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Dynamical quantum impurities in metals induce electronic correlations in real space that are difficult to
simulate due to their multiscale nature, so that only s-wave scattering in clean metallic hosts has been investigated
so far. However, screening clouds should show anisotropy due to lack of full rotational invariance in two- and
three-dimensional lattices, while inherent disorder will also induce spatial inhomogeneities. To tackle these
challenges, we present an efficient and robust algorithm based on the recursive generation of natural orbitals
defined as eigenvectors of the truncated single-particle density matrix. This method provides well-converged
many-body wave functions on lattices with up to tens of thousands of sites, bypassing some limitations of other
approaches. The algorithm is put to the test by investigating the charge screening cloud around an interacting
resonant level, both on clean and disordered lattices, achieving accurate spatial resolution from short to long
distances. We thus demonstrate strong anisotropy of spatial correlations around an adatom in the half-filled
square lattice. Taking advantage of the efficiency of the algorithm, we further compute the disorder-induced
distribution of Kondo temperatures over several thousands of random realizations, at the same time gaining
access to the full spatial profile of the screening cloud in each sample. While the charge screening cloud is
typically shortened due to the polarization of the impurity by the disorder potential, we surprisingly find that rare
disorder configurations preserve the long-range nature of Kondo correlations in the electronic bath.
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I. INTRODUCTION

The fundamental description of systems involving a macro-
scopic number of particles subject both to interactions and
disorder is a central question in condensed matter physics
[1]. Quantum impurity problems, where a few localized de-
grees of freedom experience strong Coulomb repulsion, while
hybridizing with a much larger system of otherwise free par-
ticles, constitute the simplest manifestations of many-body
phenomena, which have made them a central focus of research
[2]. Beyond their obvious relevance in describing actual impu-
rities in metals [3] or transport in electronic quantum dots [4],
quantum impurity models are used in a wider context through
the dynamical mean-field theory (DMFT) [5], describing at
the local level, fully interacting lattice problems. Over the
years, considerable effort has been devoted to the study
of spatial correlations between a quantum impurity and its
surrounding environment (see Ref. [6] for a review). The as-
sociated “Kondo cloud” indeed reveals a nontrivial screening
process extending deep into the Fermi gas [7], that is how-
ever challenging to access experimentally through transport
measurements. Significant theoretical attention has focused
on the subtle correlations displayed in the spatial profile of
the electronic density in response to a local polarization of the
impurity [8–14]. Also, many alternative proposals for mea-
surements have been made [15–25], and recently experimental
evidence for a characteristic Kondo length was obtained
[26].

Inherent to the experimental realizations of dynamical
quantum impurity systems is the presence of charged or mag-
netized static defects that can affect the properties of the bulk
metallic host. Strong randomness in an environment harbor-
ing dilute magnetic impurities can for instance induce wide
distributions of Kondo temperatures [27,28], leading to exotic
non-Fermi liquid behavior. In the standard case of the spin
Kondo effect, it was demonstrated that the random potential
in the bath decreases the density of states at the impurity site
[29], hence exponentially suppressing the Kondo temperature,
which makes, paradoxically, the Kondo screening cloud ex-
tend over much longer scales than in the clean case. Clearly,
a microscopic picture of the spatial Kondo correlations at
play in dirty metals is still missing. In addition, studies of
screening clouds in higher than one dimension have relied
until now on full circular/spherical symmetry of the Fermi
surface, reducing the problem to one-dimension in the case
of s-wave impurity scattering. However, more complicated
Fermi surfaces can give rise to anisotropic screening clouds,
a topic that has also not been investigated yet. Our main goal
here is to provide a tailored quantum impurity solver that can
efficiently resolve spatial correlations on large-scale lattices,
and possibly in the presence of spatial disorder, allowing us to
explore some surprising aspects of these systems.

Simulating the real space screening properties of disor-
dered quantum impurity problems requires not only tech-
niques that can tackle lattices with tens of thousands of
sites, but that are also fast enough to systematically sample
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over thousands of disorder configurations. Indeed, numeri-
cal renormalization group (NRG) [2,30] studies of Kondo
clouds [26] have been limited so far to clean environments
[11,31], due to the time-consuming reconstruction of accurate
real space features. The density matrix renormalization group
(DMRG) [32] can also resolve real space features around
quantum impurities [12], but existing studies are limited to
lattices with a few hundreds of sites only. As a result, only
approximate scaling equations have been used to provide a
(qualitative) picture of how the single Kondo scale is affected
by disorder [29]. Understanding quantitatively the micro-
scopic properties of disordered quantum impurity problems
and the associated spatial correlations in the dirty screening
cloud remains an open problem, that we wish to address here.

In order to tackle the challenge of simulating dirty quantum
impurity problems on large lattices and for a huge number
of disorder samples, we propose to exploit the hierarchical
structure of electronic correlations when impurity problems
are expressed in their natural orbital (NO) basis. In terms of
second quantization fermionic operators c†

i describing an arbi-
trary complete set of orbitals, natural orbitals q†

α = ∑
j c†

j Pjα

are constructed from the orthonormal eigenvectors Pjα obey-
ing

∑
j Qi jPjα = λαPiα , with Qi j the one-body density matrix

(covariance matrix) defined as Qi j = 〈c†
i c j 〉, where the expec-

tation value is with respect to the full many-body ground state
of the problem. The efficient representation of many-body
problems through NOs was first exploited in quantum chem-
istry [33,34], permitting an optimal description of molecular
wave functions, while taking into account the most rele-
vant correlations at play. Indeed, core orbitals of atoms or
molecules are almost fully occupied, and correspond to frozen
NOs with an occupation close to 2 (considering spin-1/2
electrons), that can be well treated at mean-field level. Valence
orbitals constitute the active space, that must be attacked with
a full configuration interaction calculation, which allows one
to deal with a smaller and most pertinent subspace of the
complete Hilbert space.

However, NOs are not known beforehand, as they depend
on the full ground state of the system, and numerical meth-
ods have been developed to approximate them. Typically, the
active space is constructed by advanced minimization algo-
rithms, that form the core of standard quantum chemistry
packages [35]. Iterative schemes have also been proposed in
the quantum chemistry context by Li and Paldus [36], and
the recursive algorithm that we present in this article exploits
similar ideas, yet in the field of quantum impurity models.
Indeed, it has recently been demonstrated numerically that the
ground states of quantum impurity models in clean hosts are
efficiently described by NOs [37–39], and a rigorous math-
ematical background for these ideas has also been provided
[40]. These studies of the covariance matrix in impurity mod-
els have shown that approximations in which correlations are
confined to a small subset of NOs, converge exponentially to
the true ground state as the number of correlated orbitals is
increased [39].

This observation allows two alternative yet efficient de-
scriptions of the ground state of quantum impurity models.
The first description relies on trial wave functions that are
linear superpositions of a few nonorthogonal Gaussian states

[40–42]. This method relies on optimizing the trial state over
the manifold of parameters defining the Slater determinants,
a task that becomes harder the larger the system. The second
description uses a strict separation of active (correlated) and
inactive (uncorrelated) orbitals in the one-particle natural ba-
sis, treating the former in full configuration interaction, and
the latter within a single Slater determinant [36,39]. This is
the approach that we will pursue in the present paper, although
extending the Gaussian state ideas might be fruitful as well.

In the context of quantum impurity problems, and in some
cases within DMFT calculations, various algorithms based on
natural orbitals have already been developed [43–46], some
of these methods being approximate, while others allow for
systematic improvement and can reach a ground state error
that is orders of magnitude smaller than the smallest rele-
vant energy scale for model parameters of practical interest.
We employ a method [36,37,47] that recursively generates
improved guesses for the NO basis by incorporating new
orbitals into the active space and discarding old ones in steps
reminiscent of sweeps in the density matrix renormalization
group. By demonstrating the usefulness of iterative solvers
in the dirty case, we extend the scope of methods based on
natural orbitals, especially for a more realistic description
of interacting and disordered systems, a notoriously difficult
problem. We have experimented with various sweeping pro-
tocols, and present one here that leads to rapid convergence in
most realizations of the disordered interacting resonant level
model that we studied. We believe the same protocol will
prove efficient for other disordered impurity models.

