constant dependence of
nonperturbative quantities. In the case of 1D Fermi systems,
this was pointed out by Larkin and Sak [16]. They determined
the energy gap in the Gaudin-Yang model with κ = 2 from
the RG equations of Ref. [34].

In this section, we determine the RG equations for the
Gaudin-Yang model with arbitrary κ , and we rederive the
nonperturbative scale in Eq. (62). This shows that the con-
nection between nonperturbative effects, RG equations, and
large order behavior in asymptotically free, relativistic field
theories, also holds in this 1D many-body model. As in
Ref. [16], we will use the RG approach of Ref. [34], which we
will call multiplicative renormalization (see Ref. [17] for a
review).

As is well known, the first step in the multiplicative renor-
malization procedure in 1D is to linearize the dispersion
relation near the Fermi surface. We start with a free Hamil-
tonian:

H0 =
∑
k,α

εkc†
k,α

ck,α, (74)

where α = 1, . . . , κ . We focus our attention on energies
around k = ±kF and integrate out modes with |k − kF| � k0

for some cutoff k0 
 kF. This leads to a Hamiltonian of the
form:

H0 =
∑
k,α

vF(k − kF)a†
k,α

ak,α

+
∑
k,α

vF(−k − kF)b†
k,α

bk,α, (75)

where a and b are annihilation operators for right- and left-
moving particles, respectively, and vF is the Fermi velocity.
The energy bandwidth associated with the cutoff k0 is given
by

E0 = 2vFk0. (76)

We also define the free Green’s function for right/left movers
as

G±(k, iω) = 1

iω ∓ k + kF
. (77)

FIG. 2. The allowed couplings g1, g2, g3, and g4, from left to
right. They mix right-moving (continuous line) and left-moving
(dashed line) particles. We only consider g1 and g2, the leftmost
couplings. The arrows are taken to be implicit in other diagrams.

We can now add interactions which are diagrammatically
illustrated in Fig. 2:

HI =
∑

k1,k2,k3,k4

κ∑
α,β

δ(k1 + k2 − k3 − k4)

× [g1b†
k1,α

a†
k2,β

ak3,αbk4,β + g2b†
k1,α

a†
k2,β

bk3,αak4,β

+ g3(a†
k1,α

a†
k2,β

bk3,αbk4,β + b†
k1,α

b†
k2,β

ak3,αak4,β )

+ g4(a†
k1,α

a†
k2,β

ak3,αak4,β

+ b†
k1,α

b†
k2,β

bk3,αbk4,β )]. (78)

Very often, the couplings gi are split into gi⊥ and gi‖ for par-
ticles with different/identical spin. In the Gaudin-Yang case,
the g3 interaction, which corresponds to Umklapp scattering,
is not allowed. In the present scheme of bandwidth cutoff,
the g4 process does not contribute. We will then focus on the
couplings g1,2.

The procedure of multiplicative renormalization is based
on comparing Green’s functions and vertex functions at dif-
ferent values of the cutoffs. The working hypothesis is that,
once the coupling constants are appropriately adjusted, these
functions differ in a multiplicative factor only. We have, for
the Green’s functions,

G(k, ω, g′
i, E ′

0) = z

(
E ′

0

E0
, gi

)
G(k, ω, gi, E0). (79)

The vertex or four-point functions are associated with the
couplings and related through the equation:

�′
i ({k, ω}, g′

i, E ′
0) = z−1

i

(
E ′

0

E0
, gi

)
�i({k, ω}, gi, E0),

i = 1, 2, (80)

where {k, ω} denote the four different momenta and frequen-
cies appearing in the vertex. This leads to the following
renormalization of the coupling constant:

g′
i = zi

(E ′
0

E0
, gi

)
z2

(E ′
0

E0
, gi

)gi, (81)

and to the beta functions:

βi = dgi(μ)

d log μ
= d

d log μ

(
zi(μ, gi )

z2(μ, gi )

)∣∣∣∣
μ=1

gi,

i = 1, 2, (82)

where μ = E ′
0/E0.
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FIG. 3. One loop correction to g1 (top) and g2 (bottom). The top
rightmost diagrams have a multiplicity of 2 since we can pick the
lines to be ingoing/outgoing in two distinct ways.

