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Phase diagram and magnetic excitations of J1–J3 Heisenberg model on the square lattice
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We study the phase diagram and the dynamical spin structure factor of the spin-1/2 J1–J3 Heisenberg
model on the square lattice using density matrix renormalization group, exact diagonalization (ED), and cluster
perturbation theory (CPT). By extrapolating the order parameters and studying the level crossings of the
low-lying energy and entanglement spectra, we obtain the phase diagram of this model and identify a narrow
region of quantum spin liquid (QSL) phase followed by a plaquette valence-bond solid (PVBS) state in the
intermediate region, whose nature has been controversial for many years. More importantly, we use CPT and ED
to study the dynamical spin structure factor in the QSL and the PVBS phase. In the QSL phase, the high-energy
magnon mode completely turns into some dispersive weak excitations around the X and M points. For the PVBS
phase, the low-energy spectrum is characterized by a gapped triplet excitation, and at the high energy, we find
another branch of dispersive excitation with broad continua, which is unlike the plaquette phase in the 2 × 2
checkerboard model. In the latter case, the second branch of excitation is nearly flat due to the weak effective
interactions between the local excitations of the plaquettes. And in the J1–J3 Heisenberg model, the uniform
interactions and the spontaneously translational symmetry breaking of the PVBS phase make the difference in
the excitation spectra.
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I. INTRODUCTION

Geometry frustration and competing interactions in quan-
tum magnets can lead to many novel phenomena [1], in which
the quantum spin liquid (QSL) states [2] have gained much
research interest in recent years. A QSL is an exotic quantum
state beyond the Landau-Ginzburg-Wilson (LGW) paradigm,
in which the conventional magnetic order and dimer order
are prevented from being developed even at zero temperature.
More interestingly, QSL states have long-range entanglement
and emergent fractionalized excitations such as the neutral
spinon, which obey the anyon statistics [2]. Therefore, while
the absent conventional orders provide a necessary condition
for detecting a QSL, the magnetic excitations that can be
probed by inelastic neutron scattering experiment are playing
a more important role in the identification of QSL states in
both models and materials.

One of the most important models to search and study QSL
is the square-lattice Heisenberg model with competing inter-
actions. Due to the close relation with the parent compound
of high-temperature superconductors [3,4], the J1–J2 square-
lattice Heisenberg model has attracted a lot of studies on both
the ground-state phase diagram and the excitation spectrum,
by various methods such as exact diagonalization (ED) [5–9],
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density matrix renormalization group (DMRG) [10–12], ten-
sor network (TN) [13–20], variational Monte Carlo (VMC)
[21–28], and many other methods [29–38]. These studies
have proposed different candidate states for the intermediate
paramagnetic region. Up to now, the consensus is that below
the stripe magnetic phase, the system is in a weak valence-
bond solid (VBS) phase, although its nature is still under
debate between a plaquette VBS (PVBS) and a columnar VBS
(CVBS). Between the Néel and the VBS phases, some new
results support a gapless QSL phase [12,20,26,28,37], but its
nature is far from clear. Meanwhile, due to the limit of system
size in these studies, a direct Néel-VBS transition may not be
excluded. For the magnetic excitation, a cluster perturbation
theory (CPT) study [36] and a VMC study [27] both supported
the existence of a gapless Z2 spin liquid and found that the
spectrum of this phase is characterized by a broad continuum.
In experiment, there are many compound materials which
may be effectively described by the J1–J2 Heisenberg model,
such as Li2VOMO4 (M = Si, Ge) [39,40], VOMoO4 [41,42],
PbVO3 [43], and Sr2CuTe1−xWxO6 [44–49]. QSL-like behav-
iors have been reported in some of these compounds [46–49].

To establish a better understanding of the competing phases
in the square-lattice Heisenberg model, the J1–J3 model
has also been extensively studied in the past three decades
[8,13,30,50–62]. In the classical limit, the model has a Néel
antiferromagnetic (NAF) phase and a spiral order phase,
which are separated at J3/J1 = 0.25 [30,50–54]. After con-
sidering quantum fluctuations, a paramagnetic region also
emerges near J3/J1 = 0.5. An early DMRG study [56] on
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FIG. 1. Phase diagram of the spin-1/2 J1–J3 Heisenberg model
on the square lattice. When J3 is small, the model is in the Néel
antiferromagnetic (NAF) phase. With growing J3, it enters into a
quantum spin liquid (QSL) phase for 0.3 � J3/J1 � 0.375. In larger
J3, there is a region of plaquette valence bond solid (PVBS) phase.
Around J3/J1 � 0.7, a phase transition between the PVBS phase and
the spiral magnetic order phase occurs.