Our results demonstrate a wealth of counter-intuitive re-
sults that we briefly summarize here. For a half-filled square
lattice, correlations are always negative in the noninteracting
case, but interactions can drive positive correlations between
the impurity and its host not only at short distances, but on
a “butterfly pattern” at a finite range. These correlations die
off mostly faster than with s-wave symmetry, but spread to
longer distances on the diagonal of the 2D lattice. In the case
where the metallic host is disordered, we also find surprisingly
that some rare configurations can survive the presence of
strong disorder, with screening clouds that are robust thanks
to orbitals living near the Fermi level. These two observations
are relevant for the understanding of the entanglement gener-
ated by a Fermi liquid between diluted quantum impurities in
realistic lattices.

The article is structured as follows. In Sec. II, we present
the recursive algorithm for quantum impurity models, together
with the sweeping protocol that, in our experience, gives the
best performance. We then benchmark the method on the
interacting resonant level model (IRLM), by comparing to ac-
curate NRG simulations on the Wilson chain. We also present
the direct computation of the Kondo screening cloud in the
clean case, for a large number of sites in a real space chain, a
method that is more practical than NRG simulations. Having
demonstrated the method’s ability to handle large systems,
we then employ it to study the highly anisotropic screening
cloud that results in a two-dimensional square lattice at half-
filling. In Sec. III, we use the recursive algorithm to study the
effect of charge disorder on the bath surrounding a quantum
impurity, and give an analysis of spatial correlations within
the dirty screening cloud. Finally, in Sec. IV, we summarize
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our results and present potential applications for disordered
Kondo systems. Two appendices discuss technical matters.

II. RECURSIVE GENERATION OF NATURAL ORBITALS

A. The general idea

Natural orbital methods are based on a many-fermion vari-
ational ground state Ansatz of the form

|�〉 = f †
1 . . . f †

Nocc

∑
S

�S|S〉. (1)

Here f †
1 to f †

Nocc
create fermions in orbitals deep enough in

the Fermi see that their occupancy can be approximated as
equal to one. We refer to this set as the occupied sector.
From the orthogonal complement of the occupied sector, one
defines a reduced set of M orthogonal orbitals that will be
hosting the correlations. We call this subspace the correlated
sector (or active space in quantum chemistry). The remaining
orbitals define the unoccupied sector, and, with an occupancy
approximated to zero, do not take part in the state (1). The
sum over S in (1) runs over all Slater determinants describ-
ing a certain number Ncor of fermions occupying orbitals
in the correlated sector (typically M/2 particles in case of
half-filling). For a given choice of the occupied, correlated
and unoccupied sectors, the coefficients �S that minimize
the expectation value of the energy, are such that

∑
S �S|S〉

is the ground state of an effective Hamiltonian Heff in the
correlated sector, which is obtained from the full Hamiltonian
H by treating particles in the occupied sector at mean-field
level. (Full details are provided below.) The quality of the
Ansatz hinges on the choice of orbitals that span the occupied,
correlated and unoccupied sectors. The optimal choice has the
property that the occupied and unoccupied sectors are spanned
by the eigenvectors (natural orbitals) of the covariance matrix
that have eigenvalues closest to one or zero respectively. In
fermionic impurity problems, the energy expectation value
of the optimal Ansatz converges exponentially to the true
ground-state energy as M is increased, with a rate that stays
finite in the thermodynamic limit.

The true covariance matrix of the system is not known a
priori, as it needs to be calculated from the exact ground state.
Strategies that recursively generate improved guesses for the
NOs surmount this problem as follows. Given is a guess for
the NOs and a partitioning into the occupied, correlated and
unoccupied sectors. To improve this guess, the correlated sec-
tor is expanded by adding to it well-chosen orbitals, typically
one each from the current occupied and unoccupied sectors,
as well as increasing the number of particles hosted by the
correlated sector, typically by one. This results in a correlated
state with typically one added fermion, that we denote here∑

S �add
S |S〉, obtained as the ground state of the effective

Hamiltonian Heff in the enlarged correlated sector. From there,
the covariance matrix is estimated as Qi j = 〈�add|c†

i c j |�add〉,
where |�add〉 = f †

1 . . . f †
Nocc−1

∑
S �add

S |S〉 is the full many-
body state obtained by completing

∑
S �add

S |S〉 with the
Nocc − 1 fermions in the reduced occupied sector. This es-
timate for the covariance matrix has M + 2 eigenvectors
associated with eigenvalues different from zero and one. Of
this set, the two eigenvectors with eigenvalues closest to zero
and one are then respectively put back into the occupied and

FIG. 1. Initialization: The first M sites of the chain are chosen
to describe the correlated space (in red), whereas a diagonalization
of the hopping matrix t̂ = P̂Ê tP̂ between the remaining N − M
sites defines the orbitals spanning the uncorrelated space (in blue).
Orbitals fα obtained from this diagonalization are paired according
to their energy relative to the chemical potential, and introduced
into the correlated sector two at a time, before proceeding to the
diagonalization of the enlarged space.

unoccupied sectors, thus reducing the number of orbitals in
the correlated sector back to M. At this point the procedure
is repeated, starting with the step of choosing orbitals from
the occupied and unoccupied sectors to add to the correlated
sector. The protocol for making this choice is designed to
ensure that all (or most) steps lower the energy. The process
is repeated until |�〉 has flowed sufficiently close to a fixed
point. In general, this fixed point may not be completely opti-
mal. However, our benchmarking of the protocol we devised
against numerically exact NRG results reveals that the error of
the fixed point of our protocol, compared to the optimal state
of form (1) is negligible with respect to the deviations to the
exact ground state.

B. The detailed algorithm

The efficiency of the recursive generation of natural or-
bitals crucially depends on the initial choice of the NOs and
the recursive update protocol. We now present the strategy that
we found most reliable and efficient. Our protocol is generic,
but it is convenient to introduce a concrete model in order to
explain it. Consider therefore the clean interacting resonant
level model, whose disordered version we will study in detail
in Sec. III,

H = V (c†
1c2 + H.c.) +

N−1∑
i=2

ti (c†
i ci+1 + H.c.)

+U

(
c†

1c1 − 1

2

)(
c†

2c2 − 1

2

)
. (2)

Here c†
i creates an electron at site i of the chain, with N sites

in total. See top panel of Fig. 1. This spinless model consists
of a fermionic impurity (at site 1) coupled to a noninteracting
electronic lead, represented by a tight-binding chain. Despite
the spinless nature of Eq. (2), Kondo physics emerges for
U < 0 in the charge sector (here U is the Coulomb interac-
tion between the impurity and the bath). This is due to the
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degeneracy of the states |0〉 and c†
1c†

2|0〉 that is not lifted at first
order in V , the hybridization between impurity and the bath.
A chain form of the bath is used for simplicity, but the method
presented here can be adapted to any lattice, even in 2D or
3D (see Appendix A). The values of the hopping parameters
ti in the chain are for now left arbitrary, and are restricted to
nearest neighbors here just for simplicity of notation.

