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Engineering chiral topological superconductivity in twisted Ising superconductors
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van der Waals materials such as NbSe2 or TaS2 have demonstrated Ising superconductivity down to atomically
thin layers. Due to the spin-orbit coupling, these superconductors have an in-plane upper critical magnetic field
far beyond the Pauli limit. We theoretically demonstrate that twisted bilayer Ising superconductors separated by
a ferromagnetic buffer layer can naturally host chiral topological superconductivity with Chern numbers, which
can be realized in heterostructures such as NbSe2/CrCl3/NbSe2. Under appropriate experimental conditions the
topological superconducting gap can reach >0.1 meV, leading to readily observable signatures such as quantized
thermal Hall transport at low temperatures.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are van der
Waals (vdW) materials and can be prepared as two-
dimensional (2D) atomic crystals. They have attracted
considerable interest and have demonstrated rich electronic
phenomena ranging from charge-density-wave order, super-
conductivity, and exciton formation to the optical control
of the valley degrees of freedom [1–5]. Strikingly, when
prepared in few-layer forms, the so-called Ising supercon-
ductors gated 2H -MoS2, 2H -NbSe2, 2H -TaS2, 2H -NbS2, and
2H -TaSe2 have an anomalously large in-plane upper criti-
cal field, several times beyond the Pauli limit [6–11]. The
physical reason for this behavior can be attributed to strong
Ising spin-orbit coupling (SOC) in these materials, which pins
the electrons’ spin along the z direction and is much less
susceptible to an in-plane magnetic field.

Due to their 2D nature, TMDs allow the fabrication of
various vdW heterostructures with flexible tunability and
interplay between electronic structures, superconductivity,
and magnetism. For instance, the ferromagnetic proxim-
ity effect in monolayer TMDs has been well characterized
in heterostructures such as WSe2/CrI3 [12–14] via opti-
cal probes. More recently, ferromagnetic Josephson junction
NbSe2/Cr2Ge2Te6/NbSe2 heterostructures have been fab-
ricated and investigated, and an unconventional Josephson
phase is reported [15,16].

On the other hand, a new paradigm in the engineering of
quantum phases of matter has been recently developed based
on moiré patterns [17–19] introduced by stacking 2D crystals
with twisting angles. Motivated by the discovery of correlated
insulators and superconductivity in twisted bilayer graphene,
the idea of moiré engineering has been extended to other
materials including TMDs [20–23].

Interestingly, recent theories pointed out that twisted
bilayer cuprate (Bi2212) may realize chiral topological super-
conductivity with nonzero Chern numbers [24–26]—a novel
state of matter that has yet to be experimentally confirmed,

which has triggered further experimental and theoretical in-
vestigations [27,28]. The crucial mechanism of realizing
nontrivial topology here is based on the nodal superconduc-
tivity, due to sign changes of the pairing order parameter
around the Fermi surface. Intuitively, nodal superconductors
are naturally located on the boundary between trivial and
nontrivial band topology, and engineering topological phases
via perturbations becomes possible.

In order to fabricate moiré structures, vdW 2D crystals
are highly desirable. Practically, however, Bi2212 may be the
only known nodal superconductor among vdW 2D crystals.
This puts forward a serious constraint on the moiré engi-
neering of topological superconductivity. For example, the
TMD superconductors are known to be nodeless and s − wave
superconductors, despite theoretical discussions of the role
played by magnetic fluctuations in the pairing mechanism
[29]. It would be unfortunate if they cannot be included in
the moiré engineering of topological superconductivity, espe-
cially considering their fabricational flexibility and tunability.

Motivated by these experimental and theoretical efforts, we
ask the following question: Is it possible to moiré-engineer
topological superconductivity in TMD superconductors? The
answer is in the affirmative. We find that twisted Ising super-
conductors such as 2H -NbSe2 and 2H -TaS2 in the presence
of a proximity-induced in-plane Zeeman field (beyond the
Pauli limit) and out-of-plane supercurrent can host chiral
topological superconductivity with Chern number 12 or 6.
The topological phases are found to be robust and occupy
physically realizable parameter regimes. Under proper exper-
imental conditions the topological pairing gap is >0.1 meV.

Not surprisingly, the mechanism underlying our proposal
still involves pairing-gap-closing nodes, required by a trivial-
to-topological phase transition. Here, the pairing nodes are
induced by the in-plane Zeeman field (beyond the Pauli limit)
for Ising superconductors with Fermi pockets around the �

point in the momentum space.
In our proposed heterostructures this in-plane Zeeman field

is achieved via the magnetic proximity effect by introducing a
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FIG. 1. Setups: proposals of twisted β-bilayer TMD heterostructures with an insulating middle buffer layer. (a) and (b1) Trilayer proposal
with a ferromagnetic buffer: (a) shows the proposal in (b1) from a different view. The vertical pink arrow represents the supercurrent JS tuning
the Josephson phase between top and bottom layers of the TMD, and θ is a small twisting angle. The middle buffer layer with an in-plane
ferromagnetic moment (red arrows) introduces an exchange Zeeman field Hexch for TMD layers through the magnetic proximity effect, realizing
the chiral topological superconducting phase. Outside the trilayer overlapping region, trivial superconductivity is realized. The gapless chiral
edge modes are localized (yellow curves and arrows) at the boundary of the overlapping region. (b2) and (b3) Two additional proposals in
the same spirit allowing more tunabilities for the parameters t⊥, ts,⊥ and Hexch. FM (NM), ferromagnetic (nonmagnetic) buffer layer; TSC,
topological superconductivity.

ferromagnetic buffer layer, as shown in Fig. 1. These Zeeman-
field-induced nodes were first pointed out theoretically by He
et al. [30], and experimental evidence for such nodal states in
the presence of an external magnetic field has been reported
[9,31–33].

Unlike the proposal based on cuprates [24,25], here the
topological superconductivity in TMD twisted bilayers is lim-
ited to low temperatures � 1 K. Nevertheless, it is worth
mentioning a few advantages of the present proposal. First,
different from strongly correlated cuprates, the TMD Ising
superconductivity has been fairly well understood as conven-
tional s − wave pairing without strong correlations. Namely,
the low-energy physics of TMDs are well under control in
terms of theoretical modeling. Second, detecting the chi-
ral Majorana edge modes is the smoking-gun experiment to
identify chiral topological superconductivity. In the present
proposal, these edge modes are sharply located at the edge
of the ferromagnetic buffer layer and can be detected using
either thermal transport or scanning tunneling microscopy
(STM) (see Fig. 1 for an illustration). In the proposal based
on cuprates, these edge modes will hybridize with the nodal
superconductivity due to the irregular shape of the atomically
thin flakes and could be challenging to locate in real space.

II. MAIN RESULTS

Unlike twisted bilayer graphene, twisted heterostructures
of TMDs have two distinct configurations that differ by a 180◦
relative rotation, which are referred to as α and β [34]. The
α bilayer can be viewed as the building block for the bulk
2H-TMD structure, which restores the inversion symmetry. In
this paper we instead focus on the β-bilayer structure of Ising
superconductors with Fermi pockets around the � point (e.g.,
2H -NbSe2 and 2H -TaS2 but not gated 2H -MoS2). In addition,
a ferromagnetic insulating buffer layer with an in-plane mag-

netic moment is placed in the middle of the β bilayer. At small
twisting angles between the top and bottom TMD monolayers,
we show that the system hosts chiral topological superconduc-
tivity when an out-of-plane supercurrent is present (see Fig. 1
for an illustration).

Experimentally, most ferromagnetic vdW materials have
an out-of-plane magnetic anisotropy. Only recently has mono-
layer CrCl3 been successfully isolated and confirmed to have
an in-plane ferromagnetic order [12,35]. On the other hand,
theoretical first-principles calculations predicted that mono-
layer Cr2I3Cl3 [36], 2H -VS2 [37], and 2H -VSe2 [38,39]
should be insulators with in-plane ferromagnetic order. In
addition, because of a weak magnetic anisotropy, the ferro-
magnetic moment in CrBr3 can be reoriented to an in-plane
direction by a fairly small external magnetic field (∼0.5 T)
[40]. These vdW materials may serve as the ferromagnetic
buffer layer in the present proposal.