the ladder with open boundary conditions suggested that the
dimer order would vanish with the increase of the leg number
and the ground state near J3 = 0.5 may be a QSL. In con-
trast, an ED study [8] and a projected entangled pair state
(PEPS) study [13] found that the ground state is likely to
be a PVBS state, which was also supported by the series ex-
pansion (SE), coupled cluster method (CCM), and dynamical
functional renormalization group (FRG) calculations [59]. A
TN study further claimed that this PVBS state belongs to a
higher-order symmetry-protected topological phase [62]. Very
recently, a large-scale PEPS study [61] showed that there is
a remarkable QSL phase (0.28 � J3/J1 � 0.38) between the
Néel and the VBS phases, which is inherited from the QSL
in the J1–J2 model. This phase diagram provides a fascinating
perspective to understand the emergent QSL phase from the
neighbor deconfined quantum critical point (DQCP) [63–65].
The NAF-QSL and QSL-VBS phase transitions appear to be
continuous, and the obtained critical exponents suggest that
the two transitions may belong to different universality classes
[61]. However, the nature of the VBS state was not determined
in this large-scale simulation and the existence of the QSL
phase was only probed by static properties. Therefore, in this
paper, we reexamine the phase diagram of this model by
combining the ED and DMRG calculations. We also explore
the magnetic excitations in the VBS and the possible QSL
phase, which are compared with the results of the J1–J2 model
as well.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model Hamiltonian and define the order
parameters as well as the physical observables that we will
calculate. In Sec. III A, we show the phase diagram obtained
by our DMRG and ED results. As shown in Fig. 1, we identify
that the paramagnetic region actually includes two phases: a
QSL phase and a PVBS phase based on the calculation of the
order parameters, energy spectrum, and entanglement spec-
trum. More importantly, in Sec. III B, we show the dynamical
spin structure factor for different phases by CPT and ED.
In the QSL phase, we find signals of some weak continua
around the M and X points. And our study of the magnetic
excitation in the PVBS phase will provide more theoretical
understanding of the PVBS phase with spontaneously transla-

tional symmetry breaking. Finally, we provide a summary and
discussion in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of the spin-1/2 J1–J3 Heisenberg model
on the square lattice reads

H = J1
∑
〈i, j〉

Ŝi · Ŝ j + J3
∑

〈〈〈i, j〉〉〉
Ŝi · Ŝ j .

In the following calculation, we set J1 = 1 as the energy unit.
We use SU(2) DMRG [66,67] and ED to study the ground-
state phase diagram. For the magnetic excitation, we employ
the ED and CPT [36,68,69] methods. The finite-size clusters
with the periodic boundary conditions (torus geometry) used
in the ED calculation are shown in Appendix A. The cylinder
geometry we used in the DMRG calculation is the rectangular
cylinder with the periodic boundary conditions in the y di-
rection and the open boundary conditions in the x direction.
To reduce the boundary effects, we choose the lattice size
with Lx � 2Ly (Lx and Ly represent the numbers of sites in
the x and y directions, respectively) and take the correlations
of the middle Ly × Ly sites to calculate the order parameters
[10,11,70].

In order to determine the phase boundaries and detect pos-
sible dimer order in the intermediate paramagnetic phase, we
calculate three kinds of order parameters. The first one is the
Néel order parameter,

m2
s = 1

N
S(M), S(q) = 1

N

∑

i, j

〈Ŝi · Ŝ j〉ei �q·(�ri−�r j ),

where M = (π, π ). The other two kinds of order parameters
are the dimer order parameters [8],

m2
λ = 1

Nb
Sλ, Sλ =

∑

(k,l )

ελ(k, l )Ci jkl ,

where λ is either “VBC” (valence bond crystal) or “Col”
(columnar), and Nb is the number of bonds used in the calcula-
tion of m2

λ. These two dimer order parameters can be analyzed
together to distinguish the CVBS and the s-wave PVBS state
whose symmetry-breaking state adiabatically connects to the
direct product of |ϕ0〉 shown in Fig. 14. For both VBS states,
m2

VBC would be finite in the thermodynamic limit, while m2
Col

would be finite only for the CVBS state and would be zero
for the s-wave PVBS state [8]. The phase factors ελ of these
two dimer order parameters are chosen as shown in the insets
of Figs. 2(c) and 2(d), where the reference bond (i, j) locates
in the middle of the cylinders, either along the x (horizontal)
direction or the y (vertical) direction. The dimer-dimer corre-
lation function Ci jkl is defined as

Ci jkl = 4[〈(Ŝi · Ŝ j )(Ŝk · Ŝl )〉 − 〈Ŝi · Ŝ j〉〈Ŝk · Ŝl〉].
We have also calculated the dimer structure factor

D(q) = 1

2N

∑

〈i, j〉

∑

〈k,l〉
e−iq·ri j,klCi jkl ,
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FIG. 2. Finite-size extrapolation of (a) the Néel order parameter
m2

s and (b) the dimer order parameter m2
VBC. (c) and (d) are the ex-

trapolation of the dimer order parameters m2
VBC and m2

Col at J3 = 0.4
obtained with a horizontal reference bond, a vertical reference bond,
and the averaged results of these two kinds of reference bonds. The
lines in (a)–(c) are the second-order polynomial fits for the data. And
the dashed lines in (d) are guides to the eye. The insets in (c) and
(d) show the phase factors ελ for m2

VBC and m2
Col, respectively [8].

The bold bonds in the center of the insets represent the reference
bond (i, j) in the calculation of the dimer order parameters m2

λ. (e)
The logarithmic-linear plot of the hDOP with different J3. d is the
distance measured from the boundary. The fitting of the exponential
decay of the hDOP gives the decay length ξx . The hDOP at J3 = 0.5,
0.6 are calculated on the cylinder geometry with Ly = 10, and the
other data are obtained on the cylinder geometry with Ly = 12. (f)
The decay length ξx of the horizontal dimer order vs Ly obtained by
DMRG on the cylinder geometry.

where ri j,kl means the displacement between the centers of
two bonds which connect two pairs of nearest-neighbor sites,
〈i, j〉 and 〈k, l〉.

To study the magnetic excitation, we calculate the dynam-
ical spin structure factor defined as

S+−(q, ω) =
∑

n

{|〈ψn|Ŝ+
q |ψ0〉|2δ[ω − (En − E0)]},

where Ŝ+
q = 1

N

∑
i e−iq·ri Ŝ+

i is the Fourier transform of the
spin operator Ŝ+

i , and |ψn〉 is the eigenstate of the Hamilto-
nian with energy En. Using ED, we calculate the dynamical
spin structure factor S+−(q, ω) on the 36-site cluster un-
der the periodic boundary conditions. Although the 36-site
cluster may still be small to get the correct estimation of

the thermodynamic-limit results, the results obtained by ED
have no approximation and can also capture some important
characteristics of the different phases in the J1–J3 Heisenberg
model, which will be shown in Sec. III B. And a small Lorentz
broadening factor η = 0.05 is used in order to observe the
prominent excitation peaks more clearly.

