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Giant boost of the quantum metric in disordered one-dimensional flat-band systems
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It is a well-known fact that the disorder has its most dramatic effects on the conventional quantum transport in
one-dimensional systems. In flat-band (FB) systems, it is revealed that the conductivity at the FB energy is robust
against the disorder and can even be tremendously boosted. Here, the disorder is due to randomly distributed
vacancies. Furthermore, challenging our understanding of the physical phenomena, the giant increase occurs in
the limit of low FB state density. The singular behavior of the quantum metric of the FB eigenstates is found to
be at the heart of these unexpected and puzzling features. Additionally, it is shown that the compact localized
eigenstates should extend over at least two unit cells to allow a boost. Our findings should have interesting fallout
for other physical systems, and may as well open up engineering strategies to boost the critical temperature in
two-dimensional superconducting FB materials.
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I. INTRODUCTION

Recently, a new class of materials has emerged in the spot-
light, the flat-band (FB) systems. Their dispersionless bands
are at the origin of a plethora of unexpected phenomena [1,2].
The quenched kinetic energy promotes the electron-electron
interaction and favors the emergence of strongly correlated
phases and exotic phenomena, such as fractional quantum
Hall states [3–5], unconventional superconductivity [6–8],
Wigner crystallization [9–11], and magnetic phases [12–14].
FBs are as well responsible for an unusual form of quan-
tum electronic transport (QET) as revealed in several studies
[15–17]. It is well established that an infinitesimal amount
of disorder destroys the metallic phase (conventional) in one-
dimensional systems, and leads to the Anderson localization
of all the eigenstates. In this work, we address numerically and
analytically the QET in disordered one-dimensional FB sys-
tems with a focus on the conductivity at the FB energy (σ f b).
The singular form of the quantum metric of the disordered FB
eigenstates is found to be at the heart of several unforeseen
and puzzling features revealed in this work.

II. THEORY

We consider two different FB systems, the sawtooth chain
(SC) and the stub lattice (SL) as they are illustrated in Fig. 1.
Electrons in these disordered systems are modeled by a tight-
binding Hamiltonian,

Ĥ = −
∑
〈i j〉,s

ti jc
†
isc js + H.c.; (1)

c†
is creates an electron with spin s at site Ri. The sum runs

over the lattice sites; 〈i j〉 are pairs for which the hopping ti j is
nonzero. The disorder is introduced by removing randomly
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B atoms, since the removal of A (or C) atoms will cut the
system into disconnected pieces. The vacancy density is noted
x = Nvac

Nc
; Nvac is the number of removed atoms and Nc the

number of unit cells in the pristine system. In the SL, the
FB energy is independent of t ′, E f b = 0. In the SC the FB
exists only when t ′ = √

2t , and E f b = 2t . From now on, we
use this value of t ′ in the SC and introduce the parameter
α = t ′/t for the SL. A typical compact localized FB eigenstate
(CLS) can be straightforwardly constructed for both lattices.
In the SC (resp. SL), a typical CLS is |ψFB

i 〉 = 1
2 (−√

2|Ai〉 +
|Bi〉 + |Bi−1〉) [resp. |ψFB

i 〉 = 1√
α2+2

(|Bi〉 + |Bi+1〉 − α|Ci〉)];
i is the unit cell index. In the SC, the FB is separated from
the dispersive band by a large gap of amplitude � = 2t while
in the SL it is tunable � = |α|t . The conductivity along the
chain direction is given by the Kubo-Greenwood formula,

σ (E ) = e2h̄

π�
Tr[Im Ĝ(E )̂vxIm Ĝ(E )̂vx]. (2)

The current operator is v̂x = − i
h̄ [̂x, Ĥ ], where x̂ is the posi-

tion operator (̂x = ∑
is xic

†
iscis). The Green’s function Ĝ(E ) =

(E + iη − Ĥ )−1, where η mimics a small inelastic scattering
rate. � = Nca is the system length (a is the nearest-neighbor
distance between A sites). To deal with the disorder, the nu-
merical calculations are done using the efficient Chebyshev
polynomial Green’s function method [16,18–20], which al-
lows large-scale calculations as it requires a modest amount
of memory. The calculations σ (E ) are realized on chains of
about 3 × 105 sites, and an average over at least 100 configu-
rations of disorder is systematically realized.

