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Mana and thermalization: Probing the feasibility of near-Clifford Hamiltonian simulation
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Quantum hydrodynamics is the emergent classical dynamics governing transport of conserved quantities

in generic strongly interacting quantum systems. Recent matrix product operator methods [1,2] have made
simulations of quantum hydrodynamics in 141D tractable, but they do not naturally generalize to 241D or
higher, and they offer limited guidance as to the difficulty of simulations on quantum computers. Near-Clifford
simulation algorithms are not limited to one dimension, and future error-corrected quantum computers will likely
be bottlenecked by non-Clifford operations. We therefore investigate the non-Clifford resource requirements
for simulation of quantum hydrodynamics using mana, a resource theory of non-Clifford operations. For
infinite-temperature starting states, we find that the mana of subsystems quickly approaches zero, while for
starting states with energy above some threshold the mana approaches a nonzero value. Surprisingly, in each
case the finite-time mana is governed by the subsystem entropy, not the thermal state mana; we argue that this is
because mana is a sensitive diagnostic of finite-time deviations from canonical typicality.
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I. INTRODUCTION

Quantum hydrodynamics—the long-wavelength, long-
time dynamics governing transport of conserved quantities—
is believed to be efficiently simulable on classical computers,
even for strongly interacting systems. If a system’s Hamilto-
nian satisfies the eigenstate thermalization hypothesis (ETH)
[3-5], it will rapidly reach local thermodynamic equilib-
rium. After that time, local observables are well described
by a Gibbs state with spatially varying thermodynamic poten-
tials. Since hydrodynamics is presumptively local [6,7], one
expects a local approximation to be enough to compute long-
time dynamics. References [8,9] offer quantitative arguments
that this is the case.

Recent work has built on these conceptual insights to create
workable numerical methods in one dimension. The gener-
alized relaxation time approximation [10] treats integrable
models perturbed by small integrability-breaking terms; it
replaces the detailed effect of the perturbation by a local
phenomenological collision integral with a single parame-
ter, a relaxation time. Near-equilibrium transport properties
are accessible in nonequilibrium steady-state setups [11-15].
For unitary quench dynamics far from integrability, there is
a new generation of matrix product operator methods, den-
sity matrix truncation (DMT) [1] and dissipation assisted
operator evolution (DAOE) [2]. These methods assume that
nonlocal information is unimportant and can be discarded
if one proceeds carefully—but so far, the only practical use
of either of these methods has been for a model close to
free-fermion integrability [16]. All these approaches share
two key assumptions: that local approximations to the full
state simple, in some sense, and that capturing those local
properties is enough to simulate the system’s dynamics (at
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least in some hydrodynamical regime). These matrix product
operator methods are restricted to one-dimensional systems.

But the insights that led to these methods are not limited to
one-dimensional physics. In two (or more) spatial dimensions,
ETH Hamiltonians will still locally thermalize, and one ex-
pects that Gibbs states will still have compact representations.
The questions, then, are: What data structures and algorithms
are suitable for higher-dimensional mixed-state dynamics?
How computationally intensive is the early-time complexity
hump? And how computationally intensive is the long-time
dynamics?

The effective model of Ref. [8] offers one route to
higher-dimensional simulations. In that model, one explicitly
represents the small-diameter components of an operator (or
density matrix) and replaces dynamics in the large-diameter
subspace by decay into a vacuum. This effective model
generalizes naturally to more than one dimension and has
tractable Hilbert space dimension. But checking convergence
is challenging and the effective model requires nontrivial
physics—the rate of long-operator decay rate—as input. (The
bulk of Ref. [8] was devoted to computing that decay rate.)

We propose that near-Clifford algorithms and data struc-
tures offer a promising avenue for simulations of hydrody-
namics in more than one dimension. Clifford circuits are
efficiently simulable on classical computers [17-19] because
they map each Pauli operator to a single other Pauli operator.
Pure Clifford circuits have been used to construct analytically
tractable ETH Hamiltonians [20] and related quantum cellular
automaton models have been used to study hydrodynamics
[21,22]. Circuits with few non-Clifford gates (or many gates
that are nearly Clifford) are also classically simulable [23-30].
But we wish to do more than build model systems: we wish to
simulate any given (ETH) Hamiltonian, in any dimension.

©2022 American Physical Society
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At first sight, Clifford or near-Clifford circuits are ill-suited
to simulating hydrodynamics. They can map any particu-
lar input state to at most a finite number of states. (In
particular, they map the computational basis state only to
stabilizer states.) By contrast, the orbit of an initial state
under evolution generated by an ETH Hamiltonian traces out
a continuous manifold. Moreover, capturing chaotic growth
in OTOCs requires many non-Clifford gates [31]. But if we
satisfy ourselves with nonunitary local approximations to the
system’s dynamics—as we do in using DMT, DAOE, or the
relaxation-time approximation—a path opens up. Stochastic
Clifford circuits (that is, averages over an ensemble of Clifford
circuits) can simulate many mixed states, in fact, every state
in the convex hull of the stabilizer states; one might construct
such an ensemble by using randomized Trotter decomposi-
tions or similar techniques [32-36].

Each algorithm for near-Clifford simulation has classical
computational complexity exponential in some measure of
the distance of the circuit from a pure Clifford circuit. One
can estimate these circuit measures by computing so-called
magic monotones [37] for the states produced by the circuits.
A magic monotone is a function on a quantum state that is
nondecreasing under Clifford gates and certain other reason-
able operations; consequently, it lower bounds the number of
non-Clifford operations required to produce the state. Many
magic monotones exist [27,37—41].

