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Polarons free from many-body self-interaction in density functional theory
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We develop a unified theoretical framework encompassing one-body and many-body forms of self-interaction.
We find an analytic expression for both the one-body and the many-body self-interaction energies, and quanti-
tatively connect the two expressions through the dielectric constant. The two forms of self-interaction are found
to coincide in the absence of electron screening. This analysis confers superiority to the notion of many-body
self-interaction over the notion of one-body self-interaction. Next, we develop a semilocal density functional
scheme that addresses the many-body self-interaction of polarons, thereby overcoming the limitations of standard
density functional theory. Polaron localization is achieved through the addition of a weak local potential in
the Kohn-Sham Hamiltonian that enforces the piece-wise linearity of the total energy upon partial electron
occupation. Our method equivalently applies to electron and hole polarons and does not require any constraint on
the wave functions during the self-consistent optimization. The implementation of this scheme does not produce
any computational overhead compared to standard semilocal calculations and achieves fast convergence. This
approach results in polaron properties, including the atomic geometry, the electron density, and the formation
energy, which are close to those achieved with a hybrid functional that similarly satisfies the piece-wise linearity
condition. This suggests that addressing the many-body self-interaction results in a polaron description that is
robust with respect to the functional adopted. We illustrate our approach through applications to the electron
polaron in BiVO4, the hole polaron in MgO, and the hole trapped at the Al impurity in α-SiO2.
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I. INTRODUCTION

The polaron is a quasiparticle consisting of a localized
charge dressed by its self-induced lattice distortions [1].
The occurrence of polaronic states affects the energetic and
transport properties of electrons and holes, thereby arous-
ing great interest in physics, chemistry, and material science
[2–15]. Historically, the concept of polarons has been first
discussed in 1933 by Landau [16], who introduced the idea
of a trapped electron coupled with lattice distortions. In
1946, Pekar illustrated the first theoretical description of a
free electron interacting with a polarizable dielectric con-
tinuum [17]. Subsequently, Landau and Pekar showed that
such interactions can lead to the localization of the wave
function, and to an increased effective mass [18]. This result
inspired several studies based on effective Hamiltonians treat-
ing electron-phonon interactions. Depending on the strength
of the electron-phonon interactions, two types of polarons are
distinguished. In the limit of weak coupling, the polaron has a
large spatial extension and is called large polaron (or Fröhlich
polaron) [19]. At variance, in the limit of strong coupling,
the polaron localizes over a short length scale comparable to
the lattice parameter and is named small polaron (or Holstein
polaron) [20]. Large polarons have generally been studied via
Monte Carlo [21], path-integral Monte Carlo [22], and the
renormalization group [23]. At variance, small polarons have
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mostly been investigated through first-principles approaches
based on density functional theory (DFT) [24–33].

Density functional theory represents a powerful tool for
modeling the atomic and electronic structures of real materi-
als. However, semilocal DFT [34] generally fails in describing
small polarons, because of its spurious inclusion of the
electron self-interaction (SI). Indeed, the SI affects the po-
laron energetics and may oppose the electronic and structural
localization of the polaron. Two types of SI have been distin-
guished [35–41]: the one-body and the many-body SI. The
one-body SI generally refers to the way the interaction of
a charge with itself is canceled in Hartree-Fock theory. At
variance, the many-body SI corresponds to the deviation from
the piece-wise linearity of the total energy upon electron oc-
cupation.

Many schemes have been developed to solve the problem
of the one-body SI. In 1981, Perdew and Zunger proposed an
approach that removes the single-particle SI pertaining to each
electron state [42]. Subsequently, schemes that specifically
address the one-body SI of the excess charge were proposed
[43,44]. More recently, Sio et al. modeled electron-phonon
interactions within an ab initio formulation and derived there-
from a one-body SI approach for polarons [45,46]. However,
the cancellation of the one-body SI generally leads to very
large polaron formation energies, on par with the overestima-
tion of band gaps in Hartree-Fock theory [47].

Hybrid functionals offer a straightforward way to address
the many-body SI. Early studies on polarons including exact
exchange have been performed through the use of elec-
tronic structure codes employing atomic orbital basis set and
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cluster models [48–53]. Subsequently, the use of exact ex-
change has been extended to account for periodic boundary
conditions through developments in codes based on localized
orbitals [54,55] and on plane waves [56–58]. In more recent
studies addressing the many-body SI, the hybrid functional
parameters are adjusted to enforce the piece-wise linearity
of the total energy upon electron occupation [25,39,59]. Hy-
brid functionals satisfying such a constraint yield localized
polarons [25,60–62] and band gaps in agreement with state-
of-the-art GW calculations [25,59,63–66]. However, the use
of hybrid functionals for modeling polarons demands com-
putationally expensive structural and electronic relaxations as
compared to semilocal functionals. This is particularly the
case in plane-wave codes, but could represent a limiting factor
also when using localized-orbital codes, for instance in molec-
ular dynamics simulations.

At present, it remains unclear which of these two kinds
of SI plays the dominant role in the physics of polarons
[33,46,60]. Therefore, it is of interest to investigate the notions
of one-body and many-body SI in a comparative fashion.
Moreover, such a deeper analysis might provide insight into
a route for modeling polarons free from SI at the semilocal
level of theory. This would enable the study of polarons in
large systems, in extended sets of materials, and in molecular
dynamics evolving over long time periods.

In this paper, we investigate the concept of many-body
self-interaction in relation to polarons in density functional
theory. Our motivation is twofold. We aim to develop both
(i) a comprehensive understanding of the relationship between
one-body and many-body self-interaction and (ii) an efficient
methodology for achieving charge localization at the semilo-
cal level of theory. As case studies, we consider the electron
polaron in BiVO4, the hole polaron in MgO, and the trapped
hole at the Al impurity in α-SiO2. We begin our study on
polarons by applying the piece-wise linearity condition to a
hybrid functional and determining the respective electronic
and structural properties, including the formation energy. To
improve our conceptual understanding of the many-body self-
interaction, we then focus on hybrid functionals containing
a fraction α of Fock exchange, by which both forms of
self-interaction can be covered. In this way, we find an ana-
lytical formulation for both the many-body and the one-body
self-interaction and show that they are related through the
dielectric constant. In particular, we demonstrate that these
two forms of self-interaction coincide in the absence of elec-
tron screening. Next, taking advantage of the demonstrated
preeminence of the many-body form of self-interaction, we
develop a formulation at the semilocal level of theory for
treating both electron and hole polarons. The localization is
achieved by including a weak local potential in the semilocal
Kohn-Sham Hamiltonian. This approach yields polarons with
charge densities, atomic structures, and formation energies
in close agreement with respect to the results obtained with
the piece-wise linear hybrid functional but at the computa-
tional cost of a semilocal calculation. This result highlights
the robustness of the electronic and structural properties of
polarons free from many-body self-interaction. The present
paper noticeably extends the contents of Ref. [47] in two
directions. On the one hand, it contains the derivation of the
unified formulation for the self-interaction with the role of the

electron screening emphasized. On the other hand, it provides
a more extensive account of the semilocal methodology for
polaron localization with related applications.

The paper is organized as follows. In Sec. II, we study
polarons as obtained with piece-wise linear hybrid function-
als. In Sec. III A, we derive the unified theoretical framework
for the concepts of one-body and many-body self-interaction.
Section IV A is devoted to the development of the semilocal
scheme for polaron localization and to its application to the
case systems studied. In Sec. V, the conclusions are drawn.

II. POLARONS WITH HYBRID FUNCTIONALS

A. Semilocal functional

Without loss of generality, we here adopt a plane-wave-
pseudopotential formulation. We take the Perdew-Burke-
Ernzerhof (PBE) functional [34] as reference for our semilo-
cal calculations. This consists in solving the following set of
Kohn-Sham equations for each spin channel σ :

H0
σ [n0

↑, n0
↓]ψ0

iσ = ε0
iσψ0

iσ , (1)

where H0
σ is the PBE Hamiltonian, ψ0

iσ and ε0
iσ are the result-

ing wave functions and energy levels, and n0
σ = ∑

i |ψ0
iσ |2 is

the electron density in the spin channel σ . The Hamiltonian
H0

σ is defined as

H0
σ [n0

↑, n0
↓] = − 1

2∇2 + Vps + VH[n0] + Vxcσ [n0
↑, n0

↓], (2)

where − 1
2∇2 is the kinetic term, Vps the sum of the local and

nonlocal pseudopotentials, VH the Hartree potential, Vxcσ =
Vxσ + Vcσ the semilocal exchange-correlation potential, and
n0 = ∑

σ n0
σ the total electron density. We remark that the

semilocal exchange potential Vxσ depends only on the density
in the spin channel σ . This can be seen by using the exact
relation [67]

Vxσ [n0
↑, n0

↓] = Vx[2n0
σ ], (3)

where Vx[2n0
σ ] denotes the spin-unpolarized exchange poten-

tial evaluated for the density 2n0
σ . Then, the PBE energy is

given by

E0
[{

ψ0
i↑

}
,
{
ψ0

i↓
}] = T [n0] + EH[n0] + Exc[n0

↑, n0
↓]

+ Eps
[{

ψ0
i↑

}
,
{
ψ0

i↓
}] + EEwald, (4)

where T is the kinetic energy, EH the Hartree energy, Exc =
Ex + Ec the semilocal exchange-correlation energy, Eps the
pseudopotential energy, and EEwald the Ewald energy.