III. NUMERICAL RESULTS

Figure 2 depicts the density of states (DOS), ρ(E ) =
− 1

πNc
Tr[Im Ĝ(E )] in both lattices. In the SC [Fig. 2(a)], as

x increases the weight of the FB states (E f b = 2t) decreases
linearly and localized impurity states start to fill the gapped
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FIG. 1. The sawtooth chain and the stub lattice illustrated. t is
the hopping between nearest-neighbor sites along the chain and t ′

(dashed line) is the hopping between nearest-neighbor pair (Bi, Ai)
in the stub lattice and between (Bi, Ai) and (Bi, Ai+1) in the sawtooth
chain (i is the unit cell index). The gray-shaded area represents a
typical compact localized flat-band eigenstate.

FIG. 2. DOS as a function of the energy in the disordered
(a) sawtooth chain and (b) stub lattice (α = 0.5). The vacancy densi-
ties (x) are indicated in the panels. For more visibility, in (a) two data
sets have been shifted upward.
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FIG. 3. FB conductivity in the sawtooth chain as a function of
x. The numerical calculations are performed for vacancies (i) ran-
domly distributed (“disorder”) and (ii) organized (“superlattice”).
The dashed lines correspond to the analytical approach described in
the main text.

region. We notice multiple peaks emerging in the dispersive
part of the DOS; their density increases significantly as x
increases. ρ(E ) in the disordered SL is shown in Fig. 2(b)
for α = 0.5. A first glance reveals a rather different picture
from what is observed in the SC. As x increases, the gap
reduces, the divergence at the upper (resp. lower) edge of
the valence (resp. conduction) band is removed, and ρ(E )
becomes smoother and flatter in this region. As expected, the
number of FB states is (1 − x)Nc, since each vacancy destroys
a CLS. We remark that in the disordered system, we still
use “flat band” to characterize the degenerate E = E f b eigen-
states. Indeed, if we calculate the spectral function A(k, E ) =
− 1

π
〈Im G(k, ω)〉, 〈· · · 〉 is the average over the disorder and

G(k, E ) is the Fourier transform of Gi j (E ), we find a flat band
at E = E f b. We now discuss the impact of the disorder on the
conductivity at the FB energy. We recall that the intraband
(Drude) term does not contribute because of the vanishing
group velocity; σ f b reduces to the interband contribution [15].
Figure 3 depicts σ f b in the SC, as a function of x. Here, the
data correspond to the limit of vanishing η. For x < 0.80, η

has a negligible effect, because of the large interband gap.
As x → 1, the gap region gets progressively filled, and the
η dependence becomes stronger, requiring a careful analy-
sis. We first focus on the clean SC (x = 0), for which the
analytical calculations lead to σ f b = 2

3
√

3
σ0, where σ0 = e2

h a.
As x increases, σ f b increases. One would have expected a
reduction instead since the FB state density is reduced. As
x increases further, σ f b increases much more rapidly and
eventually diverges as x → 1, which is even more intriguing.
Indeed, for x = 1, the system reduces to a trivial 1D chain, the
conductivity is purely of Drude type (intraband), and it is easy
to show that σ (E ) = √

4t2 − E2 σ0
2η

. Thus, σ (E = 2t ) = 0,
since no holes are available (or electrons for E = −2t) in
the chain. Consequently, it would have been reasonable to
expect a decay of the conductivity as x → 1. The origin of
these unexpected features is clarified below. To evaluate the
impact of the disorder, we consider a SC where the remaining
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B atoms are ordered (superlattice). In other words B atoms
are located at xn = n

1−x a, where n = 0, 1, . . ., and x is chosen
appropriately ( 1

1−x should be integer).
The data are plotted in Fig. 3 as well. For x � 1, the

conductivity in the disordered and in the ordered SC coin-
cide almost perfectly with each other, as could have been
anticipated. Astonishingly, as x increases further (x > 0.3),
σ f b becomes smaller in the ordered than in the disordered
system. Finally, as x → 1, σ f b diverges as well in the super-
lattice but it is approximately half of that of the disordered
SC. Thus, as unusual as it may be, the disorder enhances the
conductivity.