We also calculate the dynamical spin structure factor by
using the bosonic version of the CPT method, which has
been successfully applied to the J1–J2 Heisenberg model on
the square lattice [36]. By using the ED to do exact calcula-
tion within a cluster under the open boundary condition and
treating the intercluster interaction as perturbations, the CPT
method can get the dynamical spin structure factor S+−(q, ω)
in the thermodynamic limit (more details can be found in
Ref. [36]). In this paper, we use the 6 × 4 cluster and set
η = 0.15 in the CPT calculation.

III. NUMERICAL RESULTS

A. Phase diagram

First of all, we consider the Néel order parameter m2
s ,

which is shown in Fig. 2(a). By keeping up to 8000 SU(2)
states to obtain convergent data in the DMRG calculation
(the DMRG truncation errors are smaller than 1 × 10−5), we
calculate m2

s on cylinders with Ly = 6–12. We exclude Ly = 4
because the J3 interaction along the y direction would be
doubly counted. The second-order polynomial fitting of m2

s
suggests that the Néel order vanishes at J3 � 0.3, instead
of J3 = 0.25 in the classical limit [30,50–54]. The smooth
vanishing of the extrapolated m2

s suggests a continuous phase
transition.

Next, we use DMRG to calculate the dimer order parame-
ters m2

VBC and m2
Col. Compared with the Néel order parameter

m2
s , the dimer order parameters for large J3 and large Ly are

more difficult to converge in the DMRG calculation, espe-
cially for J3 � 0.4 and Ly = 12. Therefore, we extrapolate
m2

VBC and m2
Col versus 1/m [m is the number of the SU(2)

states kept in DMRG calculation], which is shown in Fig. 9(a).
In Figs. 2(c) and 2(d), we show m2

VBC and m2
Col at J3 = 0.4,

which are obtained by choosing different reference bonds.
The results obtained with a horizontal and a vertical reference
bond are almost the same at J3 = 0.4. By a second-order
polynomial fitting, m2

VBC is extrapolated to finite, while the
values of m2

Col are always very small and approach zero in the
thermodynamic limit. For a CVBS state, both m2

VBC and m2
Col

would be finite, but for an s-wave PVBS state, only m2
VBC

would be finite [8]. Therefore, our results indicate that the
ground state at J3 = 0.4 would be an s-wave PVBS, although
some other kinds of VBS states still cannot be fully ruled out
[58,71,72]. And the proposal of the PVBS state is further con-
firmed by the clear plaquette pattern of the nearest-neighbor
bond energy obtained on the 8 × 8 cluster with the fully open
boundary conditions, which are shown in Figs. 11(b)–11(d).
To determine the phase region of this s-wave PVBS, we cal-
culate m2

VBC with different reference bonds, and the finite-size
extrapolation of the averaged m2

VBC at different J3 is shown in
Fig. 2(b). For J3 � 0.35, the extrapolated m2

VBC is nearly zero,
and it is clearly nonzero at J3 = 0.4. With further increasing
J3 in the PVBS phase, as shown in Fig. 10(b) for J3 = 0.5,
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the nearest-neighbor bond energies obtained on the cylinder
geometry have strongly broken the translational symmetry
and are highly dimerized in the x direction, which indicates
a strong static dimer order. In this case, the dimer-dimer
correlation function after subtracting the bond energy as the
background may fail to identify the dimer order. Due to this
reason, the scaling behavior of the dimer order parameter
m2

VBC at J3 = 0.5 is different from that at smaller J3, as shown
in Fig. 2(b). And as shown in Fig. 10(a), at smaller J3 such as
J3 = 0.4, the boundary-induced dimer order decays fast from
the boundary to the bulk, and the bond energy is relatively uni-
form in the bulk of the cylinder. So, the dimer order parameter
m2

VBC can successfully detect the dimer order at smaller J3.
In order to determine the critical J3 where the PVBS order

develops more accurately, we also study the decay length
of the horizontal dimer order parameter (hDOP) [10,11,73]
on the cylinders with Lx � 3Ly. The hDOP is defined as the
difference between the bond energies of two adjacent hor-
izontal nearest-neighbor bonds, which is easier to converge
in the DMRG calculation compared with the dimer correla-
tion function and the calculated dimer order parameters. The
hDOPs for different J3 with Ly � 10 are shown in Fig. 2(e).
For J3 � 0.375, the hDOPs are nearly linear curves in the
logarithmic-linear plot, meaning that the hDOPs decay ex-
ponentially with distance d from the boundary to the bulk.
Then we use a function hDOP ∼e−d/ξx to fit the data and get
the decay lengths ξx of the horizontal dimer order parameter,
which are shown in Fig. 2(f). For J3 � 0.375, ξx grows slowly
and seems to be finite in the large-size limit. For J3 � 0.375,
ξx grows faster than linear, especially for Ly � 10, indicating
the existence of the dimer order. At J3 � 0.375, ξx increases
almost linearly with Ly. Therefore, we take J3 � 0.375 as the
critical J3 where the system enters the PVBS phase, which is
very close to J3 = 0.38 obtained by the PEPS simulation [61].
With further growing J3, one can see that even on the cylinder
with Ly = 10, the hDOP at J3 = 0.5 and 0.6 are almost flat
with distance d , which indicates the tendency of an increasing
dimer order at J3 = 0.5 and 0.6.

