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Nonlinear responses in condensed matter have attracted recent intensive interest because they provide rich
information about the materials and hold the possibility of being applied in diodes or high-frequency optical
devices. Nonlinear responses are often closely related to the multiband nature of the system, which can be
taken into account by the geometric quantities such as the Berry curvature, as shown in the nonlinear Hall
effect. Theoretically, the semiclassical Boltzmann treatment or the reduced density matrix method have often
been employed, in which the effect of dissipation is included through the relaxation time approximation. In
the diagrammatic method, the relaxation is treated through the imaginary part of the self-energy of the Green’s
function and the consequent broadening of the spectral function for the integration over the real frequency.
Therefore, the poles of the Green’s function do not play an explicit role when there is finite dissipation. In
this paper, in stark contrast to the conventional picture, we show that the poles of the Green’s function mainly
determine the nonlinear response functions with dissipation, which leads to the terms with the Fermi distribution
function of complex argument and results in the dissipation-induced geometric term. Furthermore, we elucidate
the geometric origin of the nonreciprocal conductivity, which is related to the Berry curvature generalized to the
higher derivative. Finally, we derive analytical results on the geometric terms of the nonlinear conductivities in
type-I and type-II Weyl Hamiltonians to demonstrate their crucial roles.
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I. INTRODUCTION

Recently, nonlinear response in bulk systems in condensed
matter physics has been intensively studied, especially in the
context of higher-harmonic generations [1–6], nonlinear Hall
effect [7–11], photovoltaic effect [12–16], and nonreciprocal
transport [17–26], because they have information on the sym-
metry of material and have the possibility of application to
devices. For example, we can detect the parity breaking of
the bulk through the detection of the second-harmonic gener-
ation [1–3]. Furthermore, the photovoltaic effect in bulk has
the possibility of application to high-frequency rectification
devices [16]. Moreover, the large nonreciprocality was found
in superconductors [21–23] and can be applied to the diode
devices.

In linear conductivity, the effect of dissipation and
multiband contribution are usually separated, such as the
anomalous quantum Hall effect, which can be described by the
Berry curvature and is not affected by dissipation. On the other
hand, in nonlinear conductivity, both dissipation and multi-
band contribution intertwine the novel transport. For example,
the Berry curvature dipole (BCD) term is proportional to the
lifetime, which is the inverse of the strength of dissipation,
while it is also proportional to the Berry curvature [27–29].
Moreover, it has been pointed out in Ref. [18] that, for the
nonreciprocal current under time-reversal symmetry (TRS),
both dissipation and multiband are necessary. Therefore, it is
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essential to properly analyze the effect of dissipation on the
multiband contribution in nonlinear conductivities.

In most previous studies, the nonlinear response has been
commonly studied by the semi-classical Boltzmann (SCB)
treatment [7,27,28,30] or the reduced density matrix (RDM)
method [4,31–35]. In these methods, it is not easy to consider
the effect of dissipation rigorously. Therefore, we usually use
the relaxation time approximation (RTA) to include the dissi-
pation or calculate each relaxation time for various scatterings
[27,28], such as the side-jump and skew scattering. RTA has
the problem that it breaks the gauge invariance between the
velocity gauge and the length gauge [31,36], and it cannot
describe the proper relaxation when considering the finite
input frequency [36], while it well describes the relaxation
when considering the dc input [36].

In the microscopic diagrammatic theory, the relaxation is
treated by the imaginary part of the self-energy of the Green’s
function and the vertex corrections. The former also leads
to the broadening of the spectral function, which appears in
the integration over the real frequency. The reason for this
integration path is to avoid the poles of the Fermi distribution
function (DF) at Matsubara frequencies, but those contribu-
tions are small for nonlinear responses, as will be shown later.
Therefore, the poles of the Green’s with imaginary parts and
the Fermi DF with complex argument play an important role.
In previous studies, while the relaxation of the nonequilibrium
states could be considered through the RTA, the effect of the
broadening of the DF could not be captured.

In this paper, we analyze the effect of the broadening of
the spectral function on the nonlinear transport. We eluci-
date that the broadening of the spectral function results in
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the shift of the Fermi DF to the imaginary direction and
the Matsubara term, which cannot be described by the SCB
treatment or the RDM method. Furthermore, the shift of the
Fermi DF to the imaginary direction gives the dissipation-
induced geometric terms. For example, the Christoffel symbol
term appears in second-order nonlinear transport and gives
the multiband correction to the nonlinear Drude term. We
note that this Christoffel symbol term is completely different
from Ref. [37], in which it appears under the magnetic field.
We also elucidate the geometric origin of the nonreciprocal
conductivity, which is related to the Berry curvature gener-
alized to higher derivatives and is also a dissipation-induced
geometric term. Moreover, we analytically derive the geomet-
ric term in the Weyl Hamiltonian for the type-I and type-II
cases. We show that the chemical potential dependence of the
nonlinear Hall conductivity for each case is entirely differ-
ent, and therefore the observation of such chemical potential
dependence can lead to the detection of the Weyl points and
their type. Especially for the type-I case, we also show that
we can estimate the relaxation time in the material from this
observation.

In the following, we derive the shift of the Fermi DF to
the imaginary direction and the Matsubara terms from the
Green’s function methods [36,38]. First, we derive them in
the linear conductivity to illustrate the formulation in Sec. II.
We show the shift of the Fermi DF results in the quantum
metric term at the Fermi surface. In Sec. III, we extend the
results in the linear response to the nonlinear transport and
derive the geometrical terms, such as the Christoffel symbol
term and the generalized Berry curvature (gBC) term. Then,
we numerically calculate it in a model for transition-metal
dichalcogenides and show its dissipation strength and chemi-
cal potential dependence. In Sec. IV, we derive the analytical
results of the geometric terms such as the BCD term and
the Christoffel symbol term for the type-I and type-II Weyl
Hamiltonians. In Sec. V, we summarize our results.

