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Correlated Mott insulators in strong electric fields: Role of phonons in heat dissipation
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We study the spectral and transport properties of a Mott insulator driven by a static electric field into a
nonequilibrium steady state. For the dissipation, we consider two mechanisms: wide band fermion reservoirs
and phonons included within the Migdal approximation. The electron correlations are treated via nonequilibrium
dynamical mean field theory with an impurity solver suitable for strong correlations. We find that dissipation via
phonons is limited to restricted ranges of field values around Wannier-Stark resonances. To cover the full range
of field strengths, we allow for a small coupling with fermionic baths, which stabilizes the solution. When
considering both dissipation mechanisms, we find that phonons enhance the current for field strengths close to
half of the gap while lowering it at the gap resonance as compared to the purely electronic dissipation used
by Murakami and Werner [Murakami and Werner, Phys. Rev. B 98, 075102 (2018)]. Once phonons are the
only dissipation mechanism, the current in the metallic phase is almost one order of magnitude smaller than the
typical values obtained by coupling to a fermionic bath. In this case, the transport regime is characterized by an
accumulation of charge in the upper Hubbard band described by two effective chemical potentials.
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I. INTRODUCTION

One of the puzzling properties of strongly correlated ma-
terials is the occurrence of resistive switching in the form of
an electric field driven insulator-to-metal transition [1]. The
physical mechanism(s) leading to such a process is, as of yet,
debated. In particular, the two most established explanations
rely on either a thermal- [2,3] or quantum-triggered [4] origin
of such phenomena.

Another possible explanation advocates the formation of
conducting filaments percolating through the material. Recent
work employed effective-resistor models [1,5] or a nonhomo-
geneous mean field approach [6] to describe the formation of
such filaments. It is beyond doubt that a comprehensive de-
scription of these phenomena requires a deeper understanding
of the microscopic mechanism behind the Joule heat transport.

However, beyond the relevance of the resistive switching
transition, the problem of nonequilibrium transport of corre-
lated electrons in a strong dc electric field and the occurrence
of current-carrying regimes has attracted considerable atten-
tion in recent years [7–18]. As already pointed out in previous
works [6,12–15,18–21], in order for the system to reach a
nonequilibrium steady state, the current-induced Joule heat
must be carried away. An efficient way to achieve this consists
in the inclusion of fermionic reservoirs [2,3,14,18,19], also
known as Büttiker probes. Their bandwidth is usually chosen
to be large enough to ensure dissipation over the whole energy
window of interest. Even though fermionic reservoirs proved
themselves to be particularly well suited for the system to
reach a stable, nontrivial steady-state solution [13,22], they
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fail to capture the physical mechanism of heat transport medi-
ated by lattice vibrations. An important step in this direction
can be found in [4] where both phonons—connected to a
bosonic bath—and fermionic reservoirs are included in two-
dimensional Hubbard-like systems subject to a static field.

A description of the electric field driven insulator-to-metal
transition is beyond the purpose of the present paper. We
rather aim to model the heat dissipation of a Mott insulating
system on a more realistic level by explicitly incorporating
electron-phonon (e-ph) scattering as a dissipation channel.
Similarly to [18], we focus on the Hubbard model within
the dynamical mean field theory (DMFT) approximation. We
find that the nonequilibrium picture near the current-carrying
regions is significantly affected because of the different nature
of the e-ph screening compared to the action of the fermionic
baths.

In particular, when only phonons contribute to dissipation,
their relatively narrow bandwidth makes it difficult to reach a
stable steady-state [23] solution except for applied fields close
to half of the band gap or the full band gap. Because of this
limitation, addressing a wide region of field strengths requires
coupling to a fermionic bath. We realize this mixed situation
by weakly coupling to a fermionic Büttiker-like reservoir in
addition to the phonons. Electronic correlations in this Hub-
bard model plus phonons are treated within DMFT using the
auxiliary master equation approach (AMEA) impurity solver
[24–28], which is particularly suited to treat strong correla-
tions in a nonequilibrium steady state.

The results obtained in the mixed situation agree with [18]
for both the spectral features and physical quantities. With
respect to the previous work, we also study the dependence
of the observables on the coupling to the fermionic bath. We
find that phonons enhance the steady-state current for field
strengths of the order of half of the gap while having no
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effect at the gap resonance, provided that the coupling to
the fermionic bath is sufficiently small. We also show that
phonons alone are far less effective as heat reservoirs, thus
suppressing the current, especially at the full gap resonance.

This paper is organized as follows: In Sec. II we present
the model Hamiltonian, while in Sec. III we briefly describe
Floquet-DMFT (F-DMFT) [11,29,30] with the AMEA impu-
rity solver. Our main results (Figs. 10 and 11) are discussed in
Sec. IV, whereas Sec. V is left for final considerations.

II. MODEL HAMILTONIAN

Similarly to [18], we consider an extension of the Hubbard
model in the presence of an electric field described by the
Hamiltonian

Ĥ (t ) = εc

∑
iσ

n̂iσ −
∑

σ

∑
(i, j)

ti j (t )ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓

+ Ĥbath + Ĥe-ph + Ĥph. (1)

The operator ĉ†
iσ (ĉiσ ) creates (annihilates) an electron of spin

σ = {↑,↓} at the ith lattice site, with the corresponding den-
sity operator n̂iσ ≡ ĉ†

iσ ĉiσ . Nearest neighbor sites are denoted
by (i, j) and the electrons’ onsite energy is εc ≡ −U/2. The
static homogeneous electric field is introduced within the tem-
poral gauge and enters in the time dependence of the hopping
in Eq. (1) via the Peierls substitution [31]

ti j (t ) = tc e−i q
h̄ (r j−ri )·A(t ), (2)

where tc is the lattice hopping amplitude, A(t) is the vector
potential, q is the electron charge, and h̄ is Planck’s con-
stant. We choose the electric field F = −∂t A(t ) and thus
A(t ) = e0A(t ) to point along the lattice body diagonal, i.e.,
e0 = (1, 1, . . . , 1), and work in the temporal gauge:

A(t ) = −F t . (3)

Equations (2) and (3) introduce the Bloch frequency � ≡
−Fqa/h̄, with a being the lattice spacing. In this pa-
per we consider a d-dimensional lattice in the d → ∞
limit [18] with the usual rescaling of the hopping tc =
t∗/(2

√
d ). This way, sums over the crystal momentum∑

k χ (ω, k) of generic quantities χ can be replaced by an
integral [29]

∫
dε

∫
dε ρ(ε, ε)χ (ω; ε, ε), where ρ(ε, ε) =

1/(πt∗2) exp(−(ε2 + ε2)/t∗2) is the joint density of states
(JDOS) and

ε = −2tc

d∑
i=1

cos(kia),

ε = −2tc

d∑
i=1

sin(kia). (4)

Electron-phonon coupling is included in the form of an
acoustic phonon branch attached to each lattice site:

Ĥe-ph = g
∑

i

(n̂i↑ + n̂i↓)x̂i, (5)

where x̂i ≡ (b̂†
i + b̂i )/

√
2 and b̂†

i (b̂i) creates (annihilates) a
phonon belonging to the branch i. We include the dispersion of
each branch in Ĥph, which will be discussed in Sec. III B [32].