IV. ANALYTICAL APPROACH

Within an analytical approach, our goal is to clarify the
origin of the unusual features brought to light in our numerical
calculations. Here, we only summarize the main steps of the
procedure; the full details are available in Appendices A, B,
and C. It is more convenient to start from the limit of high va-
cancy concentration, and introduce y = 1 − x, the density of
B atoms distributed randomly in the chain; we assume y � 1.
We define a configuration of disorder by the position in the SC
of the NB B atoms (NB = y × Nc): (Bp0 , Bp1 , Bp2 , . . . , BpNB−1 ),
where p0 < p1 < · · · < pNB−1. For each pair (Bpm−1 , Bpm ), us-
ing a linear combination of the CLS states of the clean chain,
one can construct |ψFB

m 〉, a FB eigenstate of the disordered
SC, where 〈Ai|ψFB

m 〉 is nonzero only for the sites located
between Bpm−1 and Bpm (see Appendix A). We find |ψFB

m 〉 =
|ψ̄pm−1 pm〉/〈ψ̄pm−1 pm |ψ̄pm−1 pm〉, where

|ψ̄pm−1 pm〉 = −e−iϕ[|Bpm−1〉 + (−1)pm ei(pm )ϕ|Bpm〉]

+
√

2
pm∑

l=pm−1+1

ei(l−1)ϕ (−1)l−1|Al〉, (3)

where the phase ϕ = 2π
Nc

�
φ0

, � being a magnetic flux threading

the sawtooth ring (φ0 = h
e ) introduced to allow the calcula-

tion of the conductivity. These disordered CLS are linearly
independent, but not orthogonal to each other. Since our main
focus is y � 1, we can neglect the overlap between them.
Starting from the Kubo-Greenwood formula and using the fact
that v̂x = − a

h̄
∂Ĥ
∂ϕ

, in the disordered SC, we find

σ f b = 2y 〈gm
ϕϕ〉 σ0, (4)

where 〈· · · 〉 means average over the FB eigenstates and gm
ϕϕ is

given by

gm
ϕϕ = 〈

∂ϕ�FB
m

∣∣∂ϕ�FB
m

〉 − ∣∣〈∂ϕ�FB
m

∣∣�FB
m

〉∣∣2
. (5)

This is the quantum metric (QM) associated with the FB
eigenstate |�FB

m 〉. The concept of the QM was originally in-
troduced in Ref. [21] and discussed in various contexts in
Refs. [22–25]. In our one-dimensional space spanned by ϕ,
the QM defines a gauge-invariant distance between nearby
states |�FB

m (ϕ)〉 and |�FB
m (ϕ + dϕ)〉 that reads ds2 = 1 −

|〈�FB
m (ϕ)|�FB

m (ϕ + dϕ)〉|2 = gm
ϕϕdϕ2. Thus, Eq. (4) gives a

geometric interpretation of the FB conductivity in the disor-
dered system. This is similar to the geometric contribution
to the superfluid weight found in superconducting nondisor-

dered FB systems [26,27]. Equation (4) indicates that σ f b is
proportional to the FB state density, which is conceivable and
expected, but as will be seen the dependence of the QM on y
is critical. Notice that Eq. (4) has been also recently derived
independently in Ref. [28] for nondisordered systems.

Using the CLS expression given in Eq. (3), we obtain
gm

ϕϕ ≈ 1
12 (pm − pm−1)2. As shown in Appendix B, the average

of the QM over the FB eigenstates is

〈gm
ϕϕ〉 = 1

6y2
. (6)

Thus, within our analytical approach, the FB conductivity has
a simple form, σ f b = 1

3y σ0. This explains the origin of the
divergence found in the dilute regime. The associated data
correspond to the orange dashed line in Fig. 3. As can be
observed, the agreement with the numerical calculation is
excellent for x > 0.8 and even surprisingly very good down
to x = 0. Indeed, by construction, the analytical expression
is valid for y � 1; the overlap between the constructed CLS
eigenstates is negligible in this regime only. For the clean
SC (y = 1), the analytical result corresponds to approximately
87% of the exact value. We recall as well that our numerical
calculations have revealed that when B atoms are distributed
regularly, the conductivity is approximately half of that of the
disordered system. In the ordered system, we find 〈gm

ϕϕ〉 =
1

12y2 , which is exactly half of that of the disordered system
as given in Eq. (6). This definitely clarifies why the disorder
enhances the FB conductivity. Notice that there is an alterna-
tive way to express the FB conductivity in terms of the mean
spread of FB eigenstates. As shown in Appendix B, Eq. (4)
can be written

σ f b = 2y
〈
L2

m

〉
σ0, (7)

where Lm = [〈�FB
m |(x̂ − 〈x̂〉)2|�FB

m 〉]1/2 is the mean spread
of |�FB

m 〉. The relation between the QM and the spread of
the eigenstates has been introduced in the context of the
maximally localized Wannier function [29,30]. The diverg-
ing conductivity in the dilute regime results from the 1/y2

dependence of the spread of the FB eigenstates that overcom-
pensates the low FB density.