II. DISSIPATIVE GEOMETRY IN LINEAR
CONDUCTIVITY

Before considering nonlinear conductivity, we first ana-
lyze the dissipation effect in linear conductivity. Although the
methods we use in this paper are not so effective in linear
conductivity, the analysis in linear conductivity is pedagogical
and helps us understand the results in nonlinear conductivity.

A. Formulation

In this paper, we include the dissipation effect via the imag-
inary part of the single-particle self-energy and calculate the
conductivity using Green’s function methods. Throughout this
paper, we ignore the momentum and frequency dependence
of the dissipation and suppose the dissipation strength is the
same for all bands. This assumption and approximation are
justified when considering the impurity scattering, indepen-
dent of the momentum transfer, under the first-order Born
approximation. It is also justified to ignore the vertex correc-
tion because here we ignore the momentum dependence of
the self-energy and satisfy the Ward-Takahashi equation. Un-
der these approximations and assumptions, the single-particle

FIG. 1. Path integration in the dc limit.

Green’s function has the same eigenstate as the Hermitian part
of the effective Hamiltonian Heff = H0 + Re�R. We also set
e = kB = h̄ = 1 throughout this paper.

First, we analyze the dissipation effect through the DF in
the linear conductivity and focus on the symmetric part of the
linear dc conductivity σ

αβ

dc = (σα;β + σβ;α )/2 for simplicity
[39]. α(β ) in σα;β represents the output (input) direction. σ

αβ

dc
can be written in the Green’s function methods with the band
indices n, m as

σ
αβ

dc =
∑

k

∫ ∞

−∞

dω

2π
Re
∑
nm

J α
nmGR

mJ β
mn

(
GR

n − GA
n

) ∂ f

∂ω
, (1)

where J α = ∂αHeff , ∂α = ∂/∂kα , Onm = 〈n|O|m〉, On =
Onn, |n〉 is the eigenstates of Heff , and f (ω) is the Fermi DF.
Throughout this paper, we omit writing the momentum depen-
dence of the function, such as J , εn, GR(A)

n , and the frequency
dependence of the Green’s function. In the limit |ω| → ∞,
the integrand is proportional to 1/|ω|3 and, therefore, the
integration

∫∞
−∞ dω/2π is equivalent to the contour integral∮

C dω/2π (along the closed loop C in Fig. 1). For this integral,
we should consider the poles of the advanced Green’s function
(green cross marks in Fig. 1) and the Matsubara frequencies
from the Fermi DF (red cross marks in Fig. 1). Then, Eq. (1)
can be written as

σ
αβ

dc = σ
αβ

M + σ
αβ

G , (2)

σ
αβ

M = Re
∑

k

i

2β

∑
nm

∑
ωM>0

(J α
nmJ β

mn + J β
nmJ α

mn)

×
[

∂

∂ω

(
GR

m(GR
n − GA

n )
)]

iωM

, (3)

σ
α;β
G = Re

∑
k

∑
n

[
J α

n J β
n τ + i

∑
m �=n

(Qαβ
D;n,m+Qβα

D;n,m)

2

× (εnm+2iη)

](
− ∂ f

∂ω

)
εn+iη

, (4)

with

Qαβ
D;n,m = J α

nmJ β
mn

(εnm + 2iη)2
, (5)
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where ωM = (2M + 1)π/β is the fermionic Matsubara fre-
quency, β is the inverse of temperature, εn is the eigenvalue
of Heff , η = −Im�R, τ = 1/(2η), [40] εnm = εn − εm, and
Qαβ

D;n ≡∑m �=n Q
αβ
D;n,m is the dissipative quantum geometric

tensor, which correspond to 〈∂αn|∂βn〉 in the limit of η → 0.
We call the first term σ

α;β
M a Matsubara term because it repre-

sents the contribution from the poles of the Fermi DFs at the
fermionic Matsubara frequencies. While the contribution from
the poles of the advanced Green’s function σG corresponds to
the results by the SCB treatment or the RDM method in the
limit η → 0, [41] the Matsubara term σM is proportional to η

[42] and therefore cannot be considered in the SCB treatment
or the RDM method. We also note that, in the expression
of Eq. (4), the contribution from the poles of the advanced
Green’s function describes the picture of the transport of the
quasiparticles with complex energy εn + iη and the variable
of the Fermi DF changes to a complex number, while the
Fermi-Dirac statistics of electrons are kept since their oper-
ators satisfy the anticommutation relations. Next, we analyze
the second term in Eq. (4). We can understand the dissipative
geometric term as the multiband correction to the Drude term,
which reads

σ̃
αβ

Drude = σ
αβ

Drude + σ
αβ

QM:re, (6)

σ
αβ

QM:re ∼
∑

k

∑
n

gαβ
S;n

τ

(
− ∂ f

∂ω

)
εn

, (7)

gαβ
S;n =

∑
m

gαβ
S;n,m, gαβ

S;n,m = (J α
nmJ β

mn + J β
nmJ α

mn)

2(ε2
nm + 4η2)

. (8)

The detailed derivation is written in Appendix A. We can
derive σ

αβ

QM:re from the dissipative geometric term. We call

gαβ
S;n the smeared quantum metric, which becomes the quantum

metric in η → 0 limit, and σ
αβ

QM:re the (smeared) quantum met-
ric term. At the band degeneracy where εnm = 0, the smeared
quantum metric is proportional to τ 2, and therefore the quan-
tum metric term becomes proportional to τ . We note that
this quantum metric correction was pointed out in two-band
models in Ref. [43]. This means the quantum metric term
describes the multiband correction to the Drude term, which
is proportional to τ . We note that we can also derive this
correction from the RDM methods under the RTA, by chang-
ing f (εn) → f (εn + iη) and approximating Im f (εn + iη) 	
η(∂ f /∂ω)εn . Therefore, we can consider that the quantum
metric term stems from the imaginary part of the Fermi DF.
We also numerically check how large these terms are and
show that the quantum metric term is dominant when the
band degeneracy exists at the Fermi surface in Appendix C.
We also show in Appendix C that the Matsubara term is also
finite, and therefore the treatment in this section is not so
effective in linear response cases. On the other hand, as we
will show in the next section, the Matsubara term is small, and
the description by the shift of the Fermi DF to the imaginary
direction works well in the nonlinear responses.