Initial choice for the correlated sector. We first have to
choose a complete set of orbitals in order to start the iteration
procedure. In this initial basis, we also need to pick M orbitals
that will constitute the correlated space. Convergence will
clearly be helped if the initial guess is closer to the final
solution. Bearing in mind that we eventually will study dis-
ordered systems, we choose to initialize the correlated space
by selecting the impurity orbital and the Wannier orbitals
associated with the M − 1 sites nearest to the impurity

Iterative diagonalization. For a given choice of the cor-
related sector, the occupied and unoccupied sectors must be
constructed from orbitals that span the orthogonal comple-
ment of the correlated sector. We note that an arbitrary rotation
and reordering of these orbitals is possible since they are
nearly degenerate with respect to the spectrum of the covari-
ance matrix, and we found that such an update can strongly
affect the convergence speed. During the iterative procedure
of building the natural orbitals, the orbitals initially defined
as uncorrelated will be added to the correlated space two at
a time, and it is important to choose the most favorable set.
We want to start with those that are most likely to participate
in correlations, which are generally the ones closest to the
Fermi energy. We thus perform a one-body diagonalization
of the noninteracting part of the Hamiltonian, projected onto
the orthogonal complement of the correlated sector,

N∑
j=1

〈0|ciP H |U=0Pc†
j |0〉Pjα = EαPiα (3)

where P = ∑
α f †

α |0〉〈0| fα and { f †
α } spans the orthogonal

complement of the current correlated sector. In the first step,
we can choose { f †

α } = {c†
j | j = M + 1, . . . , N}, as illustrated

in Fig. 1. We use the results of this diagonalization to up-
date the bases for the occupied and unoccupied sectors f †

α ←∑N
i=1 Piαc†

i , such that orbitals f †
α with Eα < 0 form the oc-

cupied sector and the remaining ones form the empty sector.
We sort the uncorrelated orbitals such that E1 is the first
energy below the Fermi energy, E2 is the first energy above the
Fermi energy, E3 is the second energy below the Fermi energy,
etc., and use this order when we incorporate orbitals into the
correlated sector during the iterative process of building the
natural orbitals.

After the above determination of the correlated and uncor-
related sectors, we apply the following sweep protocol. We
denote the current set of correlated orbitals q†

1, . . . , q†
M . Their

expansion coefficients in terms of the site basis c†
i are denoted

Pia. (At step n = 1, the q†
a orbitals are equal to the M first site

orbitals c†
i .) In the first step of the sweep, we remove the first

pair of uncorrelated orbitals f †
1 and f †

2 from the occupied and
unoccupied sectors respectively and add them to the correlated
sector : q†

M+1 = f †
1 and q†

M+2 = f †
2 . All other f orbitals are

kept frozen, resulting in a few-body Hamiltonian truncated to

the M + 2 kept orbitals (see Ref. [39] for details),

Heff =
M+2∑
a,b=1

[
tab + 2

N−M∑
α=3

(Uαabα − Uαaαb)nα

]
q†

aqb

+
∑

a,b,c,d

Uabcd q†
aq†

bqcqd + Eocc, (4)

Eocc =
N−M∑
α=3

tααnα +
N−M∑
α,β=3

(Uαββα − Uαβαβ )nαnβ. (5)

Here the latin indices a, b, c, d refer to the M + 2 correlated
orbitals, while the greek indices α, β denote the N − M − 2
frozen orbitals f †

α that have occupancy nα = 0 or 1, providing
the mean-field shift of the first line of Eq. (4). It plays a
role similar to the effective single-particle Hamiltonian in
Hartree-Fock theory, only, instead of being derived from a
noninteracting variational Ansatz, it is derived from an Ansatz
that restricts interactions to orbitals in the current estimate of
the optimal correlated sector. To obtain this expression, we
reformulated the single interaction term Uc†

1c†
2c2c1 term of

Hamiltonian (2) as a four-leg tensor UABCD = UP1AP2BP∗
2CP∗

1D
in the complete NO basis, i.e., A, B, C, and D can each be a
lower case roman index referring to a correlated orbital or a
greek index referring to an uncorrelated orbital. As a result,
Uabcd is the contribution that is internal to the correlated q
orbitals, while Uαβγ δ acts within the uncorrelated sector, and
provides only a constant energy shift in (5). Terms like Uaαbα

couple both sectors without exchanging particles and con-
tribute to the additive one-body part of the correlated sector.
Similarly,

tAB = −U

2
(P1AP∗

1B + P2AP∗
2B) + V (P1AP∗

2B + P2AP∗
1B)

+
N−1∑
i=2

ti(PiAP∗
i+1,B + Pi+1,AP∗

iB) (6)

describes all the additive one-body terms of H in the NO
basis, accounting for the chain hoppings ti, the hybridiza-
tion V , and the particle-hole symmetry restoring potential
−U (n1 + n2) in (2). Only the terms tab and tαα contribute in
(4), because correlated and uncorrelated orbitals do not mix
in the wave function. The choice

∑
S �add

S |S〉 = |GS〉 where
|GS〉 is the Ncor + 1 particle ground state of Heff (with one
particle added) minimizes with respect to the coefficients �add

S
the expectation value 〈H〉 of the full Hamiltonian for the com-
plete Ansatz |�add〉 = f †

1 . . . f †
Nocc−1

∑
S �add

S |S〉. The matrix
dimension of Heff grows exponentially in M, but because the
original Hamiltonian typically only contains two-body inter-
actions, the number of nonzero entries per row only grows
like M4. We could therefore efficiently find the ground state
of Heff using sparse matrix techniques for M � 16, although
M = 6 already proved sufficiently accurate for most practical
purposes.

From the ground state of Heff , the nontrivial (M + 2) ×
(M + 2) block Qab = 〈q†

aqb〉 of the covariance matrix is
obtained, and its eigenvectors provide a new set of M +
2 orbitals q̃†

a. The two q̃ orbitals with covariance matrix
eigenvalues closest respectively to 0 and 1 are redefined as
new f orbitals and moved to the unoccupied and occupied
spaces. The M kept orbitals define the new correlated space, to
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FIG. 2. Evolution of the Hamiltonian during step n + 1 of a
sweep. We define H (n) by adding the orbitals f2n−1 and f2n to the
current correlated space. Computing the covariance matrix Q̂ in the
ground state of Hn defines a new set of orbitals q̃i . Dropping the
two orbitals (in blue) that have occupancy closest to 0 and 1, we can
add two new f orbitals, thus defining the Hamiltonian H (n+1) at step
n + 1.

which the next two f orbitals are added. This diagonalization
procedure is iterated until all uncorrelated f orbitals have been
incorporated into the correlated sector once. See Fig. 2 for
a schematic description of this whole scheme. This process
allows inclusion of information from all orbitals (describing
all spatial scales) into the update of the correlated orbitals.

Sweeps. The iterative diagonalization described above con-
stitutes a sweep, that gives a first approximation of the NOs of
the problem. In order to reach full convergence of the NOs (for
a given size M of the correlated subspace), we perform several
sweeps, taking the NOs obtained at the end of the previous
sweep to initialize the next one. Monitoring the energy or
any other relevant observable provides some practical notion
of convergence of the NOs, and in most cases, 10 to 20
sweeps are enough. The accuracy of the final ground state can
generally be assessed by computing the variance of the total
Hamiltonian, but we turn now to a more detailed comparison
to NRG results.

C. Benchmark on the Wilson chain

We test the quality of the many-body wave function our
iterative algorithm produces by comparing to NRG, taking the
same energy grid in the bath for both algorithms. We model
the bath with a constant density of states in a symmetric band
of half-width D, that we take as our unit of energy. We per-
form the standard preliminaries of logarithmic discretization
of the bath energies, transforming the bath Hamiltonian into a
Wilson chain with hopping parameters,

ti = (1 + �−1)(1 − �−(i−2)−1)

2
√

1 − �−2(i−2)−1
√

1 − �−2(i−2)−3
�−(i−2)/2D. (7)

4 6 8 10 12 14
M

10−12

10−10

10−8

10−6

10−4

10−2

E
R

G
N

O
−

E
N

R
G

U = −0.5

U = 0.5

U = 1.0

FIG. 3. IRLM ground-state energy obtained from the recursive
natural orbitals algorithm, relative to the NRG result, as a function
of the number of correlated orbitals M, and for three different values
of the interaction U . The calculation is performed for hybridization
V = 0.15D, Wilson parameter � = 2.0, and N = 110 sites.