At one loop, the procedure is rather simple since there
are no corrections to the self energy. To compute the scaling
of �1,2, we must first assign a set of external momenta and
frequencies. Since we are ultimately interested in how the
couplings vary with the scale, we can choose one of the
external parameters to play the role of probe scale. As usual
in renormalization, we work under the assumption that we
probe energies far below the cutoff. We choose, following
Ref. [17], ω, though one could just as well pick k or even
the inverse temperature β. A convenient choice of external
parameters is proposed in Ref. [17]. We set the momenta of
right/left movers at the Fermi points ±kF, respectively. The
incoming right-moving particle has an energy of 3iω/2, while
the incoming left-moving particle has an energy of −iω/2,
and both outgoing particles have the energy iω/2.

At one loop, one has the diagrams shown in Fig. 3. There
are only two types of loop integrals, which correspond to the
so-called Cooper and Peierls channels, denoted by JC(ω) and
JP(ω), respectively. We can write at first order

g1�1(iω, gi, E0)

= g1 − [
2g1g2JC(ω) + (

2g2g1 − κg2
1

)
JP(ω)

] + · · · ,

(83)

g2�2(iω, gi, E0)

= g1 − [(
g2

1 + g2
2

)
JC(ω) + g2

2JP(ω)
] + · · · . (84)

We take ω 
 E0 to single out the leading logarithmic depen-
dence, and we find

JC(ω) =
∫ kF+k0

kF−k0

dq

2π

∫ ∞

−∞

dω′

2π
G+(q, iω′)

× G−(−q, iω − iω′)

≈ − 1

2πvF
log

( ω

E0

)
, (85)

JP(ω) =
∫ +k0

−k0

dq

2π

∫ ∞

−∞

dω′

2π
G+(q + kF, iω′)

× G−(q − kF, iω′ − iω)

= −JC(ω). (86)

FIG. 4. Corrections to the right-moving self-energy. Note that
one-loop contributions are zero. The left-moving self-energy is
identical.

The vertices are

g1�1(iω, gi, E0) = g1 + 1

2πvF

(
κg2

1

)
log

( ω

E0

)
+ · · · , (87)

g2�2(iω, gi, E0) = g2 + 1

2πvF

(
g2

1

)
log

( ω

E0

)
+ · · · . (88)

From the definition in Eq. (80), we read

z1

(
E ′

0

E0
, gi

)
= �1(ω, gi, E0)

�1(ω, g′
i, E ′

0)

= 1 + 1

2πvF
(κg1) log

(
E ′

0

E0

)
+ · · · , (89)

z2

(
E ′

0

E0
, gi

)
= �2(ω, gi, E0)

�2(ω, g′
i, E ′

0)

= 1 + 1

2πvF

(
g2

1

g2

)
log

(
E ′

0

E0

)
+ · · · , (90)

where we use g′
i ≈ gi + O(g2). These results

are independent of ω, as required by the multiplicative
renormalization hypothesis. At one loop, we find, by using
Eq. (81),

g′
1 = g1 + g2

1κ

2πvF
log

(
E ′

0

E0

)
+ · · · ,

g′
2 = g2 + g2

1

2πvF
log

(
E ′

0

E0

)
+ · · · . (91)

The calculation at two loops is more involved. For the self-
energy, we have the diagrams in Fig. 4. We take the inflowing
momentum and energy to be kF + k and iω, respectively, and
we find

G(k, iω, gi, E0)

=
[

1 + (
κg2

1 + κg2
2 − 2g1g2

) log
(

ω
E0

)
8π2v2

F

+ · · ·
]

× G+(k, iω). (92)

125142-9



MARCOS MARIÑO AND TOMÁS REIS PHYSICAL REVIEW B 106, 125142 (2022)

FIG. 5. Two-loop correction to g1. Some diagrams which are distinct over choice of ingoing/outgoing legs have a multiplicity of 2;
diagrams with a spin loop have a factor of −κ .