B. Hybrid functional PBE0(α)

We consider the class of hybrid functionals PBE0(α) [68],
in which a fraction α of Fock exchange is admixed to a
fraction (1 − α) of PBE local exchange. This corresponds to
solving the following generalized Kohn-Sham equations:

Hα
σ

[{
ψα

j↑
}
,
{
ψα

j↓
}]

ψα
iσ = εα

iσψα
iσ , (5)

where ψα
iσ and εα

iσ are the resulting wave functions and energy
levels, respectively, and the Hamiltonian Hα

σ is given by

Hα
σ

[{
ψα

i↑
}
,
{
ψα

i↓
}] = − 1

2∇2 + Vps + VH[nα]

+ V α
xcσ [nα

↑, nα
↓] + V α

X

[{
ψα

iσ

}]
, (6)
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where

V α
xcσ = (1 − α)Vxσ + Vcσ (7)

is the semilocal exchange-correlation potential,

V α
X

[{
ψα

iσ

}]
(r, r′) = −α

∑
i

fiσ

∣∣ψα
iσ

〉 〈
ψα

iσ

∣∣
|r − r′| (8)

the Fock potential multiplied by α with fiσ being the elec-
tron occupation of the ith state in the spin channel σ , nα

σ =∑
i fiσ |ψα

iσ |2 the electron density in the spin channel σ , and
nα = ∑

σ nα
σ the total electron density. We remark that the

Fock potential contributing to Hα
σ is constructed using only

the wave functions in the spin channel σ . Then, the PBE0(α)
energy is given by

Eα
[{

ψα
i↑

}
,
{
ψα

i↓
}] = T [nα] + EH[nα]

+Eα
xc[nα

↑, nα
↓] + Eα

X

[{
ψα

i↑
}
,
{
ψα

i↓
}]

+Eps
[{

ψα
i↑

}
,
{
ψα

i↓
}] + EEwald, (9)

where Eα
xc = (1 − α)Ex + Ec is the semilocal exchange-

correlation energy, and Eα
X the Fock energy. For α = 0,

PBE0(α) reduces to PBE.
Structural relaxations require the calculation of the atomic

forces, which are defined as

Fα
Iμ = − dEα

dτIμ
, (10)

where τIμ denotes the Cartesian coordinate μ of the
atom I . This is calculated through the Hellmann-Feynmann
expression

Fα
Iμ = −

( ∑
iσ

〈
ψα

iσ

∣∣ dVps

dτIμ

∣∣ψα
iσ

〉 + dEEwald

dτIμ

)
, (11)

where the sum is carried out over all the occupied wave
functions. When the wave functions ψα

iσ are expanded on a
plane-wave basis set, no Pulay forces appear [69]. In Eq. (11),
there are no explicit contributions resulting from electron-
electron interactions (Hartree, exchange-correlation, Fock).
Their influence on the atomic forces occurs via the self-
consistent optimization of the wave functions ψα

iσ .

C. Polaron formation energy

We consider a polaron of charge Q coupled with its
self-induced lattice distortions Rα

Q, which are obtained by
performing structural relaxation with PBE0(α). For electron
polarons Q = −1, while for hole polarons Q = +1. Then, the
PBE0(α) polaron formation energy is defined as [70,71]

Eα
f (Q) = Eα (Q) − Eα

ref(0) + Qεα
b , (12)

where Eα (Q) is the total energy of the polaron system, Eα
ref(0)

the total energy of the pristine system, and εα
b the band edge

corresponding to the delocalized state. The total energy Eα (Q)
is related to the polaron level εα

p (Q) through Janak’s theorem
[72], namely,

εα
p (Q) = − dEα (q)

dq

∣∣∣∣
q=Q

, (13)
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FIG. 1. Schematics of (a) the total energy Eα and of (b) the
polaron level εα

p as a function of the electron occupation f of the
polaron state for different PBE0(α) functionals.

where we have introduced the fractional polaron charge q
to perform the derivative of the total energy with respect to
charge at fixed geometry Rα

Q. The integral version of Eq. (13)
reads

Eα (Q) − Eα (0) = −
∫ Q

0
dq εα

p (q). (14)

As illustrated in Fig. 1, the total energy Eα (q) generally shows
either a positive or negative concavity with respect to the
fractional polaron charge q. For α = 0, PBE0(α) reduces to
PBE, which is known to have a convex total energy as a
function of q. On the other hand, for α = 1, the nonlocal
exchange operator in PBE0(α) is the same as in Hartree-Fock
theory, which is characterized by a concave total energy as
a function of q. For a specific value α = αk, PBE0(αk) is
essentially piece-wise linear upon electron occupation and the
polaron level is independent of q. In this case, the many-body
SI vanishes.

In practice, the value αk can be found by solving the fol-
lowing equation:

d

dq
εα

p (q)

∣∣∣∣
α=αk

= 0, (15)

where αk is found self-consistently with the geometry Rα
Q.

Then, using Eq. (14), one can write

Eαk (Q) = Eαk (0) − Qεαk
p . (16)

By inserting Eq. (16) in Eq. (12) for α = αk, one obtains the
following expression for the polaron formation energy:

Eαk
f (Q) = Q

(
ε

αk
b − εαk

p

) + (Eαk (0) − Eαk
ref (0)), (17)

where the first and the second term on the right-hand side
correspond to the energetic gain due to the electronic local-
ization and to the energetic cost due to the lattice distortions,
respectively.

D. Finite-size effects

The finite supercell size implies spurious interactions
involving the polaron charge density due to the periodic
boundary conditions [73–75]. As a consequence, the total
energy and the polaron level are affected by finite-size effects,
which need to be corrected. This can be done a posteriori via
the scheme introduced by Falletta, Wiktor, and Pasquarello
[75], which properly accounts for ionic polarization effects.
We consider a system carrying a supercell charge q∗ in which
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the atomic positions have been relaxed in the presence of a
supercell charge Q∗. For self-trapped polarons, the supercell
charge q∗ and Q∗ coincide with the polaron charges q and Q,
as in the cases of BiVO4 and MgO. However, in the case of
electrons and holes trapped at impurities, this relation does
not generally apply. For instance, in the case of α-SiO2, the
hole trapping occurs in the neutral calculation (q∗ = Q∗ = 0),
and the relations become q∗ = q − 1 and Q∗ = Q − 1.

The finite-size correction Ecor(q∗, RQ∗ ) for the total energy
pertaining to a system with supercell charge q∗ in a geometry
RQ∗ relaxed in the presence of a supercell charge Q∗ is given
by [75]

Ecor(q
∗, RQ∗ ) = Em(Q∗, ε0) − Em(Q∗ + Q∗

pol, ε∞)

+ Em(q∗ + Q∗
pol, ε∞), (18)

where Em denotes the finite-size correction for regularly
screened defects [73,74], ε∞ and ε0 are the high-frequency
and static dielectric constants, respectively, and Q∗

pol =
−Q∗(1 − ε∞/ε0) is the ionic polarization charge associated to
the polaron lattice distortions. The corresponding finite-size
correction for the polaron level is obtained through Janak’s
theorem and is given by [75]

εcor(q
∗, RQ∗ ) = −2

Em(q∗ + Q∗
pol, ε∞)

q∗ + Q∗
pol

. (19)

To simplify the notation, the total energies and polaron levels
throughout our paper are considered to be corrected by finite-
size effects via the expressions in Eqs. (18) and (19).

The finite-size corrections depend on the high-frequency
and static dielectric constants of the system under considera-
tion. Through the application of finite electric fields [76], the
dielectric tensor ε can be calculated as

εi j = 1 + 4π

�

d pi

de j
, (20)

where � is the volume of the supercell, e j the electric field
along the direction j, and pi the polarization in the direction
i. For the evaluation of the high frequency dielectric tensor
ε∞, the structure is kept fixed, such that the polarization arises
only from electronic relaxation. At variance, for the calcula-
tion of the static dielectric tensor ε0, the structure is relaxed
in the presence of the electric field, to account for both the
electronic and the ionic screening. In the case of anisotropic
screening, the dielectric constant ε is obtained from the trace
of ε as ε = Tr(ε)/3.