Apart from the intrinsic electronic structures of the
monolayer TMD, the proposed heterostructures are
characterized by three parameters: the Zeeman exchange
field Hexch induced by the magnetic proximity effect,
the spin-independent interlayer hopping t⊥, and the
spin-dependent interlayer hopping ts,⊥ (see below). These
parameters depend on the choice of the buffer layer in the
setup proposed in Figs. 1(a) and 1(b1). Moreover, one may
consider more sophisticated multilayer setups as shown
in Figs. 1(b2) and 1(b3). By choosing different setups, in
principle all of the three parameters can be tuned individually.

In the simplest setup in Figs. 1(a) and 1(b1), Hexch and
ts,⊥ both are originated from the ferromagnetic buffer layer. In
general there is no direct relation between them. However, in
a mean-field treatment, the second-order perturbation theory
gives ts,⊥ = μBHexch (see Appendix B). Although there are no
available experimental data to quantify Hexch for the proposed
heterostructures, similar heterostructures such as WSe2/CrI3
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FIG. 2. t⊥-(H/Hp) phase diagram. The superconducting gap (gap minimum in the momentum space) and Chern numbers for proposed
heterostructures involving TaS2 (a) and NbSe2 (b) based on numerical calculations. Here, the Josephson phase is fixed to be ϕ = π/2, and the
parameter ξ [see Eq. (1) for its definition] is fixed to be ξTaS2 = 0.9 and ξNbSe2 = 1.1. Hp in the vertical axis is the Pauli limit field strength. t⊥
and the corresponding twisting angle are displayed on the horizontal axis. For both materials the phase diagrams corresponding to case (i) and
case (ii) in Eq. (2) are calculated. The black dashed lines exhibit the predicted topological-trivial phase boundary from analytical perturbative
calculations [see Eq. (12)].

and MoSe2/CrBr3 with an out-of-plane ferromagnetic layer
have been well characterized experimentally and theoretically
[40–45], where a proximity-induced Zeeman splitting at ∼1–
2 meV is reported for electronic bands near the K point. A
similar value of splitting in the proposed heterostructures cor-
responds to Hexch ≈ (3–6)Hp, with Hp being the Pauli limit.
Notice that monolayer NbSe2 has been reported to sustain
an in-plane upper critical field of ∼(6–8)Hp [9,31,32] (and
∼(9–10)Hp for TaS2 [33,46]).

By means of analytic estimation of the size of topological
gaps with the presence of supercurrents [see Eq. (11)], we find
that the topological phase is robust at least when a small twist-
ing angle θ is comparable to the fraction t⊥/(h̄vIsingkF ), where
kF is the Fermi wave vector and the velocity vIsing is charac-
terizing the Ising SOC near the �-M direction [see Eq. (4)].
It turns out to be convenient to introduce a dimensionless
parameter to capture the ratio of the two quantities:

ξ ≡ arctan
2t⊥

h̄vIsingkF θ
. (1)

The proposed setup in Figs. 1(a) and 1(b1) is applied to
the heterostructures involving either TaS2 or NbSe2. Their
monolayer electronic structures are obtained using a relaxed
crystal structure based on first-principles calculations (see
Appendix C for details). For each TMD material, two cases for
the spin-dependent hopping ts,⊥ are investigated, correspond-
ing to

Case (i): ts,⊥ = μBHexch, Case (ii): ts,⊥ = 0. (2)

We show the global phase diagram by tuning the spin-
independent hopping t⊥ and the Zeeman exchange field Hexch

in Fig. 2, based on numerical calculations. For presentation
purposes, we have fixed ξTaS2 = 0.9 and ξNbSe2 = 1.1 and
fixed the Josephson phase ϕ = π/2 corresponding to the max-
imal supercurrent state. The results are listed as follows.

(a) Topological superconducting phases are found to exist
when t⊥ � 9 meV for TaS2 (and t⊥ � 2.7 meV for NbSe2).

(b) A Chern-number-12 phase is found to occupy a large
portion of the parameter space, while a Chern-number-6 phase
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FIG. 3. θ -ϕ phase diagram. The superconducting gap (gap minimum in the momentum space) and Chern numbers induced by varying the
twisting angle θ and the Josephson phase ϕ for proposed heterostructures involving TaS2 (a) and NbSe2 (b). Here, in each panel we fix the
Zeeman field to be four times the Pauli limit Hexch = 4Hp and fix the spin-independent tunneling t⊥. Red arrows indicate the trivial-topological
phase transitions induced by tuning ϕ in a single device. Note that the regime ϕ � π/2 corresponds to the stable branch of the Josephson
junction.

only appears for case (i) at small values of spin-independent
tunneling t⊥.

(c) Under appropriate conditions, the gap in the topological
phase can reach 0.1 meV.

The large values of Chern numbers are due to the un-
derlying C3z-rotation symmetry, and these phase diagrams
are well understood via analytical calculations. The origin

of the Chern-number-12 phase is due to the topological
mass terms generated at 12 Dirac nodes (three groups of
four Dirac nodes related by C3z rotation) after the vertical
Josephson supercurrent is introduced. In the regime where the
Chern-number-6 phase is realized, however, it turns out that
topological mass terms are generated only at six Dirac nodes
(three groups of two Dirac nodes related by C3z rotation).
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Dashed box

FIG. 4. Monolayer Fermi surfaces and band structures. The � pocket and K pocket of monolayer NbSe2 and TaS2 are shown. Point P is
the intersection of the �-M line and the � pocket, where Ising SOC vanishes and two nodes (circles with crosses) emerge when an in-plane
Zeeman field Hexch exceeds the superconducting gap. Magenta and blue colors indicate the different Sz-spin components.

We also plot the phase boundary [see Eq. (12)] between triv-
ial and topological phases from our perturbative calculations
in Fig. 2, which is in good agreement with the numerical
calculations.

Apart from the global phase diagrams, we also plot the
phase diagrams with a few selected values of t⊥. Fixing
Hexch = 4Hp, we tune the twisting angle θ and the Josephson
phase ϕ, and the results are shown in Fig. 3. Consistent with
the global phase diagram, the topological phase is realized
when t⊥ is not too large. Interestingly, for intermediate values
of t⊥, trivial to topological phase transitions are observed by
tuning ϕ alone while fixing the twisting angle θ in an ap-
propriate regime. Such a Josephson-phase-driven topological
transition in a single device can lead to unique features to
unambiguously identify the topological phase in experiments.
For instance, the gapless chiral Majorana edge modes should
appear only in the topological phase, after the phase transition
occurs when ϕ is tuned up.

III. MODEL

A. � pocket

The bands forming the � pockets of monolayer TMD are
known to have significant contributions from the dz2 orbital
of the transition metal [47]. In the band basis, the minimal
effective Hamiltonian takes the form

h� (k) = ε0(k) + λ
Ising
SO (k)σz, (3)

where Pauli σi matrices label the spin space, ε0(k) represents
the kinetic energy, and λ

Ising
SO (k) represents the Ising SOC.

Drastically different from the usual Rashba SOC, here the
Ising SOC λ

Ising
SO (k) splits bands with fixed Sz spin. In fact, due

to the z → −z mirror symmetry of monolayer 2H TMDs, the
Rashba SOC is forbidden. Time-reversal symmetry dictates
that λ

Ising
SO (k) = −λ

Ising
SO (−k), so λ

Ising
SO (k) necessarily has sign

changes. Due to the mirror plane containing the �-M axis, the
six �-M directions are exact where λ

Ising
SO (k) changes sign.

We are then able to write down the first-order k · p model
near the intersection point P between the Fermi surface
and one �-M direction (the kx direction; see Fig. 4 for an
illustration):

h�
P = h̄vF kx + h̄vIsingkyσz, (4)

where λ
Ising
SO (k) vanishes along the kx direction and vIsing ≡

∂λ
Ising
SO (k)
h̄∂ky

. Effective Hamiltonian equation (4) is the starting
point of our theory. We list these parameters for NbSe2 and
TaS2 in Table I based on first-principles calculations (the band
structures are plotted in Fig. 5, and the full list of the quartic
k · p expansion parameters is given in Appendix C).