Due to Eq. (79), z is given by

z

(
E ′

0

E0
, gi

)
=

[
G(kF, iω, gi, E0)

G(kF, iω, g′
i, E ′

0)

]−1

= 1 − (
κg2

1 + κg2
2 − 2g1g2

) log
(E ′

0
E0

)
8π2v2

F

+ · · · . (93)

At two loops, one finds far more diagrams for the vertices,
as detailed in Figs. 5 and 6, which add up to

g1�1(iω, gi, E0) = g1 + 1

2πvF

(
κg2

1

)
log

( ω

E0

)

+ 1

4π2v2
F

(
2g2

1g2 − κg2
2g1

)
log

( ω

E0

)

+ 1

8π2v2
F

(
2κ2g3

1

)
log2

( ω

E0

)
+ · · · ,

(94)

g2�2(iω, gi, E0) = g2 + 1

2πvF

(
g2

1

)
log

( ω

E0

)

+ 1

4π2v2
F

(
g3

1 − κg2
1g2 + 2g2

2g1 − κg3
2

)
× log

( ω

E0

)

+ 1

8π2v2
F

(
2κg3

1

)
log2

( ω

E0

)
+ · · · , (95)

When κ = 2, the result above agrees with the calculation in
Refs. [17,34]. From these results, we obtain

z1

(
E ′

0

E0
, gi

)
= 1 + 1

2πvF
(κg1) log

(
E ′

0

E0

)

+ 1

4π2v2
F

(
2g1g2 − κg2

2

)
log

(
E ′

0

E0

)

+ 1

8π2v2
F

(
2κ2g2

1

)
log2

(
E ′

0

E0

)
+ · · · ,

(96)

Here, we must use the corrections in Eq. (91) to g′
i since they

are crucial to cancel log(ω) dependencies at order O(g2). For
z2, we find

z2

(
E ′

0

E0
, gi

)
= 1 + 1

2πvF

(
g2

1

g2

)
log

(
E ′

0

E0

)

+ 1

4π2v2
F

(
g3

1

g2
− κg2

1 − κg2
2 + 2g2g1

)

× log

(
E ′

0

E0

)

+ 1

8π2v2
F

(
2κ

g3
1

g2

)
log2

(
E ′

0

E0

)
+ · · · . (97)

FIG. 6. Two-loop corrections to g2. Some diagrams which are distinct over choice of ingoing/outgoing legs have a multiplicity of 2;
diagrams with a spin loop have a factor of −κ .
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The cancellation of log(ω) for z1, z2 is a nontrivial check of
the diagrammatic calculations.

Finally, by assembling the pieces and plugging them into
Eq. (81), we find

g′
1 = g1 + g2

1κ

2πvF
log

(
E ′

0

E0

)
+ g3

1κ

4π2v2
F

log

(
E ′

0

E0

)

+ g3
1κ

2

4π2v2
F

log2

(
E ′

0

E0

)
+ · · · , (98)

g′
2 = g2 + g2

1

2πvF
log

(
E ′

0

E0

)
+ g3

1

4π2v2
F

log

(
E ′

0

E0

)

+ g3
1κ

4π2v2
F

log2

(
E ′

0

E0

)
+ · · · . (99)

We are now ready to calculate the beta functions for the
couplings g1, g2. By using Eqs. (96), (97), and (93) in Eq. (82),
we obtain

β1 = κ

2πvF
g2

1 + κ

4π2v2
F

g3
1 + · · · , (100)

β2 = 1

2πvF
g2

1 + 1

4π2v2
F

g3
1 + · · · . (101)

These beta functions agree with a similar calculation in the
SU (κ ) Hubbard model in Ref. [35].

With all these results, we can now calculate the gap in the
attractive regime g1 = −2c < 0. We introduce

ḡ1 = − g1

πvF
= κγ

π2
, (102)

and we find that the beta function for ḡ1 is of the form of
Eq. (72) with:

β0 = −κ

2
, β1 = κ

4
. (103)

By using these values and Eq. (102), we find that the RG
invariant scale in Eq. (73) agrees precisely with Eq. (62).

