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A simple yet paradigmatic model for the interplay of strong electronic correlations and geometric frustration
is the triangular lattice Hubbard model. Recently it was proposed that moiré structures of transition metal
dichalcogenides can be used to simulate extended versions that include nonlocal density-density interactions. We
study competing instabilities of interacting electrons in such an extended Hubbard model on the triangular lattice
near a filling where the density of states has a Van Hove singularity. We employ a truncated-unity functional
renormalization group approach to investigate two cases: a paradigmatic minimally extended Hubbard model and
a specific model with parameters that are applicable to heterobilayers of transition metal dichalcogenides. We
unravel rich phase diagrams, including tendencies to spin-density-wave order and unconventional pairing, which
can give rise to topological superconductivity. We classify the symmetry of the superconducting instabilities
according to their irreducible representations and show that higher lattice harmonics are dominant when
the nearest-neighbor interaction is sizable indicating pair formation between second-nearest neighbors. The
phenomenological consequences can be enhanced spin and thermal quantum Hall responses in a topological
superconductor.
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I. INTRODUCTION

The triangular-lattice Hubbard model is a paradigmatic
model for the study of the complex interplay between strong
electronic correlations and geometric frustration. A very di-
verse set of phenomena has been associated with its phase
diagram, including metal-insulator transitions, various mag-
netic states, chiral superconductivity, and quantum spin liquid
phases [1,2]. The advent of moiré materials [3–9] opened new
opportunities for the study of such correlation phenomena
because they can be engineered to be quantum simulators
for many models of strongly correlated electron systems [10].
In particular, it has been argued that moiré bilayers of semi-
conducting transition metal dichalcogenides (TMDs) can be
used to simulate generalized triangular-lattice Hubbard mod-
els [11,12]. A moiré potential is induced by a mismatch in
orientation and/or a difference in lattice constants between the
two TMD layers. This moiré potential modifies the band struc-
ture in such a way that an isolated, narrow band can appear
close to the Fermi level, whose filling and interactions can be
controlled by gating and screening layers [11]. The narrow
band can be effectively modeled by a triangular lattice Hub-
bard model, whose details depend on the type of moiré TMD
heterostructure. Generally, one has to distinguish homo- vs
heterobilayers and stacking configurations of 0◦ vs 180◦ (plus
twist angle). Their combinations can yield SU(2) [11,13–
16] and SU(2)×SU(2) [17,18] effective triangular-lattice
Hubbard models as a result of the degeneracy of origi-
nal valleys and spin-valley locking due to strong spin-orbit
coupling.

A first generation of experiments on moiré heterobi-
layer TMDs [12,19–22] revealed a rich phenomenology
associated with strong correlation effects: the occurrence
of Mott insulating behavior, a continuous metal-insulator
transition, antiferromagnetic and ferromagnetic responses at
commensurate fillings, and generalized Wigner crystalliza-
tion. Furthermore, a relatively sharp drop of the resistivity has
been observed in the moiré homobilayer WSe2/WSe2, which
has been interpreted as a sign for a possible superconducting
state [23].

On the theory side, a series of sophisticated numerical
studies of the SU(2) triangular-lattice Hubbard model has
recently been put forward focusing on the half-filled case
[24–29] and slightly doping away from it [30,31]. In addition,
the important effect of extended Hubbard interactions, which
are sizable in moiré TMDs, was investigated [32–34]. Away
from half filling, several studies have discussed indications
for topological superconducting phases, which are facilitated
in this system due to the hexagonal lattice structure [35–46],
and are also strongly affected by the presence of extended
Hubbard interactions [43–48].

This work and key results

Here, we explore the SU(2) triangular-lattice Hubbard
model away from half filling including extended Hubbard
interactions utilizing the truncated-unity functional renormal-
ization group (TUFRG) [49] (see also Refs. [50–53]). We
specifically focus on the case near Van Hove filling where
the model exhibits a singularity in the density of states. A

2469-9950/2022/106(12)/125141(19) 125141-1 ©2022 American Physical Society

https://orcid.org/0000-0003-0766-9949
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.125141&domain=pdf&date_stamp=2022-09-22
https://doi.org/10.1103/PhysRevB.106.125141


GNEIST, CLASSEN, AND SCHERER PHYSICAL REVIEW B 106, 125141 (2022)

previous functional renormalization group (FRG) study [46]
also addressed the role of extended Hubbard interactions in
a model for WSe2/MoS2 on the low-doping side of the Van
Hove energy using a Fermi-surface patching scheme and
argued for an instability towards a chiral g + ig supercon-
ductor. The g + ig state has an enhanced thermal and spin
Hall response compared to the d + id superconductor, which
has the same symmetry, but is topologically distinct. Here,
we investigate under which circumstances the g + ig super-
conductor becomes a possible competitor in the Van Hove
scenario on the triangular lattice. To this end, we analyze two
model cases: the minimal, paradigmatic t-U -V case with only
nearest-neighbor hopping, and on-site and nearest-neighbor
interaction, and the earlier WSe2/MoS2 case with parameter
values from ab initio modeling [11] for up to third-neighbor
hopping and interaction. In the first case, we discuss in detail
the effect of the nonlocal Coulomb term V on the phase
diagram. This provides strong evidence for the physical origin
of the chiral g-wave superconducting state as it allows us to
extract the minimal necessary ingredient. In the second case,
we study both sides of Van Hove filling, which can give rise
to very different pairing states in the triangular lattice [35,44],
but we show that the g-wave pairing develops also on the
high-doping side if nearest-neighbor repulsion is included. At
the same time, we confirm previous results for the low-doping
side with our higher momentum resolution. In both cases
we provide comprehensive phase diagrams of Fermi-surface
instabilities for varying filling and strength of extended inter-
actions. We obtain an instability towards a spin-density wave
at Van Hove filling due to perfect (approximate) nesting in
the t-U -V (WSe2/MoS2) case, and a rich structure of pairing
instabilities at its low- and high-doping side. In particular,
we find that the inclusion of extended, repulsive interactions
yields pairing states with dominant second-nearest-neighbor
contributions that belong to the two-dimensional (2D) irre-
ducible representation E2 of the lattice symmetry group C6v .
This indicates the formation of the topological g + ig super-
conducting state (Fig. 1). We argue that it is crucial to account
for the coupling between ordering tendencies for an unbiased
analysis and to accurately resolve the momentum dependence
for the determination of pairing symmetries, both of which are
strong suits of the TUFRG.

We introduce the models in Sec. II and our method in
Sec. III. Results for the correlated states of the minimal model
are presented in Sec. IV and for the moiré TMD model in
Sec. V. We discuss the possible topological superconductivity
in Sec. VI and conclude in Sec. VII.

II. MODEL

We consider an extended Hubbard model on the triangular
lattice with SU(2) spin symmetry of the form

H = −
∑

n

∑
〈i j〉n

∑
σ

tn(c†
iσ c jσ + H.c.) − μ

∑
iσ

niσ

+ U
∑

i

ni↑ni↓ +
∑

n

∑
〈i j〉n

∑
σσ ′

Vnniσ n jσ ′ . (1)

In the first line, we have introduced the electron annihila-
tion (creation) operators c(†)

iσ for lattice site i, spin projection

FIG. 1. Schematic phase diagram of the extended Hubbard
model on the triangular lattice. The nearest-neighbor repulsion V1,
which is present in addition to a moderate local Hubbard term
U/V1 ∼ 4, supports the formation of a (g + ig)-wave superconduct-
ing state. This state is topologically nontrivial and features enhanced
quantum Hall responses as compared to (d + id ) superconductivity.
Quantitative, extended versions of this phase diagram are shown in
Figs. 7, 10, and 11 for a minimal model and for an accurate fit of the
AA stacked moiré heterobilayer TMD WSe2/MoS2.

σ ∈ {↑,↓}, and the nth-neighbor hopping tn denoted by 〈i, j〉n

in the sum. The electron density operator is niσ = c†
iσ ciσ and

couples to the chemical potential μ which allows us to ad-
just the electron filling of the system. In the second line of
Eq. (1), we collect interaction terms, i.e., the on-site Hubbard
interaction with interaction parameter U and the nth-neighbor
Coulomb interaction Vn. We study two specifications of the
model in Eq. (1). To investigate the effect of extended in-
teractions in a clear setup, we consider the minimal model
with t1 = t > 0, U > V1 > 0, and all other tn = 0 = Vn (n �
2). For a realistic example, we consider parameters for the
highest moiré valence band of the heterobilayer WSe2/MoS2

with t1 ≈ −2.5 meV, t2 ≈ 0.5 meV, t3 ≈ 0.25 meV, and up
to the third-nearest-neighbor interaction U > V1 > V2 > V3 >

0. Farther-ranged hoppings and interactions n � 4 are again
set to zero. Note that σ in the effective triangular-lattice Hub-
bard model for heterobilayer TMD describes a pseudospin
corresponding to a spin-valley-locked degree of freedom.