E. Case studies and computational details

The calculations are performed using a plane-wave den-
sity functional approach as implemented in the QUANTUM

ESPRESSO suite [57]. We use the semilocal functional PBE
[34] and the hybrid functional PBE0(α) [68]. The core-
valence interactions are described by normconserving pseu-
dopotentials [77]. As case studies, we consider the electron
polaron in BiVO4 [26], the hole polaron in MgO [24], and the
hole trapped at the Al impurity in α-SiO2 [24,43,51,52,78,79].
We model BiVO4 with a 96-atom orthorhombic supercell (a =
10.34 Å, b = 10.34 Å, c = 11.79 Å), MgO with a 64-atom
cubic supercell (a = 8.45 Å), and α-SiO2 with a 72-atom

TABLE I. High-frequency and static dielectric constants, ε∞ and
ε0, respectively, for the systems considered in this paper, as calcu-
lated with the functional PBE.

System ε∞ ε0

BiVO4 5.83 64.95
MgO 2.77 10.73
α-SiO2 2.25 4.52

hexagonal supercell (a = 9.97 Å, c = 10.96 Å). The lattice
parameters and the atomic positions are optimized at the
semilocal level of theory for the pristine systems. We sam-
ple the Brillouin zone at 	 point and set the energy cutoff
to 100 Ry in all cases. The electron and hole polarons are
obtained by either adding or removing one electron from the
system. In the case of α-SiO2, a hole is trapped at the Al
site in the neutral system. The polaron structures are obtained
through atomic relaxation at fixed supercell parameters.

The high-frequency and static dielectric tensors, ε∞ and
ε0, respectively, are determined by applying finite electric
fields [76] at the semilocal level of theory. We use the values
e j = 0, 1 × 10−4, 2.5 × 10−4, 5 × 10−4 a.u. ( j = x, y, z) and
perform a linear regression to find the components of the
dielectric tensors. In the case of isotropic screening (MgO),
the electric field is applied only along one Cartesian direction.
At variance, in the case of anisotropic screening (BiVO4,
α-SiO2), the electric field is applied along the three Cartesian
directions. The obtained values of the dielectric constants are
given in Table I and are used for the determination of the
finite-size effects [75]. The finite-size corrections for total
energies and polaron levels are given in Table II. In the case of
α-SiO2, the hole trapping occurs in a neutral calculation and
is not affected by finite-size effects.

F. Hybrid-functional results

In Fig. 2, we show the polaron density obtained with
PBE0(αk) for all cases studied. In BiVO4, the electron polaron
localizes on a vanadium atom, thereby causing an elongation
of the neighboring V-O bonds from 1.73 to 1.80 Å. In MgO,
the hole polaron is centered on an oxygen atom, thereby
elongating the neighboring Mg-O bonds from 2.11 to 2.20 Å.
In α-SiO2, the hole is trapped at the Al impurity, with three
short Al-O bonds of 1.69 Å and one long Al-O bond of
1.91 Å.

For each system, the fraction αk of Fock exchange used in
the polaron calculation is determined according to Eq. (15) as

TABLE II. Finite-size corrections of total energies and polaron
levels for the systems with and without polaron charge in the polaron
geometry. All values are in eV.

With polaron Without polaron

System Ecor εcor Ecor εcor

BiVO4 0.03 0.06 0.29 −0.58
MgO 0.13 −0.25 0.59 1.34
α-SiO2 0.00 0.00 1.24 2.47
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-SiO2

(a)

(b)

(c)

1.80 Å

2.20 Å

1.91 Å

BiVO4

MgO

2.11 Å

1.73 Å

1.69 Å

FIG. 2. Polaron isodensity surface at 5% of its maximum cal-
culated with PBE0(αk) for the electron polaron in BiVO4, the hole
polaron in MgO, and the hole trapped at the Al impurity in α-SiO2

(Bi in orange, V in cyan, O in red, Mg in pink, Si in blue, Al in grey).

follows. We first fix an approximate value of αk and relax the
polaron to find the geometry Rαk

Q . Second, for this geometry,
we obtain the levels εα

p (0) and εα
p (Q) pertaining to the charge

states 0 and Q as a function of α. Their intersection gives an
improved value for αk, with which the procedure is repeated
until self-consistency is reached. As illustrated in Figs. 3(a)–
3(c), we find αk = 0.14, 0.34, and 0.ll45 for BiVO4, MgO,
and α-SiO2, respectively. This study allows us to determine
the polaron level εαk

p .
From εαk

p , we obtain the formation energies via Eq. (17)
for all the systems under consideration. For BiVO4, MgO, and
α-SiO2, we find −0.63 eV, −0.53 eV, and −3.11 eV, respec-
tively. In the case of α-SiO2, the larger formation energy stems
from the fact that the hole is not self-trapped but bound to
the Al impurity. Furthermore, we illustrate in Figs. 3(d)–3(f)
the polaron stability as a function of the fraction of Fock
exchange α using the formation energy of Eq. (12) at fixed
geometry Rαk

Q . The PBE0(α) formation energies are found to
be very sensitive to α, which is an effect mainly resulting
from the strong dependence of the band edge εα

b on α [cf.
Figs. 3(a)–3(c)]. Moreover, the polaron at α = 0 (i.e., PBE)
is not stable in all cases. This emphasizes that the functional
PBE fails in localizing the polaronic states. In the case of
α-SiO2, we also calculate the formation energy corresponding
to the geometry found in PBE, in which the hole is delocalized
over the four nearest neighbor O atoms (Al-O bond lengths of
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FIG. 3. [(a)–(c)] Energy levels and [(d)–(f)] formation energies
obtained with PBE0(α) as a function α for the electron polaron in
BiVO4, the hole polaron in MgO, and the hole trapped at the Al im-
purity in α-SiO2. The polaron levels are identified by their respective
polaron charge. In all cases, the polaron geometry is obtained with
PBE0(αk).

1.74 Å). Also in this case, the hole trapped at a single O atom
is unstable at α = 0, in accord with previous studies [51,52].
At variance, for α = αk, the one-site polaron is found to be
more stable than the four-site polaron by 1.25 eV.

To assess the overall quality of the electronic structure, it
is of interest to compare the PBE0(αk) band gaps with exper-
imental values. The comparison with experiment requires the
consideration of relevant effects, such as due to spin-orbit cou-
pling, atomic vibrations (zero-point phonon renormalization),
electron-hole interaction (for optical band gaps), and magnetic
ordering [80,89,90]. For PBE0(α) functionals, the agreement
with experiment is generally rather good when such effects
are accounted for [25,59,63,64,66,91–93]. In particular, for
BiVO4, MgO, and α-SiO2, we indeed find errors of at most
0.25 eV when comparing PBE0(αk) band gaps with relevant
experimental values after including suitable corrections (see
Table III), consistent with typical values for the mean absolute
errors in such comparisons [25,66].

We remark that the enforcement of the piece-wise linearity
condition is in principle defect dependent. As investigated in
Refs. [25,63–65], αk can vary up to ±0.03 depending on the
defect under consideration. However, by selecting an optimal
defect ensuring minimal hybridization with the delocalized
band states, the uncertainty in αk can be further reduced
[64]. Accurate comparisons with experimental band gaps in
Refs. [64,66] show agreement within 0.25 eV. The depen-
dence of αk on the defect considered ultimately reflects the
approximate nature of the PBE0(α) functional.
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TABLE III. Band gaps calculated with PBE (E 0
g ) and PBE0(αk)

(Eαk
g ) compared to experimental values after including suitable cor-

rections (
Eg). Energies are in eV.

E 0
g Eαk

g 
Eg Eαk
g + 
Eg Expt.

BiVO4 2.38 3.41 −1.16a 2.25 2.4–2.5b

MgO 4.65 8.15 −0.53c 7.62 7.77d

α-SiO2 5.81 10.51 0.02d 10.53 10.30f

aReference [80], including spin-orbit coupling, thermal vibrations,
and exciton binding energy.
bReferences [81–83], optical band gap at 300 K.
cReference [84], zero-point phonon renormalization.
dReference [85], fundamental band gap at 6 K.
eSeparation of 0.60 eV between fundamental band gap and first
absorption peak [86], and zero-point phonon renormalization of
−0.58 eV [87].
fReference [88], first peak in reflectance spectrum.