As pointed out in the introduction, a stable steady state is
difficult to achieve when considering dissipation by phonons
only. Due to the narrow phonon dispersion, multiphonon pro-
cesses would be necessary in order to relax electrons across
the Hubbard gap. For this reason, we additionally include
fermionic baths and try to extrapolate the properties of the
system to the limit where the coupling to these baths becomes
negligible. The fermionic baths are in the form of infinite
tight-binding chains attached to each lattice site [6,20,21,33].
The corresponding Hamiltonian reads

Ĥbath = −tb
∑
α jσ

( f̂ †
α jσ f̂α j+1σ + H.c.) + εb

∑
α jσ

n̂ f
α jσ

= −v
∑

jσ

(ĉ†
jσ f̂1 jσ + H.c.), (6)

where f̂ †
α jσ ( f̂α jσ ) creates (annihilates) an electron with spin

σ at position α along the jth bath chain and n̂ f
α jσ is the cor-

responding density operator. The last term in Eq. (6) accounts
for the hybridization between the jth site in the lattice and the
corresponding bath chain. In this paper we set h̄ = kB = a =
1 = −q, such that � ≡ F , i.e., current and electric field are
measured in units of t∗.

III. METHOD AND FORMALISM

A. Floquet Green’s functions

Due to the periodicity of the nonequilibrium Green’s func-
tions (GFs) in the temporal gauge [34], G(t, t ′) = G(t +
τ, t ′ + τ ) with τ = 2π/�, it is convenient to represent them
in the Keldysh-Floquet formalism [11,29,30]

Gmn(ω) =
∫

dtrel

∫ τ/2

−τ/2

dtav

τ
ei[(ω+m�)t−(ω+n�)t ′]G(t, t ′) (7)

with the Wigner GF [29]

Gl (ω) =
∫

dtrel

∫ τ/2

−τ/2

dtav

τ
eiωtrel+il�tav G(t, t ′). (8)

As usual, trel = t − t ′ and tav = (t + t ′)/2 are the relative and
average time variables. Equations (7) and (8) are connected
via

Gmn(ω) = Gm−n

(
ω + m + n

2
�

)
. (9)

In this paper any Floquet-represented matrix is referred to as
either Xmn explicitly showing its indices or a boldface letter X .
On the other hand, a single index as subscript Xl is reserved
for the Wigner representation. Finally, an underline indicates
the Keldysh structure

G ≡
(

GR GK

0 GA

)
, (10)

which contains the retarded, advanced, and Keldysh compo-
nents GR,A,K, where GA = (GR)†. It is worth recalling the
definition GK ≡ G> + G<, with G≶ denoting the lesser and
greater components [35–38].
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B. Dyson equation

The lattice Floquet GF obeys the Dyson equation

G−1(ω, ε, ε) = G−1
0 (ω, ε, ε) − �(ω, ε, ε) − �e-ph(ω, ε, ε)

(11)
with both electron and e-ph self-energies (SEs) depending
on the crystal momentum via ε and ε. The lattice GF of the
noninteracting part of the Hamiltonian (1) reads

G−1
0,mn(ω, ε, ε) = g−1

0,mn
(ω, ε, ε) − δmn v2g

bath
(ω + n�) (12)

with[
g−1

0 (ω, ε, ε)
]R

mn = (ω + n� + i0+ − εc)δmn − εmn(ε, ε),
[
g−1

0 (ω, ε, ε)
]K

mn
→ 0. (13)

The inverse Keldysh component is negligible in comparison
with Im(gK

bath) since it is proportional to an imaginary in-
finitesimum. The Floquet dispersion relation εmn for a dc field
in a hypercubic lattice [29] is given by

εmn(ε, ε) = 1
2 [(ε + iε)δm−n,1 + (ε − iε)δm−n,−1]. (14)

In the wide band limit considered here, the retarded and
Keldysh components of the electronic bath’s GF (12) [33] read

v2gR
bath(ω) = − i

2
�e,

v2gK
bath(ω) = −i �e tanh

[
β

2
(ω − μ)

]
, (15)

where the Keldysh component is obtained from the
fluctuation-dissipation theorem gK

bath(ω) = [gR
bath(ω) −

gA
bath(ω)] tanh[β(ω − μ)/2]. In Eq. (15), μ denotes the

chemical potential, while β ≡ 1/T is the inverse temperature
and �e is the coupling strength to the fermionic reservoir.
The electron SE � is obtained from F-DMFT the only
approximation of which consists in neglecting its crystal
momentum dependence �(ω, ε, ε) ≈ �(ω). Further details
will be given in Sec. III C.

1. Implementation of the electron-phonon SE

Within the F-DMFT approximation, the e-ph SE is also
included as a local contribution �e-ph(ω, ε, ε) ≈ �e-ph(ω). In
terms of the contour time arguments z and z′ it has the form

�e-ph(z, z′) = ig2G(z, z′)Dph(z, z′) (16)

corresponding to the lowest-order diagram in the bare phonon
propagator Dph. The explicit form of the retarded and Keldysh
components associated with Eq. (16) can be found in Ap-
pendix B. In Eq. (16), G(z, z′) is the local electron Green’s
function, the Keldysh-Floquet representation of which is ob-
tained as

Gloc(ω) =
∫

dε

∫
dε ρ(ε, ε)

× {[
G−1

0 (ω, ε, ε) − �(ω) − �e-ph(ω)
]−1}

. (17)

Due to gauge invariance, Gloc(ω) is diagonal in Floquet in-
dices in the case of a dc field [29]. The Keldysh components

[39] of Dph(z, z′) at equilibrium [40] are given by

DR
ph(t, t ′) = −iθ (t − t ′)

∫
dω e−iω(t−t ′ )Aph(ω),

D>
ph(t, t ′) = −i

∫
dω e−iω(t−t ′ )Aph(ω)[1 + b(ω)] (18)

D<
ph(t, t ′) = −i

∫
dω e−iω(t−t ′ )Aph(ω) b(ω),

where b(ω) = 1/(eβω − 1) is the Bose-Einstein distribution
function at inverse temperature β. We focus on acoustic
phonons, with spectral function Aph(ω) = ω/(4ω2

ph)e−|ω|/ωph ,
ωph being a soft cutoff frequency [41]. Details about the ex-
plicit form of the phonon spectral function can be found in
Appendix C.