B. Monolayer

Now let us turn on the Zeeman field Hy along the y di-
rection (the g factor is assumed to be 2) and introduce a
spin-singlet pairing 
 [48]. In the Nambu basis, the BCS
mean-field Hamiltonian from Eq. (4) reads

hmono
BCS =h̄vF kxτz + h̄vIsingkyσz + μBHyσy + 
σyτy, (5)

where Pauli τ matrices label the particle-hole space. Be-
cause the system has a spin-rotation symmetry around the
Sz direction, the choice of the direction of the in-plane
magnetic field is not important. Since there are three in-
dependent �-M directions, related by C3 rotations, the full
electronic structure of NbSe2 (TaS2) has three copies of
the effective theory in Eq. (5). The eigenvalues of Eq. (5)
can be solved straightforwardly along the �-M direction:
εk = μBHy ±

√
(vF kx )2 + 
2. Clearly, one pair of Dirac

nodes will be formed when μBHy > 
, located at kx =
± 1

h̄vF

√
(μBHy)2 − 
2 (see Fig. 4 for a schematic illustration),

which is consistent with earlier works [29,30]. The low-
energy effective theories for either node can also be obtained
(in the band basis):

h±
node = ±h̄vF cos η · δkx�z + h̄vIsing sin η · δky�x, (6)

where η = arcsin 

μBHy

, momentum shift δk is measured from

the nodal points k±, and �i are Pauli matrices within the low-
energy two-dimensional Nambu space.

TABLE I. The parameters in the k · p model.

TMD h̄vF (eV Å) h̄vIsing (eV Å) kF (Å−1) 
 (meV)

NbSe2 −2.22 0.12 0.48 0.46
TaS2 −2.89 0.36 0.54 0.52
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FIG. 5. (a) and (b) Monolayer band structures.

These nodes are protected by a chiral symmetry σxτy

in model equation (5) sending h(k) → −h(k), which cor-
responds to the combination of the physical time-reversal
transformation iσyK , the particle-hole transformation τxK ,
and a Sz-π rotation iσzτz. The existence of the nodes around
intersection point P is essential for the topological phase tran-
sition induced by a vertical Josephson current in the proposed
heterostructures.

C. Twisted bilayer

Next we consider a β bilayer (separated by an insulator
buffer layer) with a twisting angle θ , which can be viewed
as the top (bottom) monolayer being twisted by angle θ/2
(−θ/2). Introducing kF as the crystal momentum of point P,
we obtain the following effective theory near P:

hbilayer
BCS = h̄vF kxτz + h̄vIsingkyσz + 
 cos

ϕ

2
σyτy

+ 
 sin
ϕ

2
σyτxνz − h̄vIsingkF

θ

2
σzνz + μBHyσy

+ t⊥τzνx + tsy,⊥σyνx. (7)

Here, the Pauli matrices ν capture the top and bottom layer
space. 
 > 0, and the pairing amplitude is 
eiϕ/2 (
e−iϕ/2)
for the top (bottom) layer. The t⊥ and tsy,⊥ terms describe the
spin-independent and spin-dependent interlayer hopping pro-
cesses, respectively. Based on the two-center approximation
[19,21], and the fact that point P is far away from the Brillouin
zone boundary, the interlayer hopping processes have a weak
stacking dependence and are considered as constants in this
paper [27,28] (see Appendix E for a discussion of the two-
center approximation).

The model equation (7) can be analytically solved in var-
ious perturbative regimes. To demonstrate the stability of the
topological superconductivity, below we focus on one particu-

lar regime, in which
√

(h̄vIsingkF θ )2 + 4t2
⊥ � 
,μBHy, tsy,⊥.

The advantage of this regime is that it is always realizable in

FIG. 6. Schematic plot of four Fermi surface intersection points
in a twisted bilayer near point P. Four Fermi surfaces are linearized
for small twisting angle. When ϕ = 0, each intersection point will
give rise to two pairing nodes after Hexch is tuned up. When ϕ 	= 0,
these nodes open up energy gaps: The four nodes near points F and
G along the �-M line have a total Chern number of zero. The four
nodes near points C and D have a total Chern number of 4.

the proposed heterostructures by tuning the twisting angle θ .
In this regime, we find that the topological superconductivity
with Chern number 4 (corresponding to Chern number 12
for the whole heterostructure) is always realized in model
equation (7) by tuning ϕ, θ and μBHy � 
.

To understand this behavior, we may first turn off the
pairing 
 and μBHy, tsy,⊥ in model equation (7). There are
four intersection points between the spin-up and spin-down
Fermi surfaces, which we label as C, D and F, G and which
are located at the ky and kx axes, respectively (see Fig. 6). The
low-energy effective theory near each point resembles Eq. (4)
with modified vF and vIsing.

After 
,ϕ are turned on but μBHy = tsy,⊥ = 0, the pairing
gap minima near C, D, F , and G are found to be the same:


C,D,F,G = 


√
cos2 ϕ

2 + cos2 ξ sin2 ϕ

2 , where ξ is defined in
Eq. (1). Because of the connection with the ϕ = 0 limit, the
superconducting phase so far must still be topologically trivial
even though ϕ 	= 0 breaks the time-reversal symmetry.
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When μBHy, tsy,⊥ 	= 0 are tuned up, the behavior near
points C and D and that near points F and G are qualitatively
different. The pairing gap minima near F and G never go to
zero as long as ϕ 	= 0. In particular, we find


F,G =
{√(


 cos ϕ

2 − b
)2 + 
2 cos2 ξ sin2 ϕ

2 , b < 
 cos ϕ

2

 cos ξ | sin ϕ

2 |, b � 
 cos ϕ

2 ,

(8)

where

b ≡
{|μBHy sin ξ − tsy,⊥| for point F
|μBHy sin ξ + tsy,⊥| for point G.

(9)

In contrast, near points C and D the topological phase
transition occurs with four Dirac nodes (two near each point)
emerging when Hy = H topo

c , where the critical Zeeman field
strength is

μBH topo
c ≡ 


√
sec2 ξ cos2 ϕ

2
+ sin2 ϕ

2
. (10)

When Hy > H topo
c , the four Dirac nodes acquire a topological

mass gap, transferring a Chern number of 4:



topo
C,D = sin ϕ


2 sin2 ξ

h̄vIsingkF θ

√(
Hy

H topo
c

)2

− 1. (11)

The details of the calculations are presented in Appendix D.
Note that different from 
F,G, the topological gap 


topo
C,D ∝


2. This is because the 
-linear-order gap remains zero in
the present linear-order k · p effective theory, and the second-
order perturbation plays the dominant role: The topological
phase is always realized when Hy > H topo

c .
When a higher-order k · p expansion is considered, we do

find that a nontopological 
-linear-order gap near C and D
becomes nonzero (see Appendix D). When this gap is large,
the topological superconductivity will be destroyed. Based on
perturbative calculations, the topological phase requires the
following criterion to be satisfied [see Appendix D, Eq. (D25),
for details]:

t2
⊥ <


h̄kF v2
Ising

v2
a(ξ, ϕ)

√(
Hy

H topo
c

)2

− 1,

a(ξ, ϕ) ≡ tan ξ sin ξ

√
sec2 ξ cos2 ϕ

2
+ sin2 ϕ

2
. (12)

Here, v2 is a velocity parameter [defined in Eq. (D3)] in the
quadratic-order k · p expansion, and h̄v

NbSe2
2 = 0.94 eV Å and

h̄v
TaS2
2 = 3.1 eV Å based on our electronic structure calcula-

tions (see Appendix C). Namely, t⊥ cannot be too large. This
criterion serves as the phase boundary between the trivial and
topological phases and is plotted in Fig. 2 as the dashed black
line.

The previous perturbative regime well captures the Chern-
number-12 topological phase. Aiming at understanding the
Chern-number-6 topological phase in the numerical phase
diagrams, we have performed the analytical calculations in a
different perturbative regime, t⊥ � 
, h̄vIsingkF θ � 
, and
reproduced the Chern-number-6 topological phase (see Ap-
pendix D).

IV. DISCUSSION AND CONCLUSIONS

Before concluding, we would like to remark on a few
experiment-related issues:

Chiral edge modes. When topological superconductivity
is realized in the proposed heterostructure in Figs. 1(a) and
1(b1), the edge of the ferromagnetic buffer layer is the natu-
ral boundary between the topological superconductivity and
trivial superconductivity. This is because outside the buffer
layer region, due to the lack of Zeeman exchange field, gapped
trivial superconductivity is realized in the TMD bilayer. Ma-
jorana chiral edge modes are then sharply located at this edge,
leading to the well-known quantized thermal Hall conduc-

tance κxy

T = C π
12

k2
B
h̄ , where C is the Chern number. In addition,

the edge modes can be detected via scanning tunneling mi-
croscopy as midgap states.