TABLE I. Symmetry classification and τ dependence.

Term T PT τ dependence

σM O(τ−1)
σDrude × � O(τ 2)
σBCD � × O(τ )
σChS × � O(τ 0) [O(τ 2)]
σgBC � × O(τ−1)

III. DISSIPATION-INDUCED GEOMETRY
IN NONLINEAR RESPONSE

A. Formulation

Next, we consider the effect of the broadening of DF on
second-order nonlinear dc conductivity by the same proce-
dure as the linear case. In nonlinear conductivity, many terms
emerge from the dissipation effect and the formula becomes
so complicated. Therefore, we write the detailed derivation in
Appendix D, and here write the final and summarized results,
which read

σ
α;βγ

dc = σ
α;βγ

M + σ
α;βγ

G , (9)

σ
α;βγ

G = σ
α;βγ

Drude + σ
α;βγ

BCD + σ
α;βγ

ChS + σ
α;βγ

gBC + O(τ−2). (10)

σ
α;βγ

M , σ
α;βγ

G , σ
α;βγ

Drude, σ
α;βγ

BCD , σ
α;βγ

ChS , and σ
α;βγ

gBC represent, re-
spectively, the Matsubara term in nonlinear conductivity, the
sum of the contribution from the poles of the advanced
Green’s function, the nonlinear Drude term, the BCD term,
the Christoffel symbol term, and the gBC term. Here, we
elucidate the last two terms, σα;βγ

ChS and 1 σ
α;βγ

gBC , by considering
the effect of dissipation. It is known that the terms including
GA are proportional to ∂ f /∂ω (see Eq. (16) in Ref. [36]), and
therefore we can divide σ into σG, which includes only the
Fermi surface term, and σM , the contribution from the Mat-
subara poles. In η → 0, σG correspond to the Fermi surface
term in Eq. (E5) in Ref. [36] except for the Christoffel symbol
term, and σM must be zero because it is proportional to η. This
means that the Fermi sea term must be zero in η → 0 and in
the dc limit. Under T symmetry, σDrude and σChS must be zero,
while under PT symmetry, σBCD and σgBC must be zero. We
summarize τ dependence of the dominant contribution of each
term in Table I. Below, we describe the detailed analysis of
each term.

B. Analysis of each term

In this subsection, we analyze each term in Eq. (10). Each
term, except for the Matsubara term, is so complex and, there-
fore, we write the simple forms under some approximations,
which are Im f (εn + iη) 	 η(∂ f /∂ω)εn and ε2

nmτ 2 
 1. We
write the detail derivation of each term and the full terms
without approximation in Appendix D. We also note that the
approximation Im f (εn + iη) 	 η(∂ f /∂ω)εn can be justified
even when βη ∼ 0.5 (see Appendix A).

1. Matsubara term in nonlinear conductivity

The Matsubara term in nonlinear conductivity is the contri-
bution from the poles at fermionic Matsubara frequencies as
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in the case of linear conductivity,

σ
α;βγ

M =
∑
nml

∑
ωM>0

Re

[
∂

∂ω

{
2J α

nm

∂GR
m

∂ω
J β

mlG
R
l J

γ

ln

(
GR

n −GA
n

)

+ J α
nm

∂GR
m

∂ω
J βγ

mn

(
GR

n −GA
n

)}+ {β ↔ γ }
]

ω=iωM

,

(11)

where J βγ = ∂βγHeff and ∂βγ = ∂β∂γ . As we will numeri-
cally show, in the second-order conductivity under the TRS
and the condition πkBT > η, the Matsubara term is small
enough to be ignored, compared with the other finite terms,
and therefore, the description by the Fermi DF of complex
argument works well.

2. Nonlinear Drude term

The nonlinear Drude term can be written as

σ
α;βγ

Drude 	 2
∑

k

∑
n

τ 2J α
n ∂β∂γ f (εn). (12)

Because the nonlinear Drude term is proportional to τ 2, this
term is most dominant in clean metals without TRS. We note
that, if there is the band degeneracy at the Fermi surface, the
Christoffel symbol term can be also dominant, as we will show
later.

3. Berry curvature dipole term

The BCD term [7,44] can be written as

σ
α;βγ

BCD = σ
α;βγ

BCD:re + σ
α;βγ

BCD:im, (13)

σ
α;βγ

BCD:re 	 2τ
∑

k

∑
nm

∂γ (αβ
S;n,m) f (εn), (14)

σ
α;βγ

BCD:im 	
∑

k

∑
nm


αβ
S;nJ

γ
n

εnmτ

(
∂2 f

∂ω2

)
εn

, (15)


αβ
S;n,m = −i(J α

nmJ β
mn − J β

nmJ α
mn)

ε2
nm + 4η2

. (16)

Under the TRS, the nonlinear Drude term must be zero and the
BCD term is dominant. Because σ

α;βγ

BCD:im, which stems from
the imaginary part of the Fermi DF, is proportional to η, it is
not so large in clean systems. Here we can describe the BCD
term by the smeared Berry curvature 

αβ
S;n, which secures the

convergence of the BCD term at the band-crossing points.