To show the universal character of findings, we address the
disorder effects in the SL. Since the SL offers the degree of
freedom to tune the gap (or α) without destroying the FB, we
consider the combined effects of y and α on σ f b. In Fig. 4,
σ f b is plotted as a function of α for three different values of
y. To start, we discuss the case of the clean system for which
the exact analytical calculations can be realized. As shown
in Appendix C, for y = 1, σ f b = σ0

|α|(4+α2 )1/2 ; it is depicted in
Fig. 4 by the blue symbols. σ f b scales as 1/α as α → 0. But,
as in the SC, α = 0 corresponds the trivial 1D chain, where
the B atoms are disconnected. The transport is of intraband
nature in this limiting case, and σE=0 = t

η
σ0. This implies

a transition when α is switched on; the QET changes from
intraband to interband type. We now switch to the effects of
removing B atoms randomly. For a given α, as y decreases,
one observes a strong increase of σ f b with respect to that
of y = 1. For example, for α = 1, the conductivity jumps
from 0.4σ0 for y = 1 to 5σ0 when 90% of B atoms have
been removed, or equivalently when the FB state density has
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FIG. 4. FB conductivity as a function of α in the disordered stub
lattice, for different values of y (y = 1 − x). “Exact” corresponds to
the numerical calculations. The continuous lines are the analytical
calculations (see text) and the dashed lines simply a guide to the eye.

been divided by 10. If y reduces further, σ f b increases even
more and reaches σ f b ≈ 36σ0 for y = 0.01. Thus, one finds
a spectacular boost of σ f b on two orders of magnitude when
99% of the B atoms have been removed, or when the density
of FB states represents 1% only of that of the pristine SL. We
discuss now the effect of reducing α for y = 0.1 and y = 0.01.
In both cases, a crossover in the vicinity of α ≈ √

y is visible.
Our numerical data show that σ f b weakly depends on α when
α >

√
y (far from the crossover). In contrast, when α <

√
y it

strongly increases as α reduces. Using a fit of the form 1/yβ ,
we find β ≈ 0.96 for y = 0.1 and β ≈ 0.88 for y = 0.01.
As has been done for the disordered SC, we now analyze
the vacancy effects analytically. For a fixed configuration of
disorder, we first construct the FB eigenstate basis and then
we calculate the QM associated with these states. The details
are available in Appendix C. We will not give the general
expression of σ f b in terms of α and y, since it is rather com-
plicated but it is still analytical. The analytically calculated
σ f b corresponds to the continuous lines in Fig. 4. As has
been found numerically, we observe as well a clear crossover
α ≈ √

y. For α >
√

y, the agreement between the analytical
results and the exact numerical calculations is very good for
y = 0.1 and even excellent for y = 0.01. On the other hand,
when α <

√
y, the analytical calculation reveals a saturation

of σ f b as α decreases, contradicting the diverging behavior
found in the exact calculations. The question which arises is
why do these calculations disagree so drastically when α <√

y? As explained before, the procedure used for the analytical
calculations is valid only when the overlap between the con-
structed FB eigenstates can be neglected. A FB state of length
m is of the form (see Appendix C) |ψ1,m+1〉 = 1√

mα2+2
[|B1〉 +

(−1)m−1|Bm+1〉] + α√
mα2+2

∑m
k=1(−1)k|Ck〉. Thus, the ratio of

the weight on type B atoms to that on type C atoms is 2
mα2 .

Hence, the overlap between the nonorthogonal FB eigenstates
is negligible if mα2 	 1, or equivalently when α2 	 y. This
clarifies the presence of a crossover and why the agreement
between exact and analytical results is found for α >

√
y only.

There is no simple way to derive an analytical expression of
the conductivity for α <

√
y. It would require a systematic

FIG. 5. Illustration of the standard diamond chain and the de-
formed one which is obtained by shifting the C atoms. The
gray-shaded area correspond to the CLS eigenstates.

orthogonalization of the FB eigenstates using for instance a
Gram-Schmidt procedure which would not lead to a simple
analytical form for σ f b. We believe that our findings could be
addressed experimentally. Recently, using STM to manipulate
individual vacancies in a chlorine monolayer on Cu(100) it
has been possible to construct various one-dimensional (1D)
lattices with engineered flat bands [31].