Midgap states located at the edge of a superconducting
material may also have nontopological explanations, such as
the Yu-Shiba-Rusinov bound states. However, in an appropri-
ate regime, as shown in Fig. 3, we note that a single device
may realize a trivial to topological phase transition while the
Josephson phase ϕ is tuned up. Such a ϕ-driven topological
phase transition has unique experimental signatures since the
Majorana edge states are expected to exist only in the topolog-
ical phase, which may be used to sharply identify the nature
of the midgap states.

The effect of an in-plane external magnetic field. When
an in-plane magnetic field is applied to the proposed het-
erostructures, the Josephson phase ϕ(x) = 2πx/L becomes
spatially dependent along the in-plane transverse direction,
where L = �0

Hextd
and d is the effective thickness of the junc-

tion. For instance, an external magnetic field Hext ∼ 0.5 T
is needed to reorient the magnetic moment of CrBr3 to an
in-plane direction, corresponding to L ∼ 2 μm if d ∼ 20 Å
is used. Due to the fact that the Chern number flips sign
when ϕ → −ϕ, the topological superconductivity is expect
to form spatial stripes, or domains with width L/2, with al-
ternating Chern numbers, e.g., C = ±12, in which case 24
chiral Majorana states are expected to form at each domain
wall. In Appendix A we estimate the spatial spread l⊥ of
the domain-wall Majorana states along the transverse direc-
tion of the domain wall. Only when the spatial spread l⊥ is
much smaller than the stripe width L/2 are the domain-wall
states well defined. We find that for a generic magnetic field
direction, l⊥ is comparable to L/2 for Hext ∼ 0.5 T. However,
when Hext is parallel to one �-M direction, eight among
the 24 domain-wall Majorana states have an l⊥ that can be
∼5–10 times smaller than L/2. These domain-wall chiral
states may be observable in probes such as STM or thermal
transport.

Charge-density-wave order. It is known that Ising su-
perconductivity in 2H -NbSe2 or 2H -TaS2 coexists with the
charge-density-wave (CDW) order [49–51]. For the Fermi
pockets around �, the Fermi surface folding due to the CDW
occurs near the �-K direction. Such behavior would not
qualitatively affect the low-energy physics near the �-M di-
rection, which is the focus of this paper.

Rashba spin-orbit coupling. As emphasized before, the
z → −z mirror symmetry forbids the Rashba SOC in the
monolayer TMD. A Rashba SOC breaks an important
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invariance of Eq. (7) related to the combination of particle-
hole and time-reversal transformation PH ◦ TR = σyτx. PH ◦
TR always sends hbilayer

BCS (k, Hy, ϕ) �→ −hbilayer
BCS (k,−Hy,−ϕ).

In the absence of the Rashba SOC, one may flip the sign
of Hy and ϕ by a complex conjugation since all other
terms in the Hamiltonian are real: −hbilayer

BCS (k,−Hy,−ϕ) =
−(hbilayer

BCS )∗(k, Hy, ϕ). Namely, there is an invariance pro-
tecting the Bogoliubov quasiparticle spectrum being ±E
symmetric at any k. Such an invariance is lost in the presence
of a Rashba SOC, leading to Bogoliubov Fermi pockets [29].

In the proposed heterostructures, despite the lack of the
z → −z mirror symmetry, the intrinsic Rashba coupling
induced by the vdW interlayer interactions can be safely ne-
glected since it is extremely weak (see Appendix C). Although
an extrinsic, substrate-induced Rashba coupling is possible, in
this paper we do not consider this effect, since nevertheless
this coupling could be tuned to zero via gating.

Interlayer tunneling strength. It is clear from the phase
diagrams in Fig. 2 and criterion equation (12) that the inter-
layer tunneling t⊥ cannot be too large in order to realize the
topological superconductivity (< 10 meV). On the other hand,
based on our density functional theory (DFT) calculations
(see Appendix C), due to the dz2 nature of Fermi pockets
around the � point, a fairly large interlayer tunneling of the
bilayer systems of NbSe2 or TaS2 without a buffer layer is
found near point P (> 50 meV) [52]. This actually motivates
us to consider the insulating buffer layer in the proposed
heterostructures. In Appendix C, as an estimate, we performed
DFT calculations on a TaS2/WS2/TaS2 heterostructure, and
t⊥ ∼ 5 meV is found—well within the regime where topolog-
ical superconductivity is realized.

In summary, we theoretically propose twisted bilayer vdW
Ising superconductors as a flexible and tunable platform to
realize chiral topological superconductivity with Chern num-
bers. In the simplest setup, an insulating buffer layer with
an in-plane ferromagnetic moment is introduced between
TMD Ising superconductors such as NbSe2 or TaS2, pro-
viding a Zeeman exchange field in the TMD layers via the
magnetic proximity effect. We show that the out-of-plane su-
percurrent induces topological superconductivity over a large
parameter regime, and the characteristic Majorana chiral edge
modes are localized on the edge of the ferromagnetic buffer
layer. We hope that the present study may motivate fur-
ther experimental and theoretical investigations of such vdW
heterostructures.
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APPENDIX A: DOMAIN-WALL CHIRAL MODES

Assuming internode scattering to be weak, here we may
use the Dirac equation for a single node to estimate the spatial

size of the chiral domain-wall modes. Denoting the magnetic
field direction as B̂, we have the spatial-dependent Josephson
phase ϕ(r) = 2π

L B̂ × ẑ · r ≡ 2π
L n̂ · r, where we defined unit

vector n̂ ≡ B̂ × ẑ. Based on Eq. (11), the spatial-dependent
Dirac equation becomes

H = vx px�x + vy py�z + m0 sin ϕ(r)�y, (A1)

where

m0 ≡ 
2 sin2 ξ

h̄vIsingkF θ

√( Hy

H topo
c

)2
− 1. (A2)

vx = vF cos θ+ and vy = vIsing sin θ+ according to Eq. (D19),
and vx � vy since θ+ is an angle parameter of order unity.
The mass-sign-changing domain walls are located at n̂ · r =
kL
2 , and k ∈ Z. Near each domain wall, we may linearize the

mass as m0 sin ϕ(r) ∼ (−1)km0ϕ̃(δr), where ϕ̃(δr) = ϕ(r) −
kπ = 2π n̂·δr

L , and δr is the position measured from the domain
wall.

It is now convenient to rotate into the coordinate system
with axes (x‖, x⊥) along and perpendicular to the domain
wall. The corresponding momenta are denoted as (p‖, p⊥).
Writing the cosine c and sine s of the rotation angle between
the two coordinate systems, then px ≡ cp‖ − sp⊥ and py ≡
sp‖ + cp⊥, and we have

H = vx(cp‖ − sp⊥)�x + vy(sp‖ + cp⊥)�z

+ (−1)km0
2πx⊥

L
�y. (A3)

H2 has a simple form:

H2 = v2
x (cp‖ − sp⊥)2 + v2

y (sp‖ + cp⊥)2 + m2
0

(
2πx⊥

L

)2

− (−1)k h̄m0
2π

L
(svx�z + cvy�x ). (A4)

Since p‖ is a good quantum number, we are left with a one-
dimensional harmonic oscillator involving p⊥, x⊥:

H2 = ((cvx )2 + (svy)2)p2
‖ + ((svx )2 + (cvy)2)(p⊥ − p0(p‖))2

+ m2
0

(
2πx⊥

L

)2

− (−1)k h̄m0
2π

L
(svx�z + cvy�x ),

(A5)

where p0 is a linear function of p‖. The corresponding mass
and frequency for this harmonic oscillator are

M = 1

2
[(svx )2 + (cvy)2]−1, ω =

√
2M−1

m02π

L
. (A6)

The energy levels are

En = 2h̄
√

(svx )2 + (cvy)2
m02π

L

(
n + 1

2

)
. (A7)

The zero-energy state of H and H2 for p‖ = 0, corresponding
to the chiral Majorana modes, is the n = 0 ground state of the
harmonic oscillator. The last term in H2 chooses a specific
eigenstate of (svx�z + cvy�x ), so that the zero-point energy
in the harmonic oscillator is exactly canceled. Since we are
working with complex fermions, this zero-energy state corre-
sponds to two chiral Majorana modes.
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The spatial spread l of the chiral model along the x⊥ di-
rection can be readily read out from the harmonic oscillator
ground state ψ (x⊥) ∝ e−x2

⊥/(2l2
⊥ ):

l⊥ =
√

h̄

Mω
=

√
h̄[(svx )2 + (cvy)2]1/2L

2πm0
. (A8)

l⊥ is proportional to the square root of the velocity
[(svx )2 + (cvy)2]1/2. Note that vx � vy; for a generic mag-

netic field direction, l⊥ ∼
√

h̄vxL
2πm0

. Assuming h̄vx ∼ 1 eV Å,

m0 ∼ 0.1 meV, and L ∼ 2 μm, one finds l⊥ ∼ 0.4 · L/2.
To minimize l⊥, one may choose the magnetic field direc-

tion (i.e., the domain-wall direction) to be along x (i.e., one

�-M direction), leading to l⊥ =
√

h̄vyL
2πm0

for four nodes near
this �-M direction among the total of 12 nodes. In this case,
among the 24 Majorana domain-wall states, eight of them
have l⊥ ∼ 0.2 · L/2 (for TaS2) and l⊥ ∼ 0.1 · L/2 (for NbSe2)
using the parameters above.