4. Christoffel symbol term

The Christoffel symbol term can be described as

σ
α;βγ

ChS = σ
α;βγ

ChS:I + σ
α;βγ

ChS:II, (17)

σ
α;βγ

ChS:I = 2
∑

k

∑
n

�
α;βγ
S;n

(
− ∂ f

∂ω

)
εn

, (18)

σ
α;βγ

ChS:II 	 2
∑

k

∑
n

�
α;βγ

S′;n

(
− ∂ f

∂ω

)
εn

, (19)

where �
α;βγ

S(′ );n
is the smeared Christoffel symbol of the first kind

[37,45]. Starting from the conventional Christoffel symbol

�
α;βγ
n , which reads

�α;βγ
n = 1

2

(
∂γ gαβ

n + ∂βgγα
n − ∂αgβγ

n

)
= 1

2 (〈∂αn|∂βγ n〉 + 〈∂βγ n|∂αn〉), (20)

=
∑

m( �=)n

Re

[
J α

nm

ε2
nm

(∑
l ( �=n)

J β

mlJ
γ

ln + (β ↔γ )

εnl
+J βγ

mn

)]
, (21)

we define �
α;βγ
S;n by substituing gαβ

n → gαβ
S;n, and �

α;βγ

S′;n by
substituting 1/εnl → εnl/(ε2

nl + 4η2) and 1/ε2
nm → 1/(ε2

nm +
4η2). σ

α;βγ

ChS:I stems from the imaginary part of the Fermi DF in
the term, which is originally the BCD terms and the nonlinear
Drude term, while σ

α;βγ

ChS:II stems from the full interband contri-
bution. Interestingly, in this regime, even though σ

α;βγ

ChS:I stems
from the imaginary part of the Fermi DF and the dissipation, it
seems not to depend on the dissipation strength. On the other
hand, when we consider the band degeneracy at the Fermi
surface εn = εm 	 0, the Christoffel symbol term is propor-
tional to τ 2 because gαβ

S;n or 1/(ε2
nm + 4η2) is proportional to

τ 2 and, therefore, the Christoffel symbol term also gives the
multiband correction to the nonlinear Drude term. We note
that the difference between �

α;βγ

S;n and �
α;βγ

S′;n appears when
focusing on the band degeneracy of the two-band systems
with linear dispersion. In that case, �α;βγ

S;n is finite and gives the

correction to the nonlinear Drude term while �
α;βγ

S′;n is zero. We
also note that this Christoffel symbol term is different from the
one under magnetic field derived by the SCB treatment [37].

5. Generalized Berry curvature term

The gBC term can be written as

σ
α;βγ

gBC = σ
α;βγ

gBC:re + σ
α;βγ

gBC:im + σ
α;βγ

gBC:add, (22)

σ
α;βγ

gBC:re 	
∑

k

∑
n,m( �=n)


α,βγ

S′;n,m

εnmτ

(
− ∂ f

∂ω

)
εn

, (23)

σ
α;βγ

gBC:add 	 2
∑

k

∑
n,m,l ( �=n)

{
Im(J α

nmJ
β

mlJ
γ

ln )

ε2
nmεnl

×
(

1

εnmτ
− 1

εnlτ

)(
− ∂ f

∂ω

)
εn

+ (β ↔γ )

}
, (24)

σ
α;βγ

gBC:im 	 −
∑

k

∑
n


α,βγ

S′;n

τ

(
− ∂2 f

∂ω2

)
εn

, (25)

where 
α,βγ
S;n is the smeared Berry curvature generalized to the

second-order derivative and we define 
α;βγ

S′;n,m as derived from


α;βγ
n,m , which reads

α,βγ
n,m = 2Im[〈∂αn|m〉 〈m|∂βγ n〉] (26)

=
∑

m( �=)n

Im

[
J α

nm

ε2
nm

(∑
l ( �=n)

J β

mlJ
γ

ln + (β ↔γ )

εnl
+J βγ

mn

)]

(27)

by substituting 1/εnl → εnl/(ε2
nl + 4η2) and 1/ε2

nm →
1/(ε2

nm + 4η2). σ
α;βγ

gBC:add is zero when considering the
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two-band model and therefore it represent the more than
two-band correction to σ

α;βγ

gBC:re. When considering the
nonreciprocal transport α = β = γ under the TRS, only
this gBC term can be finite. In that case, the nonreciprocal
conductivity is proportional to η, and the dissipation is
essential for the nonreciprocal conductivity, as pointed out
in Ref. [18]. Moreover, we find that when we focus on
two-band models, higher order terms in momentum, such
as the k2 term, in the Hamiltonian is also necessary so
Jαα

mn = 〈m| (∂ααHeff ) |m〉 is nonzero, for the diagonal part of
the finite gBC with α = β = γ . It is because l corresponds to
m in Eq. (27) for the two-band model, and hence the diagonal
part of the gBC vanishes as α;αα

n,m = 2αα
n,mJ α/εnm = 0 [46].

This means that the simple linear Weyl Hamiltonian cannot
generate the nonreciprocal transport under the TRS (see the
details in Appendix D).

C. Model calculation

Now we estimate how large the dissipation-induced geo-
metric terms are in the model calculations. We use the model
which effectively describes 2D transition-metal dichalco-
genides with uniaxial strain, such as MX 2 (M = Mo, W, and
X = S, Te) [47–49], which reads

Heff =
∑
k,s,s′

((ε(k)−μ)σ 0 + (h+g(k)) · σ)ss′c†
k,sck,s′ , (28)

ε(k) = 2t ((1 − p) cos(k · a1)

+ cos(k · a2)+cos(k · (a1+a2))), (29)

gx(k) = α1

2
[sin(k · (a1 + a2)) + sin(k · a2)], (30)

gy(k) = − α1√
3

[
sin(k · a1)+ sin(k · (a1+a2))−sin(k · a2)

2

]
,

(31)

gz(k) = 2α2

3
√

3
[sin(k · a1)+sin(k · a2)−sin(k · a1+a2)], (32)

where μ is the chemical potential, h is the magnetic filed, t
is the hopping, a1 = (1, 0), a2 = (−0.5,

√
3/2), p represents

the effect of the uniaxial strain, and α1(2) is the spin-orbit cou-
pling. When h = 0, this model holds the TRS, while mirror
symmetry of the y direction is broken due to finite p. Because,
in this paper, we consider an in-plane magnetic field such as
h = (hx, 0, 0), we can ignore the coupling with the orbital
motion. In this section, we set the parameters as t = 0.5, p =
0.3, α1 = 0.08, α2 = 0.06 in the numerical calculation for
Fig. 2, Figures 3–5. Figure 2 shows the energy dispersion of
the model when μ = 0. It has the band degeneracy M, M ′,
and � points and their energy levels are ε = −0.7, ε = −1.3,
ε = 2.7. The density of states is large near ε = −1.3, corre-
sponding to the nearly flat dispersion along K ′-M ′.