As noted in Ref. [3], the beta function β1 coincides with
the one of the chiral Gross-Neveu model [36]. In fact, it can
be shown explicitly that the Hamiltonian H0 + HI , where only
the couplings g1, g2 are considered, is a particular case of
the chiral Gross-Neveu model. This explains the relationship
between the beta functions. We give some details of this
equivalence in Appendix B.

VI. CONCLUSIONS

In this paper, we have extended and deepened the connec-
tion found in Refs. [1–3] between the energy gap, the large
order behavior of perturbation theory, and renormalons in 1D
models of many-body fermions with an attractive interaction.
We have seen that the weak-coupling behavior of the energy
gap in the multicomponent Gaudin-Yang model can be pre-
dicted from the large order behavior of the perturbative series
for the ground state energy. This series diverges factorially due
to renormalon diagrams. When the number of components is
large, the leading renormalon diagrams (which turn out to be
ring diagrams) correctly reproduce the exponential term in the
energy gap. Moreover, as in asymptotically free theories in
two dimensions (2D), the leading and subleading terms in the
large order behavior can be obtained from the beta function

of the theory, as computed in the relativistic approximation
near the Fermi points. This also implies a connection between
the gap and the beta function, noted long ago in Ref. [16].
To establish these relationships, we have performed a detailed
calculation of the energy gap directly from the BA solution in
the multicomponent case, generalizing in this way the results
of Ref. [15] for κ = 2.

Although the integrability of the model makes it possible to
test our ideas in detail, the connection we have found should
be valid more generally. For example, the results of this paper,
combined with the ones in Ref. [3], suggest that the coupling
dependency of the energy gap in the multicomponent Hubbard
model (which is not integrable) is given by

� ≈ u1/κ exp

[
−2π

κu
sin

(πn

κ

)]
, u → 0, (104)

where u is the coupling constant, and n is the density (see
Ref. [3] for more details and clarifications on the notation).
There are additional coupling-independent factors that depend
on n [37] and κ but which we cannot yet fully ascertain.
The exponent appearing in this expression can be interpreted
as due to the contribution of renormalon diagrams domi-
nating in the large κ limit. In quantum chromodynamics
(QCD), renormalons have been instrumental in determining
nonperturbative scales [10], and it is gratifying that the same
principles shed light on the energy gap of many-fermion sys-
tems.

There are various avenues opened by this investigation.
One important issue would be to systematically understand
the corrections to the results presented in this paper. As we
have mentioned, the minimal scale in Eq. (58) is the leading
approximation to a fully-fledged transseries, and it multiplies
a power series in the coupling constant. As emphasized in
this paper, these subleading corrections can in principle be
computed by following any of the three roads we have consid-
ered. We could, for example, use the BA equations; we could
determine them from the subleading contributions to the large
order behavior; and we could try to understand them from the
beta function, by including higher loops and higher modes. It
would also be interesting to connect these corrections to the
behavior of diagrams. In fact, this should be done already to
reproduce the prefactor γ 2/κ in Eq. (71). It might be possible
to do this by considering diagrams which are subleading in the
large κ expansion.

Another interesting avenue is to find a description of the
model in the 1/κ expansion, along the lines of what was
done for the principal chiral field in Refs. [38–40]. This
might require us to study a regime of the model in which
different bound states are present in a prescribed way, as in
Refs. [38,39]. We have found encouraging indications that the
BA equations for the multicomponent Gaudin-Yang model
might simplify in an appropriate large κ regime, but more
work is needed.

As mentioned in our previous papers [1–3], a fundamental
issue is to find a first-principles procedure to calculate the
energy gap from the path integral, by some generalization
of perturbation theory that considers renormalon physics. In
QCD, such a procedure is provided, for some observables, by
the operator product expansion, combined with the existence
of nontrivial vacuum condensates. It would be fascinating to
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extend these methods to nonrelativistic models like the one
studied in this paper.
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APPENDIX A: NONPERTURBATIVE SCALE
FROM RING DIAGRAMS

As we have already argued in Ref. [1], the large order
behavior of the perturbative series in Eq. (68) is due to renor-
malon diagrams. To study these diagrams in a systematic
way, it is useful to consider a 1/κ expansion (in quantum
electrodynamics or QCD, one would consider an expansion
in 1/Nf , where Nf is the number of flavors [10]). In the
multicomponent Gaudin-Yang model, the dominant diagrams
in the large κ limit are the so-called ring diagrams (see, e.g.,
Refs. [41,42]). It was shown in Ref. [1] that these diagrams
lead to the correct exponential term in Eq. (71). However,
as we will briefly show here, they do not lead to the correct
prefactor, which is subleading in the 1/κ expansion.