In the t-U -V case, we obtain the energy dispersion

ξ (k) = −2t[cos(kx ) + 2 cos(kx/2) cos(
√

3ky/2)] − μ,

(2)

with wave vector k = (kx, ky) from the first line of Eq. (1),
i.e., the tight-binding part (cf. Fig. 2). There is a Van Hove
singularity in the density of states (DOS) at μ = 2t , which is
caused by saddle points in the energy dispersion that occur
at the three inequivalent Mi points. At Van Hove filling, the
Fermi surface is also perfectly nested. In the WSe2/MoS2

case, the dispersion is very similar:

ξ (k) = −2t1[cos(kx ) + 2 cos(kx/2) cos(
√

3ky/2)]

− 2t2[2 cos(3kx/2) cos(
√

3ky/2) + cos(
√

3ky)]

+ 2t3[cos(2kx ) − 2 cos(kx ) cos(
√

3ky)] − μ. (3)

Note, however, that it is inverted in comparison to Fig. 2, i.e.,
holelike, since t1 < 0. The Van Hove singularity appears at
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FIG. 2. Paradigmatic model and energy dispersion. Top left: Tri-
angular lattice and model parameters. Top right: Brillouin zone (BZ)
and high-symmetry points with energy contours. The Fermi line for
the case of Van Hove filling exhibits perfect nesting and is shown as
the thick red line. Bottom left: Energy dispersion along a path in the
BZ. Bottom right: Density of states.

μ = 2t1 + 2t2 − 6t3, and nesting is still a very good approxi-
mation.

For later reference, we also recall some properties of
the point group of the triangular lattice, i.e., the pyramidal
group C6v . This symmetry group has four one-dimensional
irreducible representations (irreps), A1, A2, B1, and B2,
and two two-dimensional irreps, E1 and E2. We depict the
corresponding lowest-order nonvanishing basis functions with
their nearest- and second-nearest-neighbor lattice harmonics
in Fig. 3. Below, we will use these irreps and lattice harmonics
to classify the superconducting pairing vertex in detail,
which allows us to extract the symmetry properties of the
superconducting gap function that would develop out of an
instability of the pairing vertex. The gap function must be
totally antisymmetric under electron exchange and it involves
a wave-vector-dependent part and a spin-dependent part; i.e.,
it comes as spin-singlet or spin-triplet pairing depending on
the transformation of the corresponding irrep under parity.
The irreps A1, A2, and E2 are even under parity, i.e., they can
describe spin-singlet superconducting states, and the irreps
B1, B2, and E1 are odd under parity, i.e., they can describe spin
triplets.

III. METHOD

The understanding of strongly correlated electron systems
relies on the development of appropriate quantum many-body
methods. A versatile and powerful approach to strongly corre-
lated electrons, which can generally cover a broad parameter
range (e.g., for band structure, filling, and interaction types)
is the FRG [54–57]. The FRG uses functional methods within

FIG. 3. Lattice symmetry group C6v . First column, irreducible
representations; second column, basis function(s); third column,
nearest-neighbor lattice harmonic(s); and fourth column, second-
nearest-neighbor lattice harmonic(s). Exception in the second row
(A2): A nonzero lattice harmonic only occurs at higher order as
indicated by the ellipsis.

the framework of quantum field theory and its broad appli-
cability comes at the cost of introducing truncation schemes.
In the context of strongly correlated electrons, one profitable
truncation focuses on the evolution of the two-particle vertex
and provides a tool to identify the leading Fermi-surface in-
stabilities in the presence of competing interactions [56,57].
More sophisticated truncation schemes or a combination with
other powerful many-body methods also provide means to go
beyond such instability analyses [58–72].

In practice, one starts the renormalization group (RG)
procedure from an initial ultraviolet renormalization group
scale �0, which corresponds to the bandwidth of the system
and then successively integrates out electron fluctuations in
a Wilsonian-like RG scheme to the infrared scale � → 0,
where all fluctuations are included. The method has been
successfully applied to correlated electrons on hexagonal lat-
tices revealing complex phase diagrams in, e.g., paradigmatic
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models [35,73], single- and multilayer graphene [74–79], var-
ious unconventional superconductor candidates [43,45,80,81],
and, more recently, correlated moiré materials with various
symmetries in the spin and orbital degrees of freedom [46,82–
84]. The flexibility of the method that these different appli-
cations reveal is enabled by the focus on the evolution of the
two-particle vertex in the truncation scheme, which offers a
qualitative understanding of the competition between ordering
tendencies. At the same time, the self-energy is neglected,
which can be important for effective single-particle properties
[85–89], but affects the flow of the two-particle vertex only
at third order in the interaction [56,90]. Thus, we do not
expect qualitative changes for the instability analysis near Van
Hove filling in the triangular lattice. It was even argued that
self-energy effects lead to pinning behavior of the Van Hove
energy [91,92] rather than diminishing it.

A. FRG background

We start with the action for a many-electron system as
described by a corresponding Hamiltonian [cf. Eq. (1)],

S[ψ̄, ψ] = −(
ψ̄, G−1

0 ψ
) + V [ψ̄, ψ], (4)

where ψ̄, ψ are Grassmann-valued electron fields. The first
term is quadratic in the electron fields and includes the
free propagator G0(ω, k) = 1/(iω − ξ (k)) with Matsubara
frequency ω and the bracket (·, ·) denotes integration over
frequencies, wave vectors, and further quantum numbers. The
second term V [ψ̄, ψ] in Eq. (4) is an interaction term which
is quartic in the electron fields. It can be read off from the
interaction part of Eq. (1).

To set up the renormalization group scheme, the free prop-
agator is regularized by an infrared cutoff �, i.e.,

G0(ω, k) → G�
0 (ω, k). (5)

This regularization procedure cuts off the infrared modes be-
low the scale � and its concrete implementation can be done
in different ways. We choose the temperature as the scale
parameter in our calculations below (see Appendix A), but in
this section we leave the choice open as it does not affect the
general structure of the FRG equations. The effective action
�[ψ̄, ψ], generating the one-particle irreducible correlation
functions [93], is then defined with G�

0 and hence becomes
scale dependent, i.e., � → ��.

Taking the derivative of �� with respect to � yields the
exact RG flow equation [56]

∂

∂�
�� = −(

ψ̄,
(
Ġ�

0

)−1
ψ

) − 1

2
Tr

((
Ġ�

0

)−1(
�(2)�)−1)

, (6)

where (G�
0 )−1 = diag((G�

0 )−1, (G�t
0 )−1) and the trace in-

cludes the matrix of second functional derivatives of �� with
respect to ψ and ψ̄ , i.e., �(2)� = �(2)�[ψ̄, ψ]. The initial
condition of Eq. (6) is defined at ultraviolet scale �0 and
corresponds to the microscopic action ��0 = S. For � → 0
the full effective action is restored: ��→0 = �.

For practical calculations on the basis of Eq. (6), we need
to truncate ��. The truncation employed here is based on a

vertex expansion, reading

��[ψ, ψ̄] =
∞∑

i=0

(−1)i

(i!)2

∑
K1,...,Ki
K ′

1,...,K
′
i

�(2i)�

× (K ′
1, . . . , K ′

i , K1, . . . , Ki )

× ψ̄ (K ′
1) · · · ψ̄ (K ′

i )ψ (Ki ) · · · ψ (K1), (7)

where K = (σ, k) carries spin indices σ and multi-indices
k = (ω, �k) collecting Matsubara frequencies and wave vec-
tors. This ansatz is inserted into Eq. (6), generating a hierarchy
of RG flow equations for the one-particle irreducible ver-
tex functions �(2i)�. Following earlier work, we truncate the
tower of flow equations at the second level i = 2 and neglect
self-energy feedback [90,94] so that we exclusively consider
the RG evolution of the two-particle vertex �(4)�, which deter-
mines the effective interaction dressed by multiple scattering
events. This truncation scheme accurately resolves the wave-
vector dependence of the two-particle vertex, which allows us
to determine Fermi liquid instabilities in an unbiased way.

B. Spin-invariant FRG flow equations

We can utilize the spin invariance of our model in Eq. (1)
in the FRG equation for the two-particle vertex. For SU(2)-
symmetric systems it can be written as

�(4)�
σ1σ2σ3σ4

= V �δσ1σ3δσ2σ4 − Ṽ �δσ1σ4δσ2σ3 , (8)

with effective interaction V � = V �(k1, k2, k3, k4) and Ṽ � =
V �(k1, k2, k4, k3). For later convenience, we also explicitly
introduce the effective interaction as it appears in the action,
i.e.,

��
V =1

2

∫
k1,k2,k3,k4

V �(k1, k2, k3, k4)δ(k1 + k2 − k3 − k4)

×
∑
s,s′

ψ̄s(k1)ψ̄s′ (k2)ψs′ (k4)ψs(k3), (9)

where
∫

k = A−1
BZT

∫
BZ dk

∑
iω and k = (k, ω). ABZ is the area

of the BZ. In the following, we omit the fourth momentum
argument which is fixed by momentum conservation unless it
is important for the discussion.