III. UNIFIED FORMULATION FOR THE
SELF-INTERACTION

A. Many-body self-interaction

In this section, we consider a localized polaron with
the atomic structure Rαk

Q . The single-particle levels are
known to depend linearly on α in PBE0(α) calculations
[25,28,33,59,63,64]. Furthermore, the total energy Eα (q)
obtained with PBE0(α) generally shows a quadratic behav-
ior upon fractional charge addition [7,40]. Hence, through
Janak’s theorem [72],

εα
p (q) = −dEα (q)

dq
, (21)

the polaron level εα
p (q) can be taken to depend linearly on both

q and α. As demonstrated in Appendix A, these assumptions
imply that the variations of the polaron wave function with
q, the second-order derivative of the wave functions of the
valence states with respect to q, and the variations of the wave
functions with α can be taken to vanish. We denote ψp the
wave function of the polaron state and np = |ψp|2 the polaron
density. The electron (hole) polaron state is identified as the
last-occupied (first unoccupied) state.

We then expand εα
p (q) in α around αk,

εα
p (q) = εαk

p + (α − αk)
dεα

p (q)

dα
, (22)

where εαk
p is independent of q because of the definition of

αk [cf. Eq. (15)]. By further expanding the right-hand side of
Eq. (22) with respect to q around q = 0, we get

εα
p (q) = εαk

p + (α − αk)

[
dεα

p (0)

dα
+ q

d2εα
p (q)

dαdq

]
. (23)

By introducing the fractional charge qk defined as

qk = −dεα
p (0)

dα

/
d2εα

p (q)

dαdq
, (24)

we can rewrite Eq. (23) as

εα
p (q) = εαk

p + (α − αk)(q − qk)
d2εα

p (q)

dαdq
. (25)

The result in Eq. (25) can be equivalently obtained by first
expanding εα

p (q) in q around qk and then by expanding in
α around αk. In this case, we get the following expression
for αk:

αk = −dε0
p (q)

dq

/
d2εα

p (q)

dαdq
, (26)

which is analogous to Eq. (24). By taking the ratio between
the expressions in Eqs. (24) and (26), we find a relationship
that links αk and qk,

qk

αk
= dεα

p (0)

dα

/
dε0

p (q)

dq
, (27)

which emphasizes the duality between αk and qk in the ex-
pression of εα

p (q) [cf. Eq. (25)].
We define the many-body SI energy correction to the

PBE0(α) energy as


Eα (q)|mb = [
Eα (0) − qεαk

p

] − Eα (q), (28)

such that the energy Eα (q) + 
Eα (q)|mb is piece-wise linear
as a function of q. At α = αk, 
Eαk |mb vanishes by definition
of αk. The total energy Eα (q) in Eq. (28) can be expanded at
second order in q as

Eα (q) − Eα (0) = −qεα
p (0) − q2

2

dεα
p (q)

dq
, (29)

where we have applied Janak’s theorem [Eq. (21)] for express-
ing the first and the second derivative of the total energy with
respect to q in terms of the polaron level. By inserting Eq. (29)
in Eq. (28) and by expressing εαk

p = εα
p (qk), we get


Eα (q)|mb = q
[
εα

p (0) − εα
p (qk)

] + q2

2

dεα
p (q)

dq
. (30)

By using the linearity of the polaron level in q, the latter
equation becomes


Eα (q)|mb = 1

2
[(q − qk)2 − q2

k]
dεα

p (q)

dq
. (31)

Expanding εα
p (q) in α and using the definition of αk in

Eq. (26), we obtain

dεα
p (q)

dq
=

(
1 − α

αk

)
dε0

p (q)

dq
= −

(
1 − α

αk

)
d2E0(q)

dq2
,

(32)

where the second equality stems from Janak’s theorem. This
allows us to express Eq. (31) as


Eα (q)|mb = −1

2

(
1 − α

αk

)[
(q − qk)2 − q2

k

]d2E0(q)

dq2
.

(33)
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Using the chain rule on the second derivative of the total energy with respect to q, we get


Eα (q)|mb = −
(

1 − α

αk

)
[(q − qk)2 − q2

k]

{
EH

[
dn

dq

]
+ 1

2

∑
σσ ′

∫
drdr′ δ2Exc[n↑, n↓]

δnσ (r)δnσ ′ (r′)
dnσ (r)

dq

dnσ ′ (r)

dq

}
, (34)

where the second derivatives of nσ with respect to q have
been taken to vanish and the superscript 0 in the densities nσ

has been skipped, consistently with the assumptions of our
formulation (see Appendix A). In Eq. (34), the Fock exchange
effects are entirely described by qk and αk. Apart from the
parameters qk and αk, 
Eα|mb is herewith expressed in terms
of a quantity that can be evaluated at the semilocal PBE level.
By applying Janak’s theorem to 
Eα (q)|mb in Eq. (33), we
find the many-body SI correction to the polaron level


εα
p (q)

∣∣
mb

= − d

dq

Eα (q)|mb

= −
(

1 − α

αk

)
(q − qk)

dε0
p (q)

dq
, (35)

which vanishes at both α = αk or q = qk, consistently with
Eq. (25). Thus, the polaron level εα

p + 
εα
p |mb is constant for

varying polaron charge q. Applying the Hellmann-Feynman
theorem to the derivative of ε0

p (q) with respect to q, we get

dε0
p (q)

dq
= 〈ψp|

dH0
σp

(q)

dq
|ψp〉 . (36)

Then, using the chain rule on the derivative of the Hamiltonian
H0

σp
(q) with respect to q, Eq. (35) can be rewritten as


εα
p (q)

∣∣
mb

= −
(

1 − α

αk

)
(q − qk)

∫
dr

{
VH

[
dn

dq

]
(r)

+
∑

σ

∫
dr′ δVxcσp [n↑, n↓](r)

δnσ (r′)
dnσ (r′)

dq

}
np(r),

(37)

where σp is the spin channel corresponding to the polaron
state.

We evaluate the many-body SI corrected total energy and
polaron level as a function of q for the cases studied. Here, we
determine the polaron energetics at α = 0 (PBE) at first-order
perturbation theory using the wave functions and the atomic
structure obtained with the hybrid functional PBE0(αk). The
many-body SI corrections are evaluated using the following
finite-difference expression for dε0

p (q)/dq:

dε0
p (q)

dq
= ε0

p (Q) − ε0
p (0)

Q
, (38)

where the levels ε0
p (Q) and ε0

p (0) are calculated with the func-
tional PBE. As illustrated in Figs. 4(a)–4(b) in the cases of
BiVO4 and α-SiO2, the PBE total energy exhibits a concavity
upon partial electron occupation, and a corresponding linear
variation of the polaron level [cf. Figs. 4(c) and 4(d)]. Upon
applying the corrections 
E0(q)|mb and 
ε0

p (q)|mb, the total
energy and the polaron level become linear and constant in q,
respectively.

The electron screening affects the many-body SI correc-
tions in Eqs. (34) and (37) through the derivatives dnσ /dq. To
illustrate such screening effects, it is convenient to focus on
the density of valence electrons. Covering the cases of both
electron and hole polarons, this can be expressed as

nσval(q) = nσ (q) + δσ,σp qnp, (39)

where δ is the Kronecker delta. Then, the variations of nσval(q)
with respect to q can be calculated by finite differences as

dnσval(q)

dq
= nσ (Q) + δσ,σp Qnp − nσ (0)

Q
. (40)

These variations are shown in Fig. 5 for both spin channels
in the cases of the electron polaron in BiVO4 and the hole
trapped at the Al impurity in α-SiO2. First, we remark that the
response of the valence electrons with respect to the polaron
charge is not negligible compared to the polaron charge den-
sity. Second, the screening effects in the two spin channels are
noticeably different. This emphasizes the limitation of using
the restricted open-shell Kohn-Sham (ROKS) constraint in the
self-consistent optimization of the Kohn-Sham equations.