Besides order parameters, energy level crossing in the
low-energy spectrum may also help to determine phase
boundaries, which usually has a smaller finite-size effect than
other physical observables and has been applied to the J–Q
model [74] and the J1–J2 Heisenberg model on the square
lattice [12,37]. We also calculate the energy spectra for the
J1–J3 Heisenberg model with 32 and 36 sites, which are shown
in Figs. 3(a) and 3(b), respectively. When J3 is small, the
ground state is the Néel state and the lowest-energy states
in the sectors with different total spin S form the Ander-
son tower of states (TOS) [75–77]. In the thermodynamic
limit, these states are degenerate and the ground state will
spontaneously break spin SU(2) symmetry; otherwise, on a
finite-size lattice, they are nondegenerate and the finite-size
excitation gaps increase with growing quantum number S. In
our ED calculations, for both the 32- and 36-site clusters, the
ground states are located in the singlet sector due to the Lieb-
Schultz-Mattis theorem [78]. With increasing J3, the triplet
(S = 1) and quintuplet (S = 2) gaps gradually increase. At
J3 � 0.275, the lowest-excited singlet state (S = 0) and the
lowest quintuplet state cross, and the crossing point is close
to the transition point obtained by the vanishing Néel order

FIG. 3. The low-energy spectra obtained on the (a) 32-site and
(b) 36-site clusters. (c) The linear extrapolation of the singlet and
triplet gap obtained on the torus geometry vs 1/N at J3 = 0.5. (d) The
entanglement spectrum obtained on the cylinder geometry with Ly =
8, Lx = 24 by DMRG, in which the eigenvalues of the reduced
density matrix λi with different total spin S = 0, 1, 2 and S > 2 are
represented by red, green, blue, and purple bars, respectively.

determined by the scaling of the order parameter in Fig. 2(a).
At J3 � 0.4, the lowest-excited singlet state further crosses
with the lowest triplet state. Although there is a finite-size
effect, the NAF-QSL and QSL-PVBS transition points ob-
tained from the level crossings in the low-energy spectra agree
with those from the extrapolations of the order parameters.

In the PVBS phase, the ground state is a spin-singlet
state and has a fourfold degeneracy which can be lifted by
spontaneously translational symmetry breaking in the ther-
modynamic limit, and the triplet excitation would be gapped.
However, due to the finite-size effect in the ED calculation,
we can only identify three singlet states of the fourfold de-
generacy, as shown in Figs. 3(a) and 3(b), which are located
in the translational momentum sectors with k = (0, 0), (π ,
0), and (0, π ), respectively. To determine the low-energy gaps
in the PVBS phase, we calculate the energy gaps at J3 = 0.5
obtained on the torus geometry with different lattice sizes, as
shown in Fig. 3(c). The energy gaps of the 32- and 36-site
clusters are calculated by ED (see the details in Fig. 12).
The results of the 8 × 8 lattice are obtained by DMRG and
have been extrapolated with the number of SU(2) states to get
the convergent results. As shown in Fig. 3(c), the singlet gap
[E1(S = 0) − E0(S = 0)] is extrapolated to zero and the triplet
gap [E0(S = 1) − E0(S = 0)] is extrapolated to a finite value,
which are consistent with the PVBS state. With the further
increase of J3, another (avoided) energy level crossing occurs
at J3 � 0.725 for the 32-site cluster and at J3 � 0.65 for the
36-site cluster, which indicates the phase transition from the
PVBS phase to the spiral order phase.

In Fig. 3(d), we also show the entanglement spectrum
obtained by DMRG on the 24 × 8 cylinder geometry. From
J3 = 0.0 to J3 = 1.0, the lowest spectrum level keeps only
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TABLE I. The NAF-QSL, QSL-PVBS, and PVBS-Spiral transition points obtained by different physical observables. The corresponding
methods and lattice sizes used to obtain these transition points are also listed.

Type Physical Observable Lattice Size Method J3,c (error)

m2
s Cylinders (Ly = 6–12) DMRG 0.3 (0.025)

NAF-QSL Energy Torus (32 sites) ED 0.275 (0.025)
Energy Torus (36 sites) ED 0.275 (0.025)

Entanglement Cylinders (Ly = 8) DMRG 0.3 (0.025)
QSL-PVBS m2

V BC Cylinders (Ly = 6–12) DMRG 0.35 (0.05)
ξx Cylinders (Ly = 6–12) DMRG 0.375 (0.025)

Energy Torus (32 sites) ED 0.4 (0.025)
Energy Torus (36 sites) ED 0.4 (0.05)

Entanglement Cylinders (Ly = 8) DMRG 0.45 (0.05)
PVBS-Spiral Energy Torus (32 sites) ED 0.725 (0.025)

Energy Torus (36 sites) ED 0.65 (0.05)
Entanglement Cylinders (Ly = 8) DMRG 0.7 (0.05)

onefold degeneracy in the S = 0 sector, which has a gap from
the higher spectra. For the higher spectra above the lowest
level, there are crossings between the spectra with S = 0 and
S = 1 at J3 � 0.3 and 0.45, which are close to the phase
transition points and may also be taken as the signal of phase
transitions. Moreover, the level crossing also occurs at J3 �
0.7, which combined with the results of the energy spectra
strongly suggest that the phase boundary between the PVBS
and the spiral phase locates at J3 � 0.7. However, due to the
change of the ordering momentum in the spiral phase with
growing J3, it is difficult to obtain this transition point from
the extrapolations of the spiral order parameter.