V. EFFECTS OF ORBITAL POSITIONS
AND CLS EXTENSION

It has been shown recently that the superfluid weight,
which has also previously been related to the QM, should be
independent of the choice of the orbital positions. Since the
QM depends on the position of the orbitals in the unit cell, the
relevant quantity for superconductivity in isolated flat bands is
the minimal quantum metric [32,33]. Here, because Eq. (4) is
valid for any position of the orbitals in the unit cell, it implies
that the FB conductivity depends on the orbital positions as
well. For instance, in the clean sawtooth chain case considered
in this study and illustrated in Fig. 1, σ f b = 2

3
√

3
σ0 ≈ 0.385σ0.

For the symmetric sawtooth chain where the distance between
B atoms and their nearest neighbors A is identical, we find a
smaller value σ f b = 3+√

3
18 σ0 ≈ 0.263σ0. This latter case cor-

responds to the minimal QM or equivalently to the minimal
conductivity.

We propose now to shed light on the importance that CLS
states extend over at least two unit cells to obtain a boost of
the FB conductivity. For that purpose, we consider the one-
dimensional diamond lattice as illustrated in Fig. 5 and for
which the CLS eigenstates occupy a single unit cell (shaded
gray area in the illustration). As a consequence, the over-
lap between CLS states is zero. The set of CLS eigenstates
|CLS〉i = 1√

2
(|i, B〉 − |i,C〉) where i labels the unit cell and

i = 1, . . . , N is a FB basis. Thus, for the disordered chain
the FB basis is obtained by simply removing the CLS states
associated with the vacancy sites. Hence, the average of the
QM does not depend on y; thus the FB conductivity decays
linearly as y is reduced. Consider the case of the diamond
chain as illustrated in Fig. 5(a), for which we find σ f b = 0
for any value of y. In contrast, for the disordered deformed
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diamond chain [Fig. 5(b)], the calculation of the QM leads to
σ f b = 0.125yσ0. This example nicely illustrates the fact that
the condition that CLS states extend over at least two unit cells
is crucial to boost the FB conductivity.

VI. CONCLUSION

To conclude, it is revealed that the dilution of FB eigen-
states can lead to a giant boost of the flat-band conductivity.
At the origin of this unexpected and counterintuitive physical
phenomenon is the diverging behavior of the quantum metric
of the FB states. It is also shown that the condition that CLS
eigenstates extend over at least two unit cells is crucial. The
physics highlighted in this work is general and not restricted
to one-dimensional systems. As has been shown recently,
the quantum metric plays a key role in the amplitude of the
critical superconducting temperature in FB systems; we argue
that our findings may as well open up strategies to engineer
high-Tc materials. The STM manipulation of adatoms on the
surface of two-dimensional materials, or the intercalation of
atoms between multilayer compounds, could be interesting
pathways. The promising candidates could be identified with
the efficient support of first-principles studies.
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APPENDIX A: CONSTRUCTION OF THE FB
EIGENSTATES FOR THE DISORDERED

SAWTOOTH CHAIN

The aim of this Appendix is to show the procedure used to
construct the FB eigenstate basis in the disordered sawtooth
chain (SC).

To allow the analytical calculation of the conductivity, we
consider a SC ring threaded by magnetic flux �. This results
in the well-known Peierls substitution in the tight-binding
Hamiltonian: ti j → ti j exp(−i e

h̄

∫ j
i A · dl ) where

∮
A · dl =

�, and because we choose A = Axex, uniform AxNca = �;
Nc is the number of unit cell (system size). We recall that the
current operator is then given by ĵx = − ∂Ĥ

∂Ax
. In the clean case,

a typical flux-dependent FB eigenstate in the sawtooth chain
is given by

|FB0〉i = 1
2 (

√
2|Ai〉 − e−iϕ |Bi−1〉 − |Bi〉), (A1)

where ϕ = 2π
Nc

�
φ0

, and φ0 = h/e is the quantum flux unit.
In this Appendix we focus on the limit of large con-

centration of vacancies. The remaining B atoms are very
dilute, thus far from each other; we denote y = 1 − x
(y � 1) their concentration. We define a configuration of
disorder by the position of the NB B sites (where NB = y ×
Nc): (Bm0 , Bm1 , Bm2 , . . . , BmNB−1 ), where the positions of the
B atoms are organized in increasing order m0 < m1 < · · · <

mNB−1. For such a configuration one can build the set of
NB FB eigenstates of the disordered Hamiltonian. We denote
|ψFB

mk−1mk
〉 the E = E f b eigenstate that has nonzero components

FIG. 6. Structure of |�FB
m 〉, a typical FB eigenstate used for the

analytical calculation of the FB conductivity in the disordered saw-
tooth chain and in the disordered stub lattice.

between Bmk−1 and Bmk where k = 1, . . . , NB − 1. Because of
the periodic boundary conditions, the missing NBth FB state
is obtained for the pair (BmNB−1 , Bm0 ).

