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Band inversion is a known feature in a wide range of topological insulators characterized by a change of orbital
type around a high-symmetry point close to the Fermi level. In some cases of band inversion in topological
insulators, the existence of quasinodal spheres has been detected, and the change of orbital type is shown to
be concentrated along these spheres in momentum space. To understand this phenomenon, we develop a local
effective fourfold Hamiltonian that models the band inversion and reproduces the quasinodal sphere. This model
shows that the signal of the spin Hall conductivity, as well as the change of orbital type, are both localized on the
quasinodal sphere, and moreover, that these two indicators characterize the topological nature of the material.
Using K-theoretical methods, we show that the change of orbital type parametrized by an odd clutching function
is equivalent to the strong Fu-Kane-Mele invariant. We corroborate these results with ab initio calculations for
the materials YH3 and CaTe, where in both cases the signal of the spin Hall conductivity is localized on the
quasinodal spheres in momentum space. We conclude that a nontrivial spin Hall conductivity localized on the
points of change of orbital type is a good indicator for topological insulation.
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I. INTRODUCTION

The incursion of topological invariants in condensed-
matter physics has led to an enhanced classification of
quantum materials [1–4]. Among the insulators, the topolog-
ical insulators (TIs) have attracted significant attention due to
the presence of conducting surface states and because they
show efficient spin transport properties [5–8]. The presence
of these unique surface states, together with the topologi-
cal Fu-Kane-Mele invariant, have been used to characterize
these topological insulator phases from normal insulator sys-
tems [9–11].

The topological order of some insulators may be alterna-
tively deduced from the change of orbital type on the last
valence bands around a time-reversal invariant point (TRIM).
This feature is known in the literature as “band inversion,” and
it has been used extensively to classify TIs [4,12,13]. Band
inversion is assumed to be induced from band splitting due
to strong spin-orbit coupling (SOC) interaction from heavy
elements in materials [14–18]. In these systems, SOC can
have a significant impact on the band structure, and it induces
an opening gap between the conduction and valence bands,
thus changing the orbital type. This band inversion may be
coupled with a change in the inversion symmetry eigenval-
ues at the appropriate TRIM. It was this precise feature that
led to the establishment of the Fu-Kane-Mele invariant in
topological insulators with inversion symmetry as Bi2Se3,
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Bi2Te3, and Sb2Te3 [19,20]. However, some materials show
that the band inversion can appear spontaneously, or it may be
induced by strain, even without SOC interaction [12,21]. This
phenomenon can be observed in α-Sn, HgTe, and several half-
Heusler and chalcopyrite semiconductors, where the band
inversion is presented at a particular TRIM and independent
of the SOC interaction [22–26].

The type of band inversion that is of interest for this work
appears whenever there is a hybridization of the energy bands,
and the change of orbital type is concentrated on the k-states
where the energy gap is opened. This form of band inversion
is present, among others, on the trihydrides materials, and
it has been previously reported in Refs. [27,28]. On these
materials, a small energy gap is present, and the k-states with a
small energy gap form a two-dimensional sphere. In [28] these
spheres were called “pseudo Dirac nodal spheres” (PDNSs),
and here we have denoted them as “quasinodal spheres.” In the
pioneering work by Wang et al. [28], the possible formation of
PDNSs in crystal structures is reported on different symmetry
point groups through the study of band crossings with pairs
of one-dimensional (1D) irreducible representations. It is also
found that the PDNS phase is robust against the SOC effect, in
particular for the MH3 (with M = Y, Ho, Tb, Nd) and Si3N2

materials. In addition, the prediction of a realizable topologi-
cal state with exotic transport properties is suggested for these
PDNS prototypes [28]. The analysis of the topological nature
and the spin transport properties of the PDNS (or quasinodal
spheres) has remained an open question, and it has been one
of the motivations of the present work.

In this work, we study the mechanism underlying the band
inversion occurring through hybridization as it happens on
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trihydrides. We argue that the change of orbital type is con-
centrated on the quasinodal sphere, and moreover, that the
Fu-Kane-Mele invariant characterizing the TI property of the
material can be deduced from the nontriviality of the spin
Hall conductivity (SHC) and the localization of its signal on
the quasinodal sphere. This fact explains the two-dimensional
nature of the k-points where hybridization is happening, and
it shows how the Fu-Kane-Mele invariant relates to the SHC
and the change of orbital type.