B. One-body self-interaction

We define the one-body SI energy correction to Eα (q) as


Eα (q)|ob = [
E1(q) − E1(0)

] − [
Eα (q) − Eα (0)

]
, (41)

which reproduces the q dependence of the energy found
for the Hartree-Fock like regime at α = 1. The correction

Eα (q)|ob vanishes for α = 1. Given the linearity of the total

1.0 0.5 0.0

9.5

10.0

10.5 (c)

Charge q

To
ta

l e
ne

rg
y 

(e
V)

Po
la

ro
n 

le
ve

l (
eV

)

Charge q
0.0 0.5 1.02

4

6
(d)

1.0 0.5 0.0

2.5

5.0

7.5

10.0 (a)

0.0 0.5 1.0
2

0

1

2 (b)

1

To
ta

l e
ne

rg
y 

(e
V)

Po
la

ro
n 

le
ve

l (
eV

)

BiVO4

-SiO2 -SiO2

BiVO4

PBE

many-body SI 
corrected

PBE

many-body SI 
corrected

many-body SI 
corrected

PBE

PBE

many-body SI 
corrected

FIG. 4. Many-body self-interaction corrected [(a),(b)] total en-
ergy E 0(q) and [(c),(d)] polaron level ε0

p (q) as a function of the
charge q, for the electron polaron in BiVO4 and for the trapped hole
at the Al impurity in α-SiO2. The localized polarons are obtained
with the hybrid functional PBE0(αk). The results for MgO are shown
in Ref. [47].
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polaron level [cf. Eq. (40)] for the electron polaron in BiVO4, and the hole polaron in α-SiO2, as obtained with the functional PBE0(αk). The
densities are integrated over the z direction and plotted in the xy plane. The results for the hole polaron in MgO are shown in Ref. [47].

energy with respect to α, Eq. (41) can be rewritten as


Eα (q)|ob = (1 − α)
d

dα
[Eα (q) − Eα (0)]. (42)

Using the total energy expansion in Eq. (29), the definitions
of qk and αk in Eqs. (24) and (26), and Janak’s theorem in
Eq. (21), we find


Eα (q)|ob = −1

2

(1 − α)

αk
[(q − qk)2 − q2

k]
d2E0(q)

dq2
. (43)

Using Janak’s theorem, the one-body energy correction to the
polaron level is obtained as


εα
p (q)

∣∣
ob

= − d

dq

Eα (q)|ob

= −(q − qk)
(1 − α)

αk

dε0
p (q)

dq
, (44)

which corresponds to the energy difference ε1
p (q) − εα

p (q). In-
terestingly, the one-body SI energy corrections can be derived
starting from the many-body SI energy corrections. For the
total energy, one has


Eα (q)|ob = 
Eα (q)|mb − 
E1(q)
∣∣
mb. (45)

Similarly, for the polaron level,


εα
p (q)

∣∣
ob

= 
εα
p (q)

∣∣
mb

− 
ε1
p (q)

∣∣
mb

. (46)

This relation is illustrated in Fig. 6 in the case of a hole
polaron.

The relationship between the two forms of SI can be fur-
ther highlighted by taking the ratio between 
Eα (q)|mb and

Eα (q)|ob in Eqs. (33) and (43),


Eα (q)|mb = αk − α

1 − α

Eα (q)|ob, (47)

which reveals that these two forms of SI are related by a
proportionality relation. For α = 0 (PBE), Eq. (47) takes the
simple form


E0(q)|mb = αk
E0(q)|ob. (48)

The parameter αk is generally related to electron screen-
ing, as represented by the high-frequency dielectric constant
ε∞ [94,95]. In particular, αk 
 1/ε∞ reproduces the correct
asymptotic potential in the long-range limit [39,96]. Ad-
ditionally, this choice of α generally yields band gaps in
good agreement with experiment [25,63,97,98] upon proper
consideration of renormalization due to thermal vibrations,
spin-orbit coupling, and excitonic and magnetic ordering ef-
fects [80,89,90]. Hence, Eq. (48) can be rewritten as


E0(q)|mb 
 1

ε∞

E0(q)|ob, (49)
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FIG. 6. One-body and many-body SI energy correction for a hole
polaron level εα

p (Q = +1), illustrating Eq. (46).
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TABLE IV. Screening effects in electron density and Coulomb
kernel for the various forms of self-interaction.

Screening Many-body One-body Bare

Electron density
√ √

✗

Coulomb kernel
√

✗ ✗

which establishes a quantitative relationship between these SI
energies in case of α = 0. Equation (49) carries similarity with
the Hartree-Fock theory of excitons [99,100]. Indeed, when
calculating the exciton binding energy, the bare Coulomb
kernel 1/|r − r′| is replaced with the screened kernel
1/(ε∞|r − r′|), which includes the dielectric constant
analogously to Eq. (49). Hence, the account of screening
effects in the many-body SI emphasizes its superiority over
the one-body SI.

The connection between many-body and one-body forms
of SI can be further highlighted by turning off the electron
screening. This can be achieved by setting equal to zero the
variations of the wave functions with respect to q. Starting
from Eq. (39), this gives

dnσ

dq

∣∣∣∣
bare

= −δσ,σp np. (50)

In this limit, we apply the Hellmann-Feynmann theorem to
dεα

p (q)/dq and obtain

dεα
p (q)

dq

∣∣∣∣
bare

= 〈ψp|
dHα

σp
(q)

dq

∣∣∣∣
bare

|ψp〉 . (51)

Using the chain rule similarly to Eq. (37), neglecting
the variations of the valence wave functions with q, and
noticing that

〈ψp| |ψp〉 〈ψp|
|r − r′| |ψp〉 = 〈ψp|VH[np]|ψp〉 , (52)

we get

dεα
p (q)

dq

∣∣∣∣
bare

= −〈ψp|
{

(1 − α)VH[np]

+
∫

dr
δV α

xcσp
[n↑, n↓]

δnσp (r)
np(r)

}
|ψp〉 . (53)

Considering that V α
xcσp

= (1 − α)Vxσp + Vcσp [cf. Eq. (7)], one
finds that the right hand side of Eq. (53) vanishes for α = 1,
apart from weaker correlation terms. Hence, the piece-wise
linearity condition of Eq. (15) is satisfied for αbare

k = 1. In the
limit in which the electron screening is turned off, the many-
body and one-body forms of SI coincide and are equal to


Eα (q)|bare = −(1 − α)[(q − qbare
k )2 − (qbare

k )2]

·
{

EH[np] + 1

2

∫
drdr′ δ2Exc[n↑, n↓]

δnσp (r)δnσp (r′)
np(r)np(r′)

}
.

(54)

A summary of the screening effects in the density and
Coulomb kernel for the various forms of SI studied in this
paper is given in Table IV.

TABLE V. Polaron binding energies corrected for different forms
of self-interaction. For self-trapped polarons, the binding energy
coincides with the formation energy in absolute value. In the case
of α-SiO2, the binding energy measures the stability of the hole
localized at one O atom with respect to the hole delocalized over four
O atoms. The binding energies free from many-body and one-body
SI are obtained with PBE0(αk) and PBE0(α = 1), respectively. The
binding energy including the SI correction proposed by Sio et al. is
obtained through Eq. (58).

System Many-body SI One-body SI SI of Sio et al.

BiVO4 0.63 7.73 3.34
MgO 0.53 3.88 1.98
α-SiO2 1.25 3.83 1.56

It is interesting to note that the expression in Eq. (54)
evaluated at α = 0 essentially coincides with the SI energy
correction found by Sio et al. [45,46],


E0(q)
∣∣
Sio = −q2

{
EH[np]

+ 1

2

∫
drdr′ δ2Exc[n↑, n↓]

δnσp (r)δnσp (r′)
np(r)np(r′)

}
.

(55)

Indeed, in their derivation, Sio et al. neglected the elec-
tron screening effects like in our bare approximation. The
only difference between the two expressions arises from the
q-dependent prefactor, which is related to the different defi-
nitions adopted for the SI-corrected energy functional. In our
case [cf. Eq. (28)],

E0(q)
∣∣
bare + 
E0(q)

∣∣
bare = E0(0) − q ε0

p

(
qbare

k

)∣∣
bare

, (56)

whereas, in the case of Sio et al., the total energy E0(q) is
expanded in q around q = 0 and the second-order derivative
of E0(q) with respect to q is removed. This results in

E0(q)|bare + 
E0(q)|Sio = E0(0) − qε0
p (0). (57)

Hence, in the absence of electron screening, the difference
between our bare expression and that derived in Refs. [45,46]
can be associated with the slope of the linear dependence of
SI corrected energy functional with q, which corresponds to
the polaron level at q = 0 in the case of Sio et al. and to the
polaron level at q = qbare

k in our case. This comparison clarifies
the underlying assumptions leading to previous expressions
for the SI in the literature. In particular, we remark that when
the electron screening is allowed, as in realistic conditions, the
SI-corrected energy E0(q) + 
E0(q)|Sio no longer satisfies
the piece-wise linearity condition. Additional connection to
other previous literature [37] is provided in Appendix B.

In Table V, we quantify the differences between the various
forms of SI discussed in this paper by comparing the corre-
sponding polaron binding energies. The binding energies free
from many-body SI are calculated with the PBE0(αk) func-
tional [cf. Figs. 3(d)–3(f)]. The binding energies corrected for
the one-body SI are obtained by extrapolating the results in
Figs. 3(d)–3(f) to the fraction of Fock exchange α = 1. The
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binding energies corrected for the SI proposed by Sio et al.
are obtained as

E0
f (Q)|Sio = E0

f (Q) + 
E0(Q)|Sio, (58)

where E0
f (Q) corresponds to the formation energies at α = 0

in Figs. 3(d)–3(f) [cf. Eq. (12)] and 
E0(Q)|Sio is evaluated
using the wave functions obtained with PBE0(αk). As already
pointed out in Ref. [47], the binding energies free from one-
body SI are considerably larger than those corrected for many-
body SI, because of the large shift of the band edges with α

[cf. Figs. 3(a)–3(c)]. Moreover, we also find larger values for
the formation energies corrected with the scheme of Sio et al.,
which reflects the neglect of screening effects in Eq. (55).