Let us first start with the case of a single pair of B sites
located respectively at Bm0 and Bm1 ; the other B atoms have
been removed and we assume that this pair of B atoms are
far away from each other as illustrated in Fig. 6. First, from
the CLS eigenstates of the pristine Hamiltonian (Ĥ0), we
construct an eigenstate which has vanishing components on
the B atoms located between Bm0 and Bm1 ,

|ψ̄m0m1〉 =
m1∑

p=m0+1

ei(p−1)ϕ (−1)p−1|FB0〉p. (A2)

This state can be rewritten

|ψ̄m0m1〉 = −e−iϕ |Bm0〉 + (−1)m1 ei(m1−1)ϕ |Bm1〉

+
√

2
m1∑

p=m0+1

ei(p−1)ϕ (−1)p−1|Ap〉. (A3)

It is an eigenstate of Ĥ = Ĥ0 − δĤ , where δĤ corresponds
to all removed (A, B) hoppings located between the pair
(Bm0 , Bm1 ). One can easily check that δĤ |ψ̄m0m1〉 = 0. Since
this state is a linear combination of the CLS eigenstates of Ĥ0,
then it is also an eigenstate of the disordered Hamiltonian Ĥ .
The corresponding normalized eigenstate is defined by

|ψm0m1〉 = |ψ̄m0m1〉√
2(d1,0 + 1)

, (A4)

where di,i−1 = mi − mi−1. Hence, for a given configu-
ration of the disorder (position of B sites) given by
(Bm0 , Bm1 , Bm2 , . . . , BmNB−1 ), we can construct the set of
NB (NB = yNc) eigenstates with energy E f b following this
procedure.

These states are linearly independent but not orthogonal
to each other. Indeed, two successive eigenstates overlap at
one of the B sites. For instance the overlap 〈ψmimi+1 |ψmi+1mi+2〉
is given by 1

2
√

(di+1,i+1)(di+2,i+1+1)
, where we ignore the phase

factor. In the dilute limit 〈ψmimi+1 |ψmi+1mi+2〉 is of the order
of y/2, and thus one can ignore the small overlap between
our constructed eigenstates. Within this approximation, for
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our configuration of disorder, the basis of FB eigenstates is
(|ψm0m1〉, |ψm1m2〉, . . . , |ψmNB−1mNB

〉, |ψmNB m0〉).

APPENDIX B: FLAT-BAND CONDUCTIVITY
AND QUANTUM METRIC IN THE SAWTOOTH CHAIN

The aim of this section is to show the relation between
the conductivity at the flat-band energy and the quantum
metric in the case of the disordered sawtooth chain. The
full basis of the disordered sawtooth eigenstates is de-
fined by ({|�FB

j 〉} j, {|�l〉}l ) where |�FB
j 〉 = |ψmj mj+1〉 ( j =

1, 2, . . . , yNc) are the FB eigenstates as defined in the previous
section, and |�l〉 correspond to the dispersive eigenstates with
eigenenergy El 
= E f b where l = 1, . . . , Nc.

Starting from the Kubo-Greenwood formula as given in the
main text, we can reexpress the conductivity at E = E f b,

σ f b = 2e2a

hNc

∑
j,l

∣∣〈∂ϕ�FB
j

∣∣�l
〉∣∣2 Ēl

2

Ēl
2 + η2

, (B1)

where Ēl = El − E f b. Notice that we have used the rela-
tion ∂ϕĤ |�FB

j 〉 = (E f b − Ĥ )|∂ϕ�FB
j 〉. For η small enough,

in other words, smaller than δE = min( ¯|El |), we can re-

place Ēl
2

Ēl
2+η2

by 1. Notice that the systems that have studied

numerically indicate a gap between the FB and the disper-
sive eigenstates. Hence, by inserting in Eq. (B1) the relation∑

l |�l〉〈�l | = 1 − ∑
j |�FB

j 〉〈�FB
j |, the FB conductivity

becomes

σ f b = 2e2a

hNc

∑
j

[〈
∂ϕ�FB

j

∣∣∂ϕ�FB
j

〉 − ∑
k

∣∣〈∂ϕ�FB
j

∣∣�FB
k

〉∣∣2

]
.