Employing ED and DMRG, we study the order parame-
ters, energy spectra, and entanglement spectra of the J1–J3

model. The corresponding transition points obtained by differ-
ent physical observables and lattice sizes are listed in Table I.
And the final phase diagram is shown in Fig. 1. Besides the
NAF phase and spiral phase, which also exist in the classical
limit, there are a QSL phase (0.3 � J3 � 0.375) and a PVBS
phase (0.375 � J3 � 0.7) in the phase diagram. As shown in
Figs. 2(a) and 2(b), the smooth vanishing (appearing) of the
extrapolated m2

s (m2
VBC) indicates that the NAF-QSL and QSL-

VBS transitions may both be continuous phase transitions.
The PEPS simulation results even suggested that these two
transitions may belong to different universality classes [61].
Nonetheless, weak first-order transitions cannot be excluded
due to the limit of the studied system size.

To further characterize the different phases, we also show
the static spin structure factor S(q) and the dimer structure
factor D(q) at different couplings in Fig. 4. At both J3 = 0.3
and 0.5, the static spin structure factors S(q) show broad
peaks around the M point, which come from the short-range
spin correlation inherited from the Néel order and become
weaker with the increase of J3. When approaching the spiral
phase, the wave vector of maximum S(q) gradually deviates
from the M point. By using field-theory techniques and series
expansion, a previous study [60] found that the spiral order is
established at J3 � 0.55. In our study, the long-range spiral
order is suppressed by quantum fluctuation until J3 � 0.7.
However, there would be some short-range spiral order exist-
ing for 0.55 � J3 � 0.7 and how the short-range spiral order
will affect the PVBS state still needs further study. In the

spiral phase, the wave vector (Q, Q) of the Bragg peak should
keep approaching (π/2, π/2) with increasing J3. As shown

FIG. 4. The contour plots of (a1)–(a4) spin structure factor S(q)
obtained on the cylinder geometry with Ly = 8 by DMRG and (b1),
(b2) dimer structure factor D(q) obtained on the 36-site cluster by
ED. The solid lines are the Brillouin zone edge of the original square
lattice and the dashed lines in (b1) and (b2) are the Brillouin zone
edge of the new square lattice formed by the centers of all the nearest-
neighbor bonds in the original lattice.
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FIG. 5. Dynamical spin structure factors S+−(q, ω) at different J3 calculated by the CPT method with 6 × 4 cluster tiling. The inset of
(a) shows the momentum path in the Brillouin zone. In order to show some high-energy spectra with weaker intensity more clearly, we show
S+−(q, ω) with different mapping to the color bar for the low- and high-intensity excitation spectra. Above the boundary value U0 = 0.4,
which is labeled by a black line on the color bar, a logarithmic mapping is used, U = U0 + log10[S+−(q, ω)] − log10[U0], and U = S+−(q, ω)
while below the boundary value. The Lorentz broadening factor we use for this figure is η = 0.15. The white solid lines in (a), (b), and (h) are
the dispersion relations obtained by the linear spin-wave theory [50,51,53,54]. The dashed lines in (e)–(g) demonstrate the separation between
the lower-energy and higher-energy excitations in the PVBS phase.

in Figs. 4(a3) and 4(a4), although the 24 × 8 cylinder may
not have (Q, Q) in the momentum space, the broadened peaks
near (π/2, π/2) are consistent with the spiral order on such
a finite cluster. For the dimer structure factor D(q) of the
36-site cluster obtained by ED, there is a wide range of broad
continua around the original and new Brillouin zone edge at
J3 = 0.3. On the other hand, D(q) has sharp peaks at the �

momentum point of the new Brillouin zone at J3 = 0.5, which
agrees with the emergent VBS order.

B. Magnetic excitation

In this section, we study the dynamical spin structure
factor by using the CPT and ED methods. In Fig. 5, we
show S+−(q, ω) obtained by the CPT method along the high-
symmetry path �(0, 0) → X (π, 0) → M(π, π ) → �(0, 0) of
the Brillouin zone [see the inset of Fig. 5(a)]. In the Néel
phase, the spontaneous breaking of spin SU(2) symmetry
contributes a gapless Goldstone mode at the M point, as
shown in Figs. 5(a) and 5(b). At low energy, our CPT results
are consistent with the dispersion relations obtained by the
linear spin-wave theory [50,51,53,54], which indicates the
reliability of our CPT results. At high energy around ω ≈ 2.0,
the excitations obtained by the two methods have a slight
difference which may be induced by magnon interactions and
quantum fluctuation. And considering the first-order or even
second-order 1/S correction in the spin-wave theory would
reduce the difference [79]. For J3 = 0.0 in Fig. 5(a), our CPT
data are consistent with the previous CPT results [36]. With
growing J3, the high-energy excitation at the X point becomes
weaker and splits into two branches. Meanwhile, the intensity
of the excitation tail slightly enhances. As shown in Fig. 7(b),
these features can also be observed in the ED results obtained
on the 36-site cluster, although the ED results have sharper
peaks due to a stronger finite-size effect and small Lorentz
broadening factor η. With growing J3, for example at J3 =

0.2, there is another branch of the excitation around the M
point emerging at the energy scale ω ≈ 2.0. Meanwhile, the
excitation mode at around point (π/2, π/2) shifts to lower
energy. As shown in Fig. 5(b), the deviation at high energy
around ω ≈ 2.0 is more obvious with increasing J3, like the
split of the excitation at the X point and the emergence of
another branch of excitation around the M point at ω ≈ 2.0,
and this may also indicate the enhancement of the quantum
fluctuation when approaching the QSL phase. For the Néel

FIG. 6. Dynamical spin structure factors S+−(q, ω) at different
J3 calculated by ED. The results are shown in the similar way to
Fig. 5 and the boundary value U0 = 0.4 is labeled by a black line on
the color bar. The Lorentz broadening factor we use for this figure is
η = 0.05. The dotted lines indicate the momentum points contained
in the momentum space of the 36-site cluster.
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FIG. 7. Dynamical spin structure factors S+−(q, ω) at the X mo-
mentum point with different J3, which are calculated by (a) CPT and
(b) ED.

phase in the J1–J2 Heisenberg model, the gapless Goldstone
mode remains at around the M point [36]. With growing J2,
the excitation mode at around the X point gradually reduces
to lower energy without visible splitting and, finally, the whole
spectrum turns into a broad continuum in the QSL phase [36].