The ground state energy for the Gaudin-Yang model with κ

spin components in Eq. (64) has a 1/κ expansion of the form:

e(λ; κ ) = e0(λ) + 1

κ
e1(λ) + · · · . (A1)

In this equation, λ is the ’t Hooft parameter in Eq. (63), e0(λ)
is the free gas result plus the Hartree term, while e1(λ) is given
by a resummation of ring diagrams [1]:

e1(λ) = λ − π

4

∫ ∞

0
dy y

∫ ∞

0
dν

×
{

log

[
1 − κ2γ

π2
F (y, ν)

]
+ κ2γ

π2
F (y, ν)

}
, (A2)

where

F (y, ν) = 1

2y
log

[( y
2 + 1

)2 + ν2( y
2 − 1

)2 + ν2

]
. (A3)

As noted in Refs. [3,43], in similar situations, the integral in
Eq. (A2) has an exponentially small imaginary piece which
must be canceled by nonperturbative effects not captured by
the diagrammatic expansion. We can then reconstruct these
nonperturbative effects by properly expanding the imaginary
part of the integral, which occurs when the argument of the
log becomes negative. The condition:

1 − κ2γ

π2
F (y, ν, γ ) < 0, (A4)

defines a compact region R in the first quadrant of the (y, ν)
plane. The region is delimited by the curve defined by the
equation:

ν2 =
−(y − 2)2 + exp

(− 2π2y
κ2γ

)
(y + 2)2

4
[
1 − exp

(− 2π2y
κ2γ

)] . (A5)

Since ν � 0, we must find the limits of integration y = y±
where the boundary line crosses the real axis. Let us define
the nonperturbative parameter:

α = exp

(
−2π2

κ2γ

)
, (A6)

and let us change variables from y to u, where

y = 2 + 4αu. (A7)

The equation for the endpoints u± is

exp(−2α log αu±) ∓
(

1

u±
+ α

)
= 0, (A8)

which can be easily solved in a power series expansion in
the two variables α, log α (this is a simple example of a
transseries, see Refs. [6–8]). For the first few orders, we find

u± = ±1 + α[2 log(α) + 1]

± α2[6 log2(α) + 6 log(α) + 1] + · · · . (A9)

To determine the imaginary part of e1(λ), we must calculate∫ u+

u−
4α(2 + 4αu)ν(u)du. (A10)

This can be done by expanding the integrand into factors of
(u − u+)m(u − u−)k and u(u − u+)m(u − u−)k at each order
in α before performing the integration and then resuming at
each order in α the resulting polynomials in u+ and u−. When
all this is done, we obtain the following expansion for the
imaginary part of e1(λ):

Im e1(λ) = 2π2 exp

(
−π2

λ

)
+ 8π2 exp

(− 2π2

λ

)
λ2

×
(

λ2 − 3π2

2
λ + π4

2

)

+ 6π2 exp
(− 3π2

λ

)
λ4

×
(

3λ4 − 14π2λ3 + 21π4λ2 − 12π6λ + 9π8

4

)

+ · · · . (A11)

The leading, exponentially small effect has the correct expo-
nent to match Eq. (71) but not the correct prefactor. A similar
phenomenon was found in the Hubbard model in Ref. [3].
This is due to the fact that ring diagrams capture the dia-
grammatric structure at the first nontrivial order in the 1/κ

expansion, while the prefactor γ 1/κ is subleading in 1/κ . By
considering renormalon diagrams of order 1/κ2, one might be
able to reproduce this prefactor [44].