Here the index i has been offset as i − 2 with respect to the
usual NRG conventions, because the chain starts at i = 2 and
not i = 0 in our definition for Hamiltonian (2). We perform
simulations for � = 2, N = 110 sites and Nkept = 1500 kept
states, which ensures converged results close to the thermody-
namic limit given the parameters of the following study.

When the chemical potential of the bath is set to μ =
0, Hamiltonian (2) enjoys particle-hole symmetry, and the
ground state exhibits a quantum phase transition for U �
−1.3D, and well-developed Kondo correlations for U < 0,
which permits us to test our methodology in a nontrivial
many-body regime. Nevertheless, we have to be careful with
both algorithms when we approach close to the transition,
since the characteristic energy scale TK vanishes exponentially
in this regime, whereas the thermodynamic limit requires
N > D/TK. For the IRLM, where Kondo correlations develop
in the charge sector, the Kondo temperature is defined as

TK = 1

4χ
, with χ = ∂〈n̂1〉

∂ε1

∣∣∣
ε1→0

(8)

where χ is the local susceptibility of the impurity to a small
energy bias ε1 n̂1, with n̂1 = c†

1c1 the density operator at the
impurity site i = 1. The Kondo temperature measures the
stability of the ground state to local particle-hole symmetry
breaking perturbations at the site of the impurity, and its
vanishing at the critical point signals the onset of spontaneous
particle-hole symmetry breaking at U < Uc. In practice, the
derivative is computed by calculating the ground state twice,
once at ε1 = 0 and once at ε1 	 TK. In Fig. 3, we compare
the ground state energy obtained by recursive generation of
natural orbitals to the one computed in NRG, for different
values of the interaction, and hence for different TK. We see
that the natural orbital algorithm converges exponentially with
the number M of natural orbitals in the correlated space for
any value of the interaction as previously reported [39,40],
thanks to the exponential decay of the occupancies in the
covariance matrix of quantum impurity models. In contrast
to the NRG-based determination of the natural orbitals in
Ref. [39], the correlated orbitals are now directly found
through the recursive protocol described in Sec. II. For U =
−0.5D, the ground state energy is converged to 5 significant
digits for only M = 6 correlated orbitals, and we can go up
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FIG. 4. Amplitude Pi1 along the Wilson chain of the most cor-
related natural orbital q1, computed in NRG and with the recursive
natural orbitals algorithm, for U = −0.5D. This orbital is the eigen-
vector of the Q̂ matrix whose eigenvalue is the closest to 1/2. The
inset shows the convergence with M at site n = 16, and similar
precision is obtained for all sites. The simulation is done for a chain
of N = 110 sites, but the plot is cut at N = 50 since the weight of the
orbital is almost 0 further on.

to 8 digits with M = 12. This precision is well below the
corresponding value of TK � 3 × 10−3D, ensuring that Kondo
correlations are fully captured. In weakly correlated regimes,
either for U > 0 or for U 	 −1.3D, we can easily converge
the energy with a precision better than 10−10. The noninter-
acting case U = 0 is exact by construction of the ansatz (1).

Another quantity of interest is the “spatial” extension of
the NOs along the Wilson chain. The complete set of natural
orbitals can be extracted from converged NRG simulations
[39] by computing the full covariance matrix Q̂, and extracting
its eigenvectors. We compare in Fig. 4 the NRG and recur-
sively obtained amplitude Pi1 of the most correlated orbital
q†

1 = ∑
i Pi1c†

i (defined as having its occupancy the closest to
1/2), which carries most of the Kondo entanglement. Even
with a number of correlated orbitals as low as M = 6, the re-
cursive result is nearly indistinguishable from the NRG results
(the inset shows a precision of several digits, that improves by
increasing M). We see in Fig. 4 that the largest amplitudes are
around the site n = 15, which corresponds to an energy of
�−15/2D � 5 × 10−3 comparable indeed to TK � 3 × 10−3.
At fixed M, the recursive algorithm can only find the M
most correlated orbitals, but this is not a real disadvantage
in comparison to other methods: due to their very near de-
generacy in the spectrum of Q̂, alternative methods also have
to apply exponential effort to resolve the remaining orbitals
individually.

Finally, we show on Fig. 5 how the energy converges as
a function of sweep iterations, for several values of the num-
ber M of correlated orbitals used in the recursive algorithm.
After a rapid exponential decrease, the energy saturates to a
plateau. The sweeps are typically stopped when the changes
in the energy become smaller than 10−10. We observe that
more sweeps are necessary for larger values of M, since more
degrees of freedom in the correlated sector need to be updated.
In the shown example, Kondo correlations are well developed,
but fewer than 10 sweeps are required to reach an error well
below TK � 3 × 10−3D. For U 	 −D or U > 0 in the IRLM,
correlations are shorter ranged, and this accelerates reaching
the fixed point to less than 10 sweeps.
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FIG. 5. Relative ground-state energy as a function of the number
of sweeps Nsweep for different numbers M of correlated orbitals. The
computation are done with N = 110 sites on the Wilson chain and
for U = −0.5D.

D. Kondo Screening Cloud: clean case

1. One dimensional chain

We proceed now to the study of a system that goes further
than standard NRG calculations on the Wilson chain, and
that exploits the linear scaling of computation time with the
number of lattice sites for each step within a sweep of the
recursive algorithm. Our goal in this section is to study the
quantum correlations in the screening cloud of the IRLM, a
task that requires a good spatial resolution on all scales for
exponentially large chains. The screening cloud of the Kondo
model has been studied accurately in early paper by Borda
[11], but the use of NRG is expensive, as each lattice point
in the wanted spatial correlator requires an independent NRG
calculation on a two bath geometry. DMRG studies on real
space lattices have also been reported [12], but seem limited
to lattices of moderate size. In contrast to NRG, NOs allow
for a single shot method, that provides a direct computation
of the whole correlation cloud once the many-body wave
function is known. In practice, an accurate characterization of
the complete screening cloud can be obtained in a few seconds
of running time depending on the size of the bath, and this
advantage will become crucial for studying ensemble averages
later on for the disordered IRLM.

We will still focus on the IRLM Hamiltonian (2), but now
using the standard real space discretization of the finite-size
system, so that the hoppings ti = t are constant on a chain
with N = 104 sites. In order to keep the density of states at
the Fermi energy unchanged between the logarithmic and the
real space implementations, we take t = 0.5D. In the spinful
Kondo problem, the impurity magnetic moment is screened
by the electrons of the bath below the temperature TK, and
the ground state is a singlet formed by the impurity and
the electrons involved in the screening process. The spatial
extension of this singlet, the screening cloud, is usually ob-
served through the equal-time spin correlator between the
impurity and fermions at site i, 〈
S.
s(i)〉. The one-channel
Kondo Hamiltonian and the IRLM are related by a bosoniza-
tion transformation [48], and the 〈Szsz(i)〉 component of the
spin correlator of the Kondo model can readily be related
to a natural IRLM observable, namely the following charge
correlator:

Ci = 〈(c†
1c1 − 〈c†

1c1〉)(c†
i ci − 〈c†

i ci 〉)〉 (9)
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FIG. 6. Absolute value of the spatial correlator Ci at each site
of the chain with N = 104 sites (top/bottom panels correspond to
even/odd sites). The parameters are U = −0.5D and V = 0.15D.
Convergence is shown from four increasing values of M. Dashed
lines show analytic short- and long-distance asymptotes described
in the text. In the bottom panel, while the data clearly shows the
crossover to long-distance behavior, even a 104 site chain is too short
to see the fully developed asymptotic long-distance behavior.

between the impurity charge and the local density operator at
site i in the chain. Subtracting here the average charge is done
to reveal the long-distance fluctuations that originate from
nontrivial correlations between the impurity and the bath. At
half filling and without disorder, one has simply 〈c†

1c1〉 =
〈c†

i ci 〉 = 1/2. The correlator Ci is computed for every site
including the impurity at i = 1. By summing Ci over all lattice
sites, and using the fact that

∑
i c†

i ci is the conserved number
of particles, one obtains the sum rule

N∑
i=1

Ci = 0. (10)

Without a simple benchmark to NRG results for the observ-
able Ci, we compute the variance of the Hamiltonian (〈H2〉 −
〈H〉2)/〈H〉2 to have a quantitative measure of the precision of
the state built from the truncated NOs. The square root of the
variance is a measure of the error in the variational energy rel-
ative to the real ground-state energy. For the results presented
below, the states obtained recursively give an energy variance
of at worst 10−10, and we will see that other observables are
well converged also with respect to M.