The paper contains two main parts, namely the theoretical
analysis and the material realization. In the first part, we
analyze the mechanism of band inversion by using a four-
fold effective Hamiltonian for a system in which the orbital
character change is present, the quasinodal sphere is induced,
and both the signal of the SHC and the orbital type change
are concentrated on the quasinodal sphere. Here we show
explicitly how the valence states of the effective Hamiltonian
define an element in the appropriate K-theory, and how this
K-theoretical element matches the K-theoretical version of
the strong Fu-Kane-Mele invariant. In the second part, we in-
vestigate two possible materials, yttrium trihydride (YH3) and
calcium telluride (CaTe), which show an efficient spin/change
conversion generated from the band inversion on the quasin-
odal sphere.

II. BAND INVERSION

Let us consider a Hamiltonian with time-reversal symme-
try T and inversion symmetry I where spin-orbit coupling
is taken into account. Band inversion could be understood
as the change of orbital character on the last valence bands
around a time-reversal-invariant point (TRIM). This change
of character, whenever coupled with a change of eigenvalue
of the inversion operator, determines the strong topological
insulator nature of the material.

In the case of interest, the change of orbital type is oc-
curring on a sphere of points where the energy gap is small.
This two-dimensional sphere in momentum space with a small
energy gap (comparable to room temperature ∼ 25 meV) has
been coined a quasinodal sphere, generalizing the concept
of a quasinodal line that was presented by the first and third
authors in [29].

In what follows, we argue that band inversion due to hy-
bridization produces a quasinodal sphere on momentum space
where orbital characters are mixed, and moreover, where the
Fu-Kane-Mele invariant can be extracted. We first define a
local model for the low-energy effective Hamiltonian induc-
ing band inversion due to hybridization, next we calculate its
quasinodal sphere together with a 2 × 2 matrix information on
each point obtained from the change of orbital type on the va-
lence bands, and finally we relate these parametrized matrices
to the topological invariants obtained through K-theory.

A. Model Hamiltonian

Take the Pauli matrices τi and σ j in orbital and spin coor-
dinates, respectively, and consider the Hamiltonian

H (k) = M(k)τ3σ0 + A(k)τ1σ3 + B(k)τ2σ0, (1)

where

M(k) = D1 − m1k2
z − n1

(
k2

x + k2
y

)
, (2)

A(k) = D2kz + E2k3
z + F2

(
3k2

x ky − k3
y

)
, (3)

B(k) = D3
(
k3

x − kxk2
y

)
. (4)

This Hamiltonian preserves time reversal, inversion, and a
threefold rotation with matrices

T = iτ0σ2K, I = −τ3σ0, and C3 = eiτ0σ3
π
3 , (5)

respectively. Here, C3 is a threefold rotation around the z-axis.
The bands are doubly degenerate due to the presence of both
time reversal and inversion, and the energies of the bands are

±E (k) = ±
√

M(k)2 + A(k)2 + B(k)2. (6)

Tuning up the constants to locally model the band inversion
present in YH3 at the point �, we set the coefficients to the
following values:

D1 = 0.2, m1 = n1 = 18,

D2 = 0.1, E2 = F2 = D3 = 5. (7)

The energy bands of the Hamiltonian are presented in
Figs. 1(a) and 1(b) together with their projections on the first
orbital. There is no symmetry protecting energy crossings and
therefore the eigenstates hybridize producing an energy gap.
The change of orbital type is concentrated along the points
in momentum space whose energy gap is small, and they
define a two-dimensional sphere, as can be seen in Fig. 1(d).
This two-dimensional sphere is a quasinodal sphere, and it is
necessary for the band inversion that induces the Hamiltonian.
Note that the inversion operator I = −τ3σ0 is coupled with
the orbital types since it acts by −1 on the first orbital and by
+1 on the second orbital [see Fig. 1(a)]. The interdependence
of the inversion operator with the orbit type is what permits
us to distinguish the TI nature of the material by the change
of eigenvalues of the inversion. Nevertheless, the TI nature
of the material is kept while inversion is broken, thus the
change of orbital type, together with the SHC, is what allows
us to distinguish its topological nature. From Fig. 1(d), we see
that the valence bands are concentrated on the second orbital
inside the quasinodal sphere while concentrated on the first
orbital outside of it.

The change of orbital type of the valence bands along
the quasinodal sphere permits us to define a 2 × 2 unitary
complex matrix for each point on the nodal sphere. This
assignment produces a map from the sphere S2 to the Lie
group of special unitary matrices SU(2), which is equivari-
ant with respect to the inversion operator. Here the inversion
operator acts by the antipodal action on the sphere and by
multiplication by −1 on SU(2). This map can be understood
as the clutching map [in the words of Atiyah (Ref. [30], p.
20)] that defines the rank 2 complex vector bundle over the
three-dimensional sphere, which produces the nontrivial Fu-
Kane-Mele invariant. Let us postpone the construction of the
Fu-Kane-Mele invariant on the three-dimensional sphere to
the next section, and let us show how the matrices are defined.