(B2)

The overlap Cjk = 〈∂ϕ�FB
j |�FB

k 〉 is nonzero only for j = k
and j = k ± 1. In the same way that we could neglect the
overlaps 〈�FB

k |�FB
k±1〉 because they are of the order of y/2 �

1, we ignore as well Cj, j±1, and keep only the Cj j . We obtain

σ f b = 2y〈gm
ϕϕ〉σ0, (B3)

where 〈· · · 〉 means average over the FB eigenstates, and σ0 =
e2

h a. gm
ϕϕ is the quantum metric associated with the disordered

FB eigenstate |�FB
m 〉. The concept of the quantum metric was

originally introduced in Ref. [21] and discussed in various
contexts in Refs. [22–25]. Here it reads

gm
ϕϕ = 〈

∂ϕ�FB
m

∣∣∂ϕ�FB
m

〉 − ∣∣〈∂ϕ�FB
m

∣∣�FB
m

〉∣∣2
. (B4)

This expression gives a natural geometrical interpretation of
the FB conductivity. Note that one can derive another useful
expression of the FB conductivity. We start with the alterna-
tive definition of the current operator, v̂x = − i

h̄ [̂x, Ĥ ]. This
leads to the useful relation〈

�FB
j

∣∣̂vx

∣∣�l
〉 = −i

〈
�FB

j

∣∣̂x∣∣�l
〉
Ēl/h̄. (B5)

Then, we insert this matrix element in the Kubo-Greenwood
formula as given in the main text and we obtain

σ f b = 2σ0

Nc

∑
j

[〈
�FB

j

∣∣̂x2
∣∣�FB

j

〉 − ∑
k

∣∣〈�FB
j

∣∣̂x∣∣�FB
k

〉∣∣2

]
.

(B6)

In the second part of the sum on the right side, we keep only
〈�FB

j |̂x|�FB
j 〉; the other nonvanishing overlaps (k = j ± 1)

can be neglected in the dilute limit as discussed above. Thus,
we get

σ f b = 2y
〈
L2

m

〉
σ0, (B7)

Lm = [〈�FB
m |(x̂2 − 〈x̂〉2)|�FB

m 〉]1/2 is a measure of the mean
spread of the FB eigenstate |�FB

m 〉. The relation between the
quantum metric and the spread of the eigenstates has been
introduced in the context of the maximally localized Wannier
function [29,30].

We proceed further and calculate the value of gm
xx associ-

ated with the flat-band state |ψ0m〉. From the expression of the
FB eigenstate as given in Eq. (A3), one finds

〈
∂ϕ�FB

m

∣∣∂ϕ�FB
m

〉 = 1

2m + 1

(
m(m − 2) + 2

m−1∑
1

k2

)
≈ 1

3 m2, (B8)

and the second term is〈
∂ϕ�FB

m

∣∣�FB
m

〉 = i

2m + 1

(
m − 2 + 2

m−1∑
1

k

)

≈ i
m

2
. (B9)

Then, the quantum metric associated with the disordered FB
eigenstate |�FB

m 〉 has the simple form

gm
ϕϕ = m2

12
+ o(1). (B10)

For a given configuration of disorder (random position of the
y × Nc atoms of B type), the probability that the distance (in a)
between two successive B atoms is l can be approximated in
the dilute limit by a Poisson distribution, Py(l ) = ye−yl . Using
the expression of the quantum metric as given in Eq. (B10),
we immediately find

〈gm
ϕϕ〉 = 1

6y2
. (B11)

Thus, in the disordered sawtooth chain the conductivity at the
FB energy is

σ f b = σ0

3y
. (B12)

In order to evaluate the impact of the disorder, one can
straightforwardly calculate the conductivity in the case where
the B atoms are now organized on a superlattice. The dis-
tance between B atoms is constant, l = l̄ = 1/y. In this case
the probability distribution reduces to Py(l ) = δ(l − l̄ ). This
immediately leads to 〈gm

ϕϕ〉 = 1
12y2 . Hence, in the ordered case

the average quantum metric is half of that of the disordered
system. Thus the conductivity is twice as large in the for-
mer case as in the latter one. The disorder enhances the FB
conductivity.