Figure 6 shows our results for the IRLM screening cloud
in a very large system with N = 104 sites, for U = −0.5D
and V = 0.15D, corresponding to a screening length LK =
1/TK � 300 sites. The even and odd sites have been sepa-
rated into two panels for better readability, due to the strong
2kF oscillations of the cloud. This separation allows us also
to extract the envelope of these oscillations, which can be

compared to universal scaling predictions. At intermediate
distances 1 	 i 	 LK, perturbation theory [10] predicts a
decay in i−1 for both components. For distances i � LK, an
i−2 decay is obtained by Fermi liquid arguments for the largest
component, and an i−4 decay for the 2kF component [49]. We
indicate these asymptotic behaviours on Fig. 6 with dashed
lines. While finite size effects prevent full resolution of the
long-distance behavior even in a 104 site system, it is clear that
the calculated screening cloud shows the expected crossover
between these two regimes, that has no analytical prediction.
It takes place at distances i ∼ LK and extends over a decade.
From the calculated screening clouds, we see that M = 6 is
enough to get a good precision on the screening cloud, except
near the end of the chain, where the 2kF correlations drop
to tiny values. Since our simulations are very fast for M = 6
and N ∼ 103 sites (a single run takes a few seconds), we can
exploit the method to investigate statistical aspects of Kondo
correlations in disordered metals, a challenging question that
we will explore in Sec. III.

2. Two-dimensional square lattice

Dynamic impurities embedded in two- or three-
dimensional lattices are usually considered under the
assumption of a circular or spherical Fermi surface [6].
At length scales sufficiently larger than the lattice constant,
the approximate circular or spherical symmetry of the
problem, together with the short range nature of the coupling
between the impurity and the host, then permits one to forget
about the lattice and assume s-wave scattering only. This
reduces the problem to an effective one-dimensional model.
Until now, the large dimension of the single-particle Hilbert
space of a two- or three- dimensional lattice has prevented
the study of higher dimensional screening clouds beyond the
case of circular/spherical Fermi surface. Here we consider an
interacting resonant level adatom coupled to the central site
(0,0) of a (2� + 1) × (2� + 1) square lattice. We assume
uniform nearest-neighbor hopping in the lattice. At half-filling
the system has a square Fermi surface and a logarithmic van
Hove singularity in the density of states at the Fermi energy.
To the best of our knowledge, dynamic impurity screening
clouds have to date not been studied in this two-dimensional
setting. We note however that a strongly anisotropic pattern
has been predicted in the charge fluctuations around a static
impurity surrounded by an interacting fermionic bath with a
square Fermi surface [50].

The Hamiltonian reads

H = U (d†d − 1/2)(c†
0,0c0,0 − 1/2) + V (c†

0,0d + d†c0,0)

+ t

2

∑
NN

(
c†

i1, j1
ci2, j2

+ c†
i2, j2

ci1, j1

)
, (11)

where the sum in the last line runs over all distinct pairs of
nearest neighbors on a square lattice with opposing corners
at (±�,±�) and at (∓�,±�). We have normalized the
hopping term such that the half-bandwidth is 2|t | as in the
one-dimensional case we considered previously. We study in
what follows a 301 × 301 lattice. Point-group symmetries and
accidental degeneracies reduce the dimension of the single-
particle Hilbert space of the nontrivial part of the problem
from 90 602 to 11 402, (roughly a factor of 8 reduction).
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FIG. 7. Left panel: The IRLM screening cloud for a d-orbital adatom coupled to the central site of a 301 × 301 square lattice at half-filling.
(One ninth of the full lattice is shown). Here V = 0.15D and U = −0.4D in units of the half-bandwidth D. Middle panel: Same as left panel,
but now with U = 0, showing that correlations are always negative in the noninteracting case. Right panel: The screening cloud, summed over
all sites that are 2l nearest-neighbor hops away from the central site for U = −0.4D and for U = 0. The power laws indicated as dashed lines
are (12l )−1.2 for U = −0.4D and (4l )−1.7 for U = 0.

Technical details of the calculation are provided in Ap-
pendix A. In Appendix B, we also refute a claim that a
tridiagonalization scheme can reduce 2D Kondo impurity
problems on an L × L lattice to an effective one-dimensional
chain with order O(L) sites. The problem that we tackle main-
tains therefore a two-dimensional complexity with respect to
the orbital sector.

We work in units where the half-bandwidth is D =
1, and we set V = 0.15D, U = −0.4D. This leads to a
Kondo temperature of TK = 0.012D, calculated using (8).
This is somewhat larger than the single-particle level spac-
ing (π/302)D = 0.010D at the Fermi level, which serves as
infrared cutoff. We therefore expect to see well-developed cor-
relations. Resolving dilute correlations in a two-dimensional
lattice requires high accuracy. We took M = 12 and estimate
that the calculated correlation cloud is converged to correla-
tions down to �10−9. We computed the real space correlation
cloud Ci, j = 〈(d†d − 1/2)(c†

i, jci, j − 1/2)〉. In the left panel
of Fig. 7 we show the result in the patch 0 � i, j � 100,
which constitutes 1/9th of the full system studied, using a
logarithmic color scale clipped at ±10−9. For comparison, we
show the U = 0 uncorrelated cloud for the same V in the mid-
dle panel. At V = 0.15D, the U = 0 cloud has TK = 0.05D,
five times larger than TK of the U = −0.4D interacting case.
In general, we obtain an X-shaped cloud. This is similar to
the shape of the single-particle orbital b0 in the clean lattice
at the Fermi energy to which the d orbital couples, which has
the position-representation wave function

〈0|ci, jb
†
0|0〉 = (−) jδi j + δi0δ j0

2
√

� + 1
. (12)

However, unlike the Fermi orbital (12), the cloud decays along
the ( j,± j) diagonals and spreads away from them. It is clear
that there is significantly more spreading when U = −0.4D,
than when U = 0, due to the smaller TK in the interacting case.
A more qualitative difference is that the U = 0 cloud never
takes on positive values, i.e., the charge polarity everywhere
on the lattice tends to be opposite to that on the d orbital,
and is strictly confined to the A sublattice for which i + j is

even. In contrast, for the interacting case with U = −0.4D,
the charge polarity on the central site (C0,0 = 0.007) tends to
be the same as on the d orbital, as is expected from the fact that
negative U favours zero or double occupancy of the d orbital
and the central site. More interesting is the fact there is another
“butterfly-like” region, between 10 and 30 lattice constants
away from the central site, where charge polarity again tends
to be the same as on the d orbital (yellow dots in Fig. 7).
We also observe a significant presence of correlations on the
B sublattice in the interacting case: indeed, at U = −0.4D,∑

(i, j)∈B |Ci, j | = 0.073 while
∑

(i, j)∈A |Ci, j | = 0.19, i.e., cor-
relations on the B sublattice grow to more than a third of the
correlations on the A sublattice. (These B − sublattice corre-
lations are strictly zero in the noninteracting case). Finally,
in the right panel of Fig. 7, we plot minus the total amount
of correlations at hopping distance 2l , i.e., −∑

|i|+| j|=2l Ci, j ,
as a function of 2l . The equivalent quantity in the case of
approximate circular symmetry is 2πrCr where Cr is the cloud
at any point a distance r from the impurity. At distances
smaller than 1/TK, 2πrCr decays like 1/r for all U , up to
logarithmic corrections. For the case of a square Fermi sur-
face, the sum is dominated by slowly decaying correlations
close to |i| = | j| = l . The decay inside the cloud seems to
obey a power law, although only one decade is clearly re-
solved. Unlike in the circularly symmetric case, the power
law depends on U , with slower decay at negative U than at
U = 0. Both at U = 0 and at U = −0.4D, the decay is faster
than in the case of circular symmetry. However, the cloud on
the diagonals ( j,± j) decays more slowly than in the case of
circular symmetry.