IV. SEMILOCAL SCHEME FOR POLARON
LOCALIZATION

In the previous section, we established the superiority of
the many-body SI over the one-body SI. It is of interest
to identify a semilocal functional incorporating the many-
body SI corrections of the polaron state in a self-consistent
calculation. However, as remarked in Ref. [47], the varia-
tional minimization of the functional E0 + 
E0|mb carries
some limitations. On the one hand, this would require the
knowledge of qk, which is inherent to the hybrid-functional
calculation, as can be seen in Eq. (24). On the other hand, such
a variational implementation would not guarantee polaron
localization, since the SI of the valence electron states has not
been corrected. For instance, in the case of the hole polaron
in MgO, the many-body SI-corrected polaron level εαk

p is
situated below the PBE valence band edge [cf. Fig. 3(b)]. The
competition between localized and delocalized states prevents
polaron localization in this case. Indeed, to achieve polaron
localization and a negative formation energy, the polaron level
must lie sufficiently deep in the band gap to overcome the
energy cost of lattice distortions [cf. Eq. (17)]. For these
reasons, we develop an alternative procedure in the following.

A. Methodology

We assume that the localization can be achieved by adding
a weak local potential to the PBE Hamiltonian in Eq. (1),
which favors the localized state with respect to the delocal-
ized band states. This idea is supported by previous research
[101,102], in which the localized and delocalized forms of the
polaron state have been found in close energetic competition.
We denote this potential V γ

σ , where γ is a parameter that reg-
ulates the strength of the potential. This leads to the following
set of equations: (

H0
σ + V γ

σ

)
ψ

γ
iσ = ε

γ
iσψ

γ
iσ , (59)

where ψ
γ

iσ and ε
γ

iσ are the resulting wave functions and
eigenvalues, respectively. We find that a suitable expression
for V γ

σ is

V γ
σ (q) = qγ

∂Vxcσ

∂q
. (60)

The use of the exchange-correlation potential in the definition
of V γ

σ ensures its locality. Using the chain rule for the deriva-
tive of Vxcσ with respect to q and considering Eq. (39), V γ

σ can

be rewritten as

V γ
σ (q) = −qγ

∫
dr

δV 0
xcσ [nγ

↑, nγ

↓]

δnγ
σp (r)

nγ
p (r), (61)

where nγ
σ is the total density in the spin channel σ , and nγ

p is
the density of the polaron state. The dominant contribution to
the potential V γ

σ is given by the exchange term, which only
occurs in the spin channel σ = σp [cf. Eq. (3)]. For q = 0, the
potential V γ

σ vanishes, thus recovering the PBE Hamiltonian.
The structural relaxations are performed in the presence of

the polaron charge Q through the usual Hellmann-Feynmann
forces, as defined in Eq. (11). We denote the resulting re-
laxed geometry of the polaron Rγ

Q. We remark that the
Hellmann-Feynmann theorem and Janak’s theorem are still
satisfied when introducing the potential V γ

σ in the Kohn-Sham
equations.

We find the value of the parameter γ = γk for which the
piece-wise linearity of the total energy upon electron occupa-
tion is enforced, i.e.,

d

dq
εγ

p (q)

∣∣∣∣
γ=γk

= 0, (62)

where ε
γ
p is the polaron level. In Eq. (62), γk and Rγk

Q are
obtained self-consistently. Since the piece-wise linearity con-
dition is satisfied for γk, the total energy can be written as

Eγk (Q) = Eγk (0) − Qεγk
p . (63)

Therefore, the corresponding polaron formation energy is

Eγk

f (Q) = Q
(
ε

γk

b − εγk
p

) + (Eγk (0) − Eγk

ref(0)). (64)

The quantities in Eq. (64) are all calculated at the semilocal
level of theory, thus avoiding hybrid functional calculations.
Moreover, the band edge ε

γk

b and the total energies Eγk (0) and
Eγk

ref(0) coincide with their respective PBE values, because of
the vanishing prefactor q in Eq. (60).

Our semilocal scheme guarantees a symmetric treatment
in the case of electron and hole polarons. This stems from
the fact that the potential V γ

σ acts in the same way on all the
states, irrespectively of their occupation. Hence, electron and
hole polarons, which correspond to the last-occupied and the
first-unoccupied Kohn-Sham states, respectively, localize in a
analogous manner under the action of this potential.

Our semilocal scheme can be compared with previously
proposed methods. The idea that a localized potential might
be sufficient for correcting the SI through enforcing the
piece-wise linearity condition has previously been used in the
DFT+U scheme [103] and in the scheme proposed by Lany
and Zunger [37]. In both these schemes, the U correction
applies to specific atomic orbitals. At variance, our semilocal
method accounting for the many-body SI leads to a localized
potential, which self-consistently originates from the electron
or hole density and which acts on all the states of the system
rather than on selected atomic orbitals.

B. Computational advantages

In practical calculations, the potential V γ
σ in Eq. (60) can

be implemented through finite differences. For an electron
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polaron (q = −1, σp = ↑), we use

V γ
σ (−1) = γ

(
V 0

xcσ [nγ

↑ (−1), nγ

↓ (−1)]

− V 0
xcσ [nγ

↑ (−1) − nγ
p (−1), nγ

↓ (−1)]
)
. (65)

where the densities are found through self-consistent calcula-
tions with q = −1. Analogously, for a hole polaron (q = +1,
σp = ↓), we have

V γ
σ (+1) = γ

(
V 0

xcσ [nγ

↑ (+1), nγ

↓ (+1)]

− V 0
xcσ [nγ

↑ (+1), nγ

↓ (+1) + nγ
p (+1)]

)
. (66)

The expressions in Eqs. (65) and (66) can be easily determined
using available exchange-correlation subroutines.

In previous one-body SI schemes [43,44,46], it is common
to adopt the ROKS constraint, which consists in setting ψi↑ =
ψi↓ for all states. The ROKS condition is useful to avoid mul-
timinima problems encountered in SI-corrected calculations
[43,44,46]. However, this approximation enforces the same
screening in the two spin channels, which is not generally the
case as seen in Fig. 5. This could affect the polaron energetics.
At variance, our methodology does not require the ROKS
constraint and reaches convergence as fast as standard PBE
calculations.

The present semilocal scheme guarantees the orthogonal-
ization of the wave functions without requiring any modifi-
cation of the available algorithms for the diagonalization of
the Hamiltonian, like the Davidson or the conjugate-gradient
method. Indeed, the potential V γ

σ acts as a local potential on all
the states in the spin channel σ [cf. Eq. (59)]. This is a great
advantage compared to previous SI approaches [42–44,46],
which feature orbital-dependent Hamiltonians [41,104–106].
In particular, in the SI correction scheme of Perdew and
Zunger [42], a different Hamiltonian acts on each state.
In more recent SI methods [43–46], a distinct Hamiltonian
is only used for the polaron state. Such orbital-dependent
Hamiltonians require more sophisticated diagonalization al-
gorithms [106], which are not necessary in our methodology.

Our approach is only marginally affected by the rotational
invariance problem [41,104,105]. We note that the potential
V γ

σ depends on the polaron density nγ
p . In the case of hole

polarons, the occupied manifold preserves the rotational in-
variance under unitary transformations, since nγ

p pertains to
an unoccupied state. On the other hand, in the case of electron
polarons, the rotational invariance is not formally satisfied,
since the polaron state is occupied. However, the diagonaliza-
tion of the Hamiltonian H0

σ + V γ
σ is only affected to a minor

extent because the energy separation between the polaron
level and the other occupied levels is generally sizable. This is
a great advantage of our methodology compared to previous
SI-correction schemes [42–44,46].

The present semilocal scheme has been implemented in the
code PW of QUANTUM ESPRESSO [57] and is available to be
incorporated in the next official release of the code. In the self-
consistent iteration, the polaron density nγ

p is mixed with the
polaron densities at previous steps in the same way as the total
electron density [57].
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FIG. 7. Polaron energy levels εγ
p (Q) and εγ

p (0) for the structure
Rγ

Q as a function of γ for the electron polaron in BiVO4, the hole
polaron in MgO, and the hole trapped at the Al impurity in α-SiO2.
The polaron levels are identified by their respective polaron charge.
The value γk is found such that ε

γk
p (Q) = ε

γk
p (0).