We ask under what circumstances are local approximations
to hydrodynamics accessible to near-Clifford simulations? We
use the mana [37] of subsystem reduced density matrices as
a proxy for that accessibility. We choose it in part because it
is closely related to the quantity controlling the difficulty of
the Monte Carlo method of Ref. [23], and in part because it
is computable without solving a minimization problem. We
consider time evolution of a stabilizer state and measure the
mana of local reduced density matrices as a function of time.
We find that local reduced density matrices display a clear
complexity hump (Fig. 1): For times ¢ < £~!, the local energy
scale [42], these local subsystems rise to nearly maximal mana
while for ¢ > e~! the mana decreases, broadly following the
mana of a Haar state with the appropriate entropy. For finite-
temperature states, we additionally notice that the subsystem
mana deviates from the Gibbs state mana (which is zero
for sufficiently small inverse temperature [43]). We attribute
this to mana’s sensitivity to small deviations from canonical
typicality.

The paper is organized as follows. In Sec. II, we describe
our model (a variant of the g = 3 Potts model), our procedure
for choosing initial states, and our numerical methods, and we
briefly describe mana. In Sec. III, we treat the evolution of
mana for infinite-temperature states, while in Sec. IV we treat
the evolution of mana for finite-temperature states.

II. MODEL, INITIAL STATE, AND METHODS
A. Model

Studies of thermalization and hydrodynamics typically use
a transverse-field Ising model with additional longitudinal
field. Because mana is only defined for qudits of odd dimen-
sion [44] we performed much of this work before the Rényi
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FIG. 1. Subsystem mana in real-time evolution of infinite-
temperature starting states on a chain of 50 sites. Bold lines show
the average over 20 random starting states (cf. Sec. II B), faint lines
show trajectories of individual states, and dot mark points at which
we measure the mana with time step dtr = 1/8. We use TEBD (cf.
Sec. IIC). In each case, we see a rapid rise to approximately the
average mana of a Haar state (black line in bottom plot) due to local
thermalization of the subsystem, followed by a slow decay as the
subsystem entangles with the rest of the system.

entropy of magic [41] was defined for mixed states. Going
forward, we suggest others use that monotone. We cannot use
that model. Instead, we use the analogous qutrit model

H=-J)[Z]Z;+Hc]—h Y [X;+X]]
J J
—h. Y [Z;+Z]1. )
J

X=Y7_,im+1 mod 3)m| and Z=
S e X3 mYm| are the clock and shift operators.
We take J = h, = h, =1 and system size L = 50, except
where otherwise specified.

This model is ETH for most parameter values. Even with
h, = 0, where this model becomes the Z; Potts model, it is
only integrable at the critical point J = h, [45-49]. We add
the longitudinal-field term to robustly break integrability, even
at J = h,, and the Z3 on-site rotation symmetry, which will
lead to more complicated hydrodynamics.

To check that this Hamiltonian is in fact ETH, we measure
the eigenstate gap ratio. The eigenstate gap ratio is

<min(8av 8a+l) >
rio=\——mmmmm),

max(Sa ’ 8a+1 )

where

(@)

0 := Eqy1 — E,, where the average is over eigenstates. We
additionally average over symmetry sectors. We plot r as a
function of &, for a system of L = 9 sites in Fig. 2; we find that
the system has GOE level-spacing statistics for 0.1 < h, <
1.0, indicating that it satisfies the ETH. (In the limit &, > 1,
the uniform field term dominates; this will lead to a gap ratio
r = 0 due to degeneracies. Similarly, in the limit #, < 1, the
model regains it’s Z3 symmetry, again leading to degeneracies
and a gap ratio r = 0. In each case, the model presumably
remains ETH for sufficiently large system sizes.)
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FIG. 2. Gap ratio of Eq. (2) for the model Eq. (1) with h, = J =
1, as a function of A, on a system of L = 9 sites. For 0.1 < i, < 1.0,
the model has the GOE gap ratio r & 0.53 (upper dotted line); for
h, <« 0.1, itdrops below the Poisson gap ratio r = 0.39 (lower dotted
line).

Despite the fact that we ultimately seek two-dimensional
algorithms, we use the one-dimensional model Eq. (1). We
do so precisely because there already exist data structures and
algorithms—matrix product states (MPS) and time-evolving
block decimation (TEBD)—for one-dimensional systems. To
use an effective model like Ref. [8] risks assuming our con-
clusion.

B. Initial state

We wish to study the effect of local thermalization on sub-
system mana. To do so cleanly, we choose each of our initial
states to be the product of on-site stabilizer states (eigenstates
of the single-site generalized Pauli matrices) picked to give
constant energy density. We use a product state because we
expect that the trajectory of a subsystem’s mana will be inti-
mately tied to the way it entangles with the rest of the system.
(Additionally, choosing our initial state to be a product state
keeps our matrix product state bond dimensions tractable for
slightly longer.) We use stabilizer states, which have zero
mana, so we can watch the initial growth of the mana, as well
as its transfer from short-range degrees of freedom to long-
range degrees of freedom. We choose constant initial energy
density because we do not wish to confuse the effects of local
thermalization with the those of long-time hydrodynamical
relaxation (which will drive the system’s dynamics after the
initial thermalization).

Our requirement that the energy density be spatially ho-
mogeneous strongly constrains our initial state and indeed the
energy densities we can choose. Figure 3 illustrates the energy
densities we can achieve with the product of two stabilizer
states. The energy density is a two-site operator—call the
energy density on sites j, j + 1 by

€jjt1 = — J[Z]TZ]‘-H +H.cl]
— 3h[(X; + Xj41) + Heel]
+ 1h1(Z; + Zjs1) + Hel (3)

for 1 < j <L —1. (One must take care at the ends of an
open chain, i.e., j = 1,L — 1.) We can construct a state at
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FIG. 3. Energy of pairs of single-qutrit stabilizer states in the
Hamiltonian Eq. (1) with J/ = h, = h, = 1. The energy for the stabi-
lizer product pair is defined as the bond term for the pair plus half the
single-site terms from each qutrit. X,, and Z, label eigenstates of the
shift operator X and the clock operator Z, respectively, while S, are
eigenstates of the other on-site generalized Pauli operators ZX, ZX>.

a particular constant energy density by choosing the states
[¥1), [¥2) on sites 1 and 2 to have that energy density, and
then choosing the site on each successive site j > 2 such that
€j_1,j = €1,2. This state selection fixes the energy density on
the L — 1 pairs of neighboring sites but fails to account for the
extra contribution of half the on-site field therms for the first
and last site of the chain. The initial state is only accepted if
the total energy is L times the specified local energy density.
This allows for some fluctuations in energy density at the ends
of the chain arising from the extra on-site field contributions
as long as these fluctuations do not alter the desired total
energy. Only a discrete set of energy densities is possible, and
many possible energy densities admit only one state. If there
is only one state in a manifold, we cannot average to avoid
nongeneric effects. We therefore restrict ourselves to energy
density manifolds with at least two states per bond; this gives
a manifold with N' > 2L~! possible states. Figure 3 illustrates
the possibilities for J = h, = by = —1.