1. Cases with the time-reversal symmetry

In this subsection, we calculate the nonlinear Hall con-
ductivity σ y;xx and the nonreciprocal conductivity σ y;yy in
the model introduced above. We note that the model holds
the mirror symmetry in the x direction and therefore σ x;yy =

FIG. 2. Dispersion of the model on the high symmetric line. We
set μ = 0. The band degeneracy exists at ε = −0.7, ε = −1.3, and
ε = 2.7 at M, M ′, and � points.

σ y;yx = σ x;xx = 0. In Fig. 3, we calculate η dependence and μ

dependence of the nonlinear Hall conductivity σ y;xx. Under
the time-reversal symmetry, the dominant contributions are
the BCD term in Eq. (13) and the gBC term in Eq. (22).
In the top panel of Fig. 3, as we have shown theoretically,
σBCD:re is proportional to 1/η, while σBCD:im and σgBC are
proportional to η in the regime η < T . In the limit η 
 εnm,
σBCD:im and σgBC are proportional to 1/η, and therefore they
both decrease in η > 0.04. At η = πT , due to the singular
behavior of Im(∂ f /∂ω), σBCD:im changes its sign and the Mat-
subara term becomes large so as to compensate it. The bottom
panel of Fig. 3 shows μ dependence. Around μ = −1.3, there
is quadratic dispersion at the Fermi surface around M and M ′
points, and the gBC term becomes large.

Next, we calculate the nonreciprocal conductivity. As I
have shown in the previous section, under TRS, only the gBC
term is finite. The top panel of Fig. 4 shows the η dependence
of the nonreciprocal conductivity σ y;yy. As in the case of the
nonlinear Hall conductivity, the gBC term is proportional to η

for η < T and proportional to 1/η for η 
 εnm.
In the bottom panel of Fig. 4, the nonreciprocal conduc-

tivity (gBC term) behaves the same as the gBC term in the
nonlinear Hall conductivity (see the bottom panel of Fig. 3).

2. Cases without time-reversal symmetry

Next, we consider the case h �= 0, in which TRS is bro-
ken. Without time-reversal symmetry, the Drude term, the
Christoffel symbol term can be finite. Here, we focus on
the nonreciprocal conductivity with the magnetic field in x
direction hx = 0.05 for Fig. 5.

In time-reversal symmetry broken systems, the (nonlinear)
Drude term, which is proportional to τ 2, is dominant in the
small dissipation regime (see the top panel of Fig. 5). The
Christoffel symbol term also seems proportional to τ 2 and
gives the multiband correction to the Drude term because
there is band degeneracy around at the Fermi surface.

The bottom panel of Fig. 5 shows the μ dependence of
the nonreciprocal conductivity, In the regime μ > −0.2, the
band velocity is large at the Fermi surface, and therefore the
Drude term is dominant. On the other hand, in the regime

125114-5



YOSHIHIRO MICHISHITA AND NAOTO NAGAOSA PHYSICAL REVIEW B 106, 125114 (2022)

FIG. 3. η dependence and μ dependence of each contribution in
nonlinear Hall conductivity. The top panel shows the dissipation-
strength dependence of the nonlinear Hall conductivity σ y;xx , and
the bottom panel shows the chemical potential dependence of σ y;xx .
We set μ = −0.9 in the top panel, η = 0.02 in the bottom panel,
and kBT = 0.02 in both panels. We perform the momentum integra-
tion by 1000 × 1000 and frequency integration by 1000. The blue,
orange, green, red, and brown plots, respectively, represent the gen-
eralized Berry curvature term, σBCD:re, σBCD:im, the Matsubara term,
and the results by the Green’s function methods, which coincides
with the sum of all the terms.

−0.85 < μ < −0.5, the band velocity is not so large and there
is the degeneration near the Fermi surface at the M ′ point, and
therefore the Christoffel symbol term is dominant.

IV. NONLINEAR CONDUCTIVITY INDUCED BY
DISSIPATIVE QUANTUM GEOMETRY IN THE WEYL

HAMILTONIAN

In this section, we derive the analytical results about the
geometric terms derived in the previous sections.

A. Hamiltonian and its dissipative quantum geometry

Here, we consider the tilted Weyl Hamiltonian, which
reads

H(k) = (−μ + t · k)σ 0 + t0k · σ, (33)

FIG. 4. η dependence and μ dependence of each contribution in
nonreciprocal conductivity under the time-reversal symmetry. The
top panel shows the dissipation-strength dependence of the non-
reciprocal conductivity σ y;yy, and the bottom panel shows that the
chemical potential dependence of σ y;yy. We set μ = −0.9 in the
top panel, η = 0.02 in the bottom panel, and kBT = 0.02 in both
panels. The blue, red, and orange plots, respectively, represent the
generalized Berry curvature term, the Matsubara term, and the results
by the Green’s function methods. We note that blue and orange plots
overlap in the upper panel.

where σ 0 is the two by two unit matrix, μ is the chemical
potential, t represents the tilting, t0 is the Fermi velocity,
and σ = {σ x, σ y, σ z} is the Pauli matrix. When t < t0, this
Hamiltonian describes the type-I Weyl Hamiltonian, and when
t > t0, it describes the type-I Weyl Hamiltonian. Here we set
t = {0, 0, t} for the simplicity.