C. Floquet DMFT

The electron SE in Eq. (11) is determined within the
DMFT approach [42–44], and in particular its nonequilib-
rium Floquet (F-DMFT) extension [11,29,30]. This consists
in neglecting the crystal momentum dependence of the elec-
tron SE, i.e., �(ω, ε, ε) → �(ω). This reduces to mapping
the original problem onto a single-site impurity model—the
GF g−1

0,site
(ω) of which is defined as in Eq. (13) by replacing

εmn(ε, ε) → εc—encoding the effect of all other lattice sites
into an effective bath hybridization function, �(ω).

The GF of the resulting impurity model must be de-
termined by a many-body impurity solver, in this case a
nonequilibrium one, which constitutes the bottleneck of the
approach. The hybridization �(ω) is fixed by the condition

that the local and impurity GFs coincide, i.e., Gimp(ω)
!=

Gloc(ω). In practice, this self-consistency condition is carried
out by (i) starting from a guess for the two SEs �(ω) and
�e-ph(ω), (ii) computing the GF and obtaining Gloc(ω) fol-
lowing Eq. (17), (iii) computing �e-ph(ω) from (16) (see also
Appendix B), (iv) extracting �(ω) from

G−1
loc (ω) = g−1

0,site
(ω) − �(ω) − �(ω), (19)

(v) solving the many-body impurity problem and determining
the new �(ω), and (vi) using the obtained SEs in step (ii).
Steps (ii)–(v) are then iterated until convergence.

Notice that, for the same reason as for the local Green’s
function, also �(ω), �(ω), and �e-ph(ω) are diagonal in Flo-
quet indices. This, combined with the translation property
Gmm(ω) = G00(ω + m�) following Eq. (7) and being valid
for the above quantities as well, allows us to restrict the
problem to the (0,0) element only.

1. Auxiliary master equation approach

As mentioned above, the most difficult part of the DMFT
algorithm is the solution of the impurity problem. At the
moment, in contrast to equilibrium there is no well estab-
lished impurity solver for the nonequilibrium case [39]. The
AMEA [24–26,45] adopted here maps the impurity problem,
the bath hybridization function of which is defined as in
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Eq. (19), onto an auxiliary open quantum system consisting of
a finite number of bath sites NB attached to Markovian reser-
voirs described by the Lindblad equation. Its corresponding
noninteracting hybridization function �aux(ω) is obtained
by fitting the original interacting DMFT one. Convergence
is reached once �aux agrees with � with sufficient accu-
racy. With the system parameters obtained from �aux, the
auxiliary problem can then be solved exactly by many-body-
diagonalization methods for open quantum systems yielding
the required impurity Green’s function. The convergence of
AMEA increases exponentially with the number of bath sites
NB [45]. To speed up the whole process, it turns out convenient
to first solve the auxiliary impurity problem with NB = 4 to
get suitable initial SEs to be provided as an input for the
simulations with NB = 6. [46]

D. Physical quantities

The local electronic spectral function is given by

A(ω) = − 1

π
Im

[
GR

loc(ω)
]
, (20)

where GR
loc is the retarded component of the GF given in

Eq. (17).
The nonequilibrium distribution function

Fneq(ω) = 1

2

{
1 − 1

2

Im
[
GK

loc(ω)
]

Im
[
GR

loc(ω)
]
}

(21)

is related to the electronic spectral occupation function via

Ne(ω) ≡ A(ω)Fneq(ω). (22)

In our units, the time-resolved current j(t ) and kinetic
energy Ekin(t ) are given by

j(t ) = 2i
∑

k

[e0 · vk(t )]G<
k (t, t ), (23)

Ekin(t ) = −2i
∑

k

εk(t )G<
k (t, t ), (24)

where the group velocity vk(t ) = ∇kεk(t ) is obtained from
the dispersion relation εk(t ) = ε cos[A(t )] + ε sin[A(t )] fol-
lowing from Eqs. (4) and (14), while the factor 2 accounts
for spin degeneracy. The Wigner-represented current is given
by

jl =
∫ +∞

−∞

dω

2π
jl (ω) (25)

with the frequency-resolved current

jl (ω) =
∫

dε

∫
dε ρ(ε, ε)[(ε − iε)G<

l+1(ω, ε, ε) + H.c.].

(26)
The Wigner-represented kinetic energy is

Ekin,l =
∫ +∞

−∞

dω

2π
Ekin,l (ω) (27)

with the frequency-resolved kinetic energy

Ekin,l (ω) =
∫

dε

∫
dε ρ(ε, ε)

× [−(ε + iε)G<
l+1(ω, ε, ε) + H.c.]. (28)

The explicit derivation of the expressions above is con-
tained in Appendix A. Again, the l �= 0 components of these
quantities vanish by means of gauge invariance due to the
time-independent nature of the dc field setup. For this reason,
we will drop the index l from now on.

IV. RESULTS

Our aim is to study the effect of a strong dc electric field
which is comparable to the gap in Mott insulators. Therefore
we choose U/t∗ = 8 for which the system shows a well estab-
lished insulating phase [18]. All simulations are carried out at
half filling with εc = −U/2, inverse temperature β = 20/t∗,
and chemical potential μ = 0. We define the phonon coupling
strength [47] as

�ph ≡ 2πg2Aph(ωph) = π

2e

(
g2

ωph

)
, (29)

which allows us to introduce the dimensionless electron-
to-phonon ratio γ ≡ �e/�ph as a measure of their relative
strength, with �e given in Eq. (15). In this paper, we focus
on γ � 1 to keep the influence of the fermionic bath as small
as possible [48]. We choose as default values �ph/t∗ = 0.925
and ωph/t∗ = 0.1 if not stated otherwise.

As discussed above, phonons provide a valid dissipation
channel with a stable steady state only around specific values
of the electric field F. To achieve numerical stability for
a wide range of F, we need to include a weakly coupled
fermionic reservoir. In Sec. IV A, we then vary the coupling
�e with the fermionic bath in addition to dissipation via
phonons. We discuss the case of purely phononic dissipation
�e = 0 [49] in Sec. IV B.

A. Phonons and electron baths

1. Spectral properties

In equilibrium at F = 0, the local spectral function A(ω)
shown in Fig. 1(a) displays the spectrum of the Mott insulator
weakly connected to a metallic bath which is characterized by
the upper Hubbard band (UHB) and the lower Hubbard band
(LHB) at ωHB,± ≈ ±U/2 with bandwidths [50] of about 2t∗.