We give some further details of the initial state configura-
tion in Appendix A.

C. Method

The majority of our simulations use time evolution with
TEBD [52,53] with a second-order Trotter decomposition. We
find that Trotter step dt = 1/16 and bond dimension y = 512
give good convergence for ¢ < 6 as measured by the half-
chain entanglement entropy; the subsystem mana is converged
for # < 8. We indicate the regime 6 < ¢ < 8 by dotted lines
and lower color saturation. Appendix C gives details of our
convergence testing.

D. Quantity of interest

We measure mana M [37]. In this section, we give a very
brief précis of the relevant properties of mana. In Appendix B,
we describe how to calculate it. For slightly less brief précis
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from a similar point of view, see Refs. [54,55]; for more
details, see Refs. [37,56,57].

Mana is a magic monotone, meaning that it is nonincreas-
ing under Clifford unitaries, partial traces, and (on average)
stabilizer measurements. For a pure state, the mana is zero if
and only if the state is a stabilizer state [56,57]. Classical sta-
tistical mixtures of stabilizer states likewise have zero mana,
but some zero-mana mixed states are not statistical mixtures
of stabilizer states.

Mana is multiplicative, in the sense that for two density
matrices o1, -

M(p1 ® p2) = M(p1) + M(p2). “

One therefore expects it to be extensive for states with short-
range correlations. In fact, on a system of ¢ qudits, each with
dimension d, one can bound

M(p) < 3(£Ind = S»), )

S is the second Rényi entropy of the state p, and the mana of a
Haar-random state is extensive with subextensive corrections
[54].

Mana is computed in terms of the Wigner norm W:

M(p) =InW(p).

Sometimes it is convenient to work in terms of this Wigner
norm, which shares the properties of mana, suitably translated.

III. MANA AT INFINITE TEMPERATURE

Consider a length-£ subsystem of our chain (we consider
the ¢ most central sites). The evolution of the subsystem
mana is governed by the competition between two effects. The
subsystem’s internal dynamics locally randomize the state
for a fast rise in the mana density. At the same time, the
coupling between the subsystem and its complement steadily
increases the subsystem’s entropy: Since the mana is bounded
by Eq. (5), this ongoing increase of entanglement must de-
crease the mana. For short times the first effect dominates
and the mana rapidly rises; for longer times, the second domi-
nates and the mana must slowly decay. In the long-time limit,
£In3 — S, = 0 (up to a Page correction, which will be small
for £ « L/2), so the subsystem mana must be

lim M =0.

=00
The system as a whole, by contrast, is in a pure state. One
expects this pure state to be essentially a random state in the
microcanonical ensemble, and so to have Haar-like magic

M~ L3 —nn/2). (6)

This whole-system saturation was observed for a related
model in Ref. [58].

In Fig. 1, we show the subsystem mana as a function of
time. The subsystems consist of the £ central sites of the MPS
state. We clearly see both effects—rapid initial rise due to
local randomization, followed by decay to the infinite tem-
perature value M = 0.

The bound Eq. (5) depends solely on the entropy deficit,

A=¢CInd—5; 7
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FIG. 4. Subsystem mana in real-time evolution of infinite-
temperature starting states as a function of entropy deficit A(¢) =
£In3 — S,(¢), with S, the subsystem second Rényi entropy (cf.
Fig. 1). Bold lines show the average over 20 random starting states
(cf. Sec. 11 B), faint lines show trajectories of individual states, and
dot mark points at which we measure the mana with time step
dt = 1/8. In each case, we see a rapid rise to approximately the
average mana of a Haar state, due to local thermalization of the
subsystem, followed by a slow decay as the subsystem entangles with
the rest of the system.

one is entitled to ask how close the subsystem mana comes to
saturating that bound. Moreover, one might expect the decay
of the subsystem mana to track the mana of a subsystem of a
Haar-random state. For a large Hilbert space dimension, the
Wigner norm of a subsystem of a Haar state is controlled
solely by the entropy deficit, and given by [54]

MW itaar = V2/7 (0 /e 2 ferf(u/ov/2),  (8)

where

For A 2 Inm /2, the mana resulting from this expression be-
comes [54]

M= J[A —Inm/2]. ©)

In Fig. 4, we plot the subsystem mana against the entropy
deficit A. Each subsystem starts at zero entropy S,, hence
large entropy deficit A, and moves right to left to a smaller
entropy deficit. (We plot the entropy as a function of time in
Appendix D.) Dot mark points where we measure the mana,
every time step dr = 1/8. We see again a fast early rise and
a long-time decay, matching the Haar prediction based on
Eq. (8).

At intermediate times, the state mana undershoots the Haar
prediction. This is because different parts of the subsystem are
not fully entangled. Heuristically, the subsystem behaves like
a tensor product of Haar states on smaller subsystems. The
mana is the sum of the manas of these smaller subsystems
[cf. Eq. (4)], each of which comes with a Inw /2 correction
from Eq. (9). Once the system is fully (internally) entangled,
one can think of it as a single Haar state with a single In 7 /2
correction: this gives the black line in Fig. 4.

125130-4



MANA AND THERMALIZATION: PROBING THE ...