APPENDIX B: A MEAN-FIELD TREATMENT FOR THE
FERROMAGNETIC BUFFER LAYER

We will show in this Appendix that, for the proposed setup
in Figs. 1(a) and 1(b1) with a ferromagnetic buffer layer, the
direct couplings between the top or bottom layer and the mid-
dle layer will induce an in-plane exchange Zeeman field Hexch

and a spin-dependent tunneling ts,⊥. In a simple perturbative
mean-field treatment, μBHexch = ts,⊥.

Without loss of generality, we can work in the basis
where the buffer layer Hamiltonian is diagonalized hm =
diag{hm

↑ , hm
↓ }, where ↑ and ↓ indicate the spin components

parallel and antiparallel to the in-plane ferromagnetic moment
direction. For simplicity we assume that hm

↑ and hm
↓ each

contain a single band, which can be easily generalized to
multiband cases.

In the absence of the middle layer, we consider the spinful
TMD bilayer Hamiltonian hbilayer = diag{ht(k), hb(k)}. The
full Hamiltonian for the trilayer system is then

H trilayer(k) =

⎛⎜⎜⎝
ht(k)

hb(k)
V

V T hm
↑

hm
↓

⎞⎟⎟⎠, (B1)

where V = (V 1,V 2), V 1 = (t t
↑, 0, tb

↑, 0)T , and V 2 =
(0, t t

↓, 0, tb
↓ )T .

Due to the z → −z mirror symmetry for the TMD bilayer
at the zero twisting angle, one may assume these direct hop-
pings to be layer independent, t t,b

↑,↓ = t↑,↓, at small twisting
angles. Since the middle buffer layer is an insulator, hm

↑ and

hm
↑ are high-energy states. Standard perturbation theory gives

Hbilayer
induced(k) � hbilayer −

∑
i=1,2

V i(h
m)−1V T

i

= hbilayer − t2
↑

hm
↑

⎛⎜⎝1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞⎟⎠

− t2
↓

hm
↓

⎛⎜⎝0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

⎞⎟⎠
= hbilayer − δμσ0ν0 + t⊥σ0νx + μBHexch,zσzν0

+ ts,⊥σzνx, (B2)

where we separate out the second-order perturbation of the
bilayer Hamiltonian into four parts: the chemical potential
shift δμ, the spin-independent tunneling t⊥, the (proximity-
induced) Zeeman field Hexch, and the spin-dependent tunnel-
ing ts,⊥, where

−δμ = t⊥ = −1

2

(
t2
↑

hm
↑

+ t2
↓

hm
↓

)
, (B3)

μBHexch = ts,⊥ = −1

2

(
t2
↑

hm
↑

− t2
↓

hm
↓

)
. (B4)

APPENDIX C: DETAILS OF THE PHASE
DIAGRAM CALCULATIONS AND DISCUSSION

OF THE STACKING DEPENDENCE

All phase diagrams of the proposed heterostructures in-
volving either 2H -NbSe2 or 2H -TaS2 are obtained by listing
the gap size for all eight nodes (topological and trivial) and
picking out the minima of them. To capture the physics among
entire phase diagrams (particularly the large-Hexch regions),
we follow Ref. [31] to introduce the pair-breaking equa-
tion throughout our numerical calculation

ln(Tc/Tc0) + ψ

(
1

2
+ μBH2/Hso

2πkBTc

)
− ψ (1/2) ≡ 0,

where ψ is the digamma function, Tc0 is the zero-field critical
temperature (3.0 K for NbSe2 [31] and 3.4 K for TaS2 [53]),
and Hso can be taken as a fitting parameter to match the
asymptotic Ginzburg-Landau behavior H ∼ H0

√
1 − T/Tc0

for Tc ∼ Tc0, where H0 ∼ √
HsoHp and the Pauli limit Hp =


0√
2μB

= (1.86 T/K) · Tc0 assuming the g factor to be equal to
2 and the BCS formula 
0 = 1.76kBTc0 still to hold [54]. The
best fitting of the experimental data gives H0 = 43.6 T for
NbSe2 and H0 = 65.6 T for TaS2 [9], so we take HNbSe2

so =
340 T and HTaS2

so = 680 T throughout our numerical calcula-
tions.

All parameters that we input in our numerical calcula-
tions of phase diagrams (up to the fourth order of the k · p
expansion) are extracted from the monolayer tight-binding
models obtained from local density approximation (LDA) cal-
culations by the QUANTUM ESPRESSO [55,56] and WANNIER90
routines [57]. Our strategy is to first build an AA-stacking
β-bilayer slab system for both materials and then relax the
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TABLE II. Fitting results for Eq. (C1) for both TaS2 and NbSe2 (in the eV Å unit system). We set h̄ = 1 so that this table can serve as a
complement to Table I.

���������Material
Coeff. pi

kF vF a p5 p6 p7 p8 p9 p10 p11 vIsing p13 p14 p15 p16 p17

TaS2 0.54 −2.89 0.25 2.34 17.82 −8.72 11.53 −8.67 17.20 0.00 0.36 1.41 −1.06 −0.72 −2.11 −8.45
NbSe2 0.48 −2.22 −0.76 1.36 15.10 −2.98 9.85 0.76 26.15 0.00 0.12 0.86 −0.20 0.25 −3.56 −4.14

structure with nonlocal van der Waals correlation function-
als to get the proper layer distance and (spin-independent)
tunneling strengths. For convergence reasons, we choose to
use the functional vdW-DF-C6 [58,59] for TaS2, while we
use vdW-DF2-C09 [60,61] for NbSe2. The resulting relaxed
layer separation is dTaS2

⊥ = 6.57 Å and dNbSe2
⊥ = 6.80 Å. Since

tunneling processes only occur around the intersection points
P, with their strengths being half of the energy splitting around
the Fermi energy εF , we can directly read them out from the
the non-self-consistent output at k = (kF , 0), reading tTaS2

⊥ =
56.9 meV and tNbSe2

⊥ = 116.2 meV.
Next, we take the relaxed structure as an input to build

a monolayer slab system and perform a LDA calculation to
obtain a monolayer electronic structure. Note that this mono-
layer relaxed structure weakly breaks the z → −z symmetry
but preserves the mirror planes parallel with the z axis. The
LDA result is used to fit the k · p model up to quartic order.
More precisely, we fit the model consistent with the y → −y
mirror symmetry:

Hmono
quartic(k) = [

εF + vF kx + ak2
y + p5k2

x + p6kxk2
y

+ p7k4
y + p8k3

x + p9k4
x + p10k2

x k2
y

]
σ0

+ p11σy + [
vIsingky + p13kxky + p14k3

y

+ p15k2
x ky + p16k3

x ky + p17kxk3
y

]
σz. (C1)

The results for both TaS2 and NbSe2 are listed in Table II.
The intrinsic Rashba SOC, ignored in Eq. (4), appears as the
vanishingly small p11 in the fitting in Table II. Due to the loss
of the z → −z mirror symmetry in the vdW relaxed structure,
in principle this coupling may be nonzero. However, we find
that the raw energy splitting (corresponding to 2p11) at point P
is less than 10−10 meV for both NbSe2 and TaS2 and conclude
that weak vdW interactions cannot lead to any sizable intrinsic
Rashba SOC.