In this Hamiltonian, the eigenvalues and the smeared geo-
metrical quantities are

E± = tkz ± t0k = t0k(λt cos θ ± 1), (34)

J α
± = t0kα (δαzλt ± 1)/k, (35)


αβ
S;+− = −

αβ
S;−+ = −

βα
S;+− = kγ εαβγ

8(k2 + η̃2)k
, (36)

gαβ
S;+− = gαβ

S;−+ = gβα
S;+− = δαβ (k2 − k2

α )

4(k2 + η̃2)k2
, (37)

where k = |k|, λt = t/t0, cos θ = kz/k, and η̃ = η/t0 is the
dissipation strength renormalized by the Fermi velocity. We
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FIG. 5. η dependence and μ dependence of each contribution in
nonreciprocal conductivity without the time-reversal symmetry. The
top panel shows the dissipation-strength dependence of the nonre-
ciprocal conductivity σ y;yy, and the bottom panel shows the chemical
potential dependence of σ y;yy. We set μ = −0.9 in the top panel and
η = 0.02 in the bottom panel, and kBT = 0.02 and h = (0.05, 0, 0)
in both panels. The blue, orange, red, and green plots, respectively,
represent the Drude term, the Christoffel symbol term, the Matsubara
term, and the results by the Green’s function methods.

also define the geometric quantities, which appear in the non-
linear conductivity, as follows:

Dμν
± ≡ 1

2
εμλη

λη
S;±J ν

± = ±kμ(δzνλt ± kν/k)

8(k2 + η̃2)k
, (38)

Fμν
± ≡ ∂μgνν

S;±

= − kμ

2(k2 + η̃2)2k2

{(
1 − k2

ν

k2

)
(2k2 + η̃2)

+ δμν (k2 + η̃2)

}
, (39)

�
μ;νη
S;± = 1

2 (δημF νη
± + δμνF ημ

± − δνηFμν
± ), (40)


α,βγ

S;± = ±k(αβ
S;±J

γ
± + 

αγ
S;±J

β
± )

2(k2 + η̃2)
. (41)

In the following, we suppose that βη � 1 and the
Matsubara term can be ignored. We also approxi-
mate Re(−∂ f /∂ω)εn+iη 	 (−∂ f /∂ω)εn 	 δ(εn) and

Im f (εn + iη) 	 η(∂ f /∂ω)εn , and then analyze the geometric
terms in the type-I case (0 < λt < 1) and the type-II case
(λt > 1) in the regime μ � η and μ 
 η. We note that, in
the former regime, we just focus on the behavior at μ ∼ 0.

B. Type-I case

We here consider the case where λt < 1. We can analyti-
cally calculate the BCD term and the Christoffel symbol term
in the limit η � |μ| and η 
 |μ| as

σ
α;βγ

BCD;I 	 τ

∫
dk

(2π )3

{


αβ
S;±J

γ
± + (β ↔ γ )

}
δ(ε±) (42)

= τ

∫
dk

(2π )3
(δγ z − δβz )

1

2
εαβγ (Dzz

± ) (43)

= τ

2
εαβγ (δγ z − δβz )

×
⎧⎨
⎩

1
8λt

{
2λt −ln

(
1+λt
1−λt

)}
(η � |μ|)

− 1
8λ3

t

μ2

η2

{
2λt −tanh−1

(
2λt

1+λ2
t

)}
(η 
 |μ|),

(44)

σ
α;βγ

ChS;I 	
∫

dk
(2π )3

�
α;βγ

S;± δ(ε±) (45)

= 1
2

(
δαβδγ zF̃

γα

I +δγαδβzF̃
βγ

I −δβγ δαzF̃
αβ

I

)
, (46)

with

F̃ zz
I =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ

t0λt

{
− 6

λ2
t
+ 3(2−λ2

t )
2λ3

t
ln
(

1+λt
1−λt

)
+ 1

1−λ2
t

}
(η � |μ|)

(3−λ2
t )μ

t0λ3
t

{
1

2λt
tanh−1

(
2λt

1+λ2
t

)
− 1

1−λ2
t

}
(η 
 |μ|),

(47)

F̃ zx
I = F̃ zy

I = F̃ xz
I = F̃ yz

I

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ

t0λt

{
− 6

λ2
t
+ 3(2−λ2

t )
2λ3

t
ln
(

1+λt
1−λt

)
+ 1

1−λ2
t

}
(η � |μ|)

(3−λ2
t )μ

t0λ3
t

{
1

2λt
tanh−1

(
2λt

1+λ2
t

)
− 1

1−λ2
t

}
(η 
 |μ|).

(48)

Here we omit the analysis of the gBC term because here we
approximate Re(−∂ f /∂ω)εn+iη 	 δ(ε). This approximation is
justified when T → 0 and η → 0 with kBT 
 η, while the
gBC term is proportional to η. Interestingly, the nonlinear Hall
conductivity by the BCD term is independent of the chemical
potential in the regime |μ| 
 η, while it is proportional to
μ2/η2 in the regime |μ| � η, which results in the dip around
|μ| < η. The Christoffel symbol term is proportional to μ in
both regimes. We note that, although Eqs. (44) and (47) ap-
pear to diverge at λt → 0, they become zero by appropriately
expanding the terms in {. . . } in Eqs. (44) and (47).

C. Type-II case

Next, we analyze the type-II Weyl Hamiltonian where λt >

1. Although the only difference in the model from type I is the
magnitude of λt , the behavior is completely different because
the integral of momentum space

∫∞
0 dkk2 is not convergent.