The picture of the anisotropic cloud that emerges from this
study is one in which significant parts of the region within
1/TK away from the impurity is free of significant correla-
tions, while in other regions that are 1/TK away from the
impurity, correlations are asymptotically larger than expected
from the isotropic limit. Based on these findings, we speculate
that in half-filled square lattice with many IRLM type impuri-
ties, a small fraction of impurities will interact via correlations
induced in the conduction band, possibly even if they are more
than 1/TK apart, while the majority of the impurities will not
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significantly interact, even if they are closer to each other
than 1/TK. Extending our study to the case of spinful Kondo
impurities would be interesting, but similar anisotropy effects
are certain to take place.

III. SCREENING CLOUD IN DISORDERED
ENVIRONMENTS

A. The model for dirty screening clouds

Early studies have explored the physics of Kondo impu-
rities in disordered environments, but due to the difficulties
in simulating real space lattices, approximate scaling equa-
tions [51] have mostly been used. Partly due to its relevance
for dilute Kondo alloys, but partly also due to the above
practical limitation, previous papers have focused on the dis-
tribution of Kondo temperatures. The recursive NO method
promises a more quantitative description of this problem, and
an access to various microscopic observables in the ground
state, such as the screening cloud. We propose here to add
charge disorder to the real space IRLM equation (2), still with
uniform hoppings ti = t = D/2 in the chain, adding a generic
disorder potential in the Hamiltonian,

Hdis =
N∑

i=2

vi c†
i ci . (13)

Here the disorder is modelled by a local potential vi that is
uniformly distributed in the interval [−v, v] on every site of
the chain, except for the impurity site i = 1. Indeed, we chose
to exclude a random potential on the impurity because it auto-
matically polarizes the impurity site, trivially destroying most
Kondo correlations. The potential term vi explicitly breaks
particle-hole symmetry, and the average charge 〈c†

i ci 〉 is not
uniform anymore. We emphasize that the disordered IRLM
corresponds to a Kondo model with random magnetic uniaxial
disorder, a problem that has not been studied extensively yet.
The physics that we explore will turn out to be quite different
from known aspects of the standard spinful Kondo problem
with charge disorder.

We use the recursive method presented in Sec. II for each
realization of the disorder. We take M = 6 and N = 103 sites,
which is enough because charge disorder tends to make corre-
lations shorter ranged than in the clean IRLM. For a randomly
selected subset of disorder realizations we repeated our calcu-
lations at increasing M, and find in each case that indeed the
cloud and TK data at M = 6 is converged. The efficiency of our
algorithm allows us to sample 104 realizations of the disorder,
and obtain good statistics. For each run, we follow the flow of
the ground state energy and of another sensitive observable,
for instance 〈c†

1c1〉, to which the Kondo temperature is related
through Eq. (8), so that we can stop the sweeps when both
quantities have saturated. We monitor as well the variance
of the Hamiltonian to ensure good convergence. Out of 104

samples, a few tens of disorder realizations failed to converge
satisfactorily within the maximum number of iterations we al-
lowed our program to run. While experimentation showed that
small changes to our sweeping protocol can converge these
realizations on a case by case basis, we did not pursue it for
each case, and rather discarded this statistically insignificant
subset.
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FIG. 8. Distribution of Kondo temperatures P(TK ) in the Kondo
regime of the dirty IRLM for U = −0.5D and three different disorder
strengths. The horizontal axis is normalized to the clean Kondo
temperature T 0

K � 3 × 10−3D. Generically, the typical TK is pushed
to large values, due to a polarization effect on the impurity, which
makes Kondo correlations short range. A clear bimodal distribution
is however seen at low disorder, showing some degree robustness
towards values close to the clean value.

B. Distribution of Kondo temperatures

In usual Kondo systems displaying spin correlations and
a spin singlet ground state, charge disorder shows various
effects on the distribution P(TK ) of Kondo temperatures
[27–29]. For weak disorder, the shape of P(TK ) follows a
log-normal law that is centered around the clean Kondo tem-
perature T 0

K . At increasing disorder, P(TK ) tends to spread
away from the clean value T 0

K with extended tails down to
TK = 0. This is because the Kondo scale is proportional to
e−1/(ρJ ), with J the Kondo coupling, and charge disorder
tends to deplete the local density of states ρ. A fraction of
unscreened moments contribute to a universal divergence of
the magnetic susceptibility with temperature, that is respon-
sible for an observed non-Fermi liquid behavior as T → 0
in diluted alloys [52–55]. The formation of free magnetic
moments appears when disorder opens sufficiently large gaps
in the local density of states at the Kondo impurity, which
prevents the formation of the singlet. As we will see, charge
disorder has a drastically different effect in the IRLM, because
Kondo correlations rather develop in the charge sector.

In the case of the disordered IRLM, an important effect
of the potential is to drive local charge offsets of 〈c†

i ci 〉 with
respect to the clean value 1/2. In addition to random fluctu-
ations in the density of states, the d-level is also Coulomb
coupled to site i = 2, which induces a strong Hartree shift
U (〈c†

2c2〉 − 1/2)c†
1c1 that polarizes the impurity. This implies

that the local charge susceptibility χ is strongly reduced, and
the relation TK = 1/(4χ ) leads to a boost of the Kondo energy.
As a result, the distribution P(TK ) shifts towards large values
of TK/T 0

K , as is indeed observed in Fig. 8. For weak disorder
v = 0.1D, we see an interesting situation where a dominant
fraction of the samples are indeed pushed to large TK, but a siz-
able portion remains weakly affected, as showed by a bimodal
distribution P(TK ). At intermediate disorder v = 0.3D, long
tails towards TK/T 0

K � 1 are the remnant of this effect. Such
bimodal distributions are also known to develop in spinful
Kondo systems [28,56–58], although the mechanism in the
IRLM seems different, as we show now.
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FIG. 9. Top panel: Kondo temperature for 104 samples, plotted as
a function of the “folded” occupation of the impurity 〈n̂1〉(1 − 〈n̂1〉).
Parameters are the same as in Fig. 8, with a strength of disorder v =
0.3D. Bottom panel: Distribution of the “folded” occupation of the d
level, showing a pronounced bimodal structure.

C. Local charge distribution

We explore here in more detail the physical mechanism
that drives the changes in the Kondo temperature for the
disordered IRLM. Natural orbital methods give access to the
many-body wave function of each individual realization, so
that we can compute any observable in the ground state. We
advocated that the occupation of the impurity is a key quantity,
and indeed we find a clear statistical correlation between the
various Kondo temperatures and the d-level charge (for the
same 104 samples as shown previously), see the upper panel
in Fig. 9. The horizontal axis is here given by 〈n̂1〉(1 − 〈n̂1〉)
instead of 〈n̂1〉, which better displays the rare configurations
where 〈n̂1〉 stays close to 1/2. The closer the occupation is
to 1/2, which corresponds to a weak breaking of particle-hole
symmetry, the closer the system is to the clean case. More sub-
tle effects of disorder, such as bimodality, are also exemplified
by the distribution of the d-level occupation P(〈n̂1〉(1 − 〈n̂1〉))
that is shown in the bottom panel of Fig. 9: a large peak
is indeed observed around 〈n̂1〉 � 0 or 1, and a smaller one
around 1/2, again due to some rare survivors of the clean state.