Denote by ϕi
±(k), i ∈ {1, 2}, the four eigenvectors of the

Hamiltonian of Eq. (1) with the fixed parameters described in
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FIG. 1. Energy bands of the Hamiltonian of Eq. (1) with projection to the first orbital. (a) Top panel: valence and conduction bands on kx

coordinate axis with projection on the first orbital. The eigenvalues of the inversion operator at (0,0,0) on the valence bands are +1 and on the
conduction bands are −1. Bottom panel: sum of the spin Berry curvatures of the two valence bands �z

xy. (b) Top panel: closeup view of the
energy bands where the change of orbital type is concentrated. Bottom panel: closeup view of the sum of the spin Berry curvatures �z

xy. The
signal of the spin Berry curvature is concentrated where the change of orbital type occurs. (c) Valence band on the plane kz = 0 with projection
on the first orbital. (d) k-states with mixed orbital type (more than 3% of each orbital type, ky � 0) equivalent to the quasinodal sphere with
an energy gap of less than 0.05 eV. The color represents the magnitude of the projection on the first orbital. Inside the quasinodal sphere, the
states are concentrated on the first orbital, while outside they are concentrated on the second orbital.

Eqs. (7) satisfying the equation

H (k)ϕi
±(k) = ±E (k)ϕi

±(k). (8)

Note that the valence states ϕi
−(k) are well defined for all k

since the system is gapped, and therefore we may take the
vector projections of each valence state to the first and second
orbital, respectively. The eigenstates have four coordinates,

ϕi
− = (ϕi

−,1, ϕ
i
−,2, ϕ

i
−,3, ϕ

i
−,4) ∈ C4, (9)

and the projection on the first orbital takes the first two co-
ordinates and the projection on the second takes the last two.
Denoting as pr j the projection on the jth orbital, we have

pr1ϕ
i
− = (ϕi

−,1, ϕ
i
−,2), (10)

pr2ϕ
i
− = (ϕi

−,3, ϕ
i
−,4). (11)

Along the quasinodal sphere both projections are nontrivial
[we may take the sphere of radius ||k|| = 0.11; see Fig. 1(c)],
and therefore we may define the following matrix coefficients:

Ai j (k) = (−1)i

〈
pr1ϕ

i
−(k)

||pr1ϕ
i−(k)||

∣∣∣∣∣ pr2ϕ
j
−(k)

||pr2ϕ
j
−(k)||

〉
(12)

for i, j ∈ {1, 2}. Since the composition TI commutes with
the Hamiltonian, we may consider ϕ2

− to be the Kramers pair
of ϕ1

− satisfying the equation

ϕ2
− = TIϕ1

−. (13)

From Eqs. (5) we know that TI = −iτ3σ2K, and therefore
Eq. (13) implies the following equality:

(ϕ2
−,1, ϕ

2
−,2, ϕ

2
−,3, ϕ

2
−,4) = (−ϕ1

−,2, ϕ
1
−,1,−ϕ1

−,4, ϕ
1
−,3). (14)

Replacing Eq. (14) on the definition of the matrix coeffi-
cients of Eq. (12) we see that the matrix A is unitary with

A11 = A22, A12 = −A21, and its determinant is 1. Hence the
matrix A belongs to the Lie group SU(2) of special unitary
matrices.

If we take S2
r = {k : ||k|| = r} to be the quasinodal sphere

of the system [r = 0.11 for the Hamiltonian with parameters
in Eqs. (7)], we obtain a map

A : S2
r → SU(2), k �→ A(k). (15)

The explicit form of the inversion operator I = −τ3σ0

implies the following equation:

pr jϕ
i
−(k) = (−1) jpr jϕ

i
−(−k), j ∈ {1, 2}, (16)

which makes the map A equivariant with respect to the inver-
sion action, i.e.,

A(−k) = −A(k). (17)

Any equivariant map such as A produces the Fu-Kane-Mele
invariant since any two maps satisfying Eq. (17) are homo-
topic (Ref. [31], Lemma 3.27). In particular, the map A is
homotopic to the map C : S2

r → SU(2),

C(k) =
(

ikz kx + iky

−kx + iky −ikz,

)
, (18)

which is a simple clutching function that defines the rank 2
bundle with a nontrivial Fu-Kane-Mele invariant.