It is also interesting to calculate the quantum metric in the
clean sawtooth chain. In this case, the exact FB eigenstates
are |�FB

k 〉 = 1√
2+cos(ka)

[|A, k〉 − √
2 cos(ka/2)e−ika/2|B, k〉]

where k is the momentum and |X, k〉 = 1√
Nc

∑
i eikRi |X, i〉
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(X = A, B). From Eq. (B4) where ∂ϕ = ∂ka one finds, after
some steps, the quantum metric,

gk
ϕϕ = 1

2[2 + cos(ka)]2
. (B13)

Then, we find 〈gk
ϕϕ〉 = 1

2π

∫ π

0
1

[2+cos(ka)]2 dk = 1
3
√

3
where the

integral can be calculated exactly using the standard residue
theorem. From Eq. (B3), we finally find the conductivity in
the clean sawtooth chain, σ f b = 2

3
√

3
σ0 ≈ 0.385σ0.

It is interesting to compare this value, with the analytical
expression given in Eq. (B12). They differ by 13% only. This
is surprising since Eq. (B12) is valid only for y � 1.

APPENDIX C: FB CONDUCTIVITY AND QUANTUM
METRIC IN THE STUB LATTICE

In this section we calculate the quantum metric and the
FB conductivity in the disordered stub lattice. We follow the
procedure used in the case of the disordered sawtooth chain
(previous sections) to construct the basis of CLS FB states
in the disordered stub lattice. We consider a pair of B atoms
located in the first and (m + 1)th unit cells, with no B atoms in
between. The corresponding normalized FB eigenstate reads

|ψ1,m+1〉 = e−iϕ/2

√
mα2 + 2

[|B1〉 − (−1)meimϕ |Bm+1〉]

+ α√
mα2 + 2

m∑
k=1

(−1)kei(k−1)ϕ |Ck〉. (C1)

The first term of quantum metric associated with this FB
eigenstate as defined in Eq. (B4) is given by

〈
∂ϕ�FB

m

∣∣∂ϕ�FB
m

〉 = 1

mα2 + 2

3∑
i=0

fim
i, (C2)

with f3 = α2

3 , f2 = (1 − α2

2 ), f1 = (1 + α2

6 ), and f0 = 1
2 . The

second term in Eq. (B4) is∣∣〈∂ϕ�FB
m

∣∣�FB
m

〉∣∣2 = m2

4

(
1 − α2

mα2 + 2

)2

. (C3)

The calculation of the average value of the quantum metric
for a given pair (α, y) requires the calculations of integrals of
the form Inp(α, y) = ∫ ∞

0 Py(x) xn

(xα2+2)p where the probability

distribution Py(x) = ye−yx, and n can be 0, 1, 2, 3 and p is
0, 1, 2. There are two limiting cases where the quantum metric
can be simplified. First, we consider the case where α2 � y;
this corresponds to mα2 � 1. One finds

gm
ϕϕ = 1

4 (m + 1)2. (C4)

Thus, from Eq. (B3), we obtain

σ f b = 1

y
[1 + y + o(y2)]σ0. (C5)

The other regime corresponds to α2 	 y (or mα2 	 1) for
which the quantum metric reduces to gm

ϕϕ = 1
12 m2. This leads

to the FB conductivity,

σ f b = 1

3y
[1 + o(y/α2)]σ0. (C6)

It is important to stress that to be valid our analytical approach
requires a small overlap between the constructed FB states,
which corresponds to the latter regime.

In order to estimate the impact of disorder, it is interesting
to consider the case where the B atoms are organized in a
superlattice; the nearest-neighbor distance between B atoms is
l̄ = 1/y. For α2 � y, we find σ f b = 1

6y σ0 which is half of that
of the disordered system as has been found for the sawtooth
chain.

Finally, if we consider the case of the clean stub lattice
(y = 1) we can get an exact analytical expression. The FB
eigenstates are |�FB

k 〉 = 1√
D

[|C, k〉 − 2 cos(ka/2)
α

|B, k〉] where k

is the momentum and D = 1 + 4
α2 cos2(ka/2). This leads to

gk
ϕϕ = sin2(ka/2)

α2D . The average of the quantum metric is

〈gk
ϕϕ〉 = α2

8π

∫ π

0

1 − cos(k)

[β + cos(k)]2
dk, (C7)

where β = 1 + α2/2. The integral on the right-hand side can
be calculated exactly leading to

〈gk
ϕϕ〉 = 1

2|α|(4 + α2)1/2
. (C8)

Thus, in the limit of small values of α the FB conductivity
in the clean stub lattice is

σ f b = 1

2|α|σ0. (C9)
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