The values of the aforementioned spin-independent tun-
nelings t⊥ for bilayer NbSe2 and TaS2 are far beyond the
topological superconducting regime that we find in the nu-
merical phase diagrams. This actually motivates us to propose
the buffer layer heterostructures in Fig. 1. To have an esti-
mation of the magnitude of the spin-independent tunneling
t⊥ after the insertion of an insulating buffer layer, we build
a trilayer slab system TaS2/WS2/TaS2 of ABA and AAA
stackings. Since 2H -TaS2 and 2H -WS2 have similar lattice
constants, we use the lattice constants of 2H -TaS2 for the
trilayer system without enlarging the supercell [62] (a =
0.331 nm and c = 0.121 nm for 2H -TaS2 and a = 0.315 nm
and c = 0.121 nm for 2H -WS2). We then again relax the
positions for all atoms of the trilayer system with the nonlocal
van der Waals functional vdW-DF-C6 [58,59] along the out-

of-plane direction. We find that after inserting a nonmagnetic
buffer layer WS2, the separation between the top and bottom
TaS2 layers for both stackings almost doubles to dTaS2,ABA

⊥ =
12.00 Å and dTaS2,AAA

⊥ = 13.18 Å, and the corresponding
strengths of the spin-independent tunneling are reduced to
tTaS2,ABA
⊥ = 5.0 meV and tTaS2,AAA

⊥ = 4.5 meV.

APPENDIX D: DETAILS OF ANALYTICAL
PERTURBATIVE CALCULATIONS

We will work with the atomic units by default throughout
the derivation here. For example, h̄ = μB = 1.

1. Perturbative theory for
√

(vIsingkFθ)2 + 4t2
⊥ � �: C = 12

topological phases

In this section, we will give a perturbative analysis of the
twisted bilayer Hamiltonian given in the main text. We will

focus on the regime when
√

(vIsingkF θ )2 + 4t2
⊥ � 
 and give

an explanation of the origin of C = ±12 topological phases.
Mass gaps for all nodes and the phase boundary will also be
derived.

a. Construction of the Hamiltonian

Let us start with constructing the effective Hamiltonian.
We will consider a small twisting angle θ and keep the
k · p expansion up to O(θ2) (the reason will be given in
Appendix D 1 b). As is discussed in the main text, in-plane
mirror symmetry prohibits the existence of Rashba SOC,
so the monolayer effective Hamiltonian around the intersec-
tion point P of the Fermi surface and the �-M line simply
reads

hmono(k) = (
vF kx + ak2

y

) + vIsingkyσz, (D1)

where a is the coefficient of the k · p expansion. We keep a
quadratic term ak2

y here because it turns out that this term
contributes to the leading-order deviation from the linear k · p
expansion. Equation (D1) can be easily extended to higher
orders, and we did use the fitting fourth-order k · p in our
numerical calculations; see Appendix C.

Without loss of generality, we can consider a bilayer
system with the top layer rotated by θ/2 and the bottom
layer rotated by −θ/2. This is achieved by simple replace-
ment kx �→ (kx + kF ) cos θ

2 ± ky sin θ
2 − kF and ky �→ ∓(kx +

kF ) sin θ
2 + ky cos θ

2 and expansion still up to θ2. The resulting
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bilayer Hamiltonian without tunneling is then

hwithout(k) =
(

vF kx + ak2
y + ak2

F

4
θ2 − vF kF

8
θ2

)
+

(
−akF kyθ + θ

2
vF ky

)
νz + vIsingkyσz

− vIsingkF
θ

2
σzνz

=
(

vF kx + ak2
y − v2kF

8
θ2

)
+ θ

2
v2kyνz

+ vIsingkyσz − θ

2
vIsingkF σzνz, (D2)

where νi are Pauli matrices within the layer space and we
defined

v2 ≡ vF − 2akF . (D3)

In Eq. (D2), the crucial role played by v2 is from the second
term, which gives the leading-order correction to the wave
functions compared with the linear k · p expansion. Next, let
us try to add interlayer tunnelings to (D2). Based on two-
center approximation [19], it can be shown that the interlayer
tunneling has a weak spatial dependence (see Appendix E)
and will be considered as a constant here, t = t⊥ (the spin-
dependent tunnelings ts,⊥ will be included later). We thus have

hbilayer =
(

vF kx + ak2
y − v2k2

F

8
θ2

)
+ θ

2
v2kyνz + vIsingkyσz

− θ

2
vIsingkF σzνz + tνx. (D4)

Hamiltonian (D4) reduces to a simple two-band model (and
so can be readily diagonalized) for σz = ±1. Keeping up to
O(θ2), we have, for σz = +1,

ε
↑
± =

(
vF kx + ak2

y − θ2

8
v2kF

)
+ vIsingky

± �

2

[
1 − v2 · cos2 ξ

vIsingkF
ky

]
and, for σz = −1,

ε
↓
± =

(
vF kx + ak2

y − θ2

8
v2kF

)
− vIsingky

± �

2

[
1 + v2 · cos2 ξ

vIsingkF
ky

]
,

where

ξ ≡ arctan
2t

vIsingkF θ
and � ≡

√
(vIsingkF θ )2 + 4t2.

There are some crossing points between the spin-up and
spin-down Fermi surfaces. Solving ε

↑
± = ε

↓
± = 0, we find two

such points F and G along the kx direction (�-M line)

F =
(

− �

2vF
+ v2kF θ2

8vF
, 0

)
, G =

(
+ �

2vF
+ v2kF θ2

8vF
, 0

)
.

(D5)
At F , the two low-energy bands come from ε

↑,↓
− , while at G,

the two low-energy bands are formed by ε
↑,↓
+ . Interestingly,

there are another two such points C and D emergent along the
ky direction that have different low-energy band information:

C =
(

−kF θ2

8
− at2

vF v2
Ising

,− �

2vIsing

)
, (D6)

D =
(

−kF θ2

8
− at2

vF v2
Ising

,+ �

2vIsing

)
. (D7)

At C, the two low-energy bands are formed by ε
↑
−, ε

↓
+, while

at D, the two low-energy bands are formed by ε
↑
+, ε

↓
−. They

are all illustrated in Fig. 6.
The low-energy effective Hamiltonian of each node is then

the projection of (D4) onto these bands. First of all, we need to
read out the eigenstates in ν space. Introducing the elevation
angle

ξ± = arctan
t

θ
2 (v2ky − vIsingkF )

� arctan

[(
1 ± v2ky

vIsingkF

)
2t

vIsingkF θ

]
,

we obtain

σz = +1: |ν1〉 = sin
ξ+
2

|ν↑〉 + cos
ξ+
2

|ν↓〉,

|ν2〉 = cos
ξ+
2

|ν↑〉 − sin
ξ+
2

|ν↓〉,

σz = −1: |ν3〉 = cos
ξ−
2

|ν↑〉 + sin
ξ−
2

|ν↓〉,

|ν4〉 = − sin
ξ−
2

|ν↑〉 + cos
ξ−
2

|ν↓〉.
We can then lift (D4) into the Nambu representation

Hbilayer =
(

vF kx + ak2
y − v2kF

8
θ2

)
τz + θ

2
v2kyνzτz

+ vIsingkyσz − θ

2
vIsingkF σzνz + tνxτz (D8)

and perform the projection. Here, νi are Pauli matrices for the
Nambu space.

We choose the basis as follows.

At G:{|τ↑, σ↑, ν2〉, |τ↑, σ↓, ν4〉, |τ↓, σ↑, ν4〉, |τ↓, σ↓, ν2〉,
|τ↑, σ↑, ν1〉, |τ↑, σ↓, ν3〉, |τ↓, σ↑, ν3〉, |τ↓, σ↓, ν1〉},

At F :{|τ↑, σ↑, ν1〉, |τ↑, σ↓, ν3〉, |τ↓, σ↑, ν3〉, |τ↓, σ↓, ν1〉,
|τ↑, σ↑, ν2〉, |τ↑, σ↓, ν4〉, |τ↓, σ↑, ν4〉, |τ↓, σ↓, ν2〉},

At D:{|τ↑, σ↑, ν2〉, |τ↑, σ↓, ν3〉, |τ↓, σ↑, ν3〉, |τ↓, σ↓, ν2〉,
|τ↑, σ↑, ν1〉, |τ↑, σ↓, ν4〉, |τ↓, σ↑, ν4〉, |τ↓, σ↓, ν1〉},

At C:{|τ↑, σ↑, ν1〉, |τ↑, σ↓, ν4〉, |τ↓, σ↑, ν4〉, |τ↓, σ↓, ν1〉,
|τ↑, σ↑, ν2〉, |τ↑, σ↓, ν3〉, |τ↓, σ↑, ν3〉, |τ↓, σ↓, ν2〉}.