Another important feature of the quasinodal sphere of this
Hamiltonian is the fact that the signal for the spin Hall con-
ductivity �z

xy localizes around it. In Fig. 1(d), we have plotted
the points on which the orbital type is mixed, i.e., k-points
with more than 3% on each orbital,

0.03 < ||pr1ϕ
1
−(k)|| < 0.97, (19)

and we notice that these mixed states define the quasinodal
sphere. From Fig. 1(b) we notice that the signal of the SHC
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FIG. 2. Spin Berry curvature �z
xy at the Fermi level with respect to kx of the Hamiltonian of Eq. (1). The energy gap is widened by

setting the structural constants E2, F2, D3 of the Hamiltonian to the following values: (a) E2 = F2 = D3 = 250, (b) E2 = F2 = D3 = 50, and
(c) E2 = F2 = D3 = 5. The values of (c) are the original values from Eq. (7). The signal of the SHC is concentrated on the region where the
orbital type changes. Note that despite the fact that the difference of energies appears on the denominator of the Kubo formula of the SHC [see
Eq. (36)], the signal of the spin Berry curvature localizes whenever the change of orbit type occurs.

is localized on the k-points with mixed orbital type. This
feature could be appreciated on the materials YH3 and CaTe
in Figs. 3(d), 3(f) and 3(g), and Figs. 4(d), 4(f) and 4(g),
respectively.

The topological invariant that the Hamiltonian of Eq. (1)
defines can be better understood with the help of K-theory.
This is the subject of the next section.

B. K-theory, clutching functions, and sewing matrices

Restrict the Hamiltonian to a ball B centered at the origin,
which includes the quasinodal sphere. The valence eigenstates
define a rank 2 complex vector bundle over B that incorporates
the clutching function A. This bundle possesses the topo-
logical information to capture the Fu-Kane-Mele invariant,
but unfortunately it does not trivialize on the boundary of B
in order to define an appropriate element in K-theory [the

FIG. 3. (a) Ball stick model of the hexagonal crystal structure of YH3 material [39]. (b) Hexagonal Brillouin zone indicating the high-
symmetry points. (c) Position of electronic states in reciprocal space with an energy band gap of less than 0.01 eV. (d) Projected band structure
with H-s orbitals along the high-symmetry lines, where the symbols + and − indicate the inversion symmetry eigenvalues of +1 and −1,
respectively, at the � point. (e) Spin Hall conductivity (in h̄/e/S/cm). (f) Total density of states (DOS) as a function of Fermi energy. (g) Spin
Berry curvature �z

xy(k) [Å2] along high-symmetry lines added over the valence band. The �z
xy(k) signal is concentrated where the change of

orbital character occurs. It is noted there is a large SHC in the band gap where there are no electronic states. Spin-orbit coupling is included in
all the calculations and the Fermi level is set to zero.
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FIG. 4. (a) Crystal structure [39] and (b) cubic Brillouin zone indicating the high-symmetry points of the CaTe material (cubic phase).
(c) Total density of states (DOS) as a function of Fermi energy. (d) Projected band structure with Ca-p orbitals along the high-symmetry lines,
where the symbols + and − denote the inversion symmetry eigenvalues at the M point, +1 and −1, respectively. (e) C4z symmetry eigenvalues
resolved at the electronic bands along the X -M-R k-path. (f) Spin Hall conductivity (in h̄/e/S/cm) as a function of Fermi energy. It is noted
there is a strong SHC signal at the Fermi level, which is attributed to the quasinodal sphere and the Dirac point. (g) Spin Berry curvature �z

xy(k)
(Å2) along high-symmetry lines added over the valence band. The �z

xy(k) signal is concentrated where the change of orbital character occurs.
Spin-orbit coupling is included in all the calculations, and the Fermi level is set as zero.

Hamiltonian of Eq. (1) provided only a local model, and it was
not defined over a compact space]. To overcome this issue, we
will construct a rank 2 complex vector bundle over the sphere
S3 which models the structure of the valence eigenstates of
the Hamiltonian of Eq. (1), and we will show that this vector
bundle incorporates the Fu-Kane-Mele invariant for K-theory.
This bundle will model the K-theoretical properties of the
valence states, and it will permit us to calculate its topological
invariants.