For the investigation of Fermi-surface instabilities, we are
interested in analyzing the most singular part of V �, which
comes from the smallest Matsubara frequency and we there-
fore exclusively consider this one. With these preliminaries,
the RG evolution of V � can be derived from the exact flow
equation, Eq. (6), and it reads

d

d�
V � = τpp + τph,c + τph,d. (10)

This RG flow equation is composed of three contributions,
i.e., the particle-particle (pp) contribution,

τpp = −
∫

p

d

d�

[
G�

0 (iω, p + k1 + k2)G�
0 (−iω,−p)

]
× V �(k1, k2, p + k1 + k2)

× V �(p + k1 + k2,−p, k3), (11)
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the crossed particle-hole (ph,c) contribution,

τph,c = −
∫

p

d

d�

[
G�

0 (iω, p + k1 − k4)G�
0 (iω, p)

]
× V �(k1, p, p + k1 − k4)

× V �(p + k1 − k4, k2, k3), (12)

and the direct particle-hole (ph,d) contribution,

τph,d = −
∫

p

d

d�

[
G�

0 (iω, p + k1 − k3)G�
0 (iω, p)

]
× [

V �(k1, p, p + k1 − k3)V �(p + k1 − k3, k2, p)

+ V �(k1, p, k3)V �(p + k1 − k3, k2, k4)

− 2V �(k1, p, k3)V �(p + k1 − k3, k2, p)
]
. (13)

By solving the flow equation (10) using Eqs. (11)–(13) we can
identify Fermi-surface instabilities in terms of singular contri-
butions to V �(k1, k2, k3). We use this set of equations as the
basis for an implementation of the computationally efficient
TUFRG scheme.

C. Truncated-unity FRG

The singular behavior of Fermi-surface instabilities in
correlated-electron systems typically occurs in the transfer
momenta in the three loop contributions in Eq. (10) [95]. To
facilitate a high resolution of the transfer momenta, we intro-
duce a singular-momentum description of the RG evolution
equations reparametrizing the vertices in Eqs. (11)–(13) by
introducing different interaction channels. To that end, V � is
decomposed as

V �(k1, k2, k3, k4) = V �,0(k1, k2, k3, k4)

+ ��,P(k1 + k2; −k2,−k4)

+ ��,C (k1 − k4; k4, k2)

+ ��,D(k1 − k3; k3, k2), (14)

where V �,0(k1, k2, k3, k4) takes care of the initial condition.
The other three contributions ��,X with X ∈ {P,C, D} are the
actual channels and in each case the transfer momentum is
the first argument (see Fig. 4). Inserting Eq. (14) into Eq. (9)
and rearranging the terms, we find that each of these three
channels describes a specific physical interaction (see also
Fig. 4).

These channels can be defined via their respective RG con-
tributions in Eqs. (11)–(13), i.e., via the three flow equations

d

d�
�P(k1 + k2; −k2,−k4) = τpp(k1, k2, k3, k4), (15)

d

d�
�C (k1 + k4; k4, k2) = τph,c(k1, k2, k3, k4), (16)

d

d�
�D(k1 − k3; k3, k2) = τph,d(k1, k2, k3, k4), (17)

where we have dropped the index � for convenience. The first
wave-vector argument in Eqs. (15)–(17) labels the transfer
momentum. The dependence on the other two momenta can

FIG. 4. Channel decomposition of the vertex V �. By explicitly
inserting the decomposition from Eq. (14) into the vertex in Eq. (9)
and relabeling the important momentum as qX and the two remaining
momenta as kX , k′

X , X ∈ {P,C, D}, the channels can be associated
with superconducting, magnetic, and density fluctuations. Spin in-
dices are as in the first line.

be expanded in a form-factor basis,

�X (q, k, k′) =
∑
l,l ′

X l,l ′ (q) f ∗
l (k) fl ′ (k

′). (18)

The above expansion holds for form factors forming a unity
with respect to l and k,∑

l

f ∗
l (p) fl (k) = δ(p − k), (19)

A−1
BZ

∫
dk fl (k) f ∗

l ′ (k) = δl,l ′ . (20)

In the numerical implementation this expansion is truncated;
i.e., the l, l ′ sum is restricted to a finite number Nl of form
factors to resolve the weaker momentum dependence in k and
k′. In contrast, the transfer momentum q carrying a strong
momentum dependence is discretized in a momentum mesh
in the BZ with resolution Nq.

The above decomposition of the vertex can be turned into a
computational advantage. This is because the first description
of the vertex V �(k1, k2, k3) using a wave-vector resolution
Nk of the BZ leads to a set of N3

k coupled differential
equations. In contrast, the channel-decomposed vertices scale
with ∝ Nq × N2

l . Therefore, by truncating the weaker wave-
vector dependence in Nl , we can implement high resolutions
of the important transfer momentum at moderate numerical
cost.

To obtain a set of flow equations for the form-factor-
dependent channels, i.e., X l,l ′ (q) with X ∈ {P,C, D}, we take
the derivative of the back-transformed form-factor-dependent
vertex in Eq. (18) and insert two form-factor-resolved unities
into the contributions in Eqs. (11)–(13). The unities are in-
serted in such a way that the interactions are separated from
the loop kernel, yielding

d

d�
Pl,l ′ (q) =

∑
l1,l2

V P(q)l,l1 Ḃ(q)(−)
l1,l2

V P(q)l2,l ′ , (21)
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d

d�
Cl,l ′ (q) =

∑
l1,l2

V C (q)l,l1 Ḃ(q)(+)
l1,l2

V C (q)l2,l ′ , (22)

d

d�
Dl,l ′ (q) =

∑
l1,l2

[
V C (q)l,l1 Ḃ(q)(+)

l1,l2
V D(q)l2,l ′

+ V D(q)l,l1 Ḃ(q)(+)
l1,l2

V C (q)l2,l ′

− 2V D(q)l,l1 Ḃ(q)(+)
l1,l2

V D(q)l2,l ′
]
, (23)

with the form-factor-dependent particle-particle (−) and
particle-hole (+) bubble integrals

Ḃ(q)(±)
l,l ′ = −

∫
p

d

d�

[
G�

0 (iω, q + p)

× G�
0 (±iω,±p)

]
fl (p) f ∗

l ′ (p) (24)

(cf. Appendix A), and the cross-channel projections

V P
l,l ′ (q) =

∫
k,k′

fl (k) f ∗
l ′ (k

′)V �(k + q,−k, k′ + q,−k′), (25)

V C
l,l ′ (q) =

∫
k,k′

fl (k) f ∗
l ′ (k

′)V �(k + q, k′, k′ + q, k), (26)

V D
l,l ′ (q) =

∫
k,k′

fl (k) f ∗
l ′ (k

′)V �(k + q, k′, k, k′ + q), (27)

where the area of the Brillouin zone is absorbed in the mo-
mentum integral:

∫
k = A−1

BZ

∫
dk.

For our implementation we use the momentum mesh
shown in Fig. 5 for Nq and plane-wave form factors fl (k) =
exp(ikRl ), which reduce the numerical cost of the projections
(25)–(27). They also facilitate an intuitive interpretation of
form-factor effects on the flow equations in terms of distances
in real space. We group the fl into shells defined by hexagons
of increasing size around a central site (cf. Fig. 5). The shells
are numbered by Ns ∈ N0 and we include up to Ns = 4 (see
Appendix B for further details). In the next section we perform
convergence checks in the expansion parameters (Nq, Nl ) and
show that a manageable number of transfer momenta and form
factors faithfully captures the relevant physics. The initializa-
tion of the RG flow is discussed in Appendix C.

D. Analysis of pairing gaps

In the cases where the FRG flow signals a pairing insta-
bility, we further analyze the type of superconducting pairing.
To this end, we reconstruct the full superconducting pairing
vertex from all form-factor contributions to the P channel. We
use the initial definition of the form factor expansion of the
vertices [cf. Eq. (18)], explicitly reading

�P(q, k, k′) =
∑
l,l ′

Pl,l ′ (q) f ∗
l (k) fl ′ (k

′). (28)

While the divergence of the P channel can occur in different
form-factor sectors (l, l ′) at once, the sharp peak is always
located at the � point of the BZ, i.e., q = 0. Therefore, we can
reconstruct the superconducting pairing vertex by considering
the q = 0 contribution

�P(q = 0, k, k′) := �P(k, k′), (29)

and using the channel decomposition, Eq. (14).

FIG. 5. Momentum mesh and form-factor geometry. Top: Mo-
mentum resolution Nq of the BZ in the transfer momenta. Only a
subset (red) of the momentum mesh needs to be calculated. The
remaining ones are obtained from symmetries. Bottom: Numbering
of form factors. The shades of red indicate the distance to the origin.
The site with number 1 is the on-site form factor; sites 2–7 are the
nearest-neighbor form factors; sites 10, 11, 14, 15, 18, and 19 are
second-nearest-neighbor form factors; and sites 8, 9, 12, 13, 16, and
17 are third-nearest-neighbor form factors. The form-factor shells are
defined as all the form factors sitting on the sth blue hexagon.