PHYSICAL REVIEW B 106, 125130 (2022)

inverse temperature 3 = 0.135

25

inverse temperature f = — 0.096

(=2

L5 L5

s S
10 f 10

0 1 2 3 4 5 6 7 8
t

inverse temperature = — 0.227

FIG. 5. Subsystem mana in real-time evolution of finite-
temperature starting states on a chain of 50 sites. Bold lines show
the average over 20 random starting states (cf. Sec. II B), faint lines
show trajectories of individual states, and dot mark points at which
we measure the mana with time step df = 1/8. As in the infinite-
temperature case, we see a rapid rise due to local thermalization of
the subsystem, followed by a slow decay as the subsystem entangles
with the rest of the system—but the decay no longer continues to
mana M, = 0 at accessible times.

IV. MANA AT FINITE TEMPERATURE

How does this picture change when the initial state has
nonzero energy? Figure 5 shows subsystem mana as a func-
tion of time and Fig. 6 shows it as a function of the
subsystem’s entropy deficit. In each case, we show a variety of
energies, labeled by equilibrium temperature [59] The model
has one conserved quantity, the energy. Every energy Ey cor-
responds to an equilibrium temperature B(Ey) such that

Ey=Z'TrHe PEH .

inverse temperature = — 0.096

inverse temperature 5 = 0.135

2 3 4 5 6
A,/In3

inverse temperature § = — 0.227

00
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3 4 3 4
A,/In3 A,/In3

FIG. 6. Subsystem mana in real-time evolution of finite-
temperature starting states as a function of entropy deficit A(z) =
£In3 — S,(¢), with S, the subsystem second Rényi entropy (cf.
Fig. 1). Stars mark Gibbs state values. Time increases as entropy
deficit decreases, i.e., from right to left. In each case the long-time
endpoint (t = 8, leftmost on each curve) has mana and entropy
noticeably larger than the Gibbs value.
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FIG. 7. Subsystem mana for Gibbs states of the Hamiltonian
Eq. (1) on nine qutrits with periodic boundary conditions. We take
J=h,=h,=1.

if the state after time evolution locally approximates any
Gibbs state, it must be this Gibbs state.

We see an initial rise followed by a slow decay, broadly
following the Haar value, as in the infinite-temperature case.
In both Figs. 5 and 6, the 8 = 0.233 averages display much
more variation than other temperatures. We believe that the
variation is due to the tight constraints on initial states at this
energy (cf. Appendix A). Although there are exponentially
many suitable initial states, they are locally similar.

But careful examination of Fig. 6 presents a mystery. We
extract the subsystem mana and entropy of a Gibbs state from
exact-diagonalization simulations on small systems (cf. Fig. 7
and Appendix F); we mark those values in Fig. 6 with a dot.

We attribute the discrepancy to a subtle finite-time ef-
fect related to deviations from so-called canonical typicality
[60-66]. Essentially, the discrepancy is controlled by the size
of the Hilbert space of the region with which our subsystem
is entangled. As that region grows, the mana will approach its
thermal value—but our MPS simulations are limited to times
for which the entangled region is small.

To understand this, consider first subsystem mana in finite
systems at long times. Heuristically, one expects long-time
states to behave much like Haar-random states on a micro-
canonical subspace (we rehearse the standard intuition behind
this statement in Appendix E). Almost all such states have
subsystem reduced density matrices near in trace norm to
the subsystem reduced density matrices of the microcanonical
density matrix [62], hence to that of the Gibbs state.

But this is not enough: two density matrices close in trace
norm can have widely divergent Wigner norms. We show in
Appendix G that if density matrices p, o on a dimension-d
subspace have

lo—oli <n,
then

Hlplw — llolw | < min(d*n, d"/2/m).

In Appendix H, we argue that the Hilbert space dimension
factors in Eq. (10) mean that it can only give very wide
bounds on mana when combined with the result of Popescu.
Moreover, a Gibbs state can have zero mana but be near the

(10)
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FIG. 8. Long-time subsystem mana per site in Krylov evolution
of an L = 11 site chain with thermal values marked with horizontal
dashed lines. The average value of five samples is given by a dark
solid line with each sample plotted using a light line. Thermal values
for all samples except B = —0.227 are too small to be seen on the
plot scale.

boundary of the zero-mana region; a nearby thermal state may
then have small but nonzero mana.

In Fig. 8, we plot subsystem mana as a function of time in
small (Krylov accessible) systems at much longer times than
are accessible to matrix product states; we see a steady-state
deviation between the mana of the time-evolved state and the
Gibbs distribution mana.

So much for finite systems at large times. What about
large systems at finite times? We have considered fixed-sized
subsystems; as the surrounding system becomes large, even
bounds based on Eq. (10) and the typicality result of Ref. [62]
will strongly constrain the mana. But a finite-time state will be
very different from most random microcanonical states: Those
states have nearly maximal entanglement, while the state at
time ¢ has entanglement entropy S & 2c¢t. That finite-time
state, then, can be crudely modeled by a Haar state from
the microcanonical subspace on a system of size [ + 2ct. (To
construct a less crude model, one might use random matrix
product states [67-69]. A random MPS would mimic not only
the entanglement of the subsystem with its surroundings but
also its internal entanglement structure.) This crude model is
broadly consistent with Fig. 5, in that the decay times increase
linearly with subsystem time. We leave a more careful com-
parison of numerics with predictions from canonical typicality
to future work.

V. DISCUSSION

We find that local subsystems of zero-energy initial states
have zero mana after a short local thermalization time propor-
tional to the subsystem size, consistent with a characterization
as an infinite temperature Gibbs state. This suggests that
infinite-temperature hydrodynamics may be simulated classi-
cally methods with low overhead. In the context of quantum
simulation, there may be effective dynamics using mixtures
of stabilizer states and Clifford circuits, or circuits with
few non-Clifford gates, that also effectively reproduce the

infinite-temperature hydrodynamics. At finite temperature,
the landscape is more complicated: For sufficiently high (but
still finite) temperature, the Gibbs state, hence the long-time
thermal state, has zero mana; while for somewhat lower
temperatures, the subsystem mana is small but nonzero. Addi-
tionally, regardless of temperature, the subsystem mana takes
a long time to relax to the thermal value because mana is
sensitive to small deviations from canonical typicality.