Consider the three-dimensional sphere

S3 = {(t, k1, k2, k3)|t2 + ||k||2 = 1}, (20)

where S3\{(−1, 0)} could be thought of as the stereographic
projection of the ball B, and S3 is its one-point compact-
ification. Take ρ : [−1, 1] → [0, 1] a partition of unity on
the interval [−1, 1] with ρ|[−1,−1+ε) = 0 and ρ|(1−ε,1] = 1 for
small ε. Define the rank 2 vector bundle E ⊂ S3 × (C2)2 by
the equation

E = {[(t, k), (ρ(t )u, (1 − ρ(t ))C(k)u)] | u ∈ C2}, (21)

and define the actions of I and T as in Eqs. (5) by the
following formulas:

I · ((t, k), (u, v)) = ((t,−k), (−u, v)), (22)

T · ((t, k), (u, v)) = ((t,−k), (Ju, Jv)). (23)

Here J = iτ2K commutes with the matrices in SU(2) and
therefore the action of T is well-defined. Moreover, the par-
tition of unity ρ could be understood as the projection map
on the first orbital while (1 − ρ) could be understood as the
projection on the second.

When the action of I is disregarded, the relative bundle
[E ] − [S3 × C2] generates the only nontrivial class on the
appropriate relative K-theory groups. Choosing as base point
(−1, 0) and following the notation of Ref. [31] (Appendix C),
we have that

[E ] − [S3 × C2] ∈ K̃Q
0
(S3) ∼= Z/2, (24)

and therefore the bundle E induces the strong Fu-Kane-Mele
invariant. Here KQn+4 ∼= KRn, where KR∗ is Atiyah’s real K-
theory [32], and

K̃Q
0
(S3) ∼= K̃R

4
(S3) ∼= KR7(∗) ∼= KO−1 ∼= Z/2. (25)

Taking into account the involution I, the relative bundle
[E ] − [S3 × C2] gives the generator of the relative equivariant
symplectic K-theory groups:

[E ] − [S3 × C2] ∈ K̃Sp
0
〈I〉(S

3) ∼= Z. (26)

Here the composition IT defines the quaternionic structure
on the fibers of the bundle, and I induces a Z/2-equivariant
quaternionic action on the bundle. The groups K̃Sp

0
〈I〉(S

3) are
the reduced Z/2-equivariant symplectic K-theory groups of
the sphere S3 [33]; cf. [34]. The restriction map to the point
(1, 0) counts the number of quaternionic Z/2-representations
with ±1-eigenvalues:

K̃Sp
0
〈I〉(S

3) →Z−1 ⊕ Z+1
∼= KSp0

〈I〉({(1, 0)}), (27)

E �→1 ⊕ 0, (28)

where Z−1 counts the nontrivial ones and Z+1 counts the triv-
ial ones. Since this restriction map is injective, the topological
class of the bundle can be determined by the eigenvalues of I
on the fixed point set of the action. Since E has the nontrivial
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quaternionic Z/2-representation on the fixed point (1, 0) and
the trivial one on (−1, 0), the strong Fu-Kane-Mele invariant
can be determined by the parity of the number of pairs of
complex −1 eigenvalues on the fixed points of the I action;
this is the main result of Fu et al. [9].

The restriction of the bundle E to the sphere of points with
t = 0 permits us to define the transformation from the first
to the second orbital, and this transformation is precisely the
function C presented in Eq. (18). This clutching function is
shown in Ref. [31] (Corollary 4.1) to induce the Fu-Kane-
Mele invariant.

The bundle E models the topological structure of the va-
lence states of the Hamiltonian of Eq. (1), and it induces
the topological generators in both the equivariant symplectic
K-theory and the quaternionic K-theory of involution spaces.
Hence the bundle E models the topological nature of the band
inversion, and it induces the strong Fu-Kane-Mele invari-
ant [9]. The change of eigenvalues of the inversion operator
on the fixed points on the sphere S3 is only possible whenever
the clutching function C is defined on the sphere S2 and it is
odd [Eq. (17)].

The relation of the clutching functions with the SHC can
be seen in Fig. 2. The signal of the SHC concentrates on the
points where the change of orbital type occurs despite the size
of the energy gap. We can therefore conclude that not only
do the k-points with mixed orbital type make the quasinodal
sphere, but moreover the signal of the spin Hall conductivity
localizes on this quasinodal sphere.