In the regime of small electric fields, increasing the field
raises the potential energy drop between neighboring sites,
thus localizing the electrons further. The effect is clearly vis-
ible in Fig. 2(a), where the spectral weight is shifted from
the main Hubbard bands to satellite peaks located at integer
multiples [14] of the field F . The overall structure is known
as the Wannier-Stark (WS) ladder in noninteracting systems
[51,52] while in the context of many-body physics [18] it
has been also referred to as the Bloch-Zener archipelago [14].
Injecting energy into the system via the applied field heats up
the electrons, which results in a nonequilibrium distribution
function characterized by a higher temperature as compared
to the equilibrium case F = 0 [see Fig. 2(b)].

At larger fields as shown in Fig. 3 the in-gap WS satel-
lite peaks ωWS,±,∓ = ±(U/2) ∓ F grow in magnitude [see
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FIG. 1. (a) Spectral function A(ω)/t∗−1 at zero electric field F =
0 for different values of the ratio γ . The inset (b) shows the magnified
quasiparticle peak at ω = 0. Default parameters are specified at the
beginning of Sec. IV.

Fig. 2(a)]. In this regime, increasing the field lets these peaks
come closer until they overlap at F ≈ U/2 as evidenced by
Fig. 3(b). Exceeding U/2, the electric field pushes the WS
peaks further towards the Hubbard bands at ωHB,∓ as can be
inferred from Fig. 3(c).

Altogether, the emergence of WS sidebands can be under-
stood as the overlap between LHB and UHB of neighboring
sites along the e0 direction of the electric field. Due to the
field-induced potential drop, the Hubbard bands shift in op-
posite directions until field strengths of F ≈ U are reached
where the LHB and UHB of neighboring sites overlap [see
Fig. 3(d)]. The in-gap WS islands effectively lower the energy
separation between the main Hubbard bands and facilitate
the motion of electrons for F < U , as we will discuss in the
following.

In Fig. 3(a), we observe that for F = 3t∗ the WS sidebands
lie at ωWS,±,∓ ≈ ±t∗. Subject to the field, an electron within
the LHB gains the energy to reach ωWS,−,+ ≈ −t∗. The corre-
sponding spectral occupation Ne(ω) shows that this sideband
is completely occupied. Due to the charge motion from the

FIG. 2. (a) Spectral function A(ω)/t∗−1 and (b) nonequilibrium
distribution function Fneq(ω) for various field strengths at γ = 0.065.
Default parameters are specified at the beginning of Sec. IV.

FIG. 3. Spectral function A(ω)/t∗−1 (solid) and spectral occu-
pation Ne(ω)/t∗−1 (shaded area) at (a) F = 3t∗, (b) F = 4t∗, (c)
F = 5.6t∗, and (d) F = 8t∗. Here γ = 0.065. Default parameters are
specified at the beginning of Sec. IV.

LHB to ωWS,−,+ ≈ −t∗, we expect the current to be slightly
enhanced with respect to F = 0. At F/t∗ = 4, the in-gap
WS bands are located at ωWS,±,∓ ≈ 0, thus making states
available around ω = 0 that could in principle be filled by the
fermionic bath with a negligible cost in energy [53]. However,
these states provide the pathway to promote only the electrons
belonging to the LHB into the UHB, as will be confirmed by
the discussion in Sec. IV B. In particular, Ne(ω) shows that
the overlapping WS peaks ωWS,±,∓ and the UHB are now
considerably occupied. However, the occupation of the former
is due to the LHB of one site entering the gap of a neighboring
site, while the latter originates from the meeting of the LHB
and UHB of sites lying two lattice spacings apart [2,18]. The
situation for F � U/2 can be understood by considering the
case F = 5.6t∗ ≈ 2U/3 in Fig. 3(c): here the WS sidebands
occur at ωWS,±,∓ ≈ ∓1.4t∗ and the spectral occupation Ne(ω)
shows that only ωWS,±,∓ ≈ 1.4t∗ is considerably occupied. As
we will see in Sec. IV A 2, also here the current is enhanced
due to charge migration from the LHB to the WS sidebands
but it is still smaller than at the resonance F ≈ U . For F ≈ U
the spectral function shows no WS peaks because of the
perfect matching of the lower and upper Hubbard bands. At
the same time Ne(ω) shows that they are almost equally filled
[Fig. 3(d)]. We note that this condition is the signature of
the fermionic bath draining particles from the UHB back to
the LHB [14]. A comparison with the case including only
phonons as the source of dissipation discussed in Sec. IV B
will corroborate this statement.

Second-order WS sidebands at ωWS2,±,∓2 = ±(3U/2) ∓
2F can be also observed, confirming the findings in [18].
These faint features, highlighted by black arrows in Fig. 4(a),
first move towards one another as the field increases [see the
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FIG. 4. (a) WS in-gap states at ωWS,±,∓ = ±(U/2) ∓ F in the
spectral function A(ω)/t∗−1, for various fields F at γ = 0.065. Black
arrows point to the position of ωWS2,±,∓2 = ±(3U/2) ∓ 2F , while
inset (b) shows the magnified region ω/t∗ ∈ [−1.5, 1.5] for selected
field strengths. (c), (d) Same for γ = 0.108. (e), (f) WS in-gap
states ωWS,±,∓ for γ = 0.162 and γ = 0.324. Default parameters are
specified at the beginning of Sec. IV.

inset Fig. 4(b) for F/t∗ = {6.0, 6.2, 6.4}] and then run past
each other, approaching the main Hubbard bands as the field
is further increased. They are associated with adding a particle
to a single occupied site (energy U/2) with the simultaneous
creation of a doublon-holon pair (energy U ), accompanied by
a tunneling of two particles over one lattice site. However, ac-
counting for second-order processes, these sidebands become
relevant at F � U/2 but are only visible on the logarithmic
scale as shown in Figs. 4(a) and 4(b). Also, they are easily
washed away by increasing the coupling �e to the fermionic
bath, as evidenced in Figs. 4(c) and 4(f). To visualize their
faint signature, consider the case of F = 5.6t∗ ≈ 2U/3 shown
in Fig. 3(c). Here the WS states ωWS2,±,∓2 ≈ ±0.8t∗ do not
contribute significantly to the current: as evidenced from
Ne(ω), the net motion of charge carriers mainly involves
the transition ωHB,− ≈ −U/2 → ωWS,−,+ ≈ −U/2 + 2U/3,
in agreement with previous work [18].

The spectral properties described so far are quite robust
against the inclusion of phonons as can be inferred by com-
parison with [18] which only incorporated dissipation via
electrons. We note, however, that increasing �e tends to fill
the gap, as can be seen both in the inset Fig. 1(b) as well as
in Figs. 4(c)–4(f). This is accompanied by an evident trend to
wash away the WS satellite peaks. For a given field strength F ,
a larger �e flattens the states ωWS2,±,∓2 and broadens the sub-
peaks ωWS,±,∓, accelerating their merging with the Hubbard
bands. WS states are then barely visible even on a logarithmic
scale as is the case for γ = 0.324 seen in Fig. 4(f).