Therefore, we introduce the cutoff scale � (
∫∞

0 dk → ∫ �

0 dk),
in which the approximation to the Weyl Hamiltonian is justi-
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fied. Then, we can derive the BCD term and the Christoffel
symbol term as

σ
α;βγ

BCD;II = −τεαβγ (δγ z − δβz )

32π2λt
ln

(
�2 + η2

(μ/(1 + λt ))2 + η2

)
,

(49)

σ
α;βγ

ChS;II = 1
2

(
δαβδγ zF̃

γα

II +δγαδβzF̃
βγ

II −δβγ δαzF̃
αβ

II

)
, (50)

F̃ zz
II = �

t0

( 3

2λ2
t

− 1

λ4
t

)
+ O(ln�), (51)

F̃ zx
II = F̃ zy

II = F̃ xz
II = F̃ yz

II = �

t0

( 1

λ2
t

− 1

λ4
t

)
+ O(ln�). (52)

In the type-II case, when we consider the limit μ → 0 with
η/μ = const, the BCD term shows a logarithmic divergence,
while it is convergence with finite η. This behavior is com-
pletely different from the type-I case, where the BCD term has
the dip at μ = 0. In the limit � 
 t0, μ, η, λt , the dominant
term of the Christoffel symbol term is independent of μ and η

in the type-II Weyl Hamiltonian.

D. Numerical results

We also check the numerical calculation about the chemi-
cal potential dependence of the nonlinear Hall effect σ y;zx =
−σ x;yz. Interestingly, in addition to the μ independence of the
nonlinear Hall conductivity at |μ| 
 η, as we have analyti-
cally shown, the gBC term compensates the dip of the BCD
term around μ = 0, which results in complete μ independence
of the nonlinear Hall conductivity (see the top panel of Fig. 6).
The bottom panel of Fig. 6 shows that the peak behavior of the
nonlinear Hall conductivity at μ = 0 as we have shown, and
its order of the conductivity is much larger than type-I Weyl
systems. This result means that the type-II Weyl materials can
show large nonlinear Hall effect.

We again stress that this chemical potential independence
or the peak behavior of the nonlinear Hall conductivity can be
highly utilized for the detection of the Weyl points and their
type.

V. SUMMARY AND OUTLOOK

In this paper, we have analyzed the dissipation effect on
the linear and nonlinear dc conductivity under the Markov
approximation in multiband systems.

Starting from the Green’s function formalism, we eluci-
date the effect of the dissipation: the shift of the DF in the
imaginary direction and the Matsubara term, which cannot be
included by conventional methods such as the SCB treatment
and RDM methods. Moreover, we clarify that the novel terms
from the imaginary part of the DF also have a geometric
nature, such as the quantum metric term in the linear con-
ductivity, the Christoffel symbol term, and the gBC term in
the nonlinear conductivity. These terms give the multiband
correction to the (nonlinear) Drude term when there is band
degeneracy at the Fermi surface. Although the Matsubara
term is not small in the linear response, it is small enough to
be ignored in nonlinear conductivities, especially under the
TRS, and therefore the description of the Fermi DF of the
complex argument works well. Under the TRS, the inversion

FIG. 6. μ dependence of the nonlinear Hall conductivity in type-
I and II Weyl Hamiltonian. The top (bottom) panel shows the
nonlinear Hall conductivity in the type-I (II) Weyl Hamiltonian. We
set the parameter as t0 = 1.0, t = 0.3 for the type-I Weyl Hamilto-
nian and t0 = 0.3, t = 0.5 for the type-II Weyl Hamiltonian. We also
set kBT = 0.02 and η = 0.01 for each case. The terms except the
BCD term and the gBC term are almost zero.

symmetry breaking is encoded in the multiband effect such as
the BCD and the gBC. At the pole of the Matsubara frequency,
the large imaginary value of iωM in the denominator of the
G(iωM ) cloaks such kind of geometric structure, and therefore
the Matsubara term becomes almost zero. When πkBT ∼ η,
iωM − iη in the denominator of GA(iωM ) becomes almost
zero, the above cloaking is unveiled, and the Matsubara term
becomes finite. In the nonlinear conductivity without TRS and
the linear conductivity, the Drude term, which is the intraband
contribution and does not need the geometric structure, can be
finite, and therefore the Matsubara term can also be finite.

We have also elucidated the geometric origin of the
nonreciprocal conductivity under the TRS, which can be de-
scribed by the Berry curvature generalized to the higher-order
derivative. For two-band systems, we have identified another
condition of the nonreciprocal conductivity under TRS, that
is, the quadratic term, in addition to the dissipation which is
pointed out in Ref. [18].

Then, we numerically calculate the η and μ dependence of
each contribution in the model which describes TMD materi-
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als. The results show that the Matsubara term becomes large
at η > πkBT when the terms from the imaginary part of the
DF are not small. We have shown that, in some regimes, the
novel geometric term become dominant.

Finally, we analyze each geometric term in the Weyl
Hamiltonian. We clarify that the chemical potential depen-
dence around the Weyl point of nonlinear Hall conductivity
is completely different between the type-I and type-II cases.
While the nonlinear Hall conductivity is independent of the
chemical potential in the type-I case, it shows the logarithmic
divergence behavior at the energy level where the Weyl points
exist in the type-II case. This result suggests that detecting the
chemical potential dependence of the nonlinear Hall conduc-
tivity under TRS can be utilized to detect the existence of the
Weyl points and their type. Moreover, we also show that type-
II Weyl materials can show large nonlinear Hall conductivity
due to their divergent behavior at the Weyl points.

Although we consider the dc conductivity in this paper, a
similar analysis can be applied to the photovoltaic effect, in
which dissipation holds an important role. It is left for future
work.