We can go one step further and we may calculate the
sewing matrices of the inversion and the time-reversal oper-
ator. For this we need to take a trivialization of the bundle E
(since any rank 2 complex bundle over S3 is trivializable), and
we may write the inversion and the time-reversal operator on
the new basis. Now we have E = S3 × C2, and the actions
become

I · ((t, k), u) = ((t,−k), (tId + C(k))u), (29)

T · ((t, k), u) = ((t,−k), (tId + C(k))Ju). (30)

For (e1, e2) the canonical basis on C2, the sewing matrices
for the operator P on E are defined by the equation

G(P)i j (t, k) = 〈ei|P(t, k)|e j〉. (31)

For the inversion and the time-reversal operator, the sewing
matrices can be described as follows:

G(I )(t, k) = tId + C(k), (32)

G(T )(t, k) = [tId + C(k)]J . (33)

In both cases, the sewing matrices define maps from S3 to
SU(2) whose degree is ±1. From [35–37] we know that the
parity of the degree of those maps recovers the Chern-Simons
axion coupling term

θ = 1

4π

∫
BZ

dk3εαβγ Tr

(
Aα∂βAγ − 2i

3
AαAβAγ

)
. (34)

Since the parity of the degrees of both G(I ) and G(T ) is
odd, we know that θ = π . Hence we see the topological nature

of the trivial complex bundle E whenever the action of either
I or T is defined as in Eqs. (29) and (30).

Note that whenever t = 0, both the clutching function of
the bundle of Eq. (21) and the sewing matrices of the inversion
operator agree. The topological nature of the bundle could
be theoretically deduced then from either one. Unfortunately,
both approaches are not well suited for computational cal-
culations. On the one hand, the definition of the clutching
functions is not gauge-invariant, and on the other, the calcula-
tion of the Chern-Simons coupling term has been elusive up
to now for real materials [38]. We hope in the future that new
methods are developed to calculate both.

III. MATERIAL REALIZATION

A. Yttrium trihydride

The yttrium trihydride (YH3) compound can crystallize in
a hexagonal structure with space group P-3c1 no. 165 [40], as
shown in Fig. 3(a). This space group contains 12 symmetry
operations that can be generated by the rotation C3z, the screw
rotation S2(x+y), the inversion I, and the time-reversal T sym-
metry operations. The presence of both I and T symmetries
indicates that energy bands are doubly degenerate along the
full Brillouin zone (BZ). The BZ for this material is a hexago-
nal unit cell in reciprocal space with high-symmetry points as
indicated in Fig. 3(b).

Based on ab initio calculations, we have obtained the
electronic band structure of the YH3 material, and we have
confirmed the appearance of the quasinodal sphere centered
at the � point. The band structure along the high-symmetry
lines, including the spin-orbit coupling interaction, is shown
in Fig. 3(d). It should be noted there is a hybridization band
gap between the valence and conduction bands for all k-
paths that connect the � point with any other high-symmetry
point. The hybridization band gap is originated by the SOC
interaction, and it is extended along the quasinodal sphere in
reciprocal space. Symmetry analysis indicates that no crystal
symmetry protects a possible nodal sphere or line whenever
SOC is included. To confirm the existence of the quasinodal
sphere, we carried out a systematic search of the k-points in
the BZ where almost zero band gaps between the occupied
and unoccupied bands are located. To visualize the quasinodal
sphere, we have plotted the k-points in the BZ with an energy
band gap of less than 0.01 eV in Fig. 3(c).

The orbital-resolved H-s projection is also shown in the
band structure of Fig. 3(d). The figure shows that these or-
bitals dominate the valance band close to the Fermi level. In
addition, a band inversion (change of the orbital character) is
noted around the � point, which is occurring on the surface
of the quasinodal sphere, as was predicted by the k · p model
presented in the previous section.

We have also calculated the inversion symmetry eigen-
values on all TRIMs, and we have observed the change of
eigenvalues from the valence to the conduction bands at the
� point [symbols + and − in Fig. 3(d)]. This change of
eigenvalues indicates that the material can be considered a
topological insulator with a tiny band gap spread along the
quasinodal sphere. We have corroborated the topological in-
sulator property of this material by using the Wilson loop
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method in order to find the Z2 invariants for the six ki planes
in the BZ. Our calculations show that for the ki = 0 planes
the invariant is 1, while for the ki = π planes the invariant
is −1 (here i = x, y, z). These results indicate the existence
of the strong Z2 Fu-Kane-Mele topological index in the YH3

material.
As is well known, topological insulators are materials that

can provide a platform to reach a large spin Hall conductivity
(SHC) signal [7,8]. For the case of YH3, we have plotted the
SHC as a function of Fermi level in Fig. 3(e). In Fig. 3(g)
we found a strong SHC response at the Fermi level, well
distributed all around the quasinodal sphere. Note that the
shape of the signal of the SHC along �-M matches that of
the model Hamiltonian presented in Fig. 1(a). This particular
feature has also been observed in 2D topological insulators,
where the k-resolved SHC signal is distributed around the
� point [41]. Furthermore, it is important to highlight that a
strong SHC signal is observed in the absence of energy states
at the Fermi level, as can be observed in the total density
of states calculation in Fig. 3(f). These results indicate that
hydride materials can be promissory materials to efficient
spin/charge conversion by means of the SHE [42].