Finally, we offer a brief remark on the orientation of the
electric field and how it affects the results presented thus far.

We observe that resonances like the one at F � U/2, and their
meltdown as the field moves off that value, appear to be quite
robust; see also the so-called Bloch-Zener islands mentioned
in [14] where F = Fex. On the other hand, the fact that neigh-
boring sites do not have isoenergy surfaces may prevent or
strongly suppress the dimensional crossover [14,22] at F � U
due to the equivalence of all spatial directions.

2. Current, energy, and double occupancy

In the Coulomb gauge, an electron that tunnels through
m lattice spacings acquires or loses the potential energy
Em(F ) = mF . In particular, when the difference is �E ≡
U − Em(F ) ≈ 0, the current is enhanced due to the reso-
nant creation of doublon-holon pairs which lie m sites apart.
However, these resonances are exponentially suppressed by
a factor (t∗/U )|m|. For instance, Fig. 5(a) shows clear reso-
nances in the steady-state current (25) at F ≈ U/2 and U ,
as expected from Sec. IV A 1 [see Figs. 3(b)–3(d)]. In these
cases charge migration is due to electrons tunneling from LHB
to UHB belonging to sites |m| = 2 (F = U/2) and |m| = 1
(F = U ) lattice spacings apart. The peak at F ≈ U/3, on the
other hand, is strongly suppressed according to (t∗/U )3 as it
accounts for tunneling over |m| = 3 lattice sites. In any case,
in order to sustain a current, resonant tunneling from a LHB
to an UHB m sites away must be followed by relaxation to the
LHB. For this reason, the current increases upon increasing
γ , as visible in Fig. 5(a). However, the resonances occurring
at F > U/2 are significantly more sensitive to a larger γ than
those at F < U/2, the latter being almost unaltered while the
former get greatly boosted.

Figure 6 displays the frequency resolved current (26) at
field strengths and γ values matching those in Fig. 3 for
A(ω). The largest peaks in j(ω) marked by dashed lines lie
at ωj,±,∓ = ±U/2 ∓ F/2: for F = 3t∗ they are located at
ω ≈ ±2.8t∗ [see Fig. 6(a)]. However, the subpeaks at ω/t∗ ≈
{±0.4,±2.2} are not captured by ωj,±,∓. Their origin can be
understood with the help of the linear response formula for
the tunneling current jtun(ω) presented in [18] [see Eq. (20)
therein]. In terms of the spectral occupations, it can be written
as

jtun(ω) = πt∗2[Ne(ω)Nh(ω + F ) − Ne(ω + F )Nh(ω)], (30)

where Nh(ω) ≡ A(ω)[1 − Fneq(ω)] is the hole spectral occu-
pation function.

Positive contributions to jtun(ω) originate from particles
flowing from the filled low-energy states Ne(ω) to the empty
high-energy ones Nh(ω + F ). It is sufficient to analyze the
term Ne(ω)Nh(ω + F ). In particular, we discuss the cases of
F = 3t∗ and 5.6t∗ ≈ 2U/3. For F = 3t∗ shown in Fig. 7(a),
the maxima of Ne(ω) and Nh(ω + F ) do not overlap, resulting
in a very small contribution to jtun(ω) made clear by the
scaling factor of Ne(ω)Nh(ω + F ). The subpeaks at ω/t∗ ≈
{±0.4,±2.2} follow as the result of the overlap of Ne(ω)
and Nh(ω + F ). For F = 5.6t∗ displayed in Fig. 7(b), the
regions having the largest electron and hole occupations are
closer and lead to a hump in the current [see Fig. 5(a)]. From
these considerations we see that at F = 8t∗ in Fig. 6(b) the
electrons can now directly fill the vacancies, as evidenced by
the single-peak structure of the frequency resolved current
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FIG. 5. (a)–(c) Electric field dependence of the steady-state cur-
rent j, double occupancy d , and kinetic energy Ekin for various
γ = �e/�ph. Dashed vertical lines denote the resonant fields F =
U/3, U/2, and U , while the black arrow highlights the resonance
at F ≈ 5.6t∗. Default parameters are specified at the beginning of
Sec. IV.

j(ω). At the onset of the resonance this effect is balanced by
the term Ne(ω + F )Nh(ω) since the UHB contains a consid-
erable fraction of particles in the high-energy regions of the
spectrum [see Fig. 3(d)].

FIG. 6. (a) Frequency resolved current j(ω) (26) at F = 3t∗ and
4t∗. (b) Same quantity shown for F = 5.6t∗ and 8t∗. Dashed vertical
lines mark the maxima discussed in the text. Default parameters are
specified at the beginning of Sec. IV.

We emphasize that for γ = 0.065 the steady-state current
at F ≈ U/2 is slightly larger than the one obtained at F = U
[Fig. 5(a)]. This imbalance contrasts with the results in [18]
for the same coupling �e but agrees qualitatively with those in
[16], where a master equation approach employing phononic
reservoirs is used as impurity solver. Further details will be
given in Sec. IV B.

The double occupation per site is shown in Fig. 5(b). Its
main resonances at F ≈ U/2 and U corroborate the fact that
the current is directly related to the creation of doublon-holon
pairs. The importance of these processes is evidenced by
the resonance at F ≈ 2U/3 discussed in Sec. IV A, which
is clearly visible at γ = 0.065 and gets smeared out with
increasing γ .

In contrast to the trend exhibited by the current j, a stronger
fermionic bath suppresses the double occupancy at both F ≈
U/2 and U . This difference can be explained as follows: as
already pointed out [14], a larger γ increases the number of
particles that are drained from the UHB and injected back into
the LHB. This results in a higher annihilation rate of doublons,
effectively decreasing the fraction of doubly occupied sites
within the lattice.

FIG. 7. (a) Electron and hole spectral occupation functions
Ne(ω)/t∗−1 and Nh(ω + F )/t∗−1 and their product at F = 3t∗. Black
arrows point at the subpeaks discussed in the text [see also Fig. 6(a)].
(b) Same quantities for F = 5.6t∗. Here γ = 0.065 while default
parameters are specified at the beginning of Sec. IV.

125123-7



MAZZOCCHI, GAZZANEO, LOTZE, AND ARRIGONI PHYSICAL REVIEW B 106, 125123 (2022)

FIG. 8. Electron spectral function A(ω)/t∗−1 and e-ph SE
−Im[�R

e-ph(ω)]/t∗ at F = 0 for γ = 0. Dashed vertical lines mark the
peaks of A and −Im(�R

e-ph), while arrows highlight the shifts between
them. Default parameters are specified at the beginning of Sec. IV.