Then (D8) near F and G can be shown to have the form (for
now on, we will also use the coordinate in the momentum
space to represent these intersection points: F as F+, G as
F−, C as C−, and D as C+)

H0(F±) = vF δkxτz + vIsingδkyσz ± �
1 − νz

2
τz. (D9)
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Similarly, near C± we have

H0(C±) = vF δkxτz + vIsingδkyσz ± �
1 − νz

2
σz. (D10)

Here, we slightly abuse the notation: Instead of introducing
a new symbol, we use the ν Pauli matrices to repre-
sent the low-energy (νz = 1) and high-energy (νz = −1)
subspaces.

b. Low-energy effective theory in Nambu space

The next step is to turn on an in-plane Zeeman exchange
field and the intralayer superconducting order parameters 
.
Without loss of generality, below we consider the in-plane
Zeeman field to be along the ky direction, b = (0, by), together
with a spin-dependent hopping ts,⊥ = ty due to a ferromag-
netic layer:

H ′ = byσy + 
 cos
ϕ

2
· σyτy + 
 sin

ϕ

2
· σyτxνz + tyσyνx.

(D11)

Here, 
 is real, and we add a Josephson phase difference
ϕ between the top and bottom layers through turning on the
supercurrent.

Still taking the basis we chose for the low-energy space for
each node in the previous section, we have

H ′(F+) = − by sin ξ · σyνz + 
 cos
ϕ

2
· σyτy

+ 
 cos ξ sin
ϕ

2
· σxτyνz + by cos ξ · σyνx

+ 
 sin ξ sin
ϕ

2
· σxτyνx + tyσy, (D12)

H ′(F+) = by sin ξ · σyνz + 
 cos
ϕ

2
· σyτy

−
 cos ξ sin
ϕ

2
· σxτyνz + by cos ξ · σyνx

+
 sin ξ sin
ϕ

2
· σxτyνx + tyσy. (D13)

For C±,

H ′(C+) = by cos ξ · σy + 
 cos
ϕ

2
· σyτy + 
 cos ξ sin

ϕ

2

· σyτxνz − by sin ξ · σxτzνy + 
 sin ξ sin
ϕ

2
· σxτyνx

− 


2vIsing
sin2 ξ sin

ϕ

2
· v2θ · σxτyνz

+ 


2vIsing
cos ξ sin ξ sin

ϕ

2
· v2θ · σyτxνx

− ty
2vIsing

sin ξ · v2θ · σyνz + tyσyνx, (D14)

H ′(C−) = by cos ξ · σy + 
 cos
ϕ

2
· σyτy − 
 cos ξ sin

ϕ

2

· σyτxνz + by sin ξ · σxτzνy + 
 sin ξ sin
ϕ

2
· σxτyνx

− 


2vIsing
sin2 ξ sin

ϕ

2
· v2θ · σxτyνz

− 


2vIsing
cos ξ sin ξ sin

ϕ

2
· v2θ · σyτxνx

− ty
2vIsing

sin ξ · v2θ · σyνz + tyσyνx. (D15)

The effective Hamiltonian for the low-energy sector |ν↑〉 then
can be obtained from standard perturbation theory. We will
keep the θ linear order and the 
 second order. Since both
θ and 
 are small, we will drop terms proportional to 
2θ .
Finally,

Heff(F±) = vF δkxτz + vIsingδkyσz ∓ (by sin ξ ∓ ty) · σy + 
 cos
ϕ

2
· σyτy ± 
 cos ξ sin

ϕ

2
· σxτy

± 1

�

[[
−b2

y cos2 ξ + 
2 sin2 ϕ

2
sin2 ξ

]
τz + by
 sin

ϕ

2
sin 2ξσzτx

]
, (D16)

Heff(C±) = vF δkxτz + vIsingδkyσz + by cos ξ · σy + 
 cos
ϕ

2
· σyτy ± 
 cos ξ sin

ϕ

2
· σyτx

− 
v2θ

2vIsing
sin2 ξ sin

ϕ

2
σxτy − ty · v2θ

2vIsing
sin ξ · σy

± 1

�

[[
b2

y + 
2 sin2 ξ
]

sin2 ξ · σz ± 2by
 sin2 ξ sin
ϕ

2
· σzτx + t2

y σz ∓ 2byty sin ξ · τz

]
. (D17)

c. Topological nodes C and D

Let us first focus on the nodes C and D, i.e., k ∼ C±. It is convenient to perform a charge rotation e±iζ/2τz to eliminate the
±
 cos ξ sin ϕ

2 · σyτx term in (D17) with ζ ≡ arctan(cos ξ tan ϕ

2 ). In addition, the σy term (and τz term) can be absorbed by
redefining δky (and δkx). Using e−iζ/2τzτyeiζ/2τz = cos ζ · τy − sin ζ · τx, we will arrive at

H̃eff(C±) = vF δkxτz + vIsingδkyσz +
[
borigin

y cos ξ − ty · v2θ

2vIsing
sin ξ

]
· σy + 
̃ · σyτy

− 
v2θ

2vIsing
sin2 ξ sin

ϕ

2
· σx · (cos ζ τy ∓ sin ζ τx ) + 2by


�
sin2 ξ sin

ϕ

2
· σz(cos ζ · τx ± sin ζ · τy)

= vF δkxτz + vIsingδkyσz + by cos ξ · σy + 
̃ · σyτy
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− 
v2θ

2vIsing
sin2 ξ sin

ϕ

2
· σx · (cos ζ τy ∓ sin ζ τx ) + 2by


�
sin2 ξ sin

ϕ

2
· σz(cos ζ · τx ± sin ζ · τy), (D18)

with 
̃ = 


√
cos2 ϕ

2 + sin2 ϕ

2 cos2 ξ ≡ 

cos ϕ

2
cos ζ

. In (D18) we

have denoted the original Zeeman fields by as borigin
y and

rewritten the σy term as by cos ξ by introducing a new shifted
field

by ≡ borigin
y − ty · v2θ

2vIsing
tan ξ = borigin

y − ty · v2t

v2
IsingkF

.

This is actually why we introduce the spin-dependent tunnel-
ing together with the the Zeeman fields.

Starting with the linear-order effective Hamiltonian [the
first line of (D18), so C± has the same form], we find that
a pair of Dirac nodes k±

0 = (±k+
x,0, 0) along the δkx direction

emerges when by cos ξ > 
̃. Repeating the two-band effective
theory analysis (separating for σy = ±1), we find, near the k±

0
Dirac nodes,

h±
eff± (C) = ±(−vF cos θ+ · δkxμz + vIsing sin θ+ · δkyμx ),

(D19)
where

θ+ = arctan

̃

vF k+
x,0

, k+
x,0 = 1

vF

√
(by cos ξ )2 − 
̃2.

These effective theories are obtained in the basis

|ψ+
1 〉 = |σy = 1〉 ⊗

(
i sin

θ+

2
|τz,↑〉 + cos

θ+

2
|τz,↓〉

)
,

|ψ+
2 〉 = |σy = −1〉 ⊗

(
cos

θ+

2
|τz,↑〉 − i sin

θ+

2
|τz,↓〉

)
,

|ψ−
1 〉 = |σy = 1〉 ⊗

(
cos

θ+

2
|τz,↑〉 − i sin

θ+

2
|τz,↓〉

)
,

|ψ−
2 〉 = |σy = −1〉 ⊗

(
i sin

θ+

2
|τz,↑〉 + cos

θ+

2
|τz,↓〉

)
.