B. Calcium telluride

Calcium telluride (CaTe) is another material with quasin-
odal sphere realization due to band inversion. CaTe is a
nonmagnetic material whose space group is Pm-3m no. 221
and it has 48 symmetry operations. This symmetry group can
be generated by the operations C2z, C2y, C2(x+y), C3(x+y+z), I,
and T . The cubic crystal structure and Brillouin zone for the
CaTe compound are shown in Figs. 4(a) and 4(b), respectively.
In Fig. 4(d) we present the electronic band structure with
the orbital-projected Ca-p states. We note a band character
inversion between the valence and conduction bands around
the M point. The symbols + and − in Fig. 4(d) indicate a
reversal of the inversion symmetry eigenvalues at the M point,
which indicates a topological response on this compound.

We have also found a Dirac point (DP) along the M-R
k-path that can be observed in the band structure of Fig. 4(e).
However, a tiny band gap is observed along any k-path start-
ing from M when the SOC is taken into account. The stability
of the DP is confirmed by the projection of the C4x rotation
symmetry eigenvalues at the two bands that generate the DP as
shown in Fig. 4(e). The eigenvalues of C4x are the fourth roots
of −1, and by Kramer’s rule they come in pairs: (ei π

2 , e−i π
2 )

and (ei 3π 2, e−i 3π
2 ). The trace of the associated matrix permits

us to detect the type of corepresentation at the high-symmetry
line, and these traces are

√
2 and −√

2, respectively. When-
ever the traces differ, it means that the bands have different
corepresentations of the group generated by C4x and IT and
therefore the bands cannot hybridize [43]. In this particular
case, the traces of the operator C4x are different and therefore
the DP is protected by the fourfold rotation symmetry.

The procedure for finding the quasinodal sphere was also
applied in the CaTe case. The quasinodal spheres are centered
at the M points, and the signal of the k-resolved spin Berry
curvature peaks at the k-points where the quasinodal sphere
is located, as shown in Fig. 4(g). We found that the SHC
response of the quasinodal sphere arises from the band inver-

FIG. 5. Top four panels: dynamical stability of cubic CaTe under
high pressure. Parts (a) and (c) correspond to phonon dispersion
curves at 30 and 50 GPa, respectively. Electronic band structure at
the same given pressures is contained in panels (b) and (d) with
preserved band inversion at the � point. The colors indicate the
eigenvalues of the fourfold rotation C4x . Bottom two panels: CaTe
with a small (ε = 3%) diagonal distortion, thus breaking the fourfold
symmetry. (e) Electronic band structure with gapless phase; note that
there is no DP due to the broken fourfold symmetry. (f) Energy-
resolved spin Hall conductivity. The SHC arises mainly from the
electronic bands that generate the quasinodal sphere, and it survives
despite the absence of the DP.

sion around the M point, as illustrated in Fig. 1(b) obtained
from the k · p Hamiltonian model of Eq. (1). In the case of
CaTe, this feature is noticed, namely that the regions near
the quasinodal sphere (M-point centered) retain locally large
k-resolved SHC [see Fig. 4(g)].

Topological insulators share a strong spin Hall conductiv-
ity, however the presence of a Dirac point is not always an
indication of SHC. We have found a large signal of the SHC
at the Fermi level for the CaTe as shown in Fig. 4(f), where
the spin Hall conductivity as a function of Fermi energy is
presented. We can notice that the SHC signal is strong and
coincides with the energy range of the quasinodal sphere and
the DP. However, it is not clear whether the signal of the
SHC comes from the quasinodal sphere, the DP, or both. To
distinguish the contribution to the spin Hall conductivity by
the DP and the quasinodal sphere, we have applied a small
(3%) diagonal distortion on the cubic CaTe. This strain de-
formation transforms CaTe from the cubic (Pm-3m) to the
rhombohedral (R-3m) structure. The deformation preserves
the symmetry generators: C2(x+y), C3(x+y+z), I, and T , but it
breaks the C4x symmetry. The breaking of the C4x symmetry
leads to a band gap, and a subsequent absence of the DP is
noticed [see Fig. 5(e)].
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The rhombohedral structure of CaTe preserves the band
inversion, the reversal of the inversion symmetry eigenval-
ues, and the quasinodal sphere around the M point. For this
rhombohedral phase, there is a topological insulator behavior
with a small band gap, similar to the YH3 case and the four-
state Hamiltonian model of Eq. (1). The calculation shows a
nonzero SHC in the band gap, which emerges from the band
inversion at the quasinodal sphere as shown in Fig. 5(f) and
corroborated by the k · p model [Fig. 1(b)].