An interesting application of the above calculation is a
precise formula for the large order behavior of the coefficients
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c(1)
� in the perturbative expansion of e1(λ):

e1(λ) =
∑
��0

c(1)
� λ�. (A12)

These coefficients appear in the 1/κ expansion of the coeffi-
cients c�(κ ) of Eq. (65):

c�(κ ) = c(0)
� + 1

κ
c(1)
� + · · · . (A13)

If we write

Im e1(λ) =
∑
j�1

2 j−2∑
i=0

a j,iλ
−i exp

(
− jπ2

λ

)
, (A14)

we find

c(1)
� ∼ −

∑
j�1

2 j−2∑
i=0

�(� + i)

(π2 j)�+i
a j,i. (A15)

By appropriately truncating the sum over j, we can obtain
from Eq. (A15) very accurate values for the perturbative coef-
ficients c(1)

� .

APPENDIX B: RELATION TO THE CHIRAL
GROSS-NEVEU MODEL

The relativistic model we have used in our RG analysis
turns out to be closely related to the Thirring model and, more
precisely, to the chiral Gross-Neveu model (similar relations
have been pointed out in Refs. [45,46]). To see this, we con-
sider the general form of the Thirring Lagrangian, given by

L = i�̄� ∂� − 1

2
gJα

μJμα, Jα
μ =

∑
j

�̄ jγμT α� j, (B1)

where �α, j ( j = 1, . . . , Nf and α = 1, . . . , Nc) is a Nf di-
mensional vector of Dirac spinors in a Nc dimensional
representation of a compact Lie group G, and T α, α =
1, . . . , dim(G) are a basis for the representations of its Lie
algebra such that Tr[T αT β] = 1

2δαβ .
We are interested in the case of Nf = 1 and G = SU (κ ),

with the Dirac spinor in the fundamental representation (Nc =
κ). This is the matter content of the chiral Gross-Neveu model
(see, e.g., Ref. [47]). We work in 1 + 1 dimensions with sig-
nature (−,+). Explicitly, we use the following Dirac spinor
conventions, where the chiral matrix is labeled γ3:

� =
(

ψ+
ψ−

)
, �̄ = i�†γ0,

γ0 =
(

0 1
1 0

)
, γ1 =

(
0 −1
1 0

)
,

γ3 =
(

1 0
0 −1

)
, γ3 = γ0γ1, (B2)

and the SU (κ ) index is implicit for the spinors. The kinetic
term is easily expanded in the above convention as

i�̄ �∂� = −ψ∗
+(∂0 − ∂1)ψ+ − ψ∗

−(∂0 + ∂1)ψ−, (B3)

and ψ± match the κ-component left-/right-moving modes
from the two Fermi points considered in Sec. V (up to a
rescaling of the spatial direction by vF).

To compare with the interactions in Eq. (78), we need
to expand the vertex. It is useful to use two different Fierz
identities. The first one is the Fierz identity in the Clifford
algebra of two space-time dimensions:

(γμ)βα (γ μ)δγ = (I)δα (I)βγ − (γ3)δα (γ3)βγ , (B4)

and the second one is the Fierz identity in the SU (κ ) Lie
algebra:

(T α )ab(T α )cd = 1

2

(
δadδcb − 1

N
δabδcd

)
. (B5)

Using these two together, we get, after some simple algebra,

−1

2
gJα

μJμα = g

4

[
(�̄ · �)2 − (�̄ · γ3�)2 + 1

N
(�̄ · γ μ�)(�̄ · γμ�)

]

= −g(ψ∗
+ · ψ−)(ψ∗

− · ψ+) − g

N
(ψ∗

+ · ψ+)(ψ∗
− · ψ−), (B6)

where the inner products make explicit the sum over compo-
nents. We can already identify the two vertices g1,2 in Sec. V
as g1 ∝ −g and g2 ∝ −g/κ . Note that, according to our results
in Sec. V, g1 − κg2 is RG invariant. Here, we find an addi-
tional perspective on this fact: This combination is forced to
be zero due to Lorentz and SU (κ ) invariance of the relativistic

Lagrangian. Equation (B6) is also the interaction term for the
chiral Gross-Neveu model in Ref. [47] with g′ = 0. By using
the results in Ref. [48], it is also possible to show in detail
that the calculation of the beta function in Sec. V is identi-
cal to the one for the coupling g in the chiral Gross-Neveu
model.
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