C. Semilocal functional results

First, we calculate the value γk for which the piece-wise
linearity condition is satisfied. Following Eq. (62), we perform
structural relaxations for different values of γ and obtain the
corresponding polaron geometries Rγ

Q. For each structure Rγ
Q,

we calculate the energy levels ε
γ
p (0) and ε

γ
p (Q) pertaining to

the charge states 0 and Q, as illustrated in Fig. 7. We thus
determine γk such that those energy levels coincide, result-
ing in γk = 1.80, 1.96, 2.40 for BiVO4, MgO, and α-SiO2,
respectively. In all cases, the polaron level is situated in the
band gap and provides the required electronic energy gain to
counterbalance the energy cost of the lattice distortions. This
yields stable localized polarons.

We now present the electronic and atomic properties ob-
tained with our semilocal scheme in comparison with the
hybrid-functional PBE0(αk) results. In the two theoretical
schemes, we ensure that the calculations are carried out under
the same conditions for the accuracy of compliance, the finite-
size effects, and the cell size, whereby the differences do not
result from such technical aspects. We show in Figs. 8(a) and
8(b) the polaron density integrated over the xy planes, namely,

np(z) =
∫

dxdy np(x, y, z), (67)

and find an excellent agreement between the two schemes.
To compare the polaron structures, we report in Table VI
the lengths of the distorted bonds. For all investigated
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FIG. 8. [(a), (b)] Polaron densities for the electron polaron in
BiVO4 and for the hole trapped at the Al impurity in α-SiO2 as
obtained with the hybrid functional PBE0(αk) and with the semilocal
scheme introduced in this paper. The polaron densities are integrated
over xy planes. [(c),(d)] Electrostatic potential Velec = VH[Qnγk

p ] and
potential V γk

σp
(Q) averaged over xy planes (Q = −1 for electron po-

larons, Q = +1 for hole polarons). The results for the hole polaron
in MgO are shown in Ref. [47].

polarons, the agreement between the semilocal and the hybrid-
functional values is very good. The differences are all within
0.03 Å, except for the weak Al-O bond in α-SiO2, which
differs by 0.12 Å.

Next, we determine the polaron formation energies and
give the results in Table VII. With our semilocal scheme, we
find formation energies of −0.44 eV, −0.50 eV, and −2.75 eV
for BiVO4, MgO, and α-SiO2, respectively. These values
differ from the hybrid functional values by 0.19, 0.03, and
0.36 eV, respectively. This agreement is remarkable given the
large differences in formation energies found as a function of
α in Figs. 3(d)–3(f). Furthermore, this agreement suggests that
enforcing the piece-wise linearity condition leads to robust
polaron formation energies, irrespective of the choice of the
functional.

The semilocal scheme allows one to carry out convergence
tests with cell size and k-point sampling overcoming compu-
tational limitations inherent to hybrid-functional calculations.
We calculate the polaron formation energy for larger supercell

TABLE VI. Bond lengths (in Å) of the distorted polaronic struc-
tures (q = Q) as obtained with the hybrid functional PBE0(αk) and
with the semilocal scheme introduced in this paper. For α-SiO2, we
give the lengths of the short/long Al-O bonds. For reference, we also
report the corresponding bond lengths as obtained with PBE in the
absence of the polaron (q = 0).

q = 0 q = Q

System PBE Semilocal Hybrid

BiVO4 1.73 1.82 1.80
MgO 2.11 2.23 2.20
α-SiO2 1.74/1.74 1.71/2.03 1.69/1.91

TABLE VII. Polaron formation energy obtained with the hybrid
functional PBE0(αk) and with the semilocal scheme introduced in
this study. Energies are in eV.

Semilocal Hybrid

BiVO4 −0.44 −0.63
MgO −0.50 −0.53
α-SiO2 −2.75 −3.11

sizes and finer k-point sampling for the three systems studied
in this study, as given in Table VIII. The converged results
deviate by at most 0.07 eV from the results in Table VII. This
further corroborates the accuracy of the employed finite-size
correction scheme [75]. For the electron polaron in BiVO4,
we calculate with αk = 0.14 a converged formation energy
of −0.38 eV, to be compared with the value of −1.09 eV
obtained in Ref. [26] with α = 0.22 and with a different
electronic-structure set-up. This is consistent with the varia-
tion of the formation energy by −0.65 eV when α increases
from 0.14 to 0.22, as can seen in Fig. 3(d). For the hole polaron
in MgO, the converged formation energy with αk = 0.34 is
found to be −0.49 eV, in good agreement with the value of
−0.38 eV found in Ref. [75] with a different electronic struc-
ture set-up and with α = 0.33. Accounting for the variation
of the formation energy when α goes from 0.33 to 0.34 [cf.
Fig. 3(e)], reduces the discrepancy to only 0.04 eV.

It is of interest to remark that the formation energies ob-
tained in our semilocal scheme are close to the PBE0(αk)
values, despite the fact that the band gaps are underestimated
like in PBE. This can be understood by considering that the
polaron states of interest in our study are mainly constructed
with band states to which the polaron belongs, i.e., conduction
band states for electron polarons and valence band states for
hole polarons. In such conditions, the description of the band
gap is thus not a stringent requirement for achieving accurate
formation energies.

In the case of MgO, the robustness of the results for the
self-trapped hole polaron is of particular interest. Indeed,
the experimental situation concerning the self-trapped hole
remains difficult to interpret in a clear way [9,107] and the the-
oretical description is controversial [24,33,75,108]. In these
regards, the hybrid-functional and semilocal schemes with

TABLE VIII. Polaron formation energies E γk
f as calculated

with the semilocal scheme for various supercell sizes and k-point
samplings.

System Number of atoms k-point grid E γk
f

BiVO4 96 	 −0.44
96 2×2 × 2 −0.36
216 2×2 × 2 −0.38

MgO 64 	 −0.50
64 2×2 × 2 −0.49
512 2×2 × 2 −0.49

α-SiO2 64 	 −2.75
64 2×2 × 2 −2.69
243 2×2 × 2 −2.68
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FIG. 9. Graphical representation related to Eq. (71) to show the
robustness of polaron formation energies obtained with semilocal
and hybrid functional approaches.

vanishing many-body self-interaction consistently predict a
self-trapped hole with almost identical formation energy (see
Table VII).

It is important to formally investigate the relationship be-
tween the formation energies obtained with the semilocal and
hybrid functional schemes. Indeed, the piece-wise linearity in
these functionals is achieved in remarkably different ways,
either through the local potential V γk

σ or through the nonlocal
Fock exchange terms. The difference between the formation
energies in Eqs. (17) and (64) can be expressed as

Eαk
f (Q) − Eγk

f (Q) = Q
(
ε

αk
b − ε0

b

) − Q
(
εαk

p − εγk
p

)
, (68)

where we focus on the electronic gain due to localization,
assuming that the cost of lattice distortions is similar in the
two schemes. Given the linear dependence of the band-edge
levels with α [cf. Figs. 3(a)–3(c)], the band contributions in
Eq. (68) can be expanded in α as

ε
αk
b − ε0

b = αk
dεα

b

dα
. (69)

Moreover, using the linearity of the polaron level with α

[cf. Figs. 3(a)–3(c)], the polaron terms in Eq. (68) can be
rewritten as

εαk
p − εγk

p = εαk
p (0) − ε0

p (0) = αk

dεα
p (0)

dα
, (70)

where we used the facts that εαk
p and ε

γk
p are constant with q

and that ε
γk
p = ε0

p (0) due to the presence of the prefactor q in
V γk

σ [cf. Eq. (60)]. Hence, through the use of Eqs. (69) and
(70), Eq. (68) becomes

Eαk
f (Q) − Eγk

f (Q) = Qαk

[
dεα

b

dα
− dε0

p (0)

dα

]
. (71)

This expression indicates that when the piece-wise linearity
is satisfied the formation energies obtained with semilocal
and hybrid functionals coincide, provided that the polaron
level at q = 0 and the associated band edge vary with α in
the same way. This condition is generally closely satisfied
because these states belong to the same electronic manifold. A
schematical representation of Eq. (71) is given in Fig. 9. This
analysis emphasizes the robustness of the polaron formation
energies achieved through the enforcement of the piece-wise
linearity, irrespective of the detailed features of the employed
functional.