The CaTe crystalline phase displayed in Fig. 4(a) has been
experimentally known to be dynamically stable for pressures
above 33 GPa [44]. This has also been corroborated by our ab
init io calculations [see Figs. 5(a) and 5(c)]. We can see that the
DP along the M-R k-path is preserved even when an isotropic
pressure is applied [see Figs. 5(b) and 5(d)]. This result is ex-
pected since the C4x symmetry, band inversion, and quasinodal
sphere are not affected by an isotropic compression.

Our results suggest that CaTe and YH3 could both display
large spin Hall angles for practical applications since they
show small longitudinal conductivities (low density of states)
at the Fermi level. The SHC signal is concentrated at the
hybridized band regions, as was also found by Lau et al. [45].

C. Computational methods

For YH3 and CaTe materials, we have carried out ab
init io calculations within the density-functional theory with
a uniform k-mesh in the Brillouin zone of 13 × 13 × 11 and
14 × 14 × 14, respectively. The energy cutoff was taken to be
520 eV and the exchange-correlation contribution to the total
energy treated within the PBE parametrization [46], as imple-
mented in the Vienna ab initio simulation package (VASP) [47].
Projected band structures were plotted using the PYPROCAR

program [48]. The symmetry eigenvalues along the high-
symmetry lines were calculated using the IRREP code [49].
To estimate the spin-transport properties, we employed the
WANNIER90 code [50,51] to build a Wannier Hamiltonian. The
intrinsic spin Hall conductivity (SHC) was evaluated by inte-
grating the spin Berry curvature on a dense 240 × 240 × 240
grid in the first Brillouin zone, using the LINRES code [52]. In
this model, the SHC can be written as

σ z
xy = −e2

h̄

∑
n

∫
BZ

dk3

(2π )3
fn(k)�z

n,xy(k), (35)

where fn(k) is the Fermi-Dirac distribution and �z
n,xy(k) is

the spin Berry curvature for the nth band. The spin Berry
curvature for the nth band can be calculated using the Kubo

formula:

�z
n,xy(k) = −2h̄2Im

∑
m �=n

〈n, k| ĵz
x|m, k〉〈m, k |̂vy|n, k〉
(εn,k − εm,k )2 , (36)

where |n, k〉 are the Bloch functions, k is the Bloch wave
vector, εn,k is the electronic band energy, v̂i is the velocity
operator in the i direction, and ĵz

x= 1
2 {v̂x, ŝz} is the spin-current

operator.
Vibrational frequencies have been calculated within the

perturbation theory method as implemented in VASP using
the PHONOPY code [53] to obtain the force constants and
vibrational frequencies. In this case, we have used a 2 × 2 × 2
supercell with an 8 × 8 × 8 q-mesh to guarantee convergence
up to 0.1 cm−1.

IV. CONCLUSIONS

Band inversion in topological insulators induced by hy-
bridization of the energy bands produces quasinodal spheres.
The orbital-type change on the bands occurs on the quasinodal
sphere, and the matrix information on how this change is
happening encodes the strong Fu-Kane-Mele invariant. The
signal of the SHC is localized where the orbital type changes,
and therefore the signal is strong close to the Fermi level,
where hybridization occurs.

The appearance of quasinodal spheres on materials with
band inversion due to hybridization is therefore enforced.
The change of orbital type must occur in a two-dimensional
sphere, otherwise the Fu-Kane-Mele invariant is forced to be
trivial.

The band inversion on YH3 and CaTe is confirmed and the
SHC is calculated in both materials. The signal is localized
on the quasinodal sphere, and, by removing the Dirac point of
CaTe by strain, it is shown that in both cases the signal of the
SHC is localized on the quasinodal spheres where the orbital
type changes. This result is expected to hold in materials with
a similar type of band inversion as the trihydrides (XH3, X =
Y,Gd,Ho,Tb,Nd) and Si3N2.
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