Because mana is sensitive to small deviations from the
Gibbs state, approximate simulations may be able to achieve
some desired precision using states with much lower mana
than that of the target state. This could allow approximate
simulations to use fewer non-Clifford resources required than
would be for exact simulation, which would broaden the
scope of physics accessible using near-Clifford simulation
techniques and reduce the cost of quantum simulation.

We would be remiss not to outline some limitations of
our paper. Most seriously, comparisons between the mana
complexity hump of Figs. 1 or 5 and the entropy complexity
hump of, e.g., Ref. [2], Fig. 2 can be importantly misleading.
The cost of an MPO calculation is, broadly speaking,

[MPO cost] ~ )~ exp [@Spona] o L, (11)
bonds

where Spong 1S the entanglement entropy across a bond and
a is some power. The simulation cost may be dominated by
the peak bond entropy but it is still polynomial in system
size. Straightforward near-Clifford simulations, by contrast,
will have cost

[near-Clifford cost] ~ exp | y Z Msubsystem

subsystems
[1.5ex] ~ e’™t (12)

for some finite mana density m. That is, even if we take
advantage of the insensitivity of hydrodynamics to details of
long-range correlations, the cost is still exponential in system
size. Worse, since the peak mana is close to the maximum
mana, this suggests that there are no cost savings to be had
from short-range approximations.

We believe this obstacle is superable. Because the peak
mana occurs at short times, when the system displays only
short-range entanglement, one should be able to decouple
simulation of different subsystems, effectively exchanging
sum and exponential in Eq. (12) and giving cost polynomial
(indeed linear) in system size. Concretely, imagine divid-
ing the system into subsystems of some length /, separating
those subsystems separately for # o< [ and then reintroducing
the couplings. While this dramatically changes the early- to
intermediate-time dynamics, it should not change the long-
time hydrodynamics and it suggests that more sophisticated
schemes are possible.

The nonzero finite-temperature long-time mana is another
limitation of our work. Absent decoupling tricks like those
required for early-time simulations, this nonzero subsystem
mana density means that the simulation cost is exponential in
system size, albeit with small exponent.

Looming behind these limitations is the fact that that
while mana controls the difficulty of some classical simula-
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tion methods and lower bounds the non-Clifford resources
required to create a state, these bounds are not constructive:
Knowing that a state has low mana does not give one a recipe
for constructing it. We leave algorithms—the analogs of DMT
or DAOE—to future work.

We have framed this result in terms of classical simulation
because we expect that to be its immediate application, but
in many ways it is more naturally understood in the context
of future error-corrected quantum computers. In many error-
correction architectures, Clifford gates are easy. Non-Clifford
gates, by contrast, must be performed by costly magic-state
distillation and injection schemes: magic comes dear. Our
results suggest that good local approximations to long-time
states will dramatically reduce requirements for this key
resource.
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APPENDIX A: INITIAL STATE SAMPLING

For our MPS time evolution, we choose pure initial states
with no mana or entanglement, i.e., tensor products of the
twelve single qutrit stabilizer states. We also want to sample
from initial states with the same energy density for local
subsystems to thermalize to a consistent temperature with-
out hydrodynamic energy transport. Looking at the energy
for pairs of single qutrit stabilizers, we can see what energy
densities and therefore temperatures will be accessible to this
choice of initial states. The energy densities for pairs of sta-
bilizer states are grouped into the X eigenstates (1, 11, 12),
the Z eigenstates (2, 9, 10), and other stabilizer states (3-8).
The energies with highest degeneracy are any of the non-X or
-Z eigenstates, which have zero energy density when paired
together or a slightly positive or negative energy density when
paired with one of the X or Z eigenstates. When /; = 0, states
3-8 only have nonzero energy density when paired with an
X eigenstate. This means our initial state sequences will be
random among states 3—8 for infinite temperature or alter-
nating between an X or Z eigenstate and one of the other
eigenstates. The colored tables and graphs show the energy
densities for different pairs of these single qutrit stabilizer
states, colored so negative energies are red and positive en-
ergies are blue. Variation of the on-site longitudinal field only
affects pairs with a Z eigenstate since all other single qutrit
stabilizers have zero expectation value for this term.

The infinite-temperature states—those with ¢; ;1 = 0—
deserve special consideration, both for their simplicity and
their importance. Consider the six eigenstates of ZX and ZX?.
Call them |¢,) and write

|Pup) = |@a) @ |bp) - (AD)

Then, term by term,

(PaPple; jr1lPatpp) =0 (A2)
for every choice of ¢, ¢4, and any state of the form
|Pa) = e} B [Pa,) ® -+ ® |Pur) (A3)

has zero energy density everywhere. Our infinite-temperature
states, then, are |¢,) for random strings «.

The initial states are chosen to be stabilizer states, so they
have zero initial mana, and product states, so there is no initial
entanglement and all subsystems are pure. The energy of these
initial states are determined by all the nearest-neighbor pairs
of stabilizer states. The only stabilizer states with nonzero
expectation value of Hamiltonian terms are the eigenstates
of the generalized Z and X operators. The transverse and
longitudinal field terms each have one low-energy eigenstate,
denoted Xy and Z, respectively. These terms also have two
degenerate positive energy eigenstates denoted X; and X, for
the transverse field and Z; and Z, for the longitudinal field.
The states Z; also have nonzero expectation value for the bond
terms, with negative energy when the nearest-neighbor pairs
are the same and positive when they are different. The other
six stabilizer states are denoted S; and have zero expectation
with all Hamiltonian terms.

We consider in Fig. 9 the magnitude of the inner product of
initial states with energy eigenstates in an eight-qutrit system,
averaged over initial states for a given temperature. We find
that initial states have support over the full range of energy
eigenstates, with the average support scaling roughly as the
square root of the appropriate Boltzmann weights at that tem-
perature, i.e., | (YolEx) | ~ exp(—BEr/2).