We verify that V γk
σ (Q) is indeed a weak potential. For this

purpose, we compare V γk
σp (Q) and the electrostatic potential

VH[Qnγk
p ] generated by the polaron charge density Qnγk

p , where
Q = −1 for electron polarons and Q = +1 for hole polarons.
In Figs. 8(c) and 8(d), we show these potentials averaged over
xy planes as a function of the z coordinate, namely,

V (z) = 1

Axy

∫
dxdy V (x, y, z), (72)

where Axy denotes the area of xy planes in the supercell. In
all cases, we find that the potential V γk

σp (Q) is considerably
weaker than the electrostatic potential. Moreover, the peak
of the potential V γk

σp (Q) amounts to a small fraction of an
electronvolt [cf. Figs. 8(c) and 8(d)]. This confirms a pos-
teriori that the polaron can be localized by adding a weak
potential to the PBE Hamiltonian. Additionally, we remark
that the potential V γk

σp (Q) carries an opposite sign with respect
to the electrostatic potential. To understand this property, let
us focus on the case of electron polarons [e.g., in BiVO4,
Fig. 8(c)]. The electrostatic potential VH[−nγk

p ] generated by
the polaron charge density results in a potential well, which
repels the negative charge of the electron polaron. Hence,
VH[−nγk

p ] tends to delocalize the electron polaron charge den-
sity. The potential V γk

σp (Q) opposes this electrostatic potential,
thereby favoring polaron localization. A similar reasoning
applies to the case of hole polarons.

V. CONCLUSIONS

In this paper, we first develop a unified theoretical for-
mulation encompassing many-body and one-body forms of
self-interaction. We find an analytic expression for both forms
of self-interaction and highlight their connection in terms of
the dielectric constant. In particular, the two forms of self-
interaction are found to coincide when the electron screening
is turned off. This analysis thus confers superiority to the
notion of many-body self-interaction with respect to that of
one-body self-interaction. Second, we address the many-body
self-interaction of polarons at the semilocal level of theory.
Polaron localization is achieved by the inclusion of a weak lo-
cal potential in the Kohn-Sham Hamiltonian that enforces the
piece-wise linearity of the total energy upon electron occupa-
tion. Our methodology is particularly advantageous from the
computational point of view. In particular, it does not entail
any computational overhead compared to regular semilocal
calculations, does not suffer from diagonalization problems
related to orbital-dependent Hamiltonians, and avoids the use
of the ROKS constraint. The resulting structural and elec-
tronic properties are in agreement with those of a hybrid
functional satisfying the same constraint. This agreement sug-
gests that the suppression of the many-body self-interaction
leads to polaron properties that are robust with respect to the
adopted functional. This is expected to hold also in the case of
competitive polaronic states at surfaces [109] or in amorphous
materials [110].

Our paper shows that implementing a constraint like the
piece-wise linearity from exact density functional theory in
approximate functionals results in a successful description
of the self-interaction. Following the same lines, one could
also specifically focus on including the long-range −1/(ε∞r)
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dependence of the Coulomb potential [91], which is another
property of the exact density functional [39]. In PBE0(α)
functionals, these properties correspond to setting the fraction
of Fock exchange to αk and αlr = 1/ε∞, respectively. For
most materials, the values of αk and αlr are generally quite
close, leading to similar band gaps [25,63]. When αk and
αlr differ noticeably, it is still possible to include both con-
ditions coming from exact density functional theory through
the consideration of more involved functionals, such as range-
separated hybrid functionals [25,65,91,96].

To conclude, our paper advances the conceptual under-
standing of the self-interaction problem in density functional
theory. This paves the way to efficient calculations of polarons
in large systems, in systematic studies involving large sets of
materials, and in molecular dynamics evolving over long time
periods.
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APPENDIX A: ASSUMPTIONS OF THE UNIFIED
THEORETICAL FRAMEWORK FOR THE

SELF-INTERACTION

In our unified theoretical formulation for the self-
interaction (cf. Sec. III A), the polaron level εα

p (q) is assumed
to be linear in q and in α. This assumption has implications
on the wave functions ψα

iσ , which we discuss here in detail.
We first focus on the assumption of linearity of εα

p (q) with
respect to q. Then, the first derivative of εα

p (q) with respect to
q must be a constant. For simplicity, we consider the case α =
0. Using the Hellmann-Feynman theorem and the chain rule
for the derivatives with respect to q, we get

dε0
p (q)

dq
= 〈

ψ0
p

∣∣dH0
σp

dq

∣∣ψ0
p

〉

=
∑

σ

∫
drdr′ δH0

σp
[n0

↑, n0
↓](r)

δn0
σ (r′)

dn0
σ (r′)
dq

n0
p(r). (A1)

We note that the derivative dn0
σ /dq can be split into contribu-

tions pertaining to the polaron and to the valence electrons.
Using the definition of the density of valence electrons in
Eq. (39), we can write

dn0
σ

dq
= dn0

σval

dq
− δσ,σp

(
n0

p + q
dn0

p

dq

)
. (A2)

By inserting Eq. (A2) in Eq. (A1), one infers that dε0
p (q)/dq is

constant with q when neglecting the variations of the polaron
density with q and the second-order derivative of the valence

electron density with respect to q, i.e.,

dn0
p

dq
= 0 and

d2n0
σval

dq2
= 0. (A3)

Such conditions also apply to the respective wave functions
and can be extended to the case α �=0.

Next, we consider the assumption of linearity of εα
p (q) in

α. Then, the first derivative of εα
p (q) with respect to α must

be a constant. Using the Hellmann-Feynman theorem and
expliciting the α dependency of the Hamiltonian Hα

σp
, one has

dεα
p (q)

dα
= 〈

ψα
p

∣∣dHα
σp

dα

∣∣ψα
p

〉
= 〈

ψα
p

∣∣ d

dα

(
H0

σp
+ α

∂Hα
σp

∂α

)∣∣ψα
p

〉

= 〈
ψα

p

∣∣(dH0
σp

dα
+

∂Hα
σp

∂α
+ α

d

dα

∂Hα
σp

∂α

)∣∣ψα
p

〉
. (A4)

Then, neglecting the explicit α-dependent term in Eq. (A4),
one obtains

dεα
p (q)

dα
= 〈

ψα
p

∣∣(dH0
σp

dα
+

∂Hα
σp

∂α

)∣∣ψα
p

〉
, (A5)

where

dH0
σp

dα
=

∑
σ

∫
dr

δH0
σp

[nα
↑, nα

↓]

δnα
σ (r)

dnα
σ (r)

dq
, (A6)

and

∂Hα
σp

∂α
= −Vxσp [nα

↑, nα
↓] + VX

[{
ψα

iσp

}]
. (A7)

Thus, Eq. (A5) depends on α only through the wave functions
ψα

iσ . Therefore, the assumption of constant dεα
p (q)/dα with

α implies neglecting the variations of the wave functions
with α, i.e.,

dψα
iσ

dα
= 0. (A8)

APPENDIX B: CONNECTION WITH OTHER PREVIOUS
LITERATURE

Following Ref. [37], the electron addition energy can be
expressed in our notation as

Eα (q) − Eα (0) = −qεα
p (0) + �α

p (q) + �α
p (q), (B1)

where �α
p is defined as SI energy of the polaron in the ab-

sence of electron screening, and �α
p is the energy contribution

arising from wave-function relaxation. We here find the ex-
pression of �α

p and �α
p within our formulation. We start by

expanding the total energy Eα (q) in q around q = 0,

Eα (q) − Eα (0) = q
dEα (q)

dq

∣∣∣∣
0

+ q2

2

d2Eα (q)

dq2

= −qεα
p (0) + q2

2

d2Eα (q)

dq2
, (B2)

where we used Janak’s theorem. Next, we split the second-
order derivative of Eα (q) with respect to q into bare and
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screening contributions, namely,

d2Eα (q)

dq2
= d2Eα (q)

dq2

∣∣∣∣
bare

+
(

d2Eα (q)

dq2
− d2Eα (q)

dq2

∣∣∣∣
bare

)
.

(B3)

We remark that

d2Eα (q)

dq2
=

(
1 − α

αk

)
d2E0(q)

dq2
, (B4)

and that, similarly to Eq. (53),

d2Eα (q)

dq2

∣∣∣∣
bare

= (1 − α)
d2E0(q)

dq2

∣∣∣∣
bare

. (B5)

Then, comparing Eqs. (B1) and (B2), and using Eq. (55), one
identifies the following expressions for �α

p and �α
p :

�α
p (q) = 1

2
(1 − α)q2 d2E0(q)

dq2

∣∣∣∣
bare

= (1 − α)
E0(q)
∣∣
Sio, (B6)

�α
p (q) = 1

2

(
1 − α

αk

)
q2 d2E0(q)

dq2
− (1 − α)
E0(q)

∣∣
Sio.

(B7)

Through our formulation, we thus find a connection between
the approaches in Ref. [37] and Refs. [45,46].
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