D. Study of dirty screening clouds

We will show that arguments based on the change of Kondo
temperature induced by a given disorder realization give only
a partial view of the internal affairs in quantum impurity
ground states. We start here by confirming microscopically
that the rare survival cases where TK stays close to the clean
value T 0

K are truly robust to the random potential. This is not
totally obvious, since the potential configuration associated
to these cases shows a prominent and fluctuating potential
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FIG. 10. Spatial correlator |Ci | along the chain for the disordered
IRLM at U = −0.5D, V = 0.15D, and a large disorder amplitude
v = 0.3D. Three specific realizations are selected with the indicated
TK values, and the clean screening cloud is shown as black dots for
comparison (top/bottom panels correspond to even/odd sites in the
chain).

landscape. Recursive generation of natural orbitals offers an
unique way to tackle this problem, by investigating the spatial
decay in disordered screening clouds, as defined in Eq. (9). We
present in Fig. 10 three different dirty screening clouds (that
are typical of the thousands of sample that we computed), one
with Kondo temperature TK that is close to the clean value,
and two that are far from it. The clean Kondo cloud is also
shown as black dots for comparison. We observe clearly that
the global amplitude and shape of the cloud is not radically
affected in the case where TK � T 0

K (which corresponds to
rare situations), despite disorder driving large local fluctua-
tions that reflect the underlying profile of spatially localized
orbitals living near the Fermi level, and that couple predom-
inantly to the impurity. This result is somewhat unexpected
because the localization length at the Fermi energy (∼33 sites
for v = 0.3D) in our samples is typically shorter than the
clean Kondo screening length [59]. In the two cases where
TK � T 0

K (which are the most generic), both the amplitude
and the spatial extension LK of the cloud reduce, but very
surprisingly, LK is not decreased in the same proportion as
the observed 100- to 1000-fold enhancement of TK. Thus, the
naive scaling prediction TK � 1/LK does not hold for dirty
screening clouds, which is another unexpected result of our
study.

We will now show how disorder affects the cloud ampli-
tude, an effect that is again driven by the local environment of
the impurity. Let us first start by analyzing the Toulouse point,
namely U = 0 in the IRLM. In that case, we can simplify
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FIG. 11. Total amplitude of the cloud ||C|| against the occupation
〈n̂1〉(1 − 〈n̂1〉), sampled for all 104 disorder realizations, with the
same parameters as in Figs. 9 and 10. A nearly perfect match with the
twice the folded occupation, represented by a dashed line is observed.

expression (9) using Wick’s theorem, and we find exactly,

Ci>1 = −|〈c†
1ci 〉|2 < 0, (14)

while C1 = 〈n̂1〉 − 〈n̂1〉2 > 0 since the d-level occupancy is
positive and smaller than one (this last equation for C1 is also
valid at finite U ). From the sum rule (10), we thus get the total
cloud amplitude

||C|| =
N∑

i=1

|Ci| = 2(〈n̂1〉 − 〈n̂1〉2), (15)

which is thus only controlled by the impurity occupation. In
the interacting case, Eq. (15) will stay exact provided the cor-
relations Ci>1 remain negative, which turns out to be obeyed
for most of the 104 samples that were numerically investigated
for the disordered IRLM. We can verify indeed in the Kondo
regime at U = −0.5D that the cloud amplitude ||C|| follows
with high accuracy the law of Eq. (15) (see Fig. 11). This
demonstrates that the local occupation of the dot is a variable
that controls very precisely the global properties of the dirty
screening cloud, which may be counter-intuitive at first sight.

We can also examine the structure of the Kondo state via
the underlying natural orbitals, and how they react to disorder.
Figure 12 shows the spatial structure of the most correlated
orbital q†

1 given by the squared amplitude |Pi1|2. We compare
here the clean case to two dirty samples, one that is relatively
immune to disorder (with TK � T 0

K ), and one with short-range
Kondo correlations (with TK � 103T 0

K ). As expected, the sam-
ple with TK � T 0

K shows spatial correlations on a short length
scale. This short scale is however significantly larger than
1/TK , consistent with our results for the screening cloud Ci.
For the sample with TK � T 0

K , a strong modulation of the
amplitude is observed with respect to the clean limit, but the
structures extends at least up to the clean Kondo length 1/TK.
While confirming again the robustness of some rare samples
to disorder based on the insensitivity of TK, we see here that
the single scale TK is insufficient to provide a detailed picture
of the spatial Kondo correlations in dirty metallic hosts.

FIG. 12. Dispersion |Pi1| of the most correlated orbital q†
1 along

the real-space chain, with the same parameters as Fig. 10, showing
the clean case and two realizations of disorder, leading respectively
to a robust and sensitive Kondo scale. The orbital is clearly more
delocalized for the smallest TK.

IV. CONCLUSION AND PERSPECTIVES

We close this article by summarizing our main results and
giving perspectives on the potential applications of recursive
natural orbital methods to fermionic open quantum systems.
First, we were able to achieve single-site resolution of the
screening cloud in a large two-dimensional square lattice at
half-filling (with up to 90 000 sites). We showed that rich
correlation structures beyond the known s-wave paradigm are
manifest, especially that the spreading is very anisotropic.
Second, we found that spatial correlations between an inter-
acting resonant level and a dirty metallic host can be robust
to strong charge disorder. We found indeed that the quan-
tum impurity is immune to some rare configurations of the
random potential, as shown by screening clouds that extend
as much in space as in the clean case, despite strong local
fluctuations. However, for the majority of cases where the
impurity is polarized by its environment, the Kondo length of
the corresponding cloud is less reduced compared to the as-
sociated enhancement of the local Kondo scale defined as the
inverse impurity susceptibility, breaking a scaling hypothesis
that applies in the clean case. A more visible effect of disorder
is a global reduction of the correlation cloud amplitude, that
is also controlled by local physics at the impurity site.

Our recursive algorithm, that builds on previous ideas on
iterative methods for natural orbitals, constitutes an ideal tool
to study the complex electronic environment surrounding a
quantum impurity. This study prepares the way for various
extensions, foremost towards a deeper understanding of dis-
ordered Kondo impurities, by applying recursive NO methods
to the spinful Anderson impurity model, since natural orbitals
provide an efficient description in that case as well [39,40].
The protocol we presented here requires one diagonalization
of an N × N matrix per sweep, while the computation time
for all remaining steps scale linearly in N , the system size.
We are currently attempting to developing alternatives to the
diagonalization step. This will allow us to describe large scale
electronic baths with up to hundreds of thousand of sites and
to include complex geometrical effects in 2D or 3D, from
interfaces to lithographically designed circuits for quantum
electronics. Also, the entanglement of two (or more) diluted
impurities in a metal should receive some attention, due to
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the strong anisotropic structure of the screening cloud in 2D
and 3D, which can strongly affect their RKKY coupling.
Besides the study of dirty metallic environments, the inter-
play of superconductivity and disorder in quantum impurity
physics is also a completely open question [24]. Recursive
natural orbital methods might be able to investigate whether
the Kondo singlet between a local spin and a dirty super-
conductor enjoys the protection from disorder associated to
Anderson’s theorem. Finally, working with natural orbitals
is also the natural language of quantum chemistry, and an
ab initio implementation for a quantum impurity in metallic
hosts would be valuable. Indeed, the determination from first
principles of the right model for a given magnetic atom in a
metal is still an open problem [60], which could be addressed
by extensions of natural orbital methods.
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APPENDIX A: TECHNICAL DETAILS REGARDING THE
IRLM ON A SQUARE LATTICE