The exception is for the case where g = 0.233 (Ey/L =
—2), where there are many energy eigenstates orthogonal to
all of the stabilizer product states at that temperature. This
makes sense because this temperature has the fewest number
of initial states and significant correlations in those initial
states imposed by the energy density selection. Unlike at other
temperatures, these constraints for § = 0.233 have restricted
the initial states to have support over only a subspace of the
energy eigenstates. The average support within this subspace,
however, still scales according to the appropriate Boltzmann
weights.

APPENDIX B: DEFINING AND CALCULATING MANA

Consider a system of £ qudits each of dimension d. (N.B.
this notation is different from that of Sec. IV and Appen-
dices G and H. There we write d for the dimension of a
whole Hilbert space; here we write d for the dimension of
the component qubits.)

To calculate the mana, first recall the generalized Pauli
strings

7}"] — (1)27]1"‘1 l_[ZjEfX?j’ B
J

where w = 2™/ 27! = (d 4+ 1)/2 is the multiplicative in-
verse of 2 in the field Zy, and Z; and X; are the clock and shift
operators on site j. Just as the Pauli strings generalize contin-
uous single-particle Weyl operators to a product of discrete
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FIG. 9. Top: Average support of initial states over energy eigen-
states in eight-qutrit system. The quantity | (¥|Ex) |, which measures
the support of an initial state |iy) with each energy eigenstate (la-
beled by their energy density Ej) averaged over stabilizer product
states with the proper energy for each temperature. The relative sup-
port of initial states on different energy eigenstates roughly scales as
the square root of the Boltzmann weights ~ exp(—BE;/2). Bottom:
Normalized density of states with 0.2 width bins for energy density.

rings, we can generalize the Wigner function to a discrete
Wigner function:

Wpe(p) =d " Z PP UTr pTyy. (B2)
rq

This may also be written in terms of the phase-space point
operators A,q as

Wpq(p) = d ™" Tr[pAp], (B3)
where
Apg=TpAoT,,  with  Ag=d™"Y T,,. (B4
rq
The discrete Wigner function has ) pg Wra(p) =Trp =1
and, for classical mixtures of stabilizer states o, 07,
Wpy(aop + (1 — a)oz) = 0. (BS)

(Among pure states only stabilizer states have W, ,(p) > 0 for
all p, q. This property is called the discrete Hudson’s theorem

inverse temperature 5= 0.0
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FIG. 10. Fifty-qutrit MPS, half-system entropy convergence
with bond dimension and trotter step.

[56].) The Wigner norm
lolw =" [Wag(p)| (B6)

rq

measures the size of the negative part of the Wigner function,
and the mana is

M(p) =1In|ipllw. (B7)

APPENDIX C: CONVERGENCE IN BOND DIMENSION
AND TROTTER STEP

The accuracy of simulations of time evolution using matrix
product states is limited by both the bond dimension of the
MPS and the Trotter step size of the TEBD evolution. Trot-
terization of the time-evolution operator to second order with
time step ¢ incurs an error of order 813, but a truncation also
occurs at each time step; this truncation projects the state back
into the space of MPS of the given bond dimension and causes
additional error.

As the initial product state evolves in time, entanglement
grows in the system but is ultimately limited by the bond
dimension of the MPS. The largest entanglement in the system
would occur across a central bipartition, so we compare the
entanglement entropy for this bipartition with several different
bond dimensions and Trotter step sizes for a particular unen-
tangled zero energy initial state of a 50 site MPS. We see in
Fig. 10 that the half-system entanglement entropy for MPS
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FIG. 11. Fifty-qutrit MPS, subsystem entropy convergence with
bond dimension and Trotter step for a single initial state at each
temperature.

evolution of bond dimension x = 512 and y = 1024 diverge
at a time ¢ ~ 6, while the Trotter error is not significant (at
either bond dimension) until later times r ~ 8. We therefore
consider our simulations reliable.

While the half system entropy suggests global properties
of the MPS begin to diverge around time ¢ = 6, entropies and
mana for subsystem of size [ < 6 are much better converged
as seen in Figs. 11 and 12. No noticeable difference in these
quantities is seen for the entire simulated durationup tot = 12
for the smallest subsystems, with slight differences noted at
later times for the largest subsystems. The spread in entropy
of the six-qutrit subsystem between these different samples at
time t = 12 is 2.7%.

We also see from these examples looking at a single state
that while mana of larger systems is always greater or equal
to mana of subsystems, the entropy of subsystems can grow
at different rates for early times. In our examples at finite
energy density, the one- and six-qutrit subsystems have a
slower entropy growth than the intermediate subsystems. This
is due to the initial state on the edges of our subsystem and
how this affects the mixing for initial dynamics. In the case of
our zero-energy states, all sites have single-qutrit stabilizers
which are neither X nor Z eigenstates and mix at identical
rates. For the finite energy density cases, our initial states are
different eigenstates of the X or Z operators, and so the initial
mixing rate depends on the exact pairing of stabilizer states on

inverse temperature 5= 0.0

25+ —{=1
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5t — =6
s — x = 1024, 6t = 1/16
ol —— x=1024,0t=1/8
Sy N X = 512, 6t = 1/32
—.—x =512,6t=1/16
os | —x =H12,6t=1/8
00t ,\\ : ‘ ‘ e
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inverse temperature 5 = 0135 inverse temperature 3= — 0.096

FIG. 12. Fifty-qutrit MPS, subsystem mana convergence with
bond dimension and Trotter step for the same single state at each
temperature as in Fig. 11.

each edge of the subsystem. For later times, once the systems
have been sufficiently mixed the larger subsystems have larger
entropies as expected.