In the QSL phase of the J1–J3 model, the strongest intensity
still locates at around the M point, as shown in Figs. 5(c) and
5(d). At J3 = 0.3, the lower branch of excitations at the X
point becomes weaker and the corresponding excitation gap is
smaller, compared with the spectra in the Néel phase. For the
higher branch at the X point, it turns into some broad continua
with only slightly weakened spectral intensity. As shown in
Fig. 6(a) and Fig. 7(b), these dispersive excitations can also be
seen in the ED results for ω � 2.25 and are formed by many
weak excitation peaks. These continua may attribute to the
deconfined spinons in the QSL phase. At J3 = 0.35, a weak
signal of a small gap is found in the low-energy spectrum and
one can also see some weak continua in high energy around
the M point. However, by using ED as a solver for the CPT
method, we calculate the clusters up to 24 sites, in which it
may still be hard to identify the gapped or gapless nature of
the QSL phase. For the QSL phase in the J1–J2 Heisenberg
model, the spectrum is characterized by a broad continuum
[36], while in the J1–J3 model, there are only some weak
continua in the low-energy spectrum around the X point when
J3 = 0.3 and 0.35.

Figures 5(e)–5(g) show the dynamical spin structure fac-
tors S+−(q, ω) obtained by CPT in the PVBS phase, which
have the gapped spin-triplet excitation. Interestingly, it seems
that there is another excitation with residual broad continua
above ω ∼ 1.5J1, which is separated from the lower-energy
excitation by a gap [see the dashed lines in Figs. 5(e)–5(g)].
Such a similar feature has also been observed in the quan-
tum Monte Carlo results of the 2 × 2 checkerboard model
[80]. And we also show our CPT results of the same model
in Fig. 13 to do the comparison. In that model, caused by
the nonuniform interactions, the translational symmetry is
already broken in the Hamiltonian and its ground state is
in the plaquette phase when the ratio of the inter- to the
intraplaquette interaction is smaller than 0.54 852 4(3) [81].
The plaquette state can adiabatically connect to a state which
is formed by the direct product of the four-site plaquettes. In
the plaquette phase, the two excitations locating at the low
and high energy are owing to two different kinds of triplet
excitations originating from the four-site plaquette, which are

shown in Fig. 14. In the 2 × 2 checkerboard model, with-
out interplaquette interaction, these two kinds of excitations
are localized. After adding a weak interplaquette interaction
which can be seen as a perturbation, the quasiparticle of the
local excitations can move in the whole lattice and the lower-
energy branch turns into a dispersive excitation. Compared
with the lower-energy branch, the high-energy branch is more
localized due to the much larger excitation gap and the effec-
tive interactions are very weak, which cause the high-energy
branch to be nearly flat. In the J1–J3 model, we can also
ascribe the two excitations observed in Figs. 5(e)–5(g) to these
two kinds of triplet excitations. Nevertheless, there are still
some differences between the spectra of the two models. As
shown in Fig. 5(e), the low-energy excitation at J3 = 0.4 is a
gapped triplon excitation around the M point, which is very
similar to the one in the 2 × 2 checkerboard model. But for
ω � 1.5J1, the high-energy branch is a dispersive excitation
with weaker intensity. In J1–J3 model, the PVBS phase is
formed by spontaneously breaking the translational symmetry
and the local excitations at high energy have higher mobility
due to the uniform J1 and J3 interactions. And these lead
to the differences between the spectra of two models. As
shown in Fig. 6(c), two triplet excitations can also be seen in
the ED results, although the high-energy dispersion is not so
clear due to the finite-size effect. Because the PVBS ground
state is a singlet state with the translational wave vector at
the � point and S+−(q, ω) mainly captures the excitation
with S = 1, the low-energy excitations shown in Fig. 6(c)
correspond to the triplet excitations, especially around the M
point in Fig. 12(b). With growing J3 in the PVBS phase, the
excitation gap at the M point is enlarged and the minimum
gap of the whole Brillouin zone gradually transforms from the
M point to another wave vector along the M → � path. And
these changes may be caused by the short-range spiral order.
As shown in Fig. 5(h), when the spiral order is established
at J3 = 0.7, a new gapless magnon mode develops around
(Q, Q) which is located between the M and � points. The
good agreement between the CPT results and the spin-wave
dispersion relation also indicates the existence of the spiral
order at J3 = 0.7. And the small excitation gap of the ED
result in Fig. 6(d) is caused by the finite-size effect.

IV. SUMMARY AND DISCUSSION

By using the DMRG and ED methods, we calculate the
order parameters and the low-lying energy and entangle-
ment spectra of the spin-1/2 J1–J3 Heisenberg model on the
square lattice. We obtain the phase diagram of this model
and find a paramagnetic region (0.3 � J3/J1 � 0.7) sand-
wiched between the Néel and the spiral order phases. For
0.375 � J3/J1 � 0.7, a PVBS phase is characterized by our
numerical calculation, including the extrapolated results of
the dimer order parameters mVBC 	= 0 and mCol = 0 as well
as the vanished (finite) spin-singlet gap (spin-triplet gap)
in the thermodynamic limit. For 0.3 � J3/J1 � 0.375, we
find absent Néel and dimer order, which agree with a QSL
phase.