In this Appendix, we provide technical details regard-
ing the calculation of the screening cloud of the IRLM for
a d-orbital adatom coupled to the central site of a (2� +
1) × (2� + 1) square lattice. While the single-particle Hilbert
space associated with this finite system has dimension (2� +
1)2 + 1, the Hamiltonian is invariant under the point group
symmetry generated by ci, j → c− j,i (π/2 rotations about the
central site) and ci, j → c j,i (reflection about i = j). As a
result, we can consider sectors corresponding to different
elements of the point group separately. There are eight such
sectors. The d orbital only couples to the Wannier orbital
localized on site (0,0). The latter belongs to the symmetric
sector (left invariant by both generators), and as a result only
orbitals in this sector take part in interactions. There are
(� + 1)(� + 2)/2 + 1 orbitals in this sector. They can for
instance be taken as

am,n = 1√
2

�∑
i, j=−�

[ψm(i)ψn( j) + ψn(i)ψm( j)]ci, j, (A1)

for m < n, and

am,m =
�∑

i, j=−�

ψm(i)ψm( j)ci, j, (A2)

together with the d orbital, where

ψm( j) = 1√
� + 1

cos

[
π j

(
m + 1

2

)
� + 1

]
. (A3)

Here am,n are annihilation operators associated with single-
particle states that diagonalize the Hamiltonian of the clean
system (V = 0). The associated single-particle energies are

Emn = t

{
cos

[
π

(
m + 1

2

)
� + 1

]
+ cos

[
π

(
n + 1

2

)
� + 1

]}
. (A4)

Accidental degeneracies (not associated with the point group
symmetry of the lattice) further reduce the number of orbitals
coupled to the impurity. Let Eα with α = 1, 2 . . . , N , and
Eα �= Eβ when α �= β be the distinct single-particle energies
in the symmetric sector of the clean lattice without the impu-
rity. Then, for each E ∈ {E1, . . . , EN } define the normalized
superposition

bE = 1√
DE

∑
m,n

δEm,n,E 〈0|c0,0a†
m,n|0〉am,n. (A5)

Explicitly 〈0|c0,0a†
m,n|0〉 = √

2 − δm,n/(� + 1) and

DE =
∑

m,n δEm,n,E (2 − δmn)

(� + 1)2
. (A6)

The Wannier orbital localized on the central site is a superpo-
sition of these bE orbitals,

c0,0 =
EN∑

E=E1

√
DE bE . (A7)

The bE orbitals are also eigenstates of the clean lattice tight
binding Hamiltonian. Thus only the bE orbitals are involved
in interactions, and we therefore have to solve a many-body
problem in a Fock space built on N + 1 orbitals, where N
is the number of distinct single-particle energies associated
with the symmetric sector (under point group symmetry) of
the clean lattice without the impurity. The Hamiltonian is of
the “star” variety and reads

H∗ = U
2 (d†d − 1/2)

(
EN∑

E ,E ′=E1

√
DE DE ′b†

E bE ′ − 1/2

)

+V
EN∑

E=E1

√
DE (b†

E d + d†bE ) +
EN∑

E=E1

E b†
E bE . (A8)

The energies of the single-particle orbitals that diagonalize H∗
when U = 0 are roots of the characteristic equation

ε = V 2
EN∑

E=E1

DE

ε − E
. (A9)

Clearly, there are N + 1 distinct roots, none of which equal
any of the Eα . Thus, each Eα is perturbed when the d orbital
hybridizes with the lattice, and the number of orbitals coupled
to the impurity cannot be reduced further. Associated to the
logarithmic van Hove singularity in the middle of the band is a
�(� + 1)/2� − fold degenerate zero-energy level, Em,�−m =
0 for m � �/2. Often, this is the only accidental degeneracy
that is present, in which case

N = (� + � mod 2)(� + 2 − � mod 2)

2
+ 1. (A10)

In applying the RGNO algorithm to the above problem,
we made two small modifications to the protocol presented
in Sec. II: Firstly, because single-particle orbitals cannot be
ordered uniquely based on their distance from the central
site, and because we are considering a clean system in which
Anderson localization is absent, we pick the initial correlated
sector to contain the MbE orbitals with energies closest to
zero (the Fermi level). Secondly, we order orbitals in the
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uncorrelated sector by diagonalizing the clean lattice Hamil-
tonian

∑EN
E=E1

E b†
E bE , projected onto the uncorrelated sector,

and ordering eigenstates in ascending order of their distance
from the Fermi energy. Unlike what we did previously, here
we do not include hybridization terms when ordering the
uncorrelated sector. We found that this was necessary to obtain
good convergence. We believe this is due to the fact that the
large bare hybridization term between the b0 orbital and the
d orbital associated with the van Hove singularity at E = 0
[V/

√
� + 1 as compared to ∼V/(� + 1) at other energies], is

strongly renormalized downward by the interaction.

APPENDIX B: NO EXACT REDUCTION FROM L × L
LATTICES TO O(L) CHAINS

The preceding Appendix shows that symmetry consider-
ations can reduce the numerical effort on a L × L lattice
from L2 orbitals down to L2/8. However, in Refs. [61,62]
a scheme is presented that maps clean nearest-neighbor
tight-binding Hamiltonians in higher than one dimension
onto one-dimensional chains with nearest-neighbor hopping
only. The scheme works by recursively generating orthog-
onal “Lanczos” orbitals |ψn〉 on the higher dimensional
lattice, such that 〈ψm|H |ψn〉 = 0 for m < n − 1, where H
is the higher-dimensional tight-binding Hamiltonian. While
this method is numerically exact once all symmetry class
orbitals have been exhausted, it is claimed [61,62] that one can
keep in an exact way only O(L) sites on the effective chain,
much lower than the expected O(L2) effort. At the moment,
our method allows us to study two-dimensional Kondo-box
systems with Kondo lengths somewhat smaller than the sys-
tem size (yet much larger than the lattice constant). With
the reported reduction, our method would be able to handle
two- or three-dimensional systems with linear dimensions that
are an order of magnitude or more larger than the Kondo
length. Unfortunately, in view of the analysis presented in
Appendix A, the reduction cannot be exact as claimed. The
point group symmetry of the square lattice only leads to a
reduction from L2 to ∼L2/8 before one ends up with a system
with a nondegenerate single-particle spectrum in which each
level is coupled to the impurity.

However, it is tempting to ask whether an early truncation
of the chain made before reaching its final end could lead to an
accurate approximation of the impurity problem. We therefore
implemented the scheme of Ref. [61] and studied the nonin-
teracting resonant level model (U = 0) for a d orbital coupled
to the central site of a diamond-shaped lattice with corners
at (±�, 0) and (0,±�). (This is the shape recommended in
Ref. [61].) We took V = 0.15 and � = 100. The total number
of sites, excluding the d orbital is 20 201. We included the
stabilization measures discussed in Ref. [61] and find that the

FIG. 13. Top panel: The error in the local hybridization 〈d†c0,0〉
for the noninteracting resonant level model on a diamond shaped
lattice with boundaries at (i, j) such that |i| + | j| = 100, after n itera-
tions of the recursive scheme presented in Ref. [61]. Here V = 0.15D
in units of the half-bandwidth D. Bottom panel: Spatial profile of the
nonlocal hybridization 〈d†c2 j,0〉 as a function of site j, for the same
system as in the top panel, after n iterations, for various n. These
results demonstrate that no sizable gain can be obtained using 1D
Lanczos orbitals, beyond the symmetry reduction already performed
in Appendix A.

method is indeed numerically stable. If the claims in Ref. [61]
were correct, we would have obtained the exact answer after
100 iterations. In the top panel of Fig. 13 we plot the error in
the local hybridization 〈d†c0,0〉 as a function of the number
n of iterations. After 100 iterations, 〈d†c0,0〉 is obtained only
to two significant digits. After 2000 iterations the answer is
correct to seven digits, and convergence to the exact answer
(to numerical precision) is obtained finally after the expected
L2/8 � 2600 iterations. In the bottom panel of Fig. 13, we
plot the spatial profile of the hybridization from the impurity
to the bath along the x axis, |〈d†c2 j,0〉| after respectively 100,
800, 1600, and 2600 iterations (this hybridization contains all
the information on the screening cloud in the noninteracting
case). We see that more and more Lanczos iterations are
required to get reasonable accuracy, the further away from the
central site one moves. We conclude that the recursive scheme
of Ref. [61] does not offer a shortcut for accurately calculating
the impurity screening cloud on large 2D lattices.
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