To be concrete, states |σy = ±1〉 are defined as |σy =
1〉 = 1√

2
(|σz,↑〉 + i|σz,↓〉) and |σy = −1〉 = 1√

2
(i|σz,↑ 〉

+ |σz,↓〉).
The remaining task is to project the last line of (D18) (as

the perturbation) onto this low-energy basis. We get, for C+,

At k+
0 :


v2θ

2vIsing
sin2 ξ sin

ϕ

2
(sin ζ cos θ+μx + cos ζμy)

+ 2by


�
sin2 ξ sin

ϕ

2
· (− cos ζ cos θ+μy − sin ζμx ),

(D20)

At k−
0 :


v2θ

2vIsing
sin2 ξ sin

ϕ

2
(sin ζ cos θ+μx − cos ζμy)

+ 2by


�
sin2 ξ sin

ϕ

2
· (− cos ζ cos θ+μy + sin ζμx )

(D21)

and, for C−,

At k+
0 :


v2θ

2vIsing
sin2 ξ sin

ϕ

2
(− sin ζ cos θ+μx + cos ζμy)

+ 2by


�
sin2 ξ sin

ϕ

2
· (− cos ζ cos θ+μy + sin ζμx ),

(D22)

At k−
0 :


v2θ

2vIsing
sin2 ξ sin

ϕ

2
(− sin ζ cos θ+μx − cos ζμy)

+ 2by


�
sin2 ξ sin

ϕ

2
· (− cos ζ cos θ+μy − sin ζμx ).

(D23)

The new μx terms brought by the perturbation just shift the
nodes, while the new μy terms brought by the perturbation
open gaps. Collecting all μy terms, we get the four masses m±
(each value is twofold degenerate) for the nodes split from
intersection points C and D:

m±(C±) = 2by


�
sin2 ξ sin

ϕ

2
cos ζ cos θ+

×
(

1 ± cθ�

4byvIsing cos θ+

)
≡ m(1 ± δ). (D24)

Clearly, it is the dimensionless number δ ≡ cθ�
4byvIsing cos θ+ that

dominates the topology around C±. If |δ| < 1, we find that all
four Dirac nodes generate masses of the same sign, resulting in
a total transfer of Chern number ±4 for one intersection point
P. Therefore the whole heterostructure gains a Chern number
12 with the C3z-rotation symmetry.

In terms of the original parameters, such a condition re-
duces to

v2t2 < 
kF v2
Isinga(ξ, ϕ)

√(
by

btopo
c

)2

− 1, (D25)

with

btopo
c ≡ 


√
sec2 ξ cos2 ϕ

2
+ sin2 ϕ

2
(D26)

and

a(ξ, ϕ) = tan ξ sin ξ

√
sec2 ξ cos2 ϕ

2
+ sin2 ϕ

2
.

As for the mass gap, in terms of original parameters, we have

m ≡ 2by


�
sin2 ξ sin

ϕ

2
cos ζ cos θ+

= sin 2
ϕ

2


2 sin2 ξ

vIsingkF θ

√
(by/
)2

sec2 ξ cos2 ϕ

2 + sin2 ϕ

2

− 1

≡ sin ϕ

2 sin2 ξ

vIsingkF θ

√(
by

btopo
c

)2

− 1. (D27)

Recall that ϕ is the Josephson phase difference, which we
do not require to be small; therefore ξ = arctan 2t

vIsingkF θ
. To

have a meaningful topological gap, fraction by/
 must be
large enough that the quantity inside the square root is positive
definite. This requirement is satisfied for the two candidates,
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NbSe2 and TaS2, that we proposed in the main text—which
support large in-plane magnetic fields that are far beyond the
Pauli limit.

d. Trivial nodes F and G

Finally, let us look at the intersection points F and G,
i.e., k ∼ F±. Still we can absorb the last term of (D16) by
redefining δkx. After that we get

H̃eff(F±) = vF δk̃xτz + vIsingδkyσz ∓ (
borigin

y sin ξ ∓ ty
) · σy

+ 
 cos
ϕ

2
· σyτy ± 
 cos ξ sin

ϕ

2
· σxτy

± 1

�
borigin

y 
 sin
ϕ

2
sin 2ξσzτx. (D28)

Without bothering to perform the projection one more time, as
we have done for C±, it is helpful to notice an effective (δkx �→
−δkx) mirror symmetry τy for the 
-linear-order effective
Hamiltonian H̃eff(F±). Therefore the total Chern number must
vanish for the effective theory of each intersection point (F
and G). The gap position can be easily solved from the first
line of (D28):

k̃x = ± 1

vF

√(
borigin

y sin ξ − ty
)2 − 
2 cos2 ϕ

2
,

with the gap size

m(F±) = 
 cos ξ sin
ϕ

2
. (D29)

As a side remark, if one includes the second-order pertur-
bation, it can be shown that the second-order gap is always
much smaller than the linear-order gap (D29) in the current
perturbative regime.

2. A different perturbative regime: C = 6 topological phases

In this section we briefly discuss the Chern number C =
6 topological phases in a different perturbative regime. We
start with the limit that the spin-independent hopping and
the twisting angle both vanish: t⊥ = 0, θ = 0. In addition,
we fix the spin-dependent hopping to be the same as the
Zeeman exchange field ty = by as is set in case (i) in the main
text.

The full linear-order k · p BCS Hamiltonian near point P
reads

Hbilayer
BCS (k) = vF kxτz + vIsingkyσz + cos

ϕ

2

σyτy

+ sin
ϕ

2

σyτxνz − vIsingkF θ/2σzνz + byσy

+ tyσyνx + tτzνx. (D30)

More precisely, our strategy is to first consider the situation
of ty = by ∼ 
 with t⊥ = 0, θ = 0, and then turn on a small
t⊥ � 
 and a small twisting angle vIsingkF θ � 
 as pertur-
bations. This exactly corresponds to the perturbative regime
in the numerical phase diagrams where C = 6 is realized.

One way to see the origin of the C = 6 phase is to realize
that when ty = by, only the νx = 1 subspace (a half of the

bands) experiences the magnetism captured by the two terms
byσy + tyσyνx. Therefore, even without detailed node analyses
as is done in the C = 12 regime, we know that, instead of four
topological Dirac nodes, in the present situation the Hamil-
tonian (D30) only gives two topological Dirac nodes when
ty = by is tuned up. After a small t⊥ � 
 and a small twisting
angle vIsingkF θ � 
 are turned on, these nodes receive a
topological mass gap, and the C = 6 phase is realized (due
to the C3z-rotation symmetry).

APPENDIX E: TWO-CENTER APPROXIMATION

Given two Bloch states |ψu
k,α〉 and |ψd

k′,β〉 from the top

and bottom layer with the crystal momentum k and k′ and
sublattice labels α and β, the two-center approximation [19]
tells us that the tunneling strength between these two states
takes the general form [63,64]

tαβ

k,k′ ≡ 〈
ψu

k,α

∣∣H ∣∣ψd
k′,β

〉 = 1

V

∑
G1,G2

δk+G1,k
′+G2

·e−iG2·τ2β · tαβ (k + G1) · eiG1· τ1α (E1)

if one expands the Block state with the Wannier basis for
each layer, i.e., tαβ (k − G2) ≡ 〈R1 + τ1|H |R2 + τ2〉 with τ1,2

being the sublattice vectors, and makes use of the Poisson
resummation formula [65]. Here, G1 and G2 are reciprocal
vectors of the top and bottom layer, respectively.

The allowed tunneling processes are constrained by the
delta function in (E1), while its concrete form mainly comes
from the two exponentials. More concretely, let us consider
the bilayer system with the top layer rotated by a small angle
θ/2, and the bottom layer rotated by −θ/2, and focus on
the region around the intersection point P: k = kt

P + F t and
k′ = kb

P + Fb with |F t,b| � 1. Since the real-space tunneling
t (rt − rb) is a function of the spatial separation of two Wannier
states

√
(rt − rb)2 + |d⊥|2, where interlayer spacing |d⊥| �

O(|rt − rb|), it should be flat enough in a large region of real
space (to the same order as the moiré pattern). Accordingly,
tαβ (kt

P + F t + G1) � tαβ (kt
P + G1) is a good approximation,

and the summation over the Brillouin zone (BZ) of each layer
in (E1) can be easily done.

(a) Since |F t,b| � 1, the Kronecker delta function in (E1)
is nonvanishing only if G1 and G2 differ by a small rotation.
Namely,

tαβ

F t,Fb = 1

V

∑
G1,G2

δG1,G2 · e−iG2·τ2β · tαβ (kP + G1) · eiG1·τ1α .

(b) Since the threefold intersection point P is not connected
with the reciprocal vectors for each layer (as a sharp contrast,
in twisted bilayer graphene the threefold K valleys are directly
connected with some reciprocal vectors—this is actually how
the moiré pattern enters into constraining the form of tun-
neling terms), the above summation only needs to count the
branch with G1 = G2 = 0.

As a result, we find that the tunneling strength only has a
trivial momentum dependence tαβ

F t,Fb = t .
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