Furthermore, we use the CPT and ED methods to study the
dynamical spin structure factor S+−(q, ω). While a Goldstone
mode appears at the M point in the Néel phase, a new gapless
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magnon mode developing around (Q, Q) is found in the spiral
order phase, which approaches (π/2, π/2) with growing J3.
In the QSL phase, some dispersive weak excitations around
the X and M points are captured by our results. By comparing
with the dynamical spin structure factor of the 2 × 2 checker-
board model, the CPT method is able to capture most of the
characteristics of the PVBS phase. Similar to the plaquette
phase of the 2 × 2 checkerboard model, except for the triplet
excitation around the M point at low energy, there is another
triplet excitation surrounding with some continua at high en-
ergy. The difference between the excitation spectra of these
two models may be owing to the spontaneously translational
symmetry breaking of the PVBS phase and the uniform in-
teractions in the J1–J3 Heisenberg model. In addition, except
for the J–Q6 model [72] and the J1–J2–J3 Heisenberg model
[7,8,11,13,14,59,62], the fourfold degenerate PVBS phase for
the square lattice has been rarely found in models without the
explicit translational symmetry breaking in the Hamiltonian.
Our results will also provide more theoretical understanding
of the magnetic excitation of such a PVBS phase.
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APPENDIX A: FINITE-SIZE CLUSTERS

In this paper, we use the Lanczos ED to calculate the
energy spectrum, static dimer structure factor, and dynamical
spin structure factor. By using the translational symmetry,
spin-inversion symmetry, and sparse matrix storage technique
to reduce the cost of the memory and speed up the calcu-
lation, we can do the diagonalizations up to 36 sites under
the periodic boundary conditions (see Fig. 8). Due to the C4v

symmetry of the lattice, we can only calculate the energy
spectrum of the momentum points, labeled as red colors in
Figs. 8(c) and 8(d), instead of all 32 or 36 momentum points.
The eigenstates at the other momentum points have the de-
generate energy with the eigenstates at these red momentum
points. Both the M = (π , π ) and X = (π , 0), (0, π ) momentum
points are contained in these two clusters. The M momentum
point is important to capture both the Néel order and the VBS
order. Along the high-symmetry path � → X → M → � on
the 36-site cluster, there are nine different momentum points
which are helpful to get more details of the excitation spec-
trum on finite-size clusters and to compare with the results
obtained by the CPT.

FIG. 8. (a), (b) The finite-size clusters used in the ED cal-
culations. a1 = (a, 0) and a2 = (0, a) are primitive vectors of the
square lattice. (c), (d) The momentum points of the 32- and 36-site
clusters.

APPENDIX B: MORE DETAILS ON IDENTIFYING
PHASE TRANSITION POINTS

In Sec. III A, as shown in Figs. 2 and 3, we obtain the
phase transition points of the J1–J3 model by extrapolating
the order parameters and studying the level crossings in the
energy and entanglement spectra. In Table I, we list all the
transition points obtained by different physical observables as
well as the corresponding lattice size and method used in the
calculation.

As shown in Fig. 1, there are three transition points in the
phase diagram of the J1–J3 model, including the NAF-QSL,
QSL-PVBS, and PVBS-Spiral transition. And after consider-
ing all the results listed in Table I, we identify that these three
phase transitions occur at around J3 � 0.3, 0.375, and 0.7,
respectively. And except for the NAF-QSL transition, which
has an error of 0.025, we estimate that the errors of the other
two transition points are 0.05.

APPENDIX C: MORE DETAILS OF THE DMRG RESULTS

In the main text, we show the size extrapolation of the
dimer order parameter m2

VBC in Fig. 2(b). In order to obtain
accurate results, we have extrapolated m2

VBC versus DMRG
bond dimensions 1/m before size scaling. Due to the limit
of computational cost, we can only keep up to 8000 SU(2)
states in DMRG calculation. As shown in Fig. 9(a), 8000
SU(2) states are almost enough for the results of m2

VBC at
J3 = 0.5 with Ly = 10 and J3 = 0.4 with Ly = 12. For larger
J3 or Ly, it seems that more states are needed to ensure
complete convergence. This is one reason for the difficulty to

125129-8



PHASE DIAGRAM AND MAGNETIC EXCITATIONS OF … PHYSICAL REVIEW B 106, 125129 (2022)

FIG. 9. (a) The second-order polynomial extrapolation of m2
VBC

at different J3 on cylinder geometries with Ly = 10 and 12 vs 1/m.
(b) The second-order polynomial extrapolation of the energy at
J3 = 0.5 obtained on the 8 × 8 cluster under the periodic boundary
conditions.

determine the phase boundary using the scaling of the dimer
order parameter. Another reason is that the extrapolation of
m2

VBC obtained on the cylinder geometry may not describe the
VBS order well when J3 is large and deep inside the PVBS
phase. As shown in Fig. 10, by calculating on the cylinder ge-
ometry which has broken the translational symmetry in the x
direction, the boundary-induced dimer order decays fast from
the boundary to the bulk, and the bond energy is relatively uni-
form in the bulk at J3 = 0.4. But at J3 = 0.5, the bond energy
strongly breaks the translational symmetry and keeps highly
dimerized even in the bulk, which will lead to the failure of
identifying the dimer order by m2

VBC. Nonetheless, when J3 �
0.4, the extrapolation of m2

VBC can still describe the VBS order
well and the extrapolation versus 1/m can give more reliable
results, which are important to identify the PVBS order. In
Fig. 9(b), we also show the bond dimension scaling of the
singlet gap and triplet gap of the 8 × 8 cluster under the
periodic boundary conditions at J3 = 0.5, by keeping up to
5000 and 4600 SU(2) states, respectively.