Note added. After submitting our manuscript, we noticed
a related paper by Kaplan et al. [50]. They analyze the dissi-
pation effect on nonlinear conductivity by first calculating in
the τ → ∞ limit and then restoring the finite τ , which results
in ignoring the essential part of the gBC term in Eq. (22).
For an example, their τ−1-dependent term must disappear in
longitudinal nonreciprocal conductivity, while our gBC term
can be finite.
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APPENDIX A: DETAIL DERIVATION OF THE
DISSIPATION-INDUCED GEOMETRIC TERM IN LINEAR

CONDUCTIVITY

Contribution from the pole of the advanced Green’s func-
tions to the linear conductivity can be described as follows:

σ
αβ

G = σ
αβ

Drude + σ
αβ

QM:re + σ
αβ

QM:im, (A1)

σ
αβ

Drude =
∑

k

∑
n

J α
n J β

n τRe

(
− ∂ f

∂ω

)
εn+iη

, (A2)

σ
αβ

QM:re =
∑

k

∑
n

gαβ
S;n

τ
Re

(
− ∂ f

∂ω

)
εn+iη

, (A3)

FIG. 7. Approximation about the imaginary part of the distribu-
tion function. The blue (orange) plots show the real (imaginary) part
of f (ω + iη). The green plots show f (ω) and the red plots show
η∂ f /∂ω. The parameters are T = 0.02 and η = 0.01 in the left panel
and η = 0.02 in the right panel. This figure shows that the approx-
imations Re f (ω + iη) 	 f (ω) and Im f (ω + iη) 	 η∂ f (ω)/∂ω are
enough good even when βη ∼ 0.5.

σ
αβ

QM:im =
∑

k

∑
n

∑
m �=n

gαβ
S;n,mεnmIm

(
− ∂ f

∂ω

)
|εn+iη, (A4)

gαβ
S;n,m = (J α

nmJ β
mn + J β

nmJ α
mn)

2(ε2
nm + 4η2)

. (A5)

We call gαβ
S;n the smeared quantum metric. We note that the

smeared geometric quantities are well-defined and finite at
gapless points where εnm = 0. σ

αβ

QM:re + σ
αβ

QM:im is the novel
term, which we call a quantum metric term at the Fermi
surface.

We note that we can approximate Re f (εn + iη) 	 f (εn)
and Im f (εn + iη) 	 η∂ f (εn)/∂ω when βη � 1. Figure 7
shows that this approximation is valid even when βη ∼ 0.5.
Under this approximation, in both limits εnm 
 η and εnm →
0, the terms proportional to the imaginary part of the DF can
be written as

gαβ
S;n,mεnmIm

(
− ∂ f

∂ω

)∣∣∣∣
εn+iη

	 εnm

2τ
gαβ

S;n,m

(
− ∂2 f

∂ω2

)∣∣∣∣
εn

. (A6)

When we see the frequency derivative of the Fermi DF as
∼O(β ), the imaginary part contributions are of the order
∼O(εnmβ ) compared to the real part of the contribution. This
means that the contribution from the imaginary part of the
DF can be dominant at low temperature. We note that, un-
der the approximations Re f (εn + iη) 	 f (εn) and Im f (εn +
iη) 	 η∂ f (εn)/∂ω, Eq. (A3) can be derived from the RDM
methods by substituting f (εn) → f (εn + iη) in the anoma-
lous quantum Hall term and considering the imaginary part of
the Fermi DF. From this point of view, σ

αβ

QM:re also originates
from the imaginary part of the DF in the anomalous quantum
Hall term.

When considering the band degeneracy at the Fermi sur-
face, which means εn = εm, the smeared quantum metric gαβ

S;n

is proportional to τ 2 and the quantum metric term in Eq. (A3)
is proportional to τ , which means the quantum metric term
gives the multiband correction to the Drude term in Eq. (A2).
Therefore, the quantum metric term becomes important in
materials with large band degeneracy at the Fermi surface or
the strongly dissipative system.
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FIG. 8. Broadening of the spectral function versus derivative of
the Fermi DF. The blue (orange) plots show the ω derivative of the
Fermi DF (−∂ f /∂ω) [the spectral function A(ω)]. Here we set the
temperature T = 0.02, and εn = 0.1. η = 0.01(0.1) in the left (right)
panel.

APPENDIX B: INTUITIVE UNDERSTANDING ABOUT THE
MATSUBARA TERM

In this Appendix, we give an intuitive understanding of
the shift of the Fermi DF and the Matsubara term. In the
conventional band representation, the occupancy of the band
is determined by its energy and the Fermi DF [ f (εn)], and it
is true in the limit of η → 0. However, when η is finite, there
is a broadening of the spectral function and the occupancy
of the band cannot be determined just by the band energy
and the Fermi DF. In the small dissipation regime η � T , the
broadening is small and the bands with the energy level where
(df /dω)εn is finite contribute to the transport. For example,
in Fig. 8, the band, whose energy is |εn| > T , almost does
not contribute to the transport. In this case, the description by
the Fermi DF is accurate, and the shift of the Fermi DF to
the imaginary direction well approximates the broadening of
the spectral function. On the other hand, when we consider the
highly dissipative case η > T , even though the band energy is
far away from the Fermi energy |εn| 
 T and (df /dω)εn 	 0,
there is an overlap between df (ω)/dω and A(ω), and this band
can contribute to the transport. In this case, the description by
the Fermi DF becomes bad, and the Matsubara term, which
is not described by the Fermi DF, can become large. This
understanding should also hold in nonlinear conductivity.

APPENDIX C: MODEL CALCULATION

We numerically calculate these contributions to the linear
conductivity in the nodal-line semimetals, which is described
by the following Hamiltonian as [53]:

H = μτ 0 + t (2 + cos k0 − cos kx − cos ky − cos kz )τ z

+ v sin kzτ
y + �τ x. (C1)

μ, t, v,� represent the chemical potential, the hopping
amplitude, the hybridization, and the TRS breaking parameter.
We note that this tight-binding Hamiltonian describes the low-
energy dispersion near the Fermi level of CaAgP and Ca3P2

[54,55]. For the upper panel of Fig. 9, the chemical potential
(μ) dependence of the linear conductivity is shown. Here the
temperature kBT = