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Anomalous gapped boundaries between surface topological orders in higher-order topological
insulators and superconductors with inversion symmetry
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We show that the gapless boundary signatures—namely, chiral/helical hinge modes or localized zero modes—
of three-dimensional higher-order topological insulators and superconductors with inversion symmetry can be
gapped without symmetry breaking upon the introduction of non-Abelian surface topological order. In each
case, the fractionalization pattern that appears on the surface is “anomalous” in the sense that it can be made
consistent with symmetry only on the surface of a three-dimensional higher-order insulator/superconductor.
Our results show that the interacting manifestation of higher-order topology is the appearance of “anomalous
gapped boundaries” between distinct topological orders whose quasiparticles are related by inversion, possibly
in conjunction with other protecting symmetries such as time-reversal symmetry and charge conservation.
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I. INTRODUCTION

Over the past decades there have been great strides in
the classification and characterization of topological phases
of matter [1–17]. Distinctions between these phases are en-
coded in the entanglement structure of their quantum wave
functions rather than in patterns of broken symmetry [18–20].
While some gapless systems such as topological semimetals
[21,22] and quantum spin liquids [23,24] exhibit topolog-
ical characteristics, in this work, we focus exclusively on
topological phases with a bulk energy gap, which often co-
exists with gapless modes localized on system boundaries.
Such gapped topological phases fall into distinct equivalence
classes that cannot be adiabatically deformed into each other
without encountering a phase transition at which the bulk gap
closes. In some cases, these distinctions rely on the presence
of protecting global symmetry(ies); if such symmetries are
broken—either spontaneously or explicitly—then phases may
be deformed into each other without encountering a phase
boundary. Such phases are said to be “symmetry protected
topological” (SPT) phases [7,9]. Another class of phases
does not rely on such symmetry protection, and are said to
have “intrinsic” topological order [25–27]. A separate dis-
tinction can be usefully drawn between invertible topological
phases—those with no nontrivial topological excitations—
and noninvertible phases which host such excitations. Invert-
ible topological order can thus either be intrinsic, as in the
chiral px + ipy superconductor [28], or symmetry-protected,
as exemplified by three-dimensional (3D) time-reversal in-
variant topological band insulators (TIs), which rely on a
combination of U(1) particle number conservation and time-
reversal symmetry (TRS) T [2]. Non-invertible topological
orders have to be intrinsic and are then distinguished from

each other and from trivial orders by the quantum statistics or
braiding properties of their topological excitations. However
such features can be “enriched” by global symmetries, which
allow finer distinctions to be made between distinct patterns of
quantum number fractionalization [29]. Examples of gapped
noninvertible topological orders include Kitaev’s toric code
[25], Abelian and non-Abelian fractional quantum Hall states
[30–33], and quantum spin liquids [23,24,34–36].

Invertible and noninvertible topological orders are linked
through the notion of “anomalous” fractionalization, a focus
of this paper. An invertible SPT with purely on-site symme-
tries in d dimensions generically has gapless modes on d −
1-dimensional boundaries that respect the protecting symme-
tries. These gapless modes are anomalous in that they cannot
be realized in a strictly d − 1-dimensional system equipped
with the same symmetries, and therefore require the bulk in
order to exist—a feature often termed the “bulk-boundary
correspondence” [37–44]. One route to gapping these modes
in the absence of a bulk phase transition involves symmetry
breaking, but an additional possibility emerges on the two-
dimensional (2D) surface of a 3D SPT: namely, the formation
of a noninvertible 2D topological order, enriched by the same
symmetries [45]. This necessarily involves interactions, since
noninvertible orders are intrinsically interacting. The bulk-
boundary correspondence is now encoded in the fact that the
resulting symmetry-enriched topological (SET) order is also
anomalous: its fractionalized quasiparticles transform under
symmetry in a manner that is impossible in a strictly two-
dimensional system, but is admissible on the 2D surface of
a 3D SPT [45–47]. A specific example of this is furnished by
the 3D TRS invariant topological insulator [2]. The gapless
“surface termination” that preserves symmetry is a single 2D
Dirac fermion, which would violate theorems on “fermion
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doubling” were it to appear in a purely 2D TRS lattice system
[43,44,48]. The second, gapped, possibility is the noninvert-
ible T -Pfaffian topological order which contains non-Abelian
anyonic excitations [46,47]. Notably, despite respecting TRS
T , the anyon content of the T -Pfaffian requires a nonzero
chiral central charge; this is incompatible with T -symmetry
in a strictly 2D system, but can be realized in a T -preserving
manner on the 2D surface of the 3DTI. Similar gapped anoma-
lous surface topological orders (STOs) have been proposed
for many bosonic and fermionic SPT phases [49–59] and
have been used as the basis of a classification of interacting
electronic topological insulators.

The introduction of spatial symmetries adds richness to
the topological classification, allowing the identification of
crystalline [60–64] and “higher-order” symmetry-protected
topological phases (HOTPs) of matter [65–78]. A topologi-
cal crystalline insulator/superconductor, as its name implies,
requires one or more crystalline symmetries, and exhibits
gapless states only on surfaces that preserve those symme-
tries. However, generic surfaces may preserve symmetries
only within certain high-symmetry subsystems, e.g., reflection
symmetric lines on a 2D surface, or rotation symmetric points
on a 1D or 2D edge; different patches of surfaces can be
mapped into each other under symmetry [79–81]. These facts
can complicate a straightforward definition of a signature on
a d − 1-dimensional surface as it may not fully realize all
the symmetries of the bulk. Higher-order topology resolves
this complication, by identifying robust signatures on “bound-
aries of boundaries” and generalizations thereof. An nth-order
topological phase of matter in d dimensions hosts gapless
excitations on d − n-dimensional boundary subsystems. In
the d = 3 case of interest to us, a first-order topological phase
has gapless 2D surface states, a second-order phase is gapless
along 1D high-symmetry lines of its 2D surface, and a third-
order phase has gapless modes localized to 0D points on its
surface. (The latter two cases are often termed “hinges” or
“corners,” reflecting their spatial locations when the protect-
ing symmetry is a point group). A large class of HOSPTs
have been identified in fermionic and bosonic systems, and
candidate solid-state materials have been proposed to host
gapless modes protected by higher-order topology.

In 3D, the concept of anomalous surface topological order
also generalizes to HOSPTs, but in a distinct fashion from
the n = 1 case. This was demonstrated in Ref. [82] in the
specific setting of HOSPTs protected by a combination of
C2n rotations and T , which host gapless chiral modes on
the hinges of a C2n-symmetric sample. It was demonstrated
that a consistent STO for C2nT HOSPTs could be gener-
ated by placing a cousin of the T -Pfaffian topological order,
with the same anyons and symmetry transformation proper-
ties, but with T -symmetry broken in two opposite senses, on
adjacent patches of the surface that get mapped into each
other under the action of C2n. In a purely 2D setting—
imagine these phases “painted” on a hollow C2n-symmetric
shell—this pattern would necessarily involve chiral bound-
ary modes between topological orders with distinct senses of
T breaking. Their absence —and hence the presence of an
anomalous gapped boundary—is because the gapless modes
can be gapped while preserving symmetry when combined
with those contributed by the HOSPT bulk, which counter-

propagate and have the same symmetry properties. Thus the
manifestation of higher-order topology in this strongly inter-
acting setting is through the anomalous gapped boundaries of
a certain symmetry-enforced patterning of topological orders.
(We note there have been further subtle notions introduced
which distinguish bulk-boundary phenomena in the context
of weakly interacting electronic systems, such as boundary-
obstructed topological phases [83–87], phases with obstructed
atomic limits, and fragile topology [88–96]; we focus on
strongly interacting, nonfragile phases and do not consider
these below.)

In this work, we construct topologically ordered surface
terminations for three-dimensional electronic topological in-
sulators and superconductors both with and without TRS
(classes A, AII, AIII, D, DIII, CII, and BDI within the Altland-
Zirnbauer classification scheme) whose higher-order topology
is enabled by the additional presence of three-dimensional
spatial inversion symmetry, denoted I. A band-theoretic clas-
sification indicates that the surfaces of such phases host
one-dimensional chiral or helical Dirac hinge modes along
an inversion-invariant line, or degenerate zero-dimensional
corner modes at antipodal points, which cannot be gapped by
any symmetric free-fermion perturbation [98]. We show that
these hinge and corner modes may be gapped out upon intro-
ducing an inversion-symmetric configuration of fractionalized
phases with non-Abelian anyons on the surface. The surface
now realizes a fully gapped and symmetric topologically or-
dered state. Crucially, this surface fractionalization pattern
is anomalous as it would be impossible to assemble a con-
figuration of topological orders with the relevant symmetry
properties for a system in purely two dimensions, i.e., without
invoking the mode contributed by the three-dimensional bulk.
Compared with Ref. [82], this work discusses the action of
crystalline symmetry on the STO beyond merely arranging the
STOs in a symmetry-respecting configuration.

The rest of the paper is organized as follows. In Secs. II and
III, we present the construction of surface topological order
for second and third-order inversion symmetric topological
phases respectively. The main results of the paper are sum-
marized in Table I. Technical details are collected in several
appendices.

II. SURFACE TOPOLOGICAL ORDER FOR
SECOND-ORDER TOPOLOGICAL PHASES

A. Class A + inversion: HOTI with chiral Dirac hinge mode

A second-order topological insulator (HOTI) protected
solely by inversion symmetry can be obtained by perturbing a
3D topological insulator with a surface mass term that breaks
TRS (T ) but preserves inversion symmetry (I) [98]. The bulk
of the 3D topological insulator can be captured by the Bloch
Hamiltonian

H (�k) =
∑

i

sin(ki )σi ⊗ τx −
(

2 −
∑

i

cos(ki )

)
σ0 ⊗ τz, (1)

where �σ , �τ are Pauli matrices that act on spin and orbital
degrees of freedom, respectively. Inversion symmetry and
TRS are given by I = σ0 ⊗ τz and T = iσy ⊗ τ0K, respec-
tively, where K denotes complex conjugation. In order to
construct the hinge state, we first inspect the linearized surface
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TABLE I. Summary of surface topological order for all inversion symmetric higher-order topological phases in the AZ classes. The
superscripts that appear in the column of third-order STO denote the number of copies of the topological order, e.g., (SO(3)3)2 means two
copies of SO(3)3. The STO we put on the surface is always inversion symmetric since we place a topological order and its inversion symmetric
partner on the surface so that the original gapless line/point modes can be gapped.

Second-order topology Third-order topology

AZ class Hinge modes STOs Zero modes STOs

A Chiral Dirac 2D T -Pfaffiana

AIII Dirac (SO(3)3)4b

AI
BDI Majorana (SO(3)3)2

D Chiral Majorana SO(3)3 Majorana (SO(3)3)2

DIII Helical Majorana SO(3)3 × SO(3)3 Majorana Kramers pair (SO(3)3 × SO(3)3)2

AII Helical Dirac 2D T -Pfaffian×2D T -Pfaffian
CII Majorana Kramers pair (SO(3)3 × SO(3)3)2

C Chiral Majorana c

CI

aThe 2D T -Pfaffian has the same anyon content of T -Pfaffian, albeit without TRS.
bAlso enriched by U(1) charge conservation symmetry.
cNote that there is no STO for second-order class C. The second-order class C can be obtained by breaking the TRS in the first-order class CI,
similar to the case of second-order class A which is obtained by breaking the TRS in the first-order class AII. The STO for the second-order
class C should have the same anyon content as the STO for the first-order class CI, which was excluded in Ref. [97]. In the above paper, the
authors argue that, due to disorder, interaction is always relevant in the first-order class CI, and will cause spontaneous symmetry breaking of
TRS, thus ruling out STOs that preserve TRS.

Hamiltonian which takes the form [98]

h(�k, �r) = −(�k × n̂�r ) · �̃σ, (2)

where n̂�r is the unit vector normal to the surface, which is
assumed to be spherical. The projected surface Hamiltonian
is expressed in a rotated σ̃ basis in which the symmetry
operators act as I = −σ̃0 and T = iσ̃yK. The surface hinge
mode is obtained by perturbing the 3D TI with a TRS breaking
mass term of the form δh(�r) = m�r (n̂�r · �̃σ ). Inversion symme-
try imposes the constraint m�r = −m−�r on the mass profile,
signaling the vanishing of the mass term along some inversion
symmetric curve. For concreteness, we consider the setup
illustrated in Fig. 1 wherein the mass changes sign across the

FIG. 1. Surface topological order for second-order topological
phases protected by inversion symmetry in A class. φ denotes the
chiral Dirac hinge mode. The edge modes of STOs are φN/S, the
Dirac edge modes, and γN/S, the Majorana edge modes. Part a: the
surface configuration of HOTI before pasting STO; part b: the surface
configuration of HOTI after pasting STO.

equator. It is known that such a domain wall hosts a chiral
fermionic mode [99]. In order to gap out the chiral hinge
mode, we induce topological orders denoted as AN and AS

on the top/bottom halves of the surface. It is worth noting
that the calculations below will be similar to the calculations
in Ref. [82], albeit with an explicit treatment of crystalline
symmetry. 3D inversion symmetry imposes AS = ĀN, where
Ā denotes the orientation-reversed version of A. The topo-
logical order [Ising × U(1)−8]/Z2 is a suitable choice for AN.
This is the same topological order as the T -Pfaffian, if we
ignore TRS, therefore we refer to it as 2D T -Pfaffian. The
edge theory of AN contains a chiral Majorana mode and an
antichiral compact boson mode. These are the edge fields cor-
responding to the bulk Ising and U(1)−8 topological orders,
respectively. Concretely, the edge of AN and AS are described
by the Lagrangians [46,47]

L∂AN = − 2

4π
∂xφN(∂t − ∂x )φN + iγN(∂t + ∂x )γN,

L∂AS = − 2

4π
∂xφS(∂t − ∂x )φS + iγS(∂t + ∂x )γS, (3)

where γN and γS are Majornana-Weyl modes while φN and
φS are compact bosonic modes. The chiral hinge addition-
ally contains a single Dirac mode contributed by the HOTI
bulk which can be described by the bosonized Lagrangian
[30,100,101]

L0 = 1

4π
∂xφ(∂t + ∂x )φ, (4)

where φ is a compact boson. The combined Lagrangian de-
scribing the equatorial hinge is therefore given by

LHinge = L∂AN + L∂AS + L0. (5)
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The two Majorana modes can be combined into a Dirac mode
which can be subsequently bosonized and written in terms of
the compact boson φM using

ψM ∼ eiφM(x) ∼ e−i π
4 γN + ei π

4 γS, (6)

where we have suppressed the Klein factors for brevity [102].
The benefit of bosonizing the Majorana pair is that it allows
for the description of the hinge in terms of the K-matrix
Luttinger liquid formalism which is easier to work with. The
hinge is then described by the Lagrangian

LHinge = 1

4π
∂x


TK∂t
 − 1

4π
∂x


T∂x
, (7)

where 
T = (φM, φN, φS, φ), the K = diag(1,−2,−2, 1),
and the charge vector tT = (0, 1, 1, 1). Our intention is to add
to Eq. (7) generic interactions represented by cosine terms that
gap out all the hinge modes when driven to strong coupling

δL =
∑

I=1,2

δLI =
∑

I=1,2

λI (x) cos
[
�T

I K
 − αI
]
. (8)

Apart from being simultaneously gappable (see Appendix A
for details), the gapping vectors �I need to satisfy a number
of symmetry criteria related to inversion, charge conservation
and gauge symmetry derived from a Z2 redundancy in our
description of the hinge. First, the inversion symmetry acts as
I : 
(x) �→ I
(−x) where I = (−1) ⊕ σ x ⊕ (+1). Second,
in order to respect U(1) symmetry, we impose charge neu-
trality condition, namely we require that �Tt = 0. Finally,
due to the fermionic nature of AN and AS, an additional
gauge symmetry ZN

2 × ZS
2 is imposed. The generators gα of

Zα
2 (where α = N, S) implement the transformation

gN,S : φN,S �→ φN,S ± π

2
, γN,S �→ −γN,S. (9)

Since the fermionic operator �α � γαe2iφα is invariant un-
der Zα

2 , the gauge symmetry imposes that any admissible
cosine term tunnels only local operators, that is, fermions
or combinations thereof. Additionally, as a consequence of
the ZN

2 × ZS
2 symmetry we need to fix the compactification

φN,S ∼ φN,S + π . Two cosine terms are required to open a
gap for the combined hinge theory. The first gapping vector
can be chosen to be �T

1 = (0,−2,−2, 4). Such a term is
inversion-symmetric if λ1(x) = λ1(−x) [see Eq. (8)] therefore
λ1 can be chosen to be constant and α = 0, i.e.,

δL1 = λ1 cos (4φN + 4φS + 4φ). (10)

This gapping term also respects U(1) and ZN
2 × ZS

2 symmetry
as can be checked explicitly. Upon adding Eq. (10) to the
original gapless hinge described by Eq. (7), the combina-
tion of fields 〈φN + φS + φ〉 acquire a vacuum/ground state
expectation value, thereby breaking the ZN

2 × ZS
2 symmetry

into a diagonal Z2 subgroup denoted as Zdiag
2 , generated by

gdiag := gNgS with the action

gdiag : φN �→ φN + π

2
, φS �→ φS − π

2
, φM �→ φM + π.

(11)

The second gapping vector can be chosen as �T
2 =

(2, 1,−1, 0). Since the two gapping vectors �1,2 satisfy the

Haldane criterion �T
i K� j = 0, the bosonic fields �TK
 can

simultaneously acquire a vacuum expectation value. The sec-
ond gapping term δL2 is also charge neutral since �T

2 t = 0
as well as invariant under the residual Zdiag

2 symmetry. Fi-
nally, the term is δL2 is inversion symmetric if α2 = nπ and
λ2(−x) = (−1)nλ2(x). By choosing n ∈ Zeven, we can fix λ2

to be constant everywhere.
To summarize, we have shown that the two cosine terms

corresponding to �1,2 satisfy the symmetry requirements as
well as the Haldane criteria. Therefore they can be simultane-
ously driven to strong coupling thereby completely gapping
out the hinge without breaking any symmetry. We note that an
inversion symmetric configuration of AN and AS illustrated in
Fig. 1 without the mode contributed from the bulk is clearly
ingappable on the hinge as the modes on the hinge carry a non-
vanishing chiral central charge. Therefore as a pattern of 2D
inversion symmetric topological order, AN ⊕ AS is anoma-
lous and cancels the higher-order anomaly coming from the
bulk.

B. Class AII + inversion: HOTI with helical Dirac hinge mode

It was shown in Refs. [92,98] that TRS-invariant insulators
(with T 2 = −1) enriched by additional inversion symmetry
can support nontrivial second-order topology. On inversion
symmetric open geometries, models within the nontrivial
second-order phase host robust helical Dirac modes along an
inversion symmetric hinge on the surface. The helical hinge
modes are similar to those obtained on the edge of a quantum
spin Hall insulator and form a Kramer’s pair which is stable
against interactions [1]. Here we show that these modes can
be gapped out by inducing topological order on the surface.
Before getting into the details of the surface topological order,
we briefly review the free fermion model for the helical HOTI.
The strategy is to start with a doubled model and subsequently
add a perturbation that gaps out the surface leaving behind a
robust hinge. In this case, the parent theory consists of two
3D topological insulators. We consider the same geometrical
settings as in Fig. 2. The surface Hamiltonian is given by

h1(�k, �r) = τ0 ⊗ (�k × n̂�r ) · �σ . (12)

The inversion and TRS are represented by I = τ0 ⊗ (−σ0)
and T = τ0 ⊗ (iσyK). A surface mass term that respects TRS
can be added to the Hamiltonian

δh1(�r) = τy ⊗ m�r (n̂�r · �σ ). (13)

Inversion symmetry demands that Iδh1(�r)I−1 = δh1(−�r)
which further imposes the condition m�r = −m−�r , signaling
the vanishing of the mass term along some inversion sym-
metric curve. For reasons identical to the chiral HOTI case,
this indicates the existence of gapless helical modes along
the equator. TRS in the above construction acts within each
flavor of the above model, i.e., diagonally in the �τ space. We
find it convenient to work with an equivalent description of
the helical HOTI in which TRS acts by switching fermion
flavors, such that the model can be thought of as a stacking
of a chiral HOTI with its time-reversed copy. We consider
the following Hamiltonian which is related to h1 + δh1 by a
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FIG. 2. Surface topological order configuration for inversion and
TRS protected higher-order topological insulator. The φ/φ̄ denote
the helical Dirac hinge modes. The edge modes of STOs are φN/S

and φ̄N/S, the Dirac edge modes; and γN/S and γ̄N/S, the Majorana
edge modes. Part a: the surface configuration of HOTI before pasting
STO; part b: the surface configuration of HOTI after pasting STO.

unitary transformation

h2(�k, �r) = τ̃0 ⊗ (λyσ̃y + m�rnxσ̃x + m�rnzσ̃z )

+ τ̃z ⊗ (λxσ̃x + λzσ̃z + m�rnyσ̃y), (14)

where �λ ≡ �k × n̂�r . TRS is represented by

T = iτ̃y ⊗ σ̃0K, T 2 = −1. (15)

Upon performing an analysis similar to the one described
above one is left with a surface which is gapped everywhere
except an inversion symmetric hinge which hosts a pair of
gapless helical modes {ψ, ψ̄} that form a Kramers doublet.

A natural candidate for an STO that can gap out the helical
hinge mode is given by stacking the STO from the previous
section and its time-reversed copy. It remains to be shown
that this construction furnishes modes on the hinge that are
robust by themselves, but when considered along with the
helical modes contributed by the bulk lead to a completely
gapped hinge. As illustrated in Fig. 2, we set up the STO
configuration by placing (AN,AS) on the northern/southern
hemispheres of a spherical surface geometry. Here AN,S

stand for the product topological orders consisting of 2D
T -Pfaffian topological orders and their time-reversed copies.
The edge theory contains 8 modes. We divide these into
bosonic modes 
 = (φN, φS, φ̄N, φ̄S)T and fermionic modes
� = (γN, γS, γ̄N, γ̄S)T. The action of TRS is encoded in the
matrices T
 := σ x ⊗ 12 and T� = iσ y ⊗ 12 such that under
TRS

T :

[



�

]
�−→

[
T



T��

]
, i �−→ −i. (16)

As before we need to impose a gauge symmetry that en-
sures that the cosine terms only tunnel combinations of
fields that are built from local fermionic operators. The full
fermionic gauge symmetry group is Z4

2 =∏α Zα , where α =
N, S, N̄, S̄. The generators of this group denoted as gα act as

gα :

[
γα

φα

]
�−→

[−γα

φα

]
+ sα

[
0
π
2

]
, (17)

where sα = −1 for α = S, ST and +1 otherwise. Inversion
squares to +1 and simply maps the fields on the northern
hemisphere to their counterparts on the southern hemisphere
and vice versa. We now proceed to gap out the edge
modes. Firstly we combine the Majorana fermions into Dirac
fermions

ψM ∼ eiφM ∼ e−i π
4 γN + ei π

4 γS,

ψ̄M ∼ e−iφ̄M ∼ ei π
4 γ̄N + e−i π

4 γ̄S. (18)

Since the Majorana fermions are themselves Kramers pairs,
the action of TRS can be deduced as

T :

[
φM

φ̄M

]
�−→

[
φ̄M

φM + π

]
. (19)

The edge is now effectively described by the following K
matrix and charge vector t

K = diag(−1, 2, 2,−1, 1,−2,−2, 1),

t = (0, 1, 1, 1, 0, 1, 1, 1)T, (20)

in the basis (φM, φN, φS, φ, φ̄M, φ̄N, φ̄S, φ̄)T. Consider the
gapping terms

δL = cos[4φN + 4φS + 4φ] + cos[2φN − 2φS − 2φM]

+ cos[4φ̄N + 4φ̄S + 4φ̄] + cos[2φ̄N − 2φ̄S − 2φ̄M].
(21)

Note that this expression is basically the gapping term for an
inversion symmetric HOTI plus its time-reversed copy. Thus
we only need to check whether the above expression breaks
TRS. Clearly, it does not break TRS explicitly; however, since
both 〈φ̄N + φ̄S + φ̄〉 and 〈φ̄N − φ̄S − φ̄M〉 transform to their
TRS copies with extra π phase, naively it seems like TRS is
broken spontaneously. We note that the gauge group is now
broken to Zdiag

2 × Z̄diag
2 , where

gdiag : φN �→ φN + π

2
, φS �→ φS + π

2
, φM �→ φM + π,

ḡdiag : φ̄N �→ φ̄N + π

2
, φ̄S �→ φ̄S + π

2
, φ̄M �→ φ̄M + π.

(22)

We can see that 〈φN + φS + φ〉 ∼ 〈φN + φS + φ〉 + π , 〈φN −
φS − φM〉 ∼ 〈φN − φS − φM〉 + π as they are related to each
other by a gauge transformation. Therefore TRS is not bro-
ken spontaneously either. Finally, we emphasize that without
inversion symmetry, the above STO is nonanomalous as we
can paste a copy of a quantum spin Hall liquid on, e.g., the
southern hemisphere, with its edge modes residing on the
equator and gap out the helical modes contributed by the STO
without invoking the bulk.

C. Class D + inversion: HOTSC with chiral
Majorana hinge mode

We briefly review the free fermion model for the chiral
HOTSC in class D. The strategy to construct a second-order
phase is to start with a class DIII topological superconduc-
tor and add a TRS-breaking perturbation that gaps out the
surface leaving behind a robust hinge protected by inversion
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symmetry. The surface Hamiltonian is given by [98]

h(�k, �r) = −(�k × n̂�r ) · �σ , (23)

The inversion, time reversal and particle-hole symmetries are
generated by I = −σ0, T = iσyK and P = −(n̂�r · �σ )σyK.
The surface can be deformed by the mass term

δh(�r) = m�r (n̂�r · �σ ), (24)

that breaks TRS. Inversion symmetry demands that
Iδh(�r)I−1 = δh(−�r) which further imposes the condition
m�r = −m−�r , signaling the vanishing of the mass term along
some inversion symmetric curve which hosts gapless chiral
modes. Due to the additional particle-hole symmetry as
compared with the class A chiral HOTI, these are Majorana
as opposed to Dirac modes. Before turning to the surface
topological order, we first inspect the stability of the chiral
hinge modes to inversion symmetric surface pasting of p ± ip
superconductors. Let us consider the situation where there are
N± chiral copropagating Majorana hinge modes denoted as
χ±

i with i = 1, . . . , N± that transform under inversion as

I :

[
χ±

i (θ )

χ±
i (θ + π )

]
�→
[±iχ±

i (θ + π )

∓iχ±
i (θ )

]
, (25)

where θ is introduced to parametrize the equator on which
the Majoranas are propagating. The above symmetry action
can be derived from the bulk symmetry using a recursive
Jackiw-Rebbi procedure (see Appendix E) [103] and satis-
fies the basis-invariant relations {I,P} = 0, [I, T ] = 0 and
I2 = 1. we can always paste a p + ip and p − ip topological
superconductor on the northern and southern hemispheres
respectively, which contribute a pair of chiral hinge modes
denoted as γ N,S. The inversion action on these modes is rep-
resented as

I :

⎡⎢⎢⎢⎢⎣
γ N(θ )

γ N(θ + π )

γ S(θ )

γ S(θ + π )

⎤⎥⎥⎥⎥⎦ �→

⎡⎢⎢⎢⎢⎣
iγ S(θ + π )

−iγ S(θ )

iγ N(θ + π )

−iγ N(θ )

⎤⎥⎥⎥⎥⎦. (26)

Consider the linear combinations γ ± = (γ N ± γ S)/
√

2 that
transform under inversion as

I :

[
γ ±(θ )

γ ±(θ + π )

]
�→
[±iγ ±(θ + π )

∓iγ ±(θ )

]
. (27)

Henceforth we denote left/right-moving modes with/without
an overbar. The configuration (N+, N−) with net N+ + N−
right movers can always be transformed to (N+ − 1, N− − 1)
by surface pasting. Therefore we have the equivalence relation

(N+, N−) ∼ (N+ − n, N− − n), (28)

where n ∈ Z. Consequently, we can always transform a con-
figuration (N+, N−) into a configuration with all positive
parity modes (N+ − N−, 0). For this reason, we will only
need to consider the stability of such modes under surface
pasting of topologically ordered phases. The classification of
inversion symmetry-protected higher-order phases in class D
is given by the group Z4 which can be indexed by (N+, 0) (see
Sec. III for details). For the present discussion it will suffice
to construct the STO for the generator of Z4 which may be

FIG. 3. An illustration of the procedure used to gap out the (3,0)
configuration of chiral Majorana modes χi with i = 1, 2, 3. We in-
troduce γ

N/S
i Majoranas by pasting p ± ip superconductors on the

surface and end up with a total of nine Majorana modes on the hinge.
These are subsequently gapped out by introducing the STO AN,S

on the northern and southern hemispheres respectively. The nine
Majorana modes are described by the SO(9)1 WZW which splits
into two copies of SO(3)3 theories that gap out upon coupling to the
edge modes provided by the STOs.

treated as (3,0). Since an odd number of Majorana fermions
cannot be tamed by Abelian bosonization, the K-matrix ap-
proach we previously employed must be abandoned. Instead,
we use non-Abelian bosonization to approach the problem.
We remark here that the method in this section is simi-
lar in spirit to Ref. [53,104], however, adapted to inversion
symmetry.

We consider the HOTSC to have a spherical geometry as
illustrated in Fig. 3 with three chiral majorana modes χ+

i on
the inversion-symmetric equator. In order to show that the
chiral hinge can be gapped, we find it convenient to proceed
in two steps. First we add additional degrees of freedom on
the hinge by a purely surface pasting of p ± ip supercon-
ductors that preserves the inversion symmetry. In the second
step, we induce inversion-symmetric topological order on the
surface to gap out the combined hinge modes contributed
by the p ± ip superconductors and the bulk higher-order su-
perconductor. We begin by adding three copies of a p + ip
superconductor on the northern hemisphere and three copies
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of a p − ip superconductor on the southern hemisphere. As a
result, we end up with 6 additional Majorana modes on the
equator which we label as {γ N

i , γ S
i }, with i = 1, . . . , 3. The

hinge is described by the so(9)1 WZW theory [105]

S =
∫

dtdθ i�T(∂t − ∂θ )�, (29)

where we have introduced a nine-component Majorana spinor
field �. The operator product expansion (OPE) of the Majo-
rana operators satisfies the standard relations

χ+
i (z)χN

j (w) ∼ δi j

z − w
+ . . . ,

γ N
i (z)γ N

j (w) ∼ δi j

z − w
+ . . . ,

γ S
i (z)γ S

j (w) ∼ δi j

z − w
+ . . . . (30)

We introduce so(9)1 currents which can be expressed as
fermion biliears,

J A(z) = i

2
�†(z)�A�(z), (31)

where A is a Lie-algebra index, �A are the generators of the
so(9) lie algebra and z are holomorphic coordinates defined
as z = θ + it on the hinge. The currents {J A}A=1,...dim(so(9))

satisfy the OPE

J A(z)J B(w) ∼ δAB

(z − w)2
+ i f AB

C J C (w)

z − w
+ . . . , (32)

where f AB
C are the structure constants for so(9). The action of

inversion on the different Majorana operators is as follows:

I : χ+
i (θ ) −→ iχ+

i (θ + π ),

I : γ N
i (θ ) −→ iγ S

i (θ + π ),

I : γ S
i (θ ) −→ iγ N

i (θ + π ). (33)

In order to construct the surface topological order that can
absorb the Majorana hinge modes, it is useful to work with an
embedding of so(3)(1)

3 × so(3)(2)
3 ⊂ so(9)1. Since inversion

symmetry is an essential part of our setup, we need to be
careful about its action on the various embedded components.
We work with a choice of embedding such that the two copies
of so(3)3 are swapped under the action of inversion. Let us
index the components of the spinor � by a tuple (i, j) where
i, j = 1, 2, 3. We define the different components such that
they have the following simple transformation rule under in-
version

I :�(i, j)(θ ) �−→ i�( j,i)(θ + π ) (34)

with

�(i,i) = χ+
i ,

�(2,3) = γ N
1 , �(3,2) = γ S

1 ,

�(3,1) = γ N
2 , �(1,3) = γ S

2 ,

�(1,2) = γ N
3 , �(2,1) = γ S

3 . (35)

In order to construct the so(3)3 current operators, consider the
matrices defined as σ a,1 := La ⊗ Id3 and σ a,2 := Id3 ⊗ La,

a = 1, 2, 3, where La are the generators of so(3) in the funda-
mental representation. These matrices generate two decoupled
so(3) algebras

[σ a,κ , σ b,κ ′
] = δκκ ′

f ab
c σ c,κ . (36)

Using this decomposition we define the following so(3)3 ×
so(3)3 currents

J a,κ = i

2
�†σ a,κ�, (37)

which explicitly take the form

J 1,1 = i

2

[(
γ S

3

)(†)
γ N

2 + (χ+
2 )(†)

γ S
1 + (γ N

1

)(†)
χ+

3

]+ H.c.,

J 1,2 = i

2

[(
γ N

3

)(†)
γ S

2 + (χ+
2 )(†)

γ N
1 + (γ S

1

)(†)
χ+

3

]+ H.c.,

J 2,1 = i

2

[
(χ+

1 )(†)
γ N

2 + (γ N
3

)(†)
γ S

1 + (γ S
2

)(†)
γ +

3

]+ H.c.,

J 2,2 = i

2

[
(χ+

1 )(†)
γ S

2 + (γ S
3

)(†)
γ N

1 + (γ N
2

)(†)
χ+

3

]+ H.c.,

J 3,1 = i

2

[
(χ+

1 )(†)
γ S

3 + (γ N
3

)(†)
χ+

2 + (γ S
2

)(†)
γ N

1

]+ H.c.,

J 3,2 = i

2

[
(χ+

1 )(†)
γ N

3 + (γ S
3

)(†)
χ+

2 + (γ N
2

)(†)
γ S

1

]+ H.c.

(38)

The reason why we write (†) on the Majorana operator is
to remind ourselves of the subtlety related to the imaginary
action of inversion, e.g., if I : χ+

i (θ ) �→ iχ+
i (θ + π ), then

I : (χ+
i (θ ))(†) �→ (χ+

i (θ + π ))(†)(−i). We can verify that in-
version acts as I : J a,1 ↔ J a,2 on the so(3) currents. From
the standard OPE for Majorana operators, we can extract the
OPE for the so(3)3 currents, and verify that the level is indeed
3 (see Appendix C). The stress tensor decomposes as

Tso(9)1 = T
so(3)(1)

3
+ T

so(3)(2)
3

, (39)

which means that the chiral central charges of the embedded
sectors add up to give the chiral central charge of the so(9)1

WZW theory. Having formulated the hinge modes as two
copies of so(3)3, it is a straightforward task to gap them
out by adding surface topological order. We introduce AN =
AS = SO(3)3 whose edge conformal field theories and corre-
sponding current operators we denote as so(3)3,N/S and J̄ a

N/S,
respectively [53]. Under inversion the currents transform as

I : J̄ a
N (θ ) �−→ J̄ a

S (θ + π ). (40)

The hinge modes J a,κ and the edge modes of the surface
topological order J̄ a

N/S can together be gapped out upon
adding the gapping term

δL = λ(θ )
3∑

a=1

[
J̄ a

N (θ )J a,1(θ ) + J̄ a
S (θ )J a,2(θ )

]
, (41)

which is inversion symmetric if λ(θ ) = λ(θ + π ). Therefore
we can choose λ to be constant. To summarize, we have shown
that the hinge modes (3,0) can first be mapped to (3,6) by
purely surface pasting of p ± ip superconductors. Thereafter,
two copies of so(3)3 can be embedded in the (3,6) configura-
tion which can be gapped out by a surface pasting of SO(3)3
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topological order. We remark that, if we try to directly gap out
a single chiral majorana, i.e., the configuration (1,0), without
the procedure of pasting p ± ip, the situation requires us to
use a fermionic surface topological order with chiral central
charge equal to 1/4, provided that the gapping channel can
be found. We do not know of such a fermionic topological
order that is not the one we used, up to a condensation with
a bosonic antichiral phase. Eventually we decided to use our
current strategy laid out in this section.

D. Class DIII + inversion: HOTSC with helical
Majorana hinge modes

Class DIII superconductors enriched by inversion sym-
metry support nontrivial second- and third-order topological
phases which host robust helical modes and Majorana
Kramers zero modes on inversion symmetric loci on the
surface [98]. The helical hinge modes are similar to those
obtained on the edge of a 2D TRS invariant topological su-
perconductor, i.e they contain a Majorana Kramers’ pair of
counter-propagating modes. Here we show that these modes
can be gapped out if we allow for the possibility of surface
topological order.

First we briefly review the free-fermion model for the
helical HOTSC. We can start with two class DIII topologi-
cal superconductors with opposite topological index and add
symmetry-respecting perturbations that gap out the surface,
leaving behind a robust hinge. The surface Hamiltonian prior
to adding such a mass term is given by

h(�k, �r) = −ρz ⊗ (�k × n̂�r ) · �σ , (42)

where ρμ and σμ are the Pauli matrices in the orbital and
spin space, respectively. The inversion, time reversal and
particle-hole symmetries are generated by I = −ρz ⊗ σ0,
T = ρ0 ⊗ iσyK and P = −ρz ⊗ (n̂�r · �σ )σyK. To perturb the
Hamiltonian, we add the following mass term that respects
the symmetries

δh(�r) = m�rρx ⊗ σ0. (43)

Inversion symmetry demands that Iδh(�r)I−1 = δh(−�r)
which further imposes the condition m�r = −m−�r , signaling
the vanishing of the mass term along some inversion sym-
metric curve which we choose to be at the equator. After
Jackiw-Rebbi projection, we may verify that a pair of helical
Majorana modes resides at the hinge.

The classification of inversion symmetry enriched higher-
order phases in class DIII is given by the group Z4 which can
be indexed by the number of Majorana helical hinge modes
modulo 4 (see Sec. III for details). For the present discussion it
will suffice to construct the STO for the generator of Z4 which
may be treated as (3,0). We first show that an odd number of
helical modes is stable to weak interaction, and they are only
unstable to adding topological order on the surface.

1. Stability of odd number of helical hinge modes

For concreteness, let us begin with the setup with three
pairs of helical Majorana modes on the hinge. The Lagrangian

density for the Majorana modes can be written as

L =
2n+1∑
j=1

[iχ j (∂t − ∂x )χ j + iχ̄ j (∂t + ∂x )χ̄ j], (44)

with n = 1 which is the nonchiral so(3)1 WZW theory. For
simplicity, we drop the explicit hermitian conjugation from
the equations in this section as they do not play a role unless
we are dealing with a imaginary symmetry representation
such as inversion in Eq. (76). Here we are only interested in
the stability of pairs of helical-modes under TRS which has
a real representation. The holomorphic and antiholomorphic
currents that generate the so(3) current algebra are

J a = i

2
χ jL

a
jkχk = i

2
εa jkχ jχk,

J̄ a = i

2
χ̄ jL

a
jkχ̄k = i

2
εa jkχ̄ jχ̄k, (45)

where a = 1, . . . , dim(so(3)), and as before La are the gen-
erators for the so(3) Lie algebra. The model is TRS invariant
with the TRS action given by Eq. (75) for each pair (χ j, χ̄ j ).
We are interested in the stability of this model to TRS in-
variant perturbations. More precisely, whether the theory can
be completely gapped out without breaking TRS. At the
quadratic level we can add the following terms to the Hamil-
tonian

δH =
∑
j,k,l

im jε
jkl (χkχ̄l + χ̄kχl ) +

∑
j

im̃ jχ jχ̄ j

=
∑

j

[mjO j + im̃ jχ jχ̄ j], (46)

where, in the second second line we have defined the fermion
bilinear O j = iε jkl (χkχ̄l + χ̄kχl ). TRS imposes that m̃ j =
−m̃ j = 0, while there are no such constraints on mj . The
operators O j satisfy the algebra

[O j,Ok] = 4(χ jχk + χ̄ jχ̄k ), (47)

which suggests that these operators cannot condense/acquire
a ground state expectation value simultaneously. This may
pose an obstruction to symmetrically gapping out the the-
ory. Since the model is quadratic, we simply diagonalize the
Hamiltonian and check whether this is the case. The full
Hamiltonian reads

H =
∑

j

∫
dx

{
iv(χ j∂xχ j − χ̄ j∂xχ̄ j ) +

∑
j

im jO j

}

=
∫

k
dk�T

k H (k)�k, (48)

where in the second line, we have introduced the spinor �T =
(χ1, χ̄1, χ2, χ̄2, χ3, χ̄3) and transformed to momentum space.
The explicit form of H (k) is

H (k) = vkId3 ⊗ σ z +
∑

j

im jL
j ⊗ σ y. (49)

The spectrum of H (k) is gapless with the eigenvectors |ψ1〉 =
(m1, m2, m3)T ⊗ (1, 0)T and |ψ2〉 = (m1, m2, m3)T ⊗ (0, 1)T

having eigenvalues ±vk. We are able to find the above two

125121-8



ANOMALOUS GAPPED BOUNDARIES BETWEEN SURFACE … PHYSICAL REVIEW B 106, 125121 (2022)

vectors due to the simple condition that

Ker

[∑
j

m jL
j

]
�= ∅, (50)

which follows from the fact that L ≡∑ j m jL j is a generic
3 × 3 antisymmetric matrix, and is therefore singular, since

det(LT ) = det(−L) = (−1)3det(L). (51)

The above argument can be directly generalized to any odd
number of helical modes, since the corresponding L will
always be singular, and result in the existence of gapless
eigenvectors. More generally, we may use a mathematical
theorem [106] that states any antisymmetric matrix L can be
block diagonalized by conjugating with an orthogonal matrix.
We can then verify that for an even number of helical modes,
we can block diagonalize the Hamiltonian into 2 × 2 blocks
with a gapped spectrum.

Having established the stability of an odd number of helical
modes at the noninteracting level, we proceed to examine the
effect of four fermion or current-current interaction terms for
the so(3)1 × so(3)1 theory. The action of TRS on the currents
is

T : J a ←→ −J̄ a. (52)

Therefore the general form of TRS invariant current-current
interaction terms is

δHint =
∑

a

λaJ aJ̄ a +
∑
a,b

λab(J aJ̄ b + J̄ aJ b). (53)

We examine the λa terms first. The term J aJ̄ a can be de-
composed into two kinds of bilinears: those of the form χ jχ̄ j ,
j �= a, and those of the form Oa. In other words if λa were to
flow to strong coupling, at least one of these bilinears would
be expected to acquire a ground state expectation value. Since
the former kind breaks TRS, this would lead to a ground
state that spontaneously breaks TRS. Alternatively, we could
consider the scenario where Oa acquires an expectation value.
An important observation is that

(O j )2 ∝ J jJ̄ j, (54)

up to a constant term. Therefore, by ramping up λ1 for exam-
ple, we can gap out the modes χ2,3 and χ̄2,3 by condensing
O1 ∝ (χ2χ̄3 + χ̄2χ3). Crucially though, we cannot gap out
the entire theory by simultaneously condensing O1,2,3, as
these operators satisfy the nontrivial algebra in Eq. (47). This
can be understood as a generalization of the Haldane criterion
to non-Abelian current algebras.

Next, we turn to the terms of the form λab(J aJ̄ b +
J̄ aJ b). We are interested in how the ground state at λab →
∞ transforms under TRS. To this end, we decouple the in-
teraction term into possible products of fermion bilinears and
ask whether we can find a decoupling where each bilinear is
invariant under TRS. Let us illustrate this procedure with an
explicit example. Consider the term

J 1J̄ 2 + J̄ 1J 2 = (iχ2χ3)(iχ̄1χ̄3) + (iχ̄2χ̄3)(iχ1χ3)

= (iχ3χ̄3)(iχ̄1χ2 − iχ1χ̄2). (55)

This is the only possible decoupling for the term proportional
to λ12; the terms proportional to the other λab’s all have
similarly unique decouplings. Crucially, both the bilinears in
the decoupling transform nontrivially under TRS and such an
interaction cannot have a TRS invariant ground state.

The above considerations generalize to any odd number
of helical modes. For an even number of helical modes, say
2n, we can construct an interaction term that gaps out all the
modes while preserving the TRS. Consider the matrices L̃a

2n
with a = 1, . . . , n, which generate a so(2)n subgroup so(2n).
The matrix La

2n basically generates rotations in x2a−1-x2a plane
in R2n. Then we can construct the currents

J a := i

2
χ j L̃a

2n, jkχk = iχ2a−1χ2a, (56)

and analogously we define the antiholomorphic currents J̄ a.
Then we may write down the interaction term

δH = λ

n∑
a=1

J aJ̄ a

= λ

n∑
a=1

(iχ2a−1χ̄2a + iχ̄2a−1χ2a)2 + const. (57)

Since the terms (iχ2a−1χ̄2a + iχ̄2a−1χ2a) are TRS invariant
and commute mutually for all a, adding such a term gaps out
all 2n helical modes simultaneously.

2. Gapping out the surface with topological order

In this section, we describe the STO for second-order 3D
class DIII HOTSC protected by inversion symmetry. Here
we start with the system that originally carries three pairs of
helical Majorana modes along the hinge. Since the class DIII
hinge modes can be regarded as a stack of class D hinge modes
with their time-reversed partners, a natural candidate of the
STO for class DIII is given by stacking the STO for class D
with its time-reversed partner which is SO(3)3 × SO(3)3.

We consider the HOTSC to have a spherical geometry
with three pairs of helical Majorana modes χi, χ̄i propagating
along the equator on the surface. First we add three copies
of class DIII superconductors on the northern and southern
hemisphere, ending up with six additional pairs of helical
Majorana modes on the equator which we label as γ

N/S
i , γ̄

N/S
i .

The hinge is described by the so(9)1 × so(9)1 WZW theory.
The action of inversion on the different Majorana operators is
as follows:

I :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi

γ N
i

γ S
i

χ̄i

γ̄ N
i

γ̄ S
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(θ ) −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iχi

iγ S
i

iγ N
i

−iχ̄i

−iγ̄ S
i

−iγ̄ N
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(θ + π ). (58)

Next, we carry out the conformal embedding procedure, i.e.,
we embed so(3)3 × so(3)3 ⊂ so(9)1 and so(3)3 × so(3)3 ⊂
so(9)1. Since the recipe is identical to that described for the
holomorphic CFT in Sec. II C, we do not repeat the procedure
here. Eventually, we end up with chiral and antichiral current
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operators that transform under the inversion-symmetry action
as

I :

[J a,1

J̄ a,1

]
(θ ) �−→

[J a,2

J̄ a,2

]
(θ + π ), (59)

where “a” labels the generators of so(3). Similarly, under
TRS, the currents transform as

T : J a,κ ←→ −J̄ a,κ , (60)

where κ ∈ {1, 2}. In order to gap out these current oper-
ators, we introduce topological order AN and AS on the
northern and southern hemispheres, respectively, with AN =
SO(3)3 × SO(3)3. Conveniently, the symmetry transforma-
tion properties of the edge modes induced on the hinge from
the topological order are identical to those of the afore-
mentioned modes obtained from the conformal embedding
procedure. We denote the modes provided by the topological
orders on the northern and southern hemispheres with sub-
scripts N and S. Under inversion and TRS,

I : J a
N,S(θ ) �−→ J a

S,N(θ + π ),

I : J̄ a
N,S(θ ) �−→ J̄ a

S,N(θ + π ),

T : J a
N,S(θ ) ←→ −J̄ a

N,S(θ ). (61)

The hinge modes J a,κ , J̄ a,κ and the edge modes of the sur-
face topological order J a

N/S, J̄ a
N/S can together be gapped out

upon adding the gapping term

δL = λ(θ )
3∑

a=1

[
J̄ a

N (θ )J a,1(θ ) + J̄ a
S (θ )J a,2(θ )

+ J a
N (θ )J̄ a,1(θ ) + J a

S (θ )J̄ a,2(θ )
]
, (62)

which is TRS invariant, and inversion symmetric if λ(θ ) =
λ(θ + π ). Therefore we can choose λ to be constant.

III. SURFACE TOPOLOGICAL ORDER FOR
THIRD-ORDER TOPOLOGICAL PHASES

In this section, we discuss the surface topological order
for third-order topological phases protected by inversion sym-
metry in addition to possible Altland-Zirnbauer symmetries,
as shown in Fig. 4. In total there are five Altland-Zirnbauer
classes that support nontrivial third-order topology upon im-
posing inversion symmetry. These are D, BDI, AIII, DIII,
and CII. In what follows we present the STO for classes D,
BDI, and AIII together, as these classes and consequently their
STOs are closely related.

A. Class D, BDI, and AIII

We begin with the discussion of class D. Note that the
third-order inversion-symmetric class D superconductor can
be obtained by stacking two copies of second-order inversion-
symmetric class D superconductors whose surface contains
the configuration (1, 0) ⊕ (1, 0) = (2, 0) ∼ (1,−1) in the no-
tation used in Sec. II C. The configuration (1,−1) contains
a pair of counter-propagating chiral modes χ+ and χ̄−
which are unstable to a mass term im(θ )(χ+(θ ))(†)χ̄−(θ ).
The inversion symmetry imposes that m(θ + π ) = −m(θ )

FIG. 4. Surface topological order for third-order topological
phases protected by inversion symmetry. In the picture, the red stars
denote the zero modes located at antipodal points of the surface.

and consequently, the mass vanishes at two antipodal points
which contain Majorana zero modes. Furthermore since we
can always gap out Majorana modes in pairs, (2, 0) ⊕ (2, 0) =
(4, 0) ∼ (0, 0). This agrees with the result [98,107] that 3D
class D higher-order topological superconductors enriched by
inversion symmetry are classified by Z4 which is an extension
of Z2 (second-order phases) by Z2 (third-order phases).

Here we describe the procedure to gap out two surface Ma-
jorana zero modes (or equivalently the (2,0) configuration) by
pasting inversion symmetric surface topological order. First
we start with the configuration (−6,−6), which is obtained
by pasting 6 inversion symmetric copies of p ± ip on the
surface. Next we paste so(3)3 × so(3)3 on the northern and
southern hemispheres which effectively provides additional
modes corresponding to (12,6). Upon such a surface pasting,
we end up with (−6,−6) ⊕ (12, 6) = (6, 0) ∼ (2, 0). Since
we can create two Majorana zero modes on antipodal points
on the surface without manipulating the bulk, we can always
absorb the surface modes contributed by a third-order class D
superconductor.

Having obtained the STO for class D, we now proceed to
discuss the surface topological order for 3D inversion TSC in
BDI class. According to Ref. [98], 3D inversion-symmetric
TSC in class BDI has a third-order phase but no nontrivial
first or second-order phases. Conveniently, we make use of the
notion of block state introduced in Refs. [79,80]. Generically,
a block state |�〉 has the form |�〉 =⊗b∈B |ψb〉, where B
is a collection of blocks, and block b is a db-dimensional
system embedded in a d-dimensional space. In our case, the
wave function of a nontrivial third-order phase is physically
equivalent (up to a inversion-symmetric finite depth unitary
circuit) to a block state |�〉 = |�1〉 ⊗ |�a〉 where |�1〉 de-
notes a state in the nontrivial phase of the 1D BDI Majorana
chain embedded in the 3D space with inversion symmetry, and
|�a〉 denotes a state, describing the rest of the 3D space, in the
trivial phase. The 1D BDI Majorana chain can be described by
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the following Hamiltonian

Ĥ = 1

2

∫
dxψ̂†(x)H (x)ψ̂ (x), (63)

where

H (x) = −iτy∂x + m(x)τz, ψ̂† = (a†
x, ax ), (64)

with a†
x being a complex fermion creation operator. The

Altland-Zirnbauer symmetries are represented as

T = K, P = τxK, I = τz. (65)

The mass profile m(x) is positive (negative) inside (outside)
the chain. If we denote the two edges of this chain as x+ and
x− separately, then Jackiw-Rebbi procedure shows that these
two edges host Majorana zero modes γx+ and γx− , which have
the form [108]

γx+ =
∫

dx
1√
2

(ax + a†
x )e

∫ x
xa

dx′m(x′ ),

γx− =
∫

dx
i√
2

(−ax + a†
x )e− ∫ x

xb
dx′m(x′ )

, (66)

where xa/b are parameters that ensure the normalization condi-

tion
∫

dxe2
∫ x

xa
dx′m(x′ ) = ∫ dxe−2

∫ x
xb

dx′m(x′ ) = 1. The actions of
TRS and inversion are as follows:

T γx+T −1 = γx+, T γx−T −1 = −γx− . (67)

Iγx+I−1 = iγx−, Iγx−I−1 = −iγx+ . (68)

The above symmetry actions satisfy the basis invariant
relations {I,P} = 0, [I, T ] = 0, T 2 = 1 and I2 = 1, inde-
pendently agreeing with Ref. [98]. We thus propose that the
STO for 3D third-order inversion TSC in BDI class to be
SO(3)3 × SO(3)3, which is the same as we found for the 3D
third-order inversion TSC in D class. Recall that in Sec. II C,
we showed that an inversion symmetric surface realization
of SO(3)3 contains a gapless modes (denoted as J a

N/S cur-
rents) appearing on an inversion-symmetric line (chosen as
the equator for our convenience). We then used such a cur-
rent mode to gap out the nine chiral Majorana modes on the
equator contributed by the bulk as well as the surface past-
ing of p ± ip superconductors. Similarly, SO(3)3 × SO(3)3,
which is the proposed STO for class BDI, has nine pairs of
counter-propagating Majorana modes, without the contribu-
tion from the bulk. Let us denote these modes as αi, ᾱi with
i = 1, . . . , 9. The TRS action on the Majorana modes is

T : i �→ −i,

[
αi

ᾱi

]
�→
[
ᾱi

αi

]
. (69)

While the inversion acts naturally on the current operators
contributed by the STO on the equatorial hinge as

I :

[
J a

N
J̄ a

N

]
(θ ) ←→

[
J a

S
J̄ a

S

]
(θ + π ). (70)

After the conformal embedding, we regroup the Majoranas as
χi, γ

(1)
i , γ

(2)
i , χ̄i, γ̄

(1)
i , γ̄

(2)
i , where the definition is taken as

χ1,2,3 ≡ α1,2,3,

γ
(1)

1,2,3 ≡ α4,5,6,

γ
(2)

1,2,3 ≡ α7,8,9, (71)

and similarly for the χ̄i, γ̄
(1)

i , γ̄
(2)

i . Inversion action on the
Majoranas is

I :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χi

γ
(1)

i

γ
(2)

i

χ̄i

γ̄
(1)

i

γ̄
(2)

i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(θ ) −→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iχi

iγ (2)
i

iγ (1)
i

−iχ̄i

−iγ̄ (2)
i

−iγ̄ (1)
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(θ + π ). (72)

We now proceed to gap these modes in groups. For the γ ’s
and γ̄ ’s, we can write the following gapping term:

δĤ1 =
∑

i

m1(θ )
(
i
(
γ

(1)
i

)(†)
γ̄

(1)
i − i

(
γ

(2)
i

)(†)
γ̄

(2)
i

)
, (73)

which gaps all the γ and γ̄ . For the χ ’s, χ̄’s, we can write the
following gapping term:

δĤ2 =
∑

i

m2,i(θ )(iχ (†)
i χ̄i ). (74)

Note that inversion forces m2,i(θ ) = −m2,i(θ + π ), and each
counter propagating χ, χ̄ contributes a pair of Majorana zero
modes. Since we have three pairs of counter-propagating
χ, χ̄ , two pairs of Majorana zero modes will be gapped out,
and we are therefore left with one protected pair of Majorana
zero modes on the equator located at inversion-symmetric
positions. Furthermore, the Jackiw-Rebbi procedure shows
that these Majorana zero modes transform in the exact same
way as in Eqs. (67) and (68). Thus the zero modes from the
STO can gap out the zero modes from the BDI bulk.

What about the third-order inversion symmetric topolog-
ical phase in AIII? According to Ref. [98], a 3D inversion
symmetric TI in class AIII has only a third-order imple-
mentation. Physically, this phase can be thought of as a 1D
AIII Su-Schrieffer-Heeger (SSH) chain which is in nontrivial
phase inserted into a 3D manifold. There is a close connection
between the 1D SSH chain and the 1D BDI chain, as pointed
out in Ref. [108]. we can establish an exact mapping from two
copies of the BDI Kitaev chain to one copy of SSH chain. The
two dangling Majorana zero modes form a Dirac zero mode,
which is the dangling zero mode of the SSH chain. Since two
copies of Kitaev chain have an emergent O(2) symmetry, its
subgroup SO(2) corresponds to the U(1) symmetry for the
AIII chain. Crucially, the TRS in the BDI chain corresponds
to the sub-lattice/chiral symmetry of the AIII chain (We com-
ment that the TRS is still antiunitary in the Fock space after the
mapping, but it is unitary on the single-particle Hamiltonian
[108]). Therefore we naturally conclude that the STO for the
3D third-order AIII phase is equivalent to the STO for two
copies of 3D third-order BDI phase, with chiral symmetry
implemented in the same way as the TRS in the STO for BDI
phase.

B. Class DIII

In this section, we discuss the STO for third-order class
DIII HOTSC. To that end, we first demonstrate the fact that,
for 3D class DIII HOTSC protected by inversion, the clas-
sification is Z4, which is an extension of Z2 (second-order
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phases) by Z2 (third-order phases). Consider the second-order
case, where there is a pair of helical hinge modes. We denote
the Majorana hinge modes as (χ, χ̄ ). The TRS action on these
modes is

T :

[
χ (θ )

χ̄ (θ )

]
�→
[

χ̄ (θ )

−χ (θ )

]
, (75)

while the inversion action on these modes is

I :

⎡⎢⎢⎢⎢⎣
χ (θ )

χ̄ (θ )

χ (θ + π )

χ̄ (θ + π )

⎤⎥⎥⎥⎥⎦ �→

⎡⎢⎢⎢⎢⎣
iχ (θ + π )

−iχ̄ (θ + π )

−iχ (θ )

iχ̄ (θ )

⎤⎥⎥⎥⎥⎦. (76)

As in the case of class D, the above action can be derived
using recursive Jackiw-Rebbi procedures. Now suppose we
have two copies of such helical modes (χ1, χ̄1, χ2, χ̄2), with
symmetry action exactly the same as the above. A gapping
term can be written down in the 1D model

δĥ =
∫

dθ [im(θ )(χ (†)
1 (θ )χ̄2(θ ) + χ̄

(†)
1 (θ )χ2(θ ))]. (77)

The above term is TRS invariant, and inversion symmetry
imposes m(θ ) = −m(θ + π ). Thus the 1D system is gapped
out except at two inversion symmetric points. Furthermore,
these two point modes can be gapped out if we take a dou-
ble stacking of this model. We therefore conclude that the
class DIII HOTSC protected by inversion has classification
Z4, which is an extension of Z2 (second-order phases) by Z2

(third-order phases).
To gap out the third-order topology, we make use of the fact

that the third-order phase is obtained by two copies of second-
order phase. Now since the STO for the second-order phase is
SO(3)3 × SO(3)3, we conclude that the STO for third-order
topological phase is two copies of SO(3)3 × SO(3)3 topolog-
ical order.

C. Class CII

We now briefly discuss the STO for the third-order 3D
HOTSC in class CII. Similarly to the case AIII, we can view
the 3D inversion-symmetric third-order CII phase as a 1D
inversion-symmetric CII chain embedded in a 3D manifold.
The 1D CII chain always has even number of Majorana zero
modes at its edge, instead of single Majorana zero mode at the
edge of Kitaev chain. we can view the edge zero modes for CII
chain as a Kramers’ pair of Majorana zero modes, similar to
the edge mode in the case of 1D DIII chain. However 1D CII
chain has a 2Z classification whereas the 1D DIII chain has
a Z2 classification [4]. Here we briefly look at the following
linearized 1D model for CII chain taken from Ref. [109]

H (k) = −kτzσy + mτx, T = σyK, P = τyK. (78)

The chain is in the topological phase when m > 0, and the
zero modes are trapped at the m = 0 domain wall. We perform
the Jackiw-Rebbi projection to track the symmetry action on
the zero modes, and found that Tedge ∼ Pedge ∼ iσyK. Be-
cause of this, stacking any number of copies of CII chains
cannot enable us to gap these zero modes out, as TRS must

commute with the mass term, whereas the PHS must anticom-
mute with the mass term. The fact that CII can be viewed as
a stacking of a Kitaev chain and its TRS copy with P2 = −1
implementation of PHS leads us to conjecture that the STO
for the third-order 3D inversion CII phase to be the same as
the STO for the third-order 3D DIII phase, with the P2 = −1
implementation of PHS on the STO level.

IV. SUMMARY AND OUTLOOK

In this work, we have established via an explicit construc-
tion that all inversion-symmetric higher-order topological
insulators and superconductors (except for AZ class C) ad-
mit gapped surfaces with anomalous topological order. While
we have done so for the case of inversion symmetric elec-
tronic phases, we expect it to hold more generally for both
Bosonic and electronic three-dimensional higher-order phases
with various spatial symmetries. This consequently extends
the list of symmetric surface terminations of 3D second and
third-order topological phases to include “anomalous gapped
surfaces.” A technical consequence of this work is the study
of spatial symmetries and their anomalies in 2D topological
orders. In this regard, there is a recent systematic algebraic
framework to study the spatial symmetry enrichment of mod-
ular tensor categories [110]. In particular, obstructions to such
symmetry enrichment must precisely encode anomalies that
in turn can be compensated by crystalline topological phases
in one higher dimension. It would be interesting to pursue this
direction in future work.
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APPENDIX A: K-MATRIX LUTTINGER LIQUIDS

In this Appendix, we briefly review the K-matrix theory of
Luttinger liquids [26,30,100]. 2D Abelian topological orders
can be described by n emergent U(1) gauge fields coupled via
a Chern-Simons action [31]. If the 2D system has a boundary,
the boundary can be described by U(1) compact boson the-
ory [30]. Specifically, the bulk Lagrangian and the boundary
Lagrangian can be written as

Lbulk = KIJ

4π
εμνσ aI,μ∂νaJ,σ ,

Lboundary = KIJ∂tφ
I∂xφ

J − VIJ∂xφ
I∂xφ

J

+
∑

j

g j cos
[
lT

j,Iφ
I + α

]
. (A1)
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In the bulk Lagrangian, the KIJ is a symmetric integer ma-
trix which describes the Chern-Simons coupling of emergent
gauge fields aI

μ. By requiring the gauge invariance of the the-
ory on a 2 + 1d manifold with boundary, the boundary must
carry degrees of freedom φI described by the corresponding
boundary action. The sine-Gordon terms are derived by lo-
cal Hermitian gapping terms, i.e., cos[lT

j,Iφ
I + α] ∼ eilT

j,I φ
I +

e−ilT
j,I φ

I
, where lTs are integer vectors (usually referred to as

the gapping vectors). For the convenience of discussion, we
also introduce the concept boundary gapping lattice �∂ = {l j},
namely the lattice spanned by gapping vectors.

The advantage of focusing on the K matrix is that we
can represent quasiparticles in a convenient algebraic way.
Let us denote the order of the K matrix as n, i.e., there
are n gauge fields in the bulk, and a quasiparticle can be
represented by a n-component vector l . The braiding phase
between two quasiparticles is given by θll ′ = 2π lK−1l ′, and
the topological spin (exchange phase) of the quasiparticle l is
given by θl = θll/2 = π lK−1l . To identify local particles, i.e.,
bosons/fermions in the theory, we require the local particle to
braid trivially with all particles, thus resulting in the constraint
l = K�, where � is an integer vector.

To have a fully gapped boundary, there are certain criteria
that the sine-Gordon terms have to satisfy. More concretely,
we look at

δLboundary =
∑

j

g j cos
[
lT

j,Iφ
I + α

]
. (A2)

Physically, by writing such terms, quasiparticles l js are con-
densed on the boundary. For all quasiparticles to condense, we
require the following conditions [111].

(1) The condensed quasiparticles have bosonic self-
statistics: ∀l j ∈ �∂, lT

j,I K
−1
IJ l j,J ∈ 2Z.

(2) The condensed quasiparticles mutually braid trivially.
(3) The bosonic fields corresponding to the condensed

quasiparticles can acquire classical values at the same time:
∀l j, li ∈ �∂, lT

i,I K
−1
IJ l j,J = 0. This condition is also known as

the Haldane criterion.
(4) The condensed quasiparticles must be local/

nonfractional particles: ∀l j,I , l j,I = KIJ� j,J , where � j,J

is an integer vector.
(5) Completeness: ∀l j,I = KIJ� j,J , if lT

j,I K
−1
IJ l j,J = 0, and

lT
j,I K

−1
IJ li,J = 0 for ∀li,J ∈ �∂ , then l j,I ∈ �∂ .

(6) Nonchirality: the boundary theory must have p left
movers and p right movers to begin with.

So far we have ignored the existence of global symmetries.
It is beyond the scope of this Appendix to introduce a com-
plete inclusion of symmetry in the K-matrix formalism. We
wish only to describe the more relevant symmetry to this paper
here. Crucially, we usually have a global U(1) symmetry if the
system under discussion is a fermionic insulating system, e.g.,
quantum Hall systems and topological insulators. The pres-
ence of the global U(1) symmetry is usually signalled by the
coupling of the original degrees of freedom to a background
gauge field AI :

δLbulk,U(1) = − 1

2π
tIεμνσ Aμ∂νaI,σ ,

δLboundary,U(1) = 1

2π
tIεμν∂

μφI Aν, (A3)

TABLE II. Topological spins for T -Pfaffian topological order.

10 12 14 16 ψ0 ψ2 ψ4 ψ6 σ1 σ3 σ5 σ7

θ 1 i 1 i −1 −i −1 −i 1 −1 −1 1

where tI is an integer vector usually referred to as the electric
charge vector. Quasiparticle l’s electric charge is given by
ql = 1

2π
lTK−1t . Upon the introduction of the global U(1)

symmetry, the quasiparticle condensation on the boundary
is further restricted: only the charge neutral particles can be
condensed,i.e., ∀l j, l jK−1t = 0.

APPENDIX B: T -PFAFFIAN TOPOLOGICAL ORDER

In this Appendix, we briefly review the T -Pfaffian topo-
logical order proposed in Refs. [46,47,112]. The T -Pfaffian
topological order was proposed as a possible symmetric inter-
acting surface phase of the 3D topological insulator. Similar
to a 3DTI, the T -Pfaffian is Z2 classified in the sense that two
copies of T -Pfaffian is can be condensed into a trivial state.
The T -Pfaffian topological order can be viewed as a product
of two topological order:

T-Pf ≡ Ising × U(1)−8/Z2. (B1)

The Ising topological order has three anyons

Ising = {1, ψ, σ }, (B2)

with fusion rules

σ × ψ = σ, σ × σ = 1 + ψ,ψ × ψ = 1, (B3)

and topological spins

θ1 = 1, θψ = −1, θσ = ei π
8 . (B4)

The U(1)−8 topological order has eight anyons:

U(1)−8 = {0, 1, 2, 3, . . . , 7}, (B5)

with fusion rules

p × q = (p + q) mod 8, (B6)

and topological spins

θk = e−i π
8 k2

. (B7)

The product is taken such that 1, ψ ∈ Ising are combined
with even p ∈ U(1)−8, and σ ∈ Ising is combined with odd
p ∈ U(1)−8. Therefore we arrive at

T-Pf = {10, 12, 14, 16, ψ0, ψ2, ψ4, ψ6, σ1, σ3, σ5, σ7}. (B8)

The fusion rules and topological spins can be obtained as the
product of the Ising topological order and the U(1)−8 topo-
logical order. We list the topological spin in Table II.Among
the above anyons, ψ4 is special since it is a local object,
i.e., it braids trivially with all the other anyons in the theory,
has topological spin −1 and U(1) charge e. Therefore it is
identified as the physical electron. The existence of such a
local object is a feature of fermionic topological order, indi-
cating the nonmodularity of the theory. The T -Pfaffian is TRS
invariant. Most anyons have real topological spins and are
invariant under the action of TRS which complex conjugates
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TABLE III. Symmetry fractionalization pattern for T -Pfaffian±.

10 12 14 16 ψ0 ψ2 ψ4 ψ6 σ1 σ3 σ5 σ7

η 1 −1 1 −1 ± ∓ ∓ ±

the spin. The remaining anyons, i.e., 12, 16, ψ2, ψ6 transform
under TRS as

T : 12 ↔ ψ2, 16 ↔ ψ6. (B9)

The assignment of T 2 signs is crucial as it is related to the
anomaly of the theory. Starting from the requirement T 2 =
−1 for ψ4, we can obtain two consistent assignments of T 2

signs which are collected in Table III, and the T -Pfaffian
with these two assignments are coined T -Pfaffian+ and T -
Pfaffian−, respectively.Using anomaly indicators, authors in
Ref. [113] showed that T -Pfaffian+ is TRS anomaly free
while T -Pfaffian− is TRS anomalous. It is known that, for
fermionic SPT protected by U(1) � ZT

2 , upon breaking U(1),
the surface becomes trivially gapped. Therefore we do not
want the correct STO to possess a TRS anomaly. Thus T -
Pfaffian+ is the correct STO for 3D TI. By breaking TRS,
we can obtain a purely 2D chiral topological order with the
same anyon contents as the T -Pfaffian [47]. The edge of such
a 2D chiral topological order contains a Dirac mode and a
counter propagating Majorana mode which is described by the
following Lagrangian:

L = 2

4π
∂xφ(∂t − v1∂x )φ + iγ (∂t + v2∂x )γ , (B10)

where φ is a chiral compact Boson and γ is a Majorana-Weyl
mode.

APPENDIX C: SO(N)1 WESS-ZUMINO-WITTEN THEORY

In this Appendix, we briefly review the chiral SO(N )1

WZW conformal field theory which describes N chiral Majo-
rana fermions on a 1 + 1d manifold [105]. The SO(N ) global
symmetry arises due to the flavor symmetry of the N chiral
Majorana fermions χi �→ Oi jχ j, Oi j ∈ SO(N ). Since this is
a continuous symmetry, there exists corresponding Noether
currents:

Ja = i

2
χlL

a
lmχm, a = 1, . . . ,

N (N − 1)

2
, (C1)

where Las are antisymmetric N × N matrices that generate
the so(N ) Lie algebra. Majorana fermions operators have the
following OPE:

χa(z)χb(w) = δab

z − w
+ · · · , (C2)

from which the OPE for currents is derived:

Ja(z)Jb(w) = δab

(z − w)2
+ i fabcJc(w)

z − w
+ · · · , (C3)

where fabc is the structure constant for so(N ). The energy
momentum tensor is obtained via the Sugawara construction,
and is equivalent to the free fermion energy momentum tensor

T (z) = 1

2(N − 1)
�J (z) · �J (z) = −1

2

∑
i

χi∂χi(z). (C4)

The OPE of the energy momentum tensor is given by

T (z)T (w) = N/4

(z − w)4
+ 2T (w)

(z − w)2
+ ∂wT (w)

z − w
+ · · · ,

(C5)
from which we can read off the chiral central charge c− =
N/2. A procedure termed the conformal embedding allows
us to decompose the original WZW theory into two smaller
theories, i.e., so(N2)1 ⊇ so(N )(1)

N × so(N )(2)
N . For illustra-

tion purpose, we will review the conformal embedding for
so(9)1 ⊇ so(3)(1)

3 × so(3)(2)
3 . The original so(9)1 theory has 9

Majorana fermions, denoted by a pair of indices (i, j), i, j =
1, 2, 3. We introduce a spinor � to simplify the notation, thus
all Majoranas are denoted by �(i, j). The current of the so(9)1

theory is given by

J j = i

2
�(a1,a2 )�

j
(a1,a2 ),(b1,b2 )�(b1,b2 ), j = 1, 2, . . . , 36, (C6)

where � j is the generator of the Lie algebra so(9). To perform
conformal embedding, we consider the following currents:

J j,(κ ) = i

2
�(a1,a2 )σ

j,(κ )
(a1,a2 ),(b1,b2 )�(b1,b2 ), (C7)

where j = 1, 2, 3; κ = 1, 2

σ
j,(1)

(a1,a2 ),(b1,b2 ) = �
j
a1,b1

δa2,b2 ,

σ
j,(2)

(a1,a2 ),(b1,b2 ) = δa1,b1�
j
a2,b2

. (C8)

Note that � j are the generators for so(3). In the fundamental
representation, these take the following form

�1 =
⎡⎣0 0 0

0 0 1
0 −1 0

⎤⎦,

�2 =
⎡⎣ 0 0 1

0 0 0
−1 0 0

⎤⎦,

�3 =
⎡⎣ 0 1 0

−1 0 0
0 0 0

⎤⎦. (C9)

Explicitly, the currents of the subtheories in terms of Majorana
fermions are

J1,(1) = i(χ2χ3 + χ5χ6 + χ8χ9),

J2,(1) = i(χ1χ3 + χ4χ6 + χ7χ9),

J3,(1) = i(χ1χ2 + χ4χ5 + χ7χ8),

J1,(2) = i(χ4χ7 + χ5χ8 + χ6χ9),

J2,(2) = i(χ1χ7 + χ2χ8 + χ3χ9),

J3,(2) = i(χ1χ4 + χ2χ5 + χ3χ6), (C10)
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where we have used the notation

�(1,1) = χ1, �(2,2) = χ5, �(3,3) = χ9;

�(1,2) = χ4, �(2,3) = χ8, �(3,1) = χ3;

�(2,1) = χ2, �(3,2) = χ6, �(1,3) = χ7. (C11)

The OPEs computed for these currents takes the form

Ja,(u)(z)Jb,(u)(w) = 3δab

(z − w)2
+ iεab jJ j (w)

z − w
+ · · · , (C12)

where the level 3 is determined by double contraction.
Note that Ja,(1)(z)Jb,(2)(w) is nonsingular, so that the two
sub-theories are decoupled. Thus we conclude that Ji,(u)

forms so(3)(u)
3 current algebra. Furthermore, it was shown in

Ref. [104] that

Tso(9)1 = T
so(3)(1)

3
+ T

so(3)(2)
3

. (C13)

Thus the conformal embedding is complete.

APPENDIX D: SO(3)3 TOPOLOGICAL ORDER

In this Appendix, we briefly review the SO(3)3 anyon
model [53], which is the proposed STO for inversion-
symmetric topological superconductors.

The SO(3)3 anyon model contains anyons {0, 1
2 ,

1, 3
2 , 2, 5

2 , 3}. The fusion rule is given by

i × j =
min[i+ j,6−(i+ j)]∑

k=|i− j|
k. (D1)

The topological spin is encoded in the T matrix, which is
given by

T = diag
{
1, ei 3π

16 , i, ei 15π
16 ,−i, ei 3π

16 ,−1
}
. (D2)

The quantum dimension of the anyons is listed as the follow-
ing:

{di} = {1,

√
2 +

√
2, 1 +

√
2,

√
4 + 2

√
2, 1 +

√
2,

√
2 +

√
2, 1}. (D3)

From the above data, we can derive the S-matrix information
via the Kitaev ribbon formula. Furthermore, the chiral central
charge of this topological order is given by c = 9

4 .

APPENDIX E: THE JACKIW-REBBI PROJECTION
PROCEDURES

In a seminal work, Jackiw and Rebbi [103] identified a
generic mechanism where fermionic zero modes appear lo-
calized on the mass domain walls of a 1D Dirac fermionic
system. Their approach has been generalized in the condensed
matter literature to study zero modes localized at the bound-
aries of bulk topological phases, e.g., Dirac mode at the end
of the SSH chain. In this paper, we have used this procedure
to track the symmetry action on the gapless modes of the
higher-order topological phase. For the sake of brevity, how-
ever, we chose not to explicitly show the calculation for every
case in this paper, but refer to a more systematic future work.
Instead, we demonstrate the procedure in this Appendix for
the second-order inversion HOTSC in class D.

First, we start with one copy of 3D bulk Hamiltonian of
class DIII TSC with inversion symmetry. After a series of
Jackiw-Rebbi procedures, we end up with a chiral Majorana
hinge modes on which the symmetry actions have explicit
forms. Note that we will break TRS in the process, so eventu-
ally the system is a class D TSC with inversion symmetry.

The bulk Hamiltonian is

Ĥ = 1

2

∑
�k

ψ̂
†
�k H (�k)ψ̂�k, (E1)

where

H (�k) = (−kxτxσz − kyτy + kzτxσx ) + λτz,

ψ̂
†
�k = (c†

�k,↑, c†
�k,↓, c−�k,↑, c−�k,↓). (E2)

The symmetries are represented as follows:

T = iσyK, P = τxK, I = τz. (E3)

Note that here �σ , �τ are Pauli matrices in different spaces. σ is
the spin space, and τ is the Nambu space. The 3D system lives
inside a 3D ball, of which the boundary is S2. Specifically we
will pay attention to the gapless modes near x± = (±1, 0, 0),
as these two points are related to each other by inversion.
The strategy is as follows: first we perform Jackiw-Rebbi
from 3D to 2D so that we end up with a system which is a
2D stacked system Hx− ⊕ Hx+ with a 3D inversion symme-
try which relates system x− and x+ to each other; second
we write a mass term m(z)� in the stacked 2D system, and
observe the behavior of the term under inversion symmetry. If
m(z) = −m(−z), then the stacked system hosts gapless mode
along the hinge.

The mass coefficient λ ≡ λ(x) has the behavior such that
λ = 1 inside the superconductor, and λ = −1 outside the
superconductor. Let us investigate the surface modes near
x+. If we denote the surface eigenstate of the first quantized
Hamiltonian as |ϕ〉, then

(iτxσz∂x + λ(x)τz )|ϕ〉 = 0, (E4)

as we require the state to have no dispersion along the x
direction. The above equation is equivalent to

∂x|ϕ〉 = iλ(x)τxτzσz|ϕ〉 = λ(x)τyσz|ϕ〉. (E5)

The above equation implies that |ϕ〉 is an eigenstate of τyσz.
There are four eigenstates of τyσz:

|+, 1〉 = (e−i π
4 , 0, e+i π

4 , 0)T;

|+, 2〉 = (0, e+i π
4 , 0, e−i π

4 )T;

|−, 1〉 = (e+i π
4 , 0, e−i π

4 , 0)T;

|−, 2〉 = (0, e−i π
4 , 0, e+i π

4 )T, (E6)
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where the phases are added so that boundary excitations are
explicitly Majorana fermions.

Using these eigenstates, the Eq. (E5) can be reduced to

∂x|ϕ,±〉 = ±λ(x)|ϕ,±〉, (E7)

for which the solutions are

|ϕ,±〉 = exp

[
±
∫ x

x0

dx′λ(x′)
]
|±〉, (E8)

where x0 is a constant to fix the normalization condition. We
therefore see that the states with positive eigenvalues are the
normalizable states near x+.

We further define the following matrix:

U = 1√
2

[|+, 1〉, |+, 2〉, |−, 1〉, |−, 2〉]. (E9)

The first quantized Hamiltonian of the combined system is

Hcomb(�k) = U †H (�k)U = −kyszσ̃z + kzσ̃x, (E10)

where “comb” stands for “x+ and x− combined.” Note that we
have omitted the exponential factor in the definition of U for
convenience. The exponential factor is only useful in telling
us that the effective Hamiltonian is describing the physics
near x+, and writing it down explicitly helps us remove the
−kxτxσz + λ(x)τz term after the projection. The s-space is
now the space of x+ and x−.

We can now examine the representation of symmetries in
this basis:

Tcomb = U †T U = iσ̃yK,

Pcomb = U †PU = K,

Icomb = U †IU = −syσ̃z. (E11)

We conclude here, that we have obtained a stacked 2D system,
of which the Hamiltonian is

Ĥcomb = 1

2

∑
�k

[
ψ̂

x+†
�k , ψ̂

x−†
�k
]
Hcomb(�k)

[
ψ̂x+

�k
ψ̂x−

�k

]
, (E12)

with symmetries having representations as in Eq. (E11). We
can have more explicit form of the spinor:

[
ψ̂x+

�k
ψ̂x−

�k

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

γ x+

−�k,↑
γ x+

�k,↓
γ x−

�k,↑
γ x−

−�k,↓

⎤⎥⎥⎥⎥⎥⎥⎦ = U †ψ̂�k . (E13)

In terms of c, c†, the Majoranas are

γ x+

−�k,↑ = 1√
2

(
ei π

4 c�k,↑ + e−i π
4 c†

−�k,↑
)
,

γ x+
�k,↓ = 1√

2

(
e−i π

4 c�k,↓ + ei π
4 c†

−�k,↓
)
,

γ x−
�k,↑ = 1√

2

(
e−i π

4 c�k,↑ + ei π
4 c†

−�k,↑
)
,

γ x−

−�k,↓ = 1√
2

(
ei π

4 c�k,↓ + e−i π
4 c†

−�k,↓
)
. (E14)

Let us add a surface perturbation which breaks TRS, i.e.,
a mass term on the whole surface of the 3D system that
depends only on z. On our combined system, this pertur-
bation is represented as m(z)�, where � is some matrix.
Such a term is m(z)σ̃y. Also this term breaks TRS explicitly.
By imposing Icombm(z)σ̃yI−1

comb = m(−z)σ̃y, we end up with
m(z) = −m(−z). Thus we can conclude that the class D TSC
with inversion symmetry hosts hinge modes, i.e., it hosts
second-order topology, which is consistent with the previous
work.

We now proceed to perform Jackiw-Rebbi procedures on
the combined 2D system, so that symmetries on the 1D hinge
modes will manifest.

The first quantized Hamiltonian with perturbation is

Hcomb + δHcomb = −kyszσ̃z + kzσ̃x + m(z)σ̃y, (E15)

in which we assign the behavior of m(z) to be

m(z) =
⎧⎨⎩−1, if z < 0

0, if z = 0
+1, if z > 0

. (E16)

If we denote the hinge eigenstate of the first quantized Hamil-
tonian as |ϕ〉, then

(−iσx∂z + m(z)σ̃y)|ϕ〉 = 0, (E17)

as we require the state to have no dispersion along the z
direction. The above equation is equivalent to

∂z|ϕ〉 = −im(z)σ̃xσ̃y|ϕ〉 = m(z)σ̃z|ϕ〉. (E18)

The above equation implies that |ϕ〉 is an eigenstate of s0σ̃z.
There are four eigenstates of s0σ̃z:

|+, 1〉 = (1, 0, 0, 0)T;

|+, 2〉 = (0, 0, 1, 0)T;

|−, 1〉 = (0, 1, 0, 0)T;

|−, 2〉 = (0, 0, 0, 1)T. (E19)

Using these eigenstates, the Eq. (E18) can be reduced to

∂z|ϕ,±〉 = ±m(z)|ϕ,±〉, (E20)

for which the solutions are

|ϕ,±〉 = exp

[
±
∫ z

z0

dz′m(z′)
]
|±〉, (E21)

where z0 is a constant to fix the normalization condition. We
therefore see that the states with positive eigenvalues are the
normalizable states.

We further define the following matrix:

U ′ = [|+, 1〉, |+, 2〉, |−, 1〉, |−, 2〉]. (E22)

Note that U ′ will take us to the space ζ ⊗ s̃ which can be
read off by studying the basis. ζ is the space of normalizable
states and non-normalizable states. We intend to keep the
normalizable states as hinge states, therefore keep the −−
block of the ζ space.

The first quantized Hamiltonian of hinge state is

U ′†(Hcomb + δHcomb)U ′|−− = U ′†(−kyszσ̃z )U ′|−− = kys̃z.

(E23)
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The symmetries are

Phinge = U ′†PcombU
′|−− = K,

Ihinge = U ′†IcombU
′|−− = s̃y. (E24)

And the spinor is

X̂�k = (χ x+
�k , χ x−

−�k
)T

. (E25)

The explicit form can be obtained in the following way:

X̂�k = U ′†
[
ψ̂x+

�k
ψ̂x−

�k

]
|lower, (E26)

since the normalizable states correspond to the −− block of
the Hamiltonian. We can have more explicit forms from this
expression:

χ x−
�k = γ x−

−�k,↓

χ x+

−�k = γ x+
�k,↓. (E27)

Therefore we can conclude that the 1D hinge Hamiltonian is

Ĥhinge = 1

2

∑
�k

X̂†
�k (kys̃z )X̂�k = 1

2

∑
k

X̂†
�kHhinge(�k)X̂�k, (E28)

with symmetries defined as in Eq. (E24).
We use θ to parametrize the full hinge which has peri-

odicity π , and x− = 0, x+ = π . The action of inversion is
therefore

Ihinge:

[
χ (θ )

χ (θ + π )

]
�→ s̃y

[
χ (θ )

χ (θ + π )

]
=
[−iχ (θ + π )

iχ (θ )

]
.

(E29)

We conclude that, the 3D class D TSC with inversion symme-
try hosts a single chiral Majorana hinge mode χ on the surface
with symmetries defined as above.

APPENDIX F: THIRD-ORDER CLASS DIII
INVERSION-SYMMETRIC SUPERCONDUCTOR

In this Appendix, we show that the surface zero modes of
3D class DIII topological superconductor with inversion are
stable to weakly interacting surface perturbations.

We proceed to describe the weakly interacting surface
perturbation. Specifically, if we specify that the great circle

connecting the antipodal corner modes as the equator, then we
paste one copy of 2D TRS invariant topological superconduc-
tor on the northern hemisphere surface and another copy of
2D TRS invariant topological superconductor on the southern
hemisphere surface, and these two copies are related to each
other by inversion symmetry. To show that the original point
modes are stable under this perturbation, it is sufficient to
show that the pasted 2D model will not host any new corner
modes on the equator, as these new corner modes will be able
to be used to ’annihilate’ the original point modes.

Our effectively 2D model, which can be called N-S model,
has the following Hamiltonian:

H = (−kxσzτx − kyτy + λτz )ζ0, (F1)

where ζ denotes the N-S orbital space. The symmetries in this
model are as follows:

T = σyK, P = τxK, I = ζxτz, (F2)

note that inversion switches the N-S orbitals.
The 1D edge of the N-S model, i.e., the equator, can be

completely gapped out without leaving point modes behind.
This can be shown by introducing the following gapping term
in the bulk:

δH = m�rσxτxζy, (F3)

which is TRS invariant and PHS respecting. At the same time,
by requiring IδH (�r)I−1 = δH (−�r), we necessarily arrive at
m�r = m−�r . To see what this means on the equator, we invoke
the projection procedures as before. Upon projection, the 1D
Hamiltonian and the gapping term become

h = −kSσzζ0, δh = −m�r (n̂�r × �σ )zζy, (F4)

with symmetries

TS = σyK, PS = −(n̂�r · �σ )σyK, IS = −ζx. (F5)

Note that here kS denotes momentum perpendicular to n̂�r .
Here we can see again, by requiring ISδh(�r)I−1

S = δh(−�r),
we necessarily arrive at m�r = m−�r .

Thus we have proved that the edge of N-S model can be
completely gapped without breaking symmetries or leaving
corner modes, and consequently, the corner modes that arise
from the third-order topology of the 3D class DIII topologi-
cal superconductor with inversion symmetry are stable under
such surface perturbation.
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