In order to have an intuition of the PVBS phase, we show
the nearest-neighbor bond energy on the 8 × 8 cluster with

FIG. 10. The nearest-neighbor bond energy obtained on the
cylinder geometry with Ly = 8, Lx = 24 at J3 = (a) 0.4 and (b) 0.5,
which are calculated by the DMRG.

FIG. 11. The nearest-neighbor bond energy on the 8 × 8 cluster
with the open boundary conditions at J3 = (a) 0.3, (b) 0.4, (c) 0.5,
and (d) 0.6, which are calculated by the DMRG.

the open boundary conditions in Fig. 11. For the cluster with
the periodic boundary conditions, because of the translational
symmetry the nearest-neighbor bond energies are uniform.
With the broken translational symmetry in the open boundary
conditions, the nearest-neighbor bond energy shows an obvi-
ous plaquette pattern at J3 = 0.4, 0.5, and 0.6, which becomes
sharper with the increase of J3. Our DMRG result at J3 = 0.5,
as shown in Fig. 11(c), agrees well with the result obtained by
the PEPS [13]. On the 8 × 8 cluster, every four neighbor sites
form a plaquette. The nearest-neighbor bond energies inside
the plaquette are strong and the interplaquette bond energies
are much weaker, which is consistent with a PVBS phase.
This plaquette pattern is much weaker at J3 = 0.3, as shown
in Fig. 11(a), and in the Néel phase the nearest-neighbor
bond energies only have slight differences with no sign of the
plaquette pattern.

APPENDIX D: ENERGY SPECTRUM
IN THE ED CALCULATION

The low-energy spectra on the 32- and 36-site clusters
are shown in Fig. 12, which are obtained by ED using the
translational and spin-inversion symmetries. Because N/2 are
both even for the 32- and 36-site clusters, the total spin S of
the states in the sectors with z = 1 are even number and S
are odd number, on the contrary [82]. In the low-lying energy
spectrum, the states with z = 1 are mainly singlet states, and
the states with z = −1 are mainly triplet states. For these two
clusters, the ground states are both the singlet states located in
the sector with k = �, z = 1. And the first excited states are
both the singlet states located in the sector with k = X , z = 1,
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FIG. 12. The low-energy spectra with different momentum
points at J3 = 0.5 obtained on the (a) 32-site and (b) 36-site clusters.
The red and blue bars represent energies with z = 1 and −1, where z
is the eigenvalue of the spin-inversion operator Z [82].

which is twofold degenerate. But the lowest triplet states are
located in the sectors with different k for these two clusters: k
= (3π/4, 3π/4) which is fourfold degenerate for the 32-site
cluster and k = (π , π ) (M) which is only onefold degenerate
for the 36-site cluster.

APPENDIX E: 2 × 2 CHECKERBOARD MODEL

In Ref. [36], the CPT method has been applied on the
chain, ladder, and square-lattice models, in which the results
successfully capture the magnon excitations in the magnetic
phase as well as the deconfined spinons in the QSL phase. In
order to check the performance of the CPT method for the
VBS phase, especially for the PVBS phase, we use CPT to
calculate the dynamical spin structure factors S+−(q, ω) for
the 2 × 2 checkerboard model and compare with the previous
quantum Monte Carlo results [80]. In this model, there are
a Néel phase and a plaquette phase, and the phase transition
happens at gc = 0.54 852 4(3) [81], where g = J ′/J .

Figure 13 shows the CPT results of S+−(q, ω) for the
2 × 2 checkerboard model. For a single four-site plaquette
with only the nearest-neighbor interaction, there are two kinds
of triplet excitations, which are shown in Fig. 14. When the
interplaquette interaction J ′ is turned on and weak, the ground
state is a plaquette phase and there are still two split triplet
excitations in the excitation spectrum. The upper one keeps at
ω ≈ 2.0 around the X and (π/2, π/2) points. The lower triplet
excitation is also gapped and the excitation gaps at the M and
X points decrease with the increasing of g. At g ≈ gc, the
ground state turns into the Néel phase and there is a gapless
magnon excitation at the M point. Our CPT results agree well
with the quantum Monte Carlo results [80], which suggests
that the CPT method can successfully capture the excitations
in the PVBS phase.

FIG. 13. The dynamical spin structure factors S±(q, ω) for the
2 × 2 checkerboard model with different g calculated by CPT. The
inset of (a) shows the structure of the 2 × 2 checkerboard model in
which the red and white lines represent the intraplaquette interaction
J and interplaquette interaction J ′, respectively. And the parameter g
is defined as g = J ′/J . The results are shown in the similar way to
Fig. 5 and the boundary value U0 = 0.4 is labeled by a black line on
the color bar. The Lorentz broadening factor we use for this figure is
η = 0.15.

FIG. 14. The energy spectrum of the Heisenberg model on a
four-site plaquette in the Mz = 0 sector. The corresponding spin
structures of the ground state and two kinds of triplet excitations
are represented by the direct product of singlets (marked by oval
box) and triplets (marked by rectangular box). And we show the
corresponding S of different eigenstates in the rightmost of this
figure, where S is the magnitude of the total spin angular momentum,√

S(S + 1)h̄.
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