Since it is related to the creation of a doubly occupied
site, knowing d provides information on the interaction energy
between the electrons. To fully understand the energy balance,
knowledge of the kinetic energy Ekin [54] is required as well.
Figure 5(c) shows Ekin as a function of the applied field. At
low fields, Ekin decreases as the field is increased indepen-
dently of γ and in contrast to both j and d . It reaches a local
minimum at F ≈ 3.8t∗, but turns towards a local maximum
past U/2 at F/t∗ ≈ 4.2–4.4, where d is already showing a
downward trend. This behavior signals the energy redistribu-
tion within the system. In fact, either the field can enhance the
motion of particles, for which an intuitive measure is given
by Ekin, or the energy can be transferred to particles in a way
that allows for a larger number of doubly occupied sites. This
interpretation is corroborated by the global maximum of Ekin

at F ≈ 9t∗, a field strength where d is suppressed.

B. Dissipation by phonons only

We now discuss the setup including only phonons as dis-
sipation channel, i.e., �e = 0 [55]. In this case, the e-ph SE
�e-ph is strongly determined by Gloc(ω). In particular a local
GF with a gap generates a gapped e-ph SE with the imag-
inary part of its retarded component vanishing in the same
frequency region where Im(GR

loc) vanishes (see Fig. 8). Thus
phonons contribute to the dissipation only within a limited
frequency window.

1. Spectral properties

In equilibrium at zero field, the spectral function A(ω) and
the e-ph SE −Im[�R

e-ph(ω)] are displayed in Fig. 8. A(ω)
features Hubbard bands centered at ωHB,± = ±3.93t∗ and
no quasiparticle peak at ω = 0. Similarly, −Im[�R

e-ph(ω)]

FIG. 9. Color map of the spectral function A(ω)/t∗−1 in the
accessible regions (a) F/t∗ ∈ {3.80, 3.82, . . . , 4.60} and (b) F/t∗ ∈
{7.80, 7.82, . . . , 8.60}. Default parameters are specified at the begin-
ning of Sec. IV.

shows a gap with bands centered at ωSE,± = ±4.17t∗. The
energy shift between the e-ph SE and Hubbard bands amounts
to about twice the phonon frequency |ωHB,± − ωSE,±| =
0.24t∗ ≈ 2ωph.

As evidenced by Fig. 8, the e-ph SE −Im(�R
e-ph) is gapped

and thus does not provide a dissipation channel over the whole
frequency interval. This limits a stable steady-state solution
to values of F close to the two main resonances F/t∗ ≈ U/2
and U , the spectra of which are shown in Fig. 9. As in the
previous setup, the WS sidebands are present as can be seen
in Fig. 9(a): their merging at F ≈ U/2 ≈ ωHB,± creates the
necessary in-gap spectral weight that allows the occupation of
the UHB as discussed in Sec. IV A 1.

Figure 10(a) shows a cut of the spectrum displayed in
Fig. 9(a) at F = 4.2t∗ ≈ ωHB,+ + 2ωph ≈ ωSE,+, where the
current [Fig. 11(a)] reaches its first maximum. We note that
the spectral weight and amplitude of the states around ω = 0
are roughly the same as in Fig. 3(b) while the Hubbard bands
are narrower, confirming that the fermionic bath provides an
overall broadening but has no influence on the transport prop-
erties mediated by the in-gap subbands. The corresponding
imaginary part of the retarded e-ph SE shown in Fig. 10(c)
also exhibits a dissipative region around ω = 0, which effec-
tively halves the gap, and facilitates transitions from LHB to
UHB.

For field strengths F � 4.6t∗ the dissipation by phonons
is strongly suppressed: this can be explained by the reduction
of the in-gap spectral weight at ω = 0 due to the parting WS
sidebands as the field is further increased, which is visible in
Fig. 9(a). The net effect is that the total spectrum of the in-gap
states is no longer sufficient to allow particle decay across the
gap [56].

On the other hand, at field strengths crossing the gap,
e.g., F = 2ωHB,+ ≈ 7.86t∗, phonons are expected to dissi-
pate again. In particular, we find that the current increases
and reaches its second maximum at F = 8.42t∗ ≈ 2(ωHB,+ +
2ωph) ≈ 2ωSE,+ [Fig. 11(b)]. The corresponding spectral
function and e-ph SE profiles are shown in Figs. 10(b) and
10(d). Here the Hubbard bands exhibit a population inver-
sion, as evidenced by the spectral occupation Ne(ω) and the
nonequilibrium distribution function Fneq(ω). The latter can
be approximately described in terms of two effective chemical
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FIG. 10. (a), (c) Spectral function A(ω)/t∗−1, spectral occupa-
tion Ne(ω)/t∗−1 (shaded area), nonequilibrium distribution function
Fneq(ω), and e-ph SE −Im[�R

e-ph(ω)]/t∗ at F/t∗ = 4.20. (b), (d) Same
quantities for F/t∗ = 8.42. The arrow highlights the energy splitting
� = F that introduces effective chemical potentials for the Hubbard
bands. Default parameters are specified at the beginning of Sec. IV.

potentials μ± ≈ ωSE,± separated by the resonant field, with
a larger distribution in the UHB. The steady state is thus
characterized by fewer empty states available for transport,
resulting in a current, which is almost one order of magnitude
smaller than the typical values obtained with the coupling to
a fermionic bath. The dissipation mechanism is less effective
for phonons alone than in the presence of a fermionic bath.
Expanding the nonequilibrium distribution to linear order
around the effective chemical potentials as Fneq(ω ∼ μ±) −
1/2 ≈ −(βeff/4)(ω − μ±), one can extract two equal effec-
tive temperatures βeff ≈ 9/t∗ [57], while phonons are kept at
β = 20/t∗.

2. Current, energy, and double occupancy

As pointed out in Sec. IV B 1, phonons alone dissipate
around the two main resonances F ≈ U/2 and U . Our results
show that the actual peaks in the current are shifted by the
phonon frequency and occur at F = 4.2 ≈ ωHB,+ + 2ωph and
8.42 ≈ 2(ωHB,+ + 2ωph) as shown in Figs. 11(a) and 11(b).
This implies that the energy range over which phonons affect
the system is closely related to their characteristic frequency
ωph (see also Fig. 8).

On the other hand, the slight imbalance in the current at
F ≈ U/2 and U in favor of the former resonance noted for
Fig. 5(a) is even stronger in the case of phonon-only dissipa-
tion, as evidenced by the suppression of the second resonance
peak in Fig. 11(b) (notice the scale).

FIG. 11. Electric field dependence of the current (a), (b), double
occupation (c), (d), and kinetic energy (e), (f) near the resonances
F/t∗ ≈ U/2 and U , for ωph/t∗ = {0.025, 0.050, 0.075, 0.100}. The
default value of �ph/t∗ is specified at the beginning of Sec. IV.

For a deeper understanding of the current characteristics,
we now focus on the frequency resolved current j(ω) for field
strengths near the resonances mentioned above. Away from
the resonant value F = 4.2t∗ ≈ ωHB,+ + 2ωph, the frequency
resolved current j(ω) starts to take negative values [see
Fig. 12(a)]. This tendency increases at higher field strengths
F ≈ 7.8t∗ [Fig. 12(b)].

FIG. 12. Frequency resolved current j(ω) near the resonances at
(a) F/t∗ ≈ U/2 and (b) F/t∗ ≈ U . Default parameters are specified
at the beginning of Sec. IV.
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FIG. 13. Forward (blue) and backward (red) flow contributions
to the frequency-dependent tunneling current (30). (a), (b) For F =
7.8t∗, the backflow overcomes the forwards flow and leads to a
negative current. (c) At F = 8.42t∗, the forwards flow dominates.
Default parameters are specified at the beginning of Sec. IV.

Once again the tunneling formula (30) provides more
insight which is illustrated in Fig. 13: when the field is close
to the resonance F ≈ U , particles start to be resonantly pro-
moted from the LHB to the UHB. Lacking the fermionic bath,
the accumulation of high-energy carriers within the UHB is
due to the backflow Ne(ω + F )Nh(ω) which can overcome the
forwards flow Ne(ω)Nh(ω + F ) as shown in Fig. 13(a) (see
also [16]). Notably, as the field approaches F = 8.42t∗ ≈
2(ωHB,+ + 2ωph), the contribution Ne(ω)Nh(ω + F ) is

sufficiently large to ensure a positive current as seen in
Figs. 11(b), 12(b), and 13(b) despite the large number of
high-energy occupied states in the UHB visible in Fig. 10(b).

The double occupation per site and the kinetic energy
around the two main resonances are shown in Figs. 11(c)–
11(f). At F ≈ U/2 [ Figs. 11(c) and 11(e)], both d and Ekin

follow the same behavior of j. Specifically, they display an
ascending phase followed by a downturn. Their maxima are
slightly shifted from each other, in agreement with the dis-
cussion in Sec. IV A 2. More interesting is the behavior near
F ≈ U [Figs. 11(d) and 11(f)]. There, the double occupation d
increases linearly as a function of F while the kinetic energy
Ekin first reaches a minimum and then starts to increase as
well. The linear increase of the double occupation signals
resonant driving and the lack of fermion baths which no longer
drain the UHB and inject the particles back in the LHB. For
the kinetic energy, the depletion of particles in the LHB im-
plies that less energy can be gained by accelerating particles.
In summary, more energy is used to overcome the interaction
energy than to increase the kinetic energy. We also note that,
while in the case of fermionic baths d never exceeded its
uncorrelated value duncorr = 0.25, in the case of only phonons
d can increase beyond this value, confirming the accumulation
of high-energy doublons seen in Fig. 10(b).

We now investigate how the current depends on the charac-
teristic phonon frequency ωph. The first resonance sensitively
depends on ωph as can be seen in Fig. 11(a). Its maxi-
mum is shifted to F ≈ ωHB,+ + 2ωph, as already noted in

FIG. 14. (a), (d) Spectral function A(ω)/t∗−1 and e-ph SE −Im[�R
e-ph(ω)]/t∗ displayed for ωph/t∗ = 0.1 at field strengths which correspond

to the current maxima in Figs. 11(a) and 11(b). The same quantities are shown for (b), (e) ωph/t∗ = 0.05 and (c), (f) ωph/t∗ = 0.025. Default
parameters are specified at the beginning of Sec. IV.
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Sec. IV B 1. Also, j grows linearly upon increasing ωph at this
field strength. Considering the current at F ≈ U/2, the differ-
ence between our setup with electronic baths and phonons at
γ = 0.065 discussed in Sec. IV A and the one presented in
[18] amounts to the value obtained in the phonon-only setup
shown in Fig. 11(a) for ωph/t∗ = 0.1.

The peak at F ≈ U displayed in Fig. 11(b) behaves partly
different. While the height of the maximum also increases
with ωph, the resonance moves to lower electric fields as the
cutoff frequency is increased. This behavior can be explained
using Fig. 14, which shows the spectral function and e-ph
SE for the peak electric fields belonging to the different cut-
off frequencies of Fig. 11. First notice that in the first row
[Figs. 14(a)–14(c)] belonging to F ≈ U/2 the e-ph SE shares
the same support as the spectral function. In contrast to this,
in the second row [Figs. 14(d)–14(f)] belonging to F ≈ U , a
larger cutoff frequency ωph/t∗ = 0.1 shifts the e-ph SE closer
to the gap. This may be due to the increasing ωph broadening
the phonon spectral function Aph(ω) which thus also broadens
the e-ph SE. The broader e-ph SE provides the necessary spec-
tral weight for particle relaxation across the gap, in agreement
with the discussion in Sec. IV B 1. In summary the resonance
in the current at F ≈ U/2 is determined by the peak positions
of the LHB and UHB which appear to be pinned by the
peaks of the e-ph SE as discussed for Fig. 8. Here, the peak
positions are decisive, since the particles move via spectral
weight located around ω = 0 [see Figs. 10(a) and 10(c)]. For
the resonance at F ≈ U , the spectral weight at both gap edges
and thus the extent of the spectral function into the gap are
relevant. Here the broadening effect of ωph seems to determine
the resonant electric field.

V. CONCLUSIONS

We investigated the single-particle spectrum and the cur-
rent characteristics of a Mott insulating system under the
action of a strong dc electric field. In this paper we highlighted
the effects of acoustic phonons as a dominant mechanism
for providing dissipation, thus enabling a stationary dc cur-
rent, in contrast to fermionic baths adopted in previous work
[2,13,14,18].

Starting with the case of both phonons and weakly coupled
fermionic baths, we observe the occurrence of in-gap states
and transport resonances associated with Wannier-Stark side-
bands similar to previous work [14,18]. In the case of phonons
as the only source of dissipation, we find them to be much less
effective, meaning that a steady-state solution is achieved only
for electric fields close to the resonances. In these regions, we
find a direct correlation between the resonances’ location and
the phonon characteristic frequency. In addition, we observe a
strong population shift to higher bands around the resonances
and in particular a population inversion at large fields which
can be described in terms of two separate chemical potentials
for the LHB and the UHB. These effects are not observed
for the mixed fermion-phonon dissipation mechanism due to
the constant drain and emission of carriers by the fermionic
baths. When phonons are the only dissipation mechanism, the
current in the metallic phase is almost one order of magnitude
smaller than the typical values obtained by coupling to the
fermionic bath.

Employing the so-called self-consistent Migdal approxi-
mation which allows phonons to heat up via backaction from
electrons is expected to display an even less effective dis-
sipation characterized by a further reduction of the current
due to hot-phonon effects at the onset of the metallic phase.
However, acoustic phonons could still be able to dissipate to
some extent because of their finite, albeit small, bandwidth.
This aspect will be investigated in a future work.

As pointed out in previous works [15,18,58], experimen-
tally the quasistationary situation considered here cannot be
induced by a regular dc field, since it would have to be far too
strong and destroy the material. Following the reasoning in
[18], high electric field amplitudes F ≈ 1 V/Å corresponding
to our units are available in the terahertz regime from few
cycle pulses which are used for high harmonic generation
from solids [59,60]. They argue that below driving frequencies
of the order of a few hundred terahertz some of the spectral
features could be safely described by a quasi-dc setup. To our
knowledge, unfortunately such WS excitations have not been
observed so far.

ACKNOWLEDGMENTS

We thank A. Picano for fruitful discussions. This research
was funded in part by the Austrian Science Fund (Grant No. P
33165-N) and by NaWi Graz. The computational results pre-
sented have been obtained using the Vienna Scientific Cluster
and the D-Cluster Graz.

APPENDIX A: THE d-DIMENSIONAL CURRENT AND
KINETIC ENERGY

We start from the equal-time GF G<
k (t, t ) ≡ G<

k (tav, trel =
0), which follows from Eq. (8) as

G<
k (tav, trel = 0) =

+∞∑
l ′=−∞

∫ +∞

−∞

dω

2π
G<

l ′ (ω, k)e−il�tav . (A1)

Following [29], the lth Wigner component of Eq. (23) is given

by jl (�) = ∫ τ
2

− τ
2

dtav
τ

eil�tav j(tav) which leads combined with
Eq. (A1) to

jl (ω) = 2i
+∞∑

l ′=−∞

∑
k

[e0 · ∇k(εk)l−l ′ ]G
<
l ′ (ω, k). (A2)

The d-dimensional k-space derivative in Eq. (A2) reads

e0 · ∇k(εk)l−l ′ =
d∑

n=1

∂

∂kn
(εk)l−l ′

=
d∑

n=1

[
∂ε

∂kn

∂ (εk)l−l ′

∂ε
+ ∂ε

∂kn

∂ (εk)l−l ′

∂ε

]
, (A3)

where by means of the Floquet dispersion relation in Eq. (14)
one finds

∂ (εk)l−l ′

∂ε
= 1

2
[δl−l ′,1 + δl−l ′,−1],

∂ (εk)l−l ′

∂ε
= i

2
[δl−l ′,1 − δl−l ′,−1]. (A4)
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Since Eq. (A4) does not depend on the index n, one can make
use of the explicit form of ε and ε in Eq. (4) and write

d∑
n=1

∂ε

∂kn
= −ε,

d∑
n=1

∂ε

∂kn
= ε. (A5)

By inserting Eqs. (A4) and (A5) into Eq. (A3) while recalling
that the sum over k can be performed over (ε, ε), the current
integrand is

jl (ω) =
∫

dε

∫
dε ρ(ε, ε)

× [−(ε + iε)G<
l−1(ω, ε, ε) + (ε − iε)G<

l+1(ω, ε, ε)],
(A6)

which can be recast as in Eq. (26) exploiting the symmetry
property (G<)† = −G< and the Floquet-to-Wigner mapping
provided in Eq. (9).

We now summarize the main steps to derive the kinetic
energy integrand in Eq. (28). The starting point is the analog
of Eq. (A2), i.e.,

Ekin,l (ω) = −2i
+∞∑

l ′=−∞

∑
k

(εk)l−l ′G
<
l ′ (ω, k) (A7)

expressing the lth Wigner component of the kinetic energy
integrand. As in the previous case, by inserting the Floquet
dispersion relation (14) in Eq. (A7) and making use of the
JDOS, we get

Ekin,l (ω) =
∫

dε

∫
dε ρ(ε, ε)[(ε − iε)

× G<
l−1(ω, ε, ε) − (ε + iε)G<

l+1(ω, ε, ε)], (A8)

which is equivalent to Eq. (28) as it can be proven by using
the same properties mentioned above.

APPENDIX B: REAL-TIME KELDYSH COMPONENTS
OF THE ELECTRON-PHONON SE

The Keldysh components of the e-ph SE in Eq. (16) are
explicitly derived by means of the Langreth rules [61] and
read

�R
e-ph(t, t ′) = ig2

[
GR(t, t ′)D>

ph(t, t ′) + G<(t, t ′)DR
ph(t, t ′)

]
,

�K
e-ph(t, t ′) = ig2{GK(t, t ′)D>

ph(t, t ′)

+ G<(t, t ′)[D>
ph(t, t ′) − D<

ph(t, t ′)]}, (B1)

FIG. 15. Keldysh contour Cκ = γ− ∪ γ+ for real-time arguments.

where t and t ′ lie on the Keldysh contour Cκ shown in
Fig. 15.

APPENDIX C: PHONON SPECTRAL FUNCTION

The dispersion relation of acoustic phonon branches can be
approximated [62] by

ω(q) ≈ vs|q| (C1)

for reciprocal lattice vectors q satisfying |q|a � 1, where vs is
the characteristic speed of sound of the considered lattice, and
a is the lattice spacing. In d dimensions the phonon modes’
density of states is

Dd (ω) =
∑

q

δ[ω − ω(q)] =
(

a

2π

)d ∫
dd q δ[ω − ω(q)].

(C2)
By taking into account d = {1, 2, 3} and making use of polar
coordinates we find

D1(ω) = a

2π

∫ +∞

0
d|q| δ(ω − vs|q|),

D2(ω) =
(

a

2π

)2

2π

∫ +∞

0
d|q| |q|δ(ω − vs|q|), (C3)

D3(ω) =
(

a

2π

)3

4π

∫ +∞

0
d|q| |q|2δ(ω − vs|q|).

Recalling that δ(ω − vs|q|) = 1
vs

δ(|q| − ω/vs), we then get

D1(ω) = a

2π

1

2vs
,

D2(ω) =a2

π

ω

4v2
s

, (C4)

D3(ω) = a3

2π2

ω2

2v3
s

.

A rough estimate for vs can be obtained as vs ≈ ωpha. Here
ωph is the characteristic frequency for which the phonon
modes’ dispersion relation is still linear, i.e., ωph = ω(qmax).
Accordingly qmax is the maximal value the reciprocal lattice
vector can take for Eq. (C1) to be fulfilled.
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