APPENDIX D: SUBSYSTEM ENTROPY

We often make reference to the entropy deficit A of our
subsystems, which is defined as the maximal entropy of the
subsystem minus the second Rényi entropy of that subsystem.
In Fig. 13, we plot the average Rényi entropy of the central
subsystems of our 50-qutrit MPS over the course of our TEBD
evolution, which is used to determine the entropy deficit. We
also plot in dashed lines the subsystem entropies of Gibbs
states, which subsystems should converge to in the process
of thermalization. Note that these thermal entropies are not
the maximal subsystem entropies, so the asymptotic entropy
deficit is still nonzero even after subsystems have converged
to thermal values of the entropy. The infinite temperature case
is an exception, since the thermal entropies are maximal and
the entropy deficit is zero.

We see that small subsystems quickly converge to their
thermal values and stabilize at this entropy. However, at later
times we begin to see decreases in subsystem entropies which
arise from truncation errors in the MPS evolution and are not
reflective of accurate dynamics of the subsystem entropies.
Unfortunately, some of the larger subsystems fail to reach
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FIG. 13. Fifty-qutrit MPS, subsystem entropy measured in trits,
infinite, and finite temperature initial states, J = h, = h, = 1.

their thermal entropy values before these truncation errors
become relevant and start to decrease subsystem entropy.

APPENDIX E: THERMALIZATION, TYPICALITY,
AND THE EIGENSTATE THERMALIZATION
HYPOTHESIS: INTUITION

Imagine evolving a tensor product state |y/) by a Hamilto-
nian H. Since |y) is the eigenstate of some local Hamiltonian,
it has energy uncertainty

[ H W) — (yIHIY)A'? = AVL, (E1)

where A is some O(1) constant with dimensions energy. The
time-evolved state

(@) =Y e (E;ly) |E),
J

only has weight near the initial energy E = (Y |H|{) of [).
The phase factors e £/ break the delicate conspiracy between
overlaps (E;|v) that results in the state v at the initial time
t =0, and we can think of the state as randomly chosen
from a distribution on energy eigenstates with width given by
Eq. (E1). That distribution, in turn, is similar to a microcanon-
ical distribution with the same width.

This cartoon assumes that the eigenstates have no struc-
ture. If they do, the overlaps (E;|v) will be weighted toward

012 \
0.10 o

0 e

=006 o ° ° °
0~U4*D+£7G o o o
—@— (=5
o O (-4 I 1
002 Q@ (=3
—@— (-2
—@— (=1
000 |- @
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L

FIG. 14. Subsystem mana of Gibbs states with inverse temper-
ature B = —0.25 for different system sizes. The subsystem mana
converges rapidly with system size, which allows us to use these
small system estimates for our large-scale MPS simulations.

eigenstates that resemble the initial state, leading to a failure
of thermalization.

Suppose the system has a classical limit. Berry’s conjecture
[4,70] is that the eigenstates are appropriately structureless if
the corresponding classical system is chaotic. (More precisely
the energy eigenfunctions are random in such a way that the
Wigner function, averaged over a small phase space volume,
matches the microcanonical ensemble.)

But Berry’s conjecture does not contemplate the discrete
Wigner functions we work with! To take the average over a
small phase space volume, we would have to work with large
on-site Hilbert space dimension d. More broadly, the small-
d model does not have an obvious classical limit, chaotic or
integrable.

If the system does not have a classical limit, as ours
does not, Berry’s conjecture becomes the ETH [3]—that local
expectation values in eigenstates match thermal expectation
values. One expects the system to thermalize if its Hamil-
tonian satisfies the ETH, and not otherwise. N.B. the ETH
is a hypothesis, not a conjecture like Berry’s conjecture: a
particular Hamiltonian may or may not satisfy the ETH, so
it must be checked (generally numerically.) The message of
Fig. 2 is that our Hamiltonian at our parameters does satisfy
the ETH.

For a thorough and accessible review, see Ref. [5], es-
pecially Sec. 2.4 on the semiclassical limit and Berry’s
conjecture and Secs. 4.1- 4.2 on the ETH. Reference [71]
offers a review of recent work on quantum chaos in the semi-
classical limit from a very different point of view.

APPENDIX F: GIBBS STATE MANA

We use exact diagonalization on a system of up to nine sites
with periodic boundary conditions to determine the thermal
properties of subsystems for the larger qutrit chain. We use the
energy densities of these systems to map initial state energies
to temperatures. Fig. 14.

We would like to compare the asymptotic mana of subsys-
tems that have thermalized with nonzero initial energy density
to the expected value of thermal subsystem mana. From
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these plots, we can extract the subsystem mana for a given
inverse temperature as well as the energy density for a given
inverse temperature. From these, we can find the subsystem
mana we expect for an initial state of a given energy density.

APPENDIX G: BOUNDING THE DIFFERENCE IN MANA
BETWEEN NEARBY STATES

Proposition 1. Suppose two density matrices p, o on a
Hilbert space of dimension d are nearby in trace distance:

lo—alli <n.
Then

lo—ollw <d?n [linear bound),
<

lp —ollw dn [square root bound].

Applying the reverse triangle inequality to this result will
give
Corollary 1.

lollw — llollw| < min(d?y, y/dn).

and subadditivity of the log will give
Corollary 2.

(GD)

In|lplw <Inlollw + min (2Ind +Inn, $Ind + 11ns).
(G2)
Now to prove 1.
Proof. Start with the linear bound. The difference in
Wigner functions is
[Wg(0) = Wpg(0)| = d ™| Tt Apg(p — o)
<d Aplhllo —alh. (G3)

Since the phase-space point operators A, of (B4) are unitary,
”quHI =d, so

Wpg(p) = Wye(o)l < (G4
and
lo—ollw= Z (Wog(0) = Wpg(o)] < d*n (G5)
Pq
as desired.
Turn to the square root bound. Write
A=p—0; (G6)

the hypothesis is that [[A|; < n Then, using Cauchy-
Schwarz,

12
Al =Y [Wp(A)] < d[z W;q(m} . (@D
rq rq

but
2 1 2 1
ZWM:E”A”2<E”AH1 (G8)
pa
since —1 < A < 1,s0
I1Allw < v/dn (G9)

as desired.

APPENDIX H: MANA AND CANONICAL TYPICALITY

Let us use the result of Popescu er al. [62] to be more
precise about how what canonical typicality means for mana.