We can then derive the superconducting interaction from
the definition of the effective action. This can now be treated
employing a standard mean-field decoupling within general-
ized BCS theory [96]. Close to the critical temperature Tc

for the superconducting transition, the gap becomes small,
allowing for linearization of the gap equation, i.e.,

�(k) = −
∑

k′
�P(k, k′)

�(k′)
2ξk′

tanh

(
ξk′

2Tc

)
, (30)

which represents an eigenvalue equation for �(k). We can ap-
proximate its solution by diagonalizing −�P(k, k′), which is
an Nq × Nq matrix in our TUFRG implementation. The eigen-
vector corresponding to the largest eigenvalue of −�P(k, k′)
has the highest Tc and therefore determines the structure of the
superconducting pairing gap [96].

IV. EXTENDED HUBBARD MODEL

In this section, we investigate the paradigmatic version
of the triangular-lattice model that only includes nearest-
neighbor hopping t = t1 = 1 and all other hopping amplitudes
are set to zero; in particular, t2 = t3 = 0. For the interactions,
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we take into account a local or on-site Hubbard interaction U
and we additionally consider the effect of including a sizable
nearest-neighbor interaction V1. We study the Fermi-surface
instabilities that occur in the RG flow near Van Hove fill-
ing, which for this choice of hopping amplitudes is found at
μ = 2t . Furthermore, we establish convergence of the imple-
mentation with respect to the expansion in form-factor shells
and momentum resolution.

A. Pure Hubbard model limit

To draw a connection to previous (FRG) work, we first
analyze the case of a pure Hubbard repulsion with an inter-
mediate value of U = 4t and we set all nonlocal interaction
contributions to zero; i.e., V1 = V2 = V3 = 0. We explore a
range of chemical potentials μ ∈ [1.9, 2.1] around Van Hove
filling. This case was previously studied in Ref. [35] using the
FRG patching scheme. The RG flow is initialized at the UV
scale with the temperature TUV = W as the flow parameter,
where W = 9t is the bandwidth. We then track how the indi-
vidual channels (C, D, and P) evolve as the temperature scale
is lowered. This includes the evolution of their momentum
dependence and their overall magnitude.

1. Van Hove filling μ = 2t

Right at Van Hove filling, the Fermi surface features
perfect nesting, which supports relevance of the magnetic
channel, i.e., the C channel. The maximal absolute value of
the channels C, D, and P is shown in Fig. 6. We observe a
flow to strong coupling at a finite temperature or RG scale of
T ∗ ∼ O(10−2t ), which is most pronounced in the magnetic
C channel. The momentum resolution of the C channel at
T ∗ shows that the strongest scattering vectors are located at
the Mi points of the BZ. This signals an instability towards
spin-density-wave order with wave vector Mi in agreement
with Ref. [35]. To decide which combination of the three wave
vectors Mi is realized in the ordered state, a calculation beyond
our current truncation is needed. Two candidates, a uniaxial
and a chiral spin density wave (SDW) state, were identified in
previous studies [75,97–99].

2. Below Van Hove filling μ < 2t

For a chemical potential slightly below the Van Hove
singularity, e.g., for μ = 1.96t , perfect nesting is lost. Never-
theless, fluctuations in the magnetic channel initially grow due
to approximate nesting, but they do not get singular; i.e., the
maximal value of the C channel reaches a maximum value at
an RG scale which is close to its instability scale at Van Hove
filling. Still, the RG evolution modifies the effective interac-
tion vertex as the fluctuations in the different channels intro-
duce additional momentum dependencies as compared to the
initial interaction. This leads to attractive components in the P
channel and eventually, at much lower temperatures T ∗/t ∼
10−5, it sharply diverges, signaling an instability towards
superconducting order (see Fig. 6). We also show the gap
function that we obtained from diagonalizing the pairing ver-
tex in Fig. 6 together with the Fermi line to clearly exhibit the
positions of the gap functions’ zero crossings. The gap func-
tion features 12 zero crossings along the Fermi surface and
corresponds to spin-singlet pairing in the A2 irrep (cf. Fig. 3),

FIG. 6. RG flow and singular vertex for U = 4t , V1 = 0 and
resolution Nq = 540, Ns = 4. Left: Scale dependence of the P, C, and
D channel maxima for μ = 2t (top), μ = 1.96t (middle), and μ =
2.04t (bottom). At Van Hove filling μ = 2t , the strongest divergence
occurs in the magnetic channel C. Near Van Hove filling μ = 1.96t
or μ = 2.04t , the strongest divergence occurs in the pairing channel
P. Right: Momentum dependence of the singular C channel near the
instability scale Tc (top), and momentum dependence of the pairing
gap constructed from �P [cf. Eq. (28)] (middle, bottom). The pairing
gaps can be classified via the lattice harmonics shown in Fig. 3. The
thick red lines mark the noninteracting Fermi surfaces in each case.

which can also be referred to as i-wave superconducting insta-
bility. This type of instability for the present model parameters
was previously discussed in related FRG studies [35,46].

3. Above Van Hove filling μ > 2t

A chemical potential slightly above the Van Hove singular-
ity, e.g., for μ = 2.04t , also makes the nesting of the Fermi
surface only approximate. Similarly to the case μ < 2t , this
allows a pairing instability to develop and we find that at low
temperatures, T ∗/t ∼ 10−4, the P channel sharply diverges
again. However, the symmetry of the leading pairing instabil-
ity is different for the low- and high-doping sides if V1 = 0.
For μ = 2.04t , the instability is towards superconductivity
with a spin-triplet pairing function in the B1 irrep (cf. Fig. 3),
i.e., an f -wave superconductor (see Fig. 6). The Fermi surface
consists of pockets around the K, K ′ points so that an f -wave
gap does not have any nodes on the Fermi surface. This state
was previously described in Ref. [44].

B. Inclusion of nearest-neighbor interaction

To study the effect of the nearest-neighbor interaction
on the Van Hove scenario, we investigate the parameter
range 0 � V1/t � 1.6 around Van Hove filling for
1.9 � μ/t � 2.04. For larger V1/|t | we find an instability
towards a charge-density-wave state. We show the resulting
phase diagram of ordering tendencies in Fig. 7. We find
that the SDW is unimpressed by the presence of even a
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FIG. 7. Paradigmatic phase diagram of the triangular-lattice ex-
tended Hubbard model for U = 4t near 3/4 filling exhibiting SDW
(◦), gSC (�), iSC (�), and f SC (�) phases. Parameters where no
instability occurs for T/t � 10−6 are marked as metallic (×). The
symbols for the iSC are shown in gray shading to indicate fragility
with respect to the expansion in form-factor shells Ns (cf. Sec. IV C).

sizable V1; it slightly extends in μ and its critical temperature
hardly changes. In contrast, the pairing instability is strongly
affected when V1 is included and a rich phase diagram unfolds.
Increasing V1 extends the range of chemical potentials, where
a superconducting instability is found substantially and
also provides regions in parameter space with significantly
enhanced critical temperatures.

Furthermore, a nonlocal contribution of the Coulomb in-
teraction can induce a stronger momentum dependence of
the pairing symmetry because the pair formation is pushed
to larger distances to avoid not only on-site but also nearest-
neighbor repulsion. We have previously observed this effect
in Ref. [46] and we can corroborate this finding with the
present TUFRG approach. We find that both the i- and f -wave
pairing states get destroyed by V1. Instead, for sizable values
of the nearest-neighbor interaction V1/t � 0.5, we obtain an
extended pairing region above and below Van Hove filling
which is in the two-dimensional E2 irrep. This implies that
the gap equation possesses two degenerate pairing solutions
with the same critical temperature (cf. Fig. 8).

Remarkably, these pairing solutions are dominated by the
second-nearest neighbor harmonics of the E2 irrep (cf. Fig. 3),
which—according to the number of nodes along the Fermi
line—is dubbed g-wave pairing. In comparison, pure nearest-
neighbor lattice harmonics in the E2 irrep would be classified
as d-wave pairing due to their number of nodes. In principle,
these lattice harmonics can mix because they belong to the
same irrep. The dominance of the d- or g-wave contributions
can be inferred from the number of zero crossings of the
pairing solutions, which we have extracted from the FRG
data (cf. Fig. 3). Both filling cases clearly exhibit eight nodes
along the Fermi surfaces [100]; i.e., the FRG data support the
formation of g-wave pairing above and below the Van Hove
point in the investigated range of fillings. This means that the
largest contribution comes from the second-nearest-neighbor
harmonics in agreement with the expectation that V1 pushes
the pair formation outwards.

We also explore the effect of artificially switching off the
interaction channels C and D individually to identify their
respective roles for the subsequent superconducting instabil-
ity. For purely local interactions, i.e., V1 = 0, we find that

FIG. 8. RG flow and momentum dependence of pairing solu-
tions for μ = 1.92t , U = 4.0t , and V1 = 1.2 (momentum resolution
Nq = 540, and form factor shells Ns = 4). Top: Scale dependence
of the channel maxima. In contrast to the case V1 = 0, the density
channel D initially increases the strongest and then saturates at a
comparable level as the magnetic channel C. At smaller scales the
pairing channel P develops an instability. Bottom: The gap equa-
tion has two independent solutions, which are dominated by the
second-nearest-neighbor harmonic of the E2 irrep (cf. Fig. 3). The
noninteracting Fermi surface is marked by the thick, red line. We
find similar pairing solutions for μ > 2t and sizable V1, where the
Fermi surface consists of pockets around K, K ′.

the C-channel fluctuations drive the emergence of the su-
perconductivity while the impact of the D channel is only
quantitative and can be neglected without changing the type of
superconducting instability. In contrast, for nearest-neighbor
interaction V1 = 1.2t , the observed g-wave superconductivity
requires that all interaction channels (C, D, and P) are taken
into account properly for it to emerge as the leading instability.
A similar observation was made in a recent study of uncon-
ventional superconductivity in the triangular-lattice Hubbard
model [47] employing the triply irreducible local expansion
(TRILEX) framework [101,102].

C. Convergence

To establish convergence of our numerical results, we ex-
plore their dependence on the momentum resolution Nq and
form-factor expansion Ns. Explicitly, we use Ns = 2, 3, 4,
which translates into the corresponding number of form fac-
tors in the following way (see Fig. 5):

Ns Nl Corresponding nearest-neighbor shells

2 19 Zeroth- to third-nearest neighbors
3 37 Zeroth- to fifth-nearest neighbors
4 61 Zeroth- to eighth-nearest neighbors

To address the convergence with respect to Nq, we
run the TUFRG flow and extract the critical temperature
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FIG. 9. Resolution dependence of Tc for U = 4t , V1 = 0 (top)
and U = 4t , V1 = t (bottom). Convergence of critical temperature as
a function of momentum resolution Nq and number of form-factor
shells for Ns = 4 (solid lines), Ns = 3 (dotted lines), and Ns = 2
(dashed lines).

Tc/t at fixed U,V1 and three choices of the chemical po-
tential below, at, and above Van Hove filling for Nq ∈
{180, 336, 540, 792, 1092}. We consider two cases: V1 = 0
with μ/t = 1.96, 2.0, 2.04 and V1 = t with μ/t = 1.9, 2.0, 2.1
(cf. Fig. 9). We conclude that a momentum resolution of Nq =
540 is sufficiently good and higher resolutions appear to only
quantitatively change the results for the critical temperature.

To compare the effect of including different numbers
of shells, we choose a high resolution Nq = 1092 and
vary Ns. For U/t = 4, μ/t ∈ [1.9, 2.1], and V1/t ∈ {0, 1},
the dependence of the emerging instability on (Ns, Nq) is
shown in Fig. 10. We find that the number of form-factor
shells can be important to determine the instability type
at phase boundaries and to faithfully resolve the pairing
symmetry. For example, for Nq = 1092 at μ = 2.04t in
Fig. 10, smaller Ns = 2 yields an SDW instability with
higher Tc, while a better resolution Ns = 3, 4 gives rise to a
pairing instability. In such cases the phase boundary has to
be determined with care. Regarding the pairing symmetry,
in particular, the i-wave superconducting instability requires
to take into account Ns = 4 shells. If not enough form-factor
shells are taken into account, the leading superconducting
instability is found to be in the two-dimensional E1 irrep (p
wave) for Ns = 2, or in the B2 irrep ( f wave) for Ns = 3.
For the other instabilities which we reported for the pure
Hubbard model, we found that already a lower expansion
with Ns = 2 is sufficient. For the g-wave instability that
occurs for larger values of V1, we find that qualitatively the
second-nearest-neighbor harmonics are obtained with Ns � 2.

FIG. 10. Phase diagram and convergence checks for U = 4t1 and
V1 = 0 (top) or V1 = t (bottom) with Nq = 1092. Instability types are
labeled and phase boundaries are indicated by gray shadings. Quanti-
tative convergence of the results as a function of Ns is generally very
good. Exceptions can be found in the transition regimes of different
types of instabilities, i.e., near μ/t ∼ 2.04, where for smaller Ns = 2
the SDW is the leading instability and for larger Ns we find g-wave
pairing. For V1 = 0 and μ � 1.96 we need to take Ns = 4 to resolve i-
wave pairing. For V1 = t , the type of superconducting instability does
not change for Ns � 2. We show an equivalent figure for Nq = 540
in Appendix E.

Generally, we find reasonable convergence in (Ns, Nq)
and, apart from the above-mentioned exceptions, the choice
(Ns, Nq) = (2, 540) delivers reliable results. To keep the study
as unbiased as possible, all results shown in the phase di-
agrams (Figs. 7 and 11) are calculated with Ns = 4. This
significantly increases the number of form factors which have
been used for hexagonal lattices compared to previous works.

V. MOIRÉ TMD HETEROBILAYERS

Moiré quantum materials have been established as a
solid platform to study strongly correlated systems in a

)(

FIG. 11. Moiré TMD phase diagram of the effective extended
triangular-lattice Hubbard model describing TMD heterobilayers
near 1/4 filling. The phase diagram includes valley density wave
(VDW) (◦), gSC (�), and metallic (×) phases.
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controlled and tunable way. Specifically, heterobilayers of
TMDs at small angle have been shown to realize the extended
triangular-lattice Hubbard model where the whole range of
band fillings is experimentally accessible and interactions can
be tuned within a large window. As a concrete example we
study the AA-stacked heterobilayer of WSe2/MoS2 at vanish-
ing twist angle. Here, the highest spin-polarized valence band
from WSe2 contributes an isolated flat band at the Fermi level
to the moiré band structure [11]. This isolated band can be
accurately described by a tight-binding model with up to third-
nearest-neighbor hopping, t1 ≈ −2.5 meV, t2 ≈ 0.5 meV, and
t3 ≈ 0.25 meV (cf. Sec. II). The resulting band structure fea-
tures a Van Hove singularity near −5.5 meV and the Fermi
surface at that filling is approximately nested. The interactions
can be tuned in strength and range using dielectric environ-
ments or screening layers. Explicitly, the system can be tuned
into the intermediate interaction regime, which we associate
roughly with an on-site repulsion U/t ≈ 4. To explore the
effect of tunability in the range of the interactions, we vary V1

again but additionally include the longer-ranged interactions
V2 and V3, choosing fixed ratios with V1, i.e., V2/V1 ≈ 0.357
and V3/V1 ≈ 0.260 as estimated in Ref. [33].

In Fig. 11, we present the correlated phase diagram that
contains the instabilities we predict using the TUFRG as
function of μ and V1. It is qualitatively very similar to the
paradigmatic case in Sec. IV; directly around Van Hove
filling, we obtain a SDW instability bounded by pairing in-
stabilities. However, the additional hoppings and interactions
decrease the critical temperature and even completely sup-
press some pairing instabilities at smaller V1. We now only
find pairing states which belong to the irrep E2 with the largest
contribution coming from second-nearest-neighbor harmon-
ics; i.e., we can classify them as g-wave pairing based on
their number of nodes along the Fermi surface (as in Fig. 8).
For μ > −5.5 meV, where the Fermi surface is closed around
�, this confirms the previous low-resolution FRG calculation
[46] with the exception that we do not find the i-wave pairing
instability at Vi = 0 that was already marked as fragile in
Ref. [46]. Instead, the i-wave pairing is destroyed when more
distanced hoppings t2, t3 are included. We extend the phase
diagram to μ < −5.5 meV, where the Fermi surface consists
of pockets around K, K ′. We find the same g-wave pairing
instability as for μ > −5.5 meV at larger Vi, while the f -wave
pairing for small V1 in Fig. 7 also disappears when t2 and t3 are
included.

We emphasize that the g-wave pairing is a robust result
that we obtain with both models. This stronger momentum
dependence arises due to the inclusion of a sizable nearest-
neighbor interaction V1 > 0. It is based on pairing between
second-nearest neighbors as the classification in terms of lat-
tice harmonics shows so that on-site and nearest-neighbor
repulsion can be avoided.

VI. TOPOLOGICAL SUPERCONDUCTIVITY

If a superconducting state develops out of the g-wave
pairing instability, a specific linear combination of the two
pairing solutions is formed. It was argued that a chiral linear
combination g ± ig minimizes the Landau free energy and
thus makes up the ground state [46]. Such a g ± ig state fully

gaps the Fermi surface despite the high number of nodes in the
single pairing solutions. It also breaks time-reversal symmetry
and is topologically nontrivial with a nonzero winding number
which can be defined via

N = 1

4π

∫
BZ

d2k �m ·
(

∂m
∂kx

× ∂m
∂ky

)
, (31)

with the pseudospin vector

�m = 1

E�k
(Re�k, Im�k, ξk)T . (32)

We find that in the whole parameter range, where the pair-
ing gap in the E2 irrep occurs, the second-nearest-neighbor
harmonics dominate. The implied g + ig state results in a
Chern number of |N | = 4. This is in contrast to |N | = 2 for
a d + id state, which would be a possible ground state if the
nearest-neighbor harmonics dominated. The Chern number is
directly proportional to the quantum spin and thermal Hall
conductance in such a topologically nontrivial superconduct-
ing state. Therefore, the higher-harmonic gap function can
manifest itself experimentally by enhanced quantum spin and
thermal Hall responses [46].

VII. CONCLUSION

In this work, we have taken recent developments in the
field of correlated moiré materials as motivation to revisit
the phase diagram of correlated electrons on the triangular
lattice with extended Hubbard interactions near Van Hove
filling. To that end, we implemented and carefully bench-
marked the TUFRG scheme in a numerically efficient way.
We studied two versions of the extended Hubbard model: a
minimal, paradigmatic one with only t1, U , and V1 nonzero
and a realistic one with parameters for the moiré heterobilayer
WSe2/MoS2. In both cases, we found strong evidence that in
an intermediate-interaction regime, sizable nearest-neighbor
interactions induce a chiral superconducting g + ig instability,
which is realized in higher lattice harmonics indicating pairing
between second-nearest-neighbor sites. The g + ig state cor-
responds to a fully gapped, topological superconductor and
features enhanced quantum Hall responses as compared to
the chiral d + id superconducting state made of the nearest-
neighbor harmonics.

To obtain our results, we capitalized on the advantages
provided by the TUFRG framework, i.e., inclusion of all types
of correlations on equal footing within a (realistic) micro-
scopic lattice model and high momentum resolution of the BZ
allowing for a detailed analysis of the emergent instabilities.
Both are crucial in the present context. We need the unbiased
approach that includes all correlations to analyze the interplay
between competing orders around Van Hove filling and, in
particular, to describe electronic pairing from repulsive bare
interactions. A high momentum resolution is necessary to
correctly resolve the pairing symmetries and their leading
contributions from different lattice harmonics. We hope to
inspire further studies to challenge our results with other quan-
tum many-body methods, possibly facilitated by our analysis
of the paradigmatic version of the model.

In the future, it will be interesting to extend our present
TUFRG implementation to systems without an SU(2) in-
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variance in the (pseudo)spin or valley degrees of freedom.
Applications of this extension include moiré TMD homo-
bilayers, or unconventional superconductors with spin-orbit
couplings. Similar efforts are currently undertaken by other
groups [103].
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APPENDIX A: REGULATOR

Generally, in the FRG approach the regularization can be
implemented in various ways, e.g., by employing a momen-
tum cutoff, a frequency cutoff, or a temperature cutoff scheme,
and the concrete choice should be guided by the problem at
hand [56]. In the present work, we choose the temperature
cutoff scheme [104]. To that end, the fermionic fields are
redefined such that only the quadratic part of the action is
temperature dependent. This leads to a temperature-scaled
free propagator and the scale derivative is turned into a tem-
perature derivative, i.e.,

G0(iω, k) → GT
0 (iω, k) = T 1/2

iω − ξ (k)
, (A1)

d

d�
→ d

dT
. (A2)

Inserting these expressions into the form-factor-dependent
bubbles in Eq. (24) and carrying out the Matsubara summation
yields the bubble integrals

Ḃ(q)(+)
l,l ′ = +

∫
p

n′
F (ξ (q + p)) − n′

F (ξ (p))

ξ (q + p) − ξ (p)
fl (p) f ∗

l ′ (p), (A3)

Ḃ(q)(−)
l,l ′ = −

∫
p

n′
F (ξ (q + p)) + n′

F (ξ (−p))

ξ (q + p) + ξ (−p)
fl (p) f ∗

l ′ (p),

(A4)

where n′
F (x) denotes the temperature derivative of the Fermi

function, i.e., n′
F (x) = d

dT nF (x).

APPENDIX B: FORM FACTORS

To solve the RG flow in Eqs. (21)–(23) numerically, we
need to make a specific choice for the form factors [cf.
Eq. (18)]. In this work, we employ an expansion in terms
of plane waves, i.e., fl (k) = exp(ikRl ), where Rl is a Bravais
lattice vector of the triangular lattice and this choice naturally
fulfills the conditions in Eqs. (19) and (20). The plane-wave
expansion has three advantages, which we will explain in the
following: (1) it is possible to apply a physical interpretation
of the included form factors, (2) it becomes apparent which
truncation of form factors is reasonable, and (3) it simplifies
the cross-channel projections [cf. Eqs. (25)–(27)].

To expose the physical interpretation of this choice of form
factors, we consider the interaction vertex [cf. Eq. (9)] and
insert the channel decomposition, Eq. (14). Four terms emerge
and we focus the discussion on the P channel. Relabeling
the wave vectors with the strong momentum q and the weak
momenta k, k′ and exploiting momentum conservation, the
superconducting interaction reads

�P = 1

2

∫
q,k,k′

�P(q, k, k′)
∑
σ,σ ′

ψ̄σ (q + k)

× ψ̄σ ′ (k)ψσ ′ (−k′)ψσ (q + k′). (B1)

This structure can be identified on the left-hand side of Fig. 4.
Expanding �P(q, k, k′) as in Eq. (18) yields

�P = 1

2

∫
q

∑
l,lσ,σ ′

Pl,l ′ (q)

(∫
k
ψ̄σ (q + k)ψ̄σ ′ (−k) f ∗

l (k)

)
︸ ︷︷ ︸

F̄ (q)σ,σ ′
l

×
(∫

k′
ψσ ′ (−k′)ψσ (q + k′) fl ′ (k

′)
)

︸ ︷︷ ︸
F (q)σ,σ ′

l′

. (B2)

The fermion bilinears F (q)σ,σ ′
l decouple from each other. To

expose the effect of the form factors fl (k) on these bilinears
we transform the fields into real space:

F σ,σ ′
l (q) =

∫
k′

ψσ ′ (−k′)ψσ (q + k′) fl ′ (k
′)

=
∑

R

ψσ ′ (R + Rl )ψσ (R)eiqR. (B3)

This shows that F σ,σ ′
l (q) includes all two-fermion combina-

tions, which can be connected by the lattice vector Rl and
therefore the inclusion of form factor fl (k) can be interpreted
as including all fermionic bilinears with distance Rl in the
interaction Eq. (B2).

Most common Fermi-surface instabilities are caused by
long-range fluctuations that are resolved via the transfer
momentum q of the different channels. Fluctuations in the
additional k, k′ dependence typically correspond to a short
spatial range; i.e., they occur within a radius of a couple of unit
lattice vectors. Therefore, we truncate the form factors with
respect to the distance occurring in the bilinears [cf. Eq. (B3)].
To that end, we introduce the notion of form-factor shells
Ns. The sth form-factor shell will then include all real-space
vectors which point to a lattice point lying on the s th hexagon
as indicated in Fig. 5. We note that there is also a zeroth form-
factor shell including only the on-site contribution Rl = 0.

This truncation involving the form-factor shells leads to a
numerical advantage of the TUFRG scheme. While the unity
in Eq. (20) is only exact if all lattice vectors Rl are included,
we expect the form factors belonging to high-form-factor
shells to have little actual impact. Therefore, we choose to
include only a few short-range form factors in the vertices,
Eqs. (22) and (23), for the actual calculations. The size of the
vertices scales with Nq × N2

l . For high momentum resolution
Nq, this scaling becomes superior to the N3

q scaling in patch-
RG schemes.
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Moreover, the plane waves simplify the cross projections in
Eqs. (25)–(27). Employing the decomposition from Eq. (14)
and explicitly using the plane waves, the projections simplify
from a double integration over the BZ to a simple sum of the
included form factors, i.e.,

V P
l,l ′ (q) = V P,0

l,l ′ (q) + V P�C
l,l ′ (q) + V P�D

l,l ′ (q) + Pl,l ′ (q), (B4)

where

V P�C
l,l ′ (q) = ∑

L C̃RL,−RL+Rl +Rl′ (−RL + Rl ′ )e−i(RL−Rl′ )q,

V P�D
l,l ′ (q) = ∑

L D̃RL,−RL+Rl −Rl′ (−RL − Rl ′ )e−iRLq.

Accordingly, we find

V C
l,l ′ (q) = V C,0

l,l ′ (q) + V C�P
l,l ′ (q) + V C�D

l,l ′ (q) + Cl,l ′ (q), (B5)

with

V C�P
l,l ′ (q) =

∑
L

P̃RL,−RL+Rl +Rl′ (−RL + Rl ′ )e
−i(RL−Rl′ )q,

V C�D
l,l ′ (q) =

∑
L

D̃RL,RL−Rl +Rl′ (−Rl )e
−iRLq,

and finally

V D
l,l ′ (q) = V D,0

l,l ′ (q) + V D�P
l,l ′ (q) + V D�C

l,l ′ (q) + Dl,l ′ (q),

(B6)

with

V D�P
l,l ′ (q) =

∑
L

P̃RL,RL−Rl −Rl′ (−Rl )e
−i(RL−Rl′ )q,

V D�C
l,l ′ (q) =

∑
L

C̃RL,RL−Rl +Rl′ (−Rl )e
−iRLq.

The V X,0
l,l ′ (q) are determined by the projection of the initial

interaction into the channels (cf. Appendix C). The X̃l,l ′ are
the Fourier-transformed channels; e.g., for P,

P̃l,l ′ (Ri ) = A−1
BZ

∫
d p Pl,l ′ (p)e−ipRi . (B7)

The sum
∑

L runs over all included form factors; i.e., for our
application this will include R1 to R61 (see Fig. 5).

APPENDIX C: INITIAL CONDITIONS

The initial conditions for the RG flow of V � are deter-
mined by the Fourier-space interactions corresponding to the
Hamiltonian parameters U , V1, V2, and V3. We rewrite the
interactions accordingly and use Eq. (9) to extract the ex-
pression for V �,0(k1, k2, k3, k4), which is then plugged into
Eqs. (25)–(27) to derive explicit expressions for the V X,0

l,l ′ (q).
We find

V P,0
R1,R1

(q) = V C,0
R1,R1

(q) = U, (C1)

V P,0
Rl ,Rl

(q) = V C,0
Rl ,Rl

(q) = V1, (C2)

for l ∈ {2, 3, 4, 5, 6, 7}. The expressions for the more remote
interaction terms V2 and V3 read

V P,0
Rl′ ,Rl′

(q) = V C,0
Rl′ ,Rl′

(q) = V2, (C3)

for l ′ ∈ {10, 11, 14, 15, 18, 19}, and

V P,0
Rl′′ ,Rl′′

(q) = V C,0
Rl′′ ,Rl′′

(q) = V3, (C4)

for l ′′ ∈ {8, 9, 12, 13, 16, 17}. Finally, we obtain

V D,0
R1,R1

(q) = U + V1

∑
l

eiRl q

+ V2

∑
l ′

eiRl′ q + V3

∑
l ′′

eiRl′′ q. (C5)

This completes our TUFRG scheme. For more details on the
numerical implementation see Appendix D.

APPENDIX D: TECHNICAL DETAILS

In the numerical evaluation of the TUFRG flow equations,
the bubble integrations in Eqs. (A3) and (A4) are the bottle-
neck. This is because of two reasons:

(1) The integration kernel of the bubbles will form sharp
features in vicinity of the Fermi surface when the flow param-
eter reaches small values such that it becomes gradually more
difficult to integrate the function for lower scales.

(2) The bubbles have to be evaluated for Nq × N2
l different

combinations for momenta q and form factors Rl .
Both aspects combined lead to a challenge in both quantity

and quality as one has to define an integration scheme which
resolves the emerging peaks correctly along the flow while
staying computationally performant such that the Nq × N2

l
different integrals per RG step do not extend the execution
time to an unreasonable amount.

1. Adaptive integration routine

To tackle problem 1, we first discuss the case of closed
Fermi lines around the � point and then extend the routine to
the case of Fermi pockets around K, K ′. We introduce polar
coordinates with the addition that the radius for each angle
varies to correctly cover the hexagonal form of the Brillouin
zone. For a general function f (k) this translates to

∫
dk f (k) =

∫ 2π

0
dφ

∫ ρmax(φ)

0
f (k(ρ, φ)) · ρ. (D1)

We then choose angular resolution NA and radial resolution
NR, such that NA straight lines are placed into the BZ from
the origin [see Fig. 12(a)]. The emerging slices have the same
angular distance �φ to each other. For each of these slices, we
perform two one-dimensional adaptive trapezoidal-rule inte-
grations over the radial direction ρ: one in the range [0, ρF ]
and a second one in the range [ρF , ρmax(φ)], where ρF is
the radius lying directly on the Fermi surface. This choice
was made such that ρF is always a discretization point and
therefore emerging sharp peaks at lower scales are always
evaluated in the numerical integration. Since the integration of
the triangular-shaped area is approximated by a circular arc,
we get a systematic error which becomes small for large NA.
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(a)

(b)

FIG. 12. Schematics of the bubble integration routine. (a) Example with NR = 5 and NA = 6 for a single closed Fermi surface around the
� point. The function is integrated along the six solid lines and the angular width for all lines is equal. Dashed lines mark the boundaries
of the patches. The two integrations with NR = 5 discretization points are evaluated on the colored dots. (b) Modified integration scheme for
Fermi surface pockets around the K, K ′ points. Example with NR = 3 of a single one-dimensional (1D) integration. The general strategy for
the integration is as described before, but now the 1D integration lines feature a kink on the nesting line (dashed hexagon). The first integral
ranges from the origin to the nesting line. The other two integral intervals are integrated also in polar coordinates, but starting from the K
points. Again, the position of the Fermi surface is always chosen as a discretization point, leading to two integrals for this contribution: the
first one from the K point to the Fermi line, and the second one from the Fermi line to the nesting line.

Then, Eq. (D1) translates into∫
dk f (k) ≈

NA−1∑
i=0

�φ

[∫ ρmax(φi )

0
f (k(ρ, φi )) · ρ dρ

]

=
NA−1∑
i=0

�φ

[(∫ ρF (φi )

0
f (k(ρ, φi )) · ρ dρ

)

+
(∫ ρmax(φi )

ρF (φi )
f (k(ρ, φi )) · ρ dρ

)]
, (D2)

with φi = 2π i/NA and �φ = 2π/NA.
The two integrals over ρ are then integrated adaptively

as follows: Both integrals are equipped with NR discretiza-
tion points leading to NR − 1 subintervals for both intervals.
Therefore, the total amount of discretization points is always
2NR (double counting the point on the Fermi surface). The
spacing of the points for the two integration regions does not

have to be equal, since the point of the Fermi surface ρF does
not necessarily divide the complete interval [0, ρmax] in two
equal intervals. The NR − 1 subintervals of the two intervals
are the actual object where the adaptive routine is applied to.
For the error we choose a relative tolerance of 10−3 and an
absolute tolerance of 10−10. Each of these subintervals is then
integrated adaptively until this precision is met.

Since the adaptive routine of one subinterval becomes
unnecessarily expensive if only a fractional area of this subin-
terval consists of sharp features, it is reasonable to also adjust
the radial resolution for lower temperature scales. Starting
with NR = 3, the amount of discretization points will double
after a lower order of magnitude is reached, i.e.,

NR = 3 × 2�log10(|t |/T )�. (D3)

The angular discretization NA is fixed through the flow since
the sharp features should mainly develop along the ρ axis
which is therefore treated with more care. For the angular
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resolution we choose NA = 96 as long as the Fermi surface
features no pockets. It is advantageous to select a number
which is a multiple of 12 for NA, such that the angular dissec-
tion of the hexagon is concurring with the rotation and mirror
symmetries of the hexagon. For Fermi lines with pockets
around the K, K ′ points, we slightly modify this integration
routine as described in Fig. 12(b). In this situation we choose
a higher resolution NA = 360.

2. Symmetry considerations

To take care of the second point, which makes the nu-
merical evaluation costly, we can exploit the spatial form
of the form factors and their translational invariance. Since
the bubbles in Eqs. (A3) and (A4) only depend on two
complex-valued plane waves, i.e., fl (q) and f ′∗

l (q), and one
real function composed of n′

f and ξ (k), we find

Ḃ(q)(±)
l,l ′ = [Ḃ(q)(±)

l ′,l ]∗. (D4)

Using this, we can reduce the numerical effort for a chosen q
by roughly a factor of 1/2 [not exactly as Eq. (D4) does not
provide an advantage for cases where l = l ′].

To take advantage of translational invariance we now
examine the product of form factors in more detail. The in-
tegration kernel of the bubbles, Eqs. (A3) and (A4), depends
on the product of form factors, i.e.,

fl (p) × f ∗
l ′ (p) = ei(Rl −Rl′ )p = eiRl−l′ p. (D5)

Therefore, the bubbles depend on the real-space vector
Rl−l ′ = Rl − Rl ′ . We exploit this by identifying the com-
binations (l, l ′) which result in the same vector to avoid
recalculating integral combinations (l, l ′) with the same value.
Consider, for example, Fig. 5, where one can verify that

(R2 − R5) = (R7 − R13) = (R8 − R7) = R10, (D6)

such that the bubbles Ḃ(q)(±)
l,l ′ result in the same value for all

of these (l, l ′) pairings. We can therefore also relabel the bub-
ble as Ḃ(q)(±)

l,l ′ = Ḃ(q)(±)
l−l ′ , depending on only one plane-wave

form factor with real-space vector Rl−l ′ [see Eq. (D5)]. To
use these relations systematically, we distinguish two different
form-factor shells: (1) shells that are defined by including
all form factors of the same spatial distance from the origin,
i.e., the neighbor shells, and (2) shells with equal hexagonal
distance, i.e., shells which include all form factors which are
placed on the Nsth hexagon of the triangular lattice (cf. Fig. 5).
For this discussion, we call the ith-neighbor shell Sn(i) and the
ith hexagonal-distance shell SHD(i).

Considering the geometry we see that, taking the Mth
neighbor shell into account, all combinations of (Rl − Rl ′ ) lie
in a hexagonal-distance shell between SHD(0) and SHD(2M ).
To obtain a numerical advantage for calculating all entries of
Ḃ(q)(±)

l,l ′ for a chosen q we then apply the following procedure:
(i) Choose the amount of included form factors such that

the largest reached hexagon is completely filled. The highest
filled hexagonal-distance shell is called M: SHD(M ), e.g., up
to the third-neighbor shell which corresponds the form factors
up to the second hexagonal-distance shell, M = 2.

(ii) Calculate Ḃ(q)(±)
l−l ′ for all (Rl − Rl ′ ) included in

SHD(2M ). Using Eq. (D4) we perform half of these calcula-

tions and obtain the other half by complex conjugation. The
number of calculations is then

No. calculations =
2M∑
i=0

SHD(i) = 1 + 1

2

2M∑
i=1

SHD(i)

= 1 +3M + 6M2.

(iii) Finally the results of Ḃ(q)(±)
l−l ′ can easily be related to

the corresponding entries Ḃ(q)(±)
l,l ′ .

In the example M = 2 one gets 19 form factors (cf. Fig. 5),
resulting in 19 × 19 = 361 entries for Ḃ(q)(±)

l,l ′ for a chosen
q. Combining the symmetry in Eq. (D4) with the approach
described above, this reduces the number of integration to
1 + 3 × (2) + 6 × (2)2 = 31, providing an overall numerical
speedup of factor of ∼10.

3. Differential equation solver

The flow equations (21)–(23) are solved numerically by
using an adaptive forward Euler method. For example, the P
channel is evolved as

Pl,l ′
i+1(q) = Pl,l ′

i (q) + d

d�
Pl,l ′ (q) · d�i, (D7)

where for d
d�

Pl,l ′ (q) the right-hand side of Eq. (21) is used.
The step size d�i is adapted if the RG scale drops below
a threshold or if the increment d

d�
Pl,l ′ (q) increases beyond

a threshold. The latter criterion may indicate the onset of
a divergence where the differential equation behaves stiffly.
Explicitly, our combined criteria are

d�i+1 = min

(
1

20
�i,

1

20
max

∣∣∣∣ d

d�
Pl,l ′ (q)

∣∣∣∣,
1

20
max

∣∣∣∣ d

d�
Cl,l ′ (q)

∣∣∣∣, 1

20
max

∣∣∣∣ d

d�
Dl,l ′ (q)

∣∣∣∣
)

,

�i+1 = �i − d�i+1.

The initial scale �0 is chosen to be equal to the bandwidth W
of the model. The solver stops the flow either when the abso-
lute value of one entry of the P, C, or D channel has surpassed
the triple value of the bandwidth or when �i becomes smaller
than �stop/t = 10−6.

4. Vertex symmetries

As previously discussed in Ref. [105], the symmetries of
the lattice can be exploited to reduce the numerical effort for
calculating the flow equations by a factor of 12. The general
symmetry relation for X ∈ {P,C, D} is

X l,l ′ (q) = X QRl ,QRl′ (Qq), (D8)

where Q is a symmetry operation allowed by the lattice. Note
that the symmetry relations derived in Ref. [105] also include
orbital degrees of freedom which are not present in our appli-
cation. We choose two symmetry relations: (1) Q = Mx, i.e.,
the mirror plane along the x axis through the � point, and
(2) Q = R2π/6, i.e., a rotation by angle 2π/6. Using these two
operations it is sufficient to carry out the calculations for only
1/12 of the momenta q in the flow equations. We have also
indicated this in the top panel of Fig. 9. Exploiting the mirror
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FIG. 13. Convergence checks for U = 4t1 and V1 = 0 (top) or
V1 = t (bottom) with Nq = 540. Instability types are labeled and
phase boundaries are indicated by gray shadings.

and rotational symmetries, we eventually obtain all values for
Pl,l ′ (q), Cl,l ′ (q), and Dl,l ′ (q). In most of our calculations we
use Nq = 540 and consequently we only evaluate 540/12 =
45 entries while the rest is obtained by symmetry.

APPENDIX E: CONVERGENCE CHECKS FOR NQ = 540

We perform the equivalent convergence check for Nq =
540 with respect to the number of form-factor shells that is
shown in the main text for Nq = 1092. We find the same
conclusions; i.e., the number of shells can be important at
phase boundaries and for the extraction of pairing symmetries
(see Fig. 13). However, for most parameter choices the results
converge both qualitatively and quantitatively.

APPENDIX F: CONSTRUCTION OF LATTICE
HARMONICS

In this Appendix we briefly display the prescription which
is needed to derive the lattice harmonics in Fig. 3. We will per-
form these steps as suggested in standard literature [96,106].
The form of the gap functions �(k) is dictated by the un-
derlying symmetry group of the Hamiltonian. In the case of
this work, this is the point group C6v , which includes all
the symmetry operations which leave the triangular lattice
on which the Hamiltonian is defined on invariant. The point
group includes 12 elements:

(a) The unity operation is E .
(b) The rotations of angle θ = 2π/n with n = 2, 3, 6 in

both directions clockwise and counterclockwise are C2, C3,
C−1

3 , C6, and C−1
6 .

(c) The reflections across lines going through the lattice
sites of the first shell are σ 1

v , σ 2
v , and σ 3

v .
(d) The reflections across lines going through the bonds of

the first shell are σ 1
d , σ 2

d , and σ 3
d .

In total this point group will inhabit six conjugacy classes:
the unity by itself (E), three classes for rotations (2C6, 2C3,
and C2) of a specific angle and two classes for both varia-

TABLE I. Character table of point group C6v .

C6v E 2C6 2C3 C2 3σd 3σv

A1 +1 +1 +1 +1 +1 +1
A2 +1 +1 +1 +1 −1 −1
B1 +1 −1 +1 −1 +1 −1
B2 +1 −1 +1 −1 −1 +1
E1 +2 +1 −1 −2 0 0
E2 +2 −1 −1 +2 0 0

tions of reflections (3σv and 3σd ). The connection between
the six irreps of C6v and the conjugacy classes is given by
the character table (see Table I), where for all irreps �μ ∈
{A1, A2, B1, B2, E1, E2} the value of the character of a con-
jugacy class χμ(g) is displayed, where g is an element of
the respective conjugacy class. To derive now the possible
lattice harmonics for the point group C6v , we have to apply
the projection operator:

Pμ =
NG∑
j=1

dμ

NG
χμ(g j )�

μ(g j ), (F1)

where NG is the amount of group elements, i.e., in our case
NG = 12, and dμ is the dimension of irrep �μ. For the appli-
cation to momentum space we need to select a suitable basis
function, which is done by choosing the plane-wave functions:

bi(k) = eiRik, (F2)
where we also chose the dependency on Ri which are again
real-space vectors of our lattice as depicted in Fig. 5. The
application of the projection operator on this function is given
by

Pμbi(k) =
NG∑
j=1

dμ

Ng
χμ(g j )e

i·(�μ(g j )Ri )k, (F3)

where (�μ(gi )Ri ) indicates the application of the symmetry
operation gi on the lattice site Ri which results in another
lattice site R with the same distance. For the concrete deriva-
tion of the lattice harmonics one proceeds as follows: For
a one-dimensional irrep (i.e., A1, A2, B1, B2) one chooses a
lattice vector Ri of desired order. The order corresponds to
the distance of the vector to the origin; therefore, a lattice
harmonic of first order is derived by using a nearest-neighbor
vector, e.g., Ri = R2. For higher orders one chooses a lattice
site with larger distance. Two suitable choices of these vectors
from first to eighth order are given in the following table:

Order Set 1 Set 2

First R2 R4

Secnd R10 R14

Third R8 R12

Fourth R22 R28

Fifth R20 R26

Sixth R42 R50

Seventh R40 R48

Eighth R38 R46

We will perform one example calculation for first order for
the irrep A1. We will choose Ri = R2 and use the projection
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rule in Eq. (F3). Since A1 is the trivial irrep where all char-
acters equal +1, the expanded form of the projection after
application of the group elements on R2 is given by

P1b2(k) = 1
12 ((+1) · eiR2k + (+1) · eiR7k + (+1) · eiR4k

+ (+1) · eiR3k + (+1) · eiR5k + (+1) · eiR6k

+ (+1) · eiR2k + (+1) · eiR6k + (+1) · eiR5k

+ (+1) · eiR4k + (+1) · eiR7k + (+1) · eiR3k)

= 1
3 (cos (k · R2) + cos (k · R4) + cos (k · R6))

=2 cos
(
kx

√
3/2

)
cos (ky/2) cos (ky). (F4)

This procedure can be repeated for other orders and other
irreps. If one desires to calculate the lattice harmonics of a
two-dimensional irrep, i.e., E1 or E2, respectively, one has to
calculate two lattice harmonics of nonparallel vectors. The
proper lattice harmonics of these irreps are then two su-
perpositions constructed from the calculated harmonics for
two vectors. For this particular reason we gave two different
sets in the table above, since by these given vectors the two

superpositions are just an addition or subtraction of a lattice
harmonic derived from a vector from set 1 and set 2. For
example, for the E6 (μ = 6) irrep at first order, one would
construct two superpositions after repeating the projection
procedure described above as

P6b2(k) + P6b4(k) = 2

3
cos

(
3kx

2

)
cos

(√
3ky

2

)

−2

3
cos

(√
3ky

)
, (F5)

P6b2(k) − P6b4(k) = − sin

(
3kx

2

)
sin

(√
3ky

2

)
. (F6)

As an interesting remark it should be mentioned that the
detected i-wave superconductivity can be constructed by
choosing the A2 irrep and derive the lattice harmonic for the
seventh order. One example lattice vector which can be used
is R40, which highlights why this specific kind of supercon-
ductivity needs at least four hexagonal shells of form factors
to be properly resolved in the TUFRG.
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