That result is as follows. The subspace of interest is the
vector space spanned by the eigenvectors within Av/L/2 of
E; call it

R =span{|E;) : |E; — E| < AVL/2},

and its dimension dg. The relevant microcanonical ensemble
is
|E;XES] - (HI)

1

E
|Ej—E|<AVL/2

Call the subsystem of interest S, and its Hilbert space dimen-

sion dg; call the rest of the system B = S. The microcanonical
ensemble & traces down to

Qs =Trz € (H2)
on S ; the effective accessible dimension on B is
E T

where Qp = Trg £. Finally, write p for the Haar measure on
the vector (sub)space R. Then

n(g) € R: llps() — Qslli = n) < 7' (H4)
with
n=e+ 337 dsft
0 = 4e ke, (H5)

Now use Egs. (H4) and (H5) together with Corollary 1
to bound the difference in Wigner norms between ps(¢) and
|2s) Write

Wy = In [l ps(d)llw,
Wa = In||Qsllw

for the subsystem mana of the randomly chosen state |¢)
and the microcanonical ensemble €2, respectively. Applying
Corrollary 1 from Appendix G, we find that

with
8 = min (d3n, v/dn), (H7)

n as in Eq. (HS).

To get some intuition for what this result means, let us look
for the n (and hence §) corresponding to n’ = 1/2: that is,
(an upper bound on) the median discrepancy in Wigner norm.
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This ' = 1/2 gives
In8
€= —
Cd;

1 | ds
n:€+§ dgff

In8  ds
= Cd}

for

+ k]
24/dg

°ff from Popescu]. The second term

using that [bound on df
dominates the first, so
ns &
2/ dr
(Were n’ sufficiently small this would not be the case.) Now

d
8~ ——— ~dgdy .

V24/dg

APPENDIX I: KRYLOV SUBSPACE EVOLUTION

(H8)

We want to corroborate our stories about thermalization
and subsystem mana in small enough systems where more
exact methods than TEBD evolution of MPS states can be
done for long times. We also need the system to be large
enough to see thermalization of the smallest subsystems and
finite-size correction emerging for larger subsystems, which
is challenging using exact diagonalization of a chain of qutrit
sites. So, we turn to Krylov subspace methods to time evolve
states of our Potts model for intermediate system sizes and
high-precision long time dynamics. The Potts model is the
same as in Eq. (1), but with periodic boundary conditions
and the coefficients J = h, = h, = 1. We evolve the product
stabilizer initial states for an L = 11 qutrit chain up to time
t = 100 and measure the mana and entropy of subsystems less
than half the system size.

The time-evolved state which has thermalized is compared
to the Gibbs state values obtained through exact diagonal-
ization of an eight-qutrit system. The subsystem entropies
asymptotically approach the thermal values, with deficits vis-
ible in four- and five-qutrit systems due to finite-size effects
see Fig. 15. The entropy of the 8 = 0.135 states are lower
and have larger standard deviations between different initial
states than other temperatures. The entropies of the 8 = 0.233
states have fluctuations which are the same across the initial
state, which have more correlations due to their relatively
lower statistics from energy constraints. These fluctuations are
maintained in averaging and result in a low standard deviation.

For subsystem mana, subsystems smaller than four which
have zero thermal mana match with larger subsystems hav-
ing finite-size corrections. However, for § = 0.233 and 8 =
—0.227, which have small but nonzero mana in most subsys-
tems, there are significantly more mana than thermal values,
even in smaller subsystems. See Fig. 16 for comparison of
late time subsystem mana and entropy deficit with thermal
subsystem values.

What we also notice for the Gibbs states is that for
—0.12 < B £ 0.2, all subsystems have zero mana, thus the

inverse temperature g = 0
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FIG. 15. Eleven-qutrit Krylov evolution, subsystem entropy in
trits up to + = 100, thermal subsystem values of eight-qutrit system
dashed.

Gibbs state itself may be inside the stabilizer hull. For our
zero-energy initial states, most subsystems are maximally
mixed with finite-size effects, reducing the entropy only for
the largest subsystems. The maximally mixed state is in a
sense at the center of the stabilizer hull and far from any
states with mana, so all subsystems of the late time states for

inverse temperature = — 0.096

—~+ Thermal
0075
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FIG. 16. Eleven-qutrit Krylov evolution at + = 100 compared
with finite temperature subsystems of an eight-qutrit chain. Entropy
deficit in trits versus subsystem mana, with the relationship for Haar
random states given by the solid black line.
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zero-energy initial states have zero mana except for the £ = 5
subsystem where finite-size effects are seen.

Our Gibbs states with 8 = 0.135, —0.96 are also inside
the stabilizer hull but closer to the boundary. The late time
subsystems for these initial states also have zero mana for
most subsystems, though the ¢ = 4 subsystems noticeably
have mana where the same sized subsystems for zero energy
initial states did not. This could still be from finite-size effects,
but being closer to the stabilizer hull boundary the introduc-
tion of mana does not require as large of a deviation from the
true Gibbs state subsystems.

For Gibbs states with 8 = 0.233, —0.237 subsystems do
have a small amount of mana and lie just outsize the stabilizer
hull. We see, however, an excess of mana in subsystems over
the Gibbs state values even for small subsystems. These states,

although close to the Gibbs state subsystems in some sense,
have enough wiggle room in a small neighborhood to amount
to significantly more mana.

Our subsystem mana estimates for thermal states were car-
ried out by numerically finding the exact Gibbs state for small
systems and then computing the mana of various-sized sub-
systems. We see in Fig. 14 that the subsystem mana converge
rapidly with overall system size and so we can accurately use
these values as estimates of the subsystem mana for large-
system thermal states. Moreover, the finite-size effects we do
see increase the subsystem mana, so it is unlikely that these
values would underestimate the mana of thermal subsystems.
This shows further that the large excess of mana seen in long
time simulations is due to canonical typicality effects of time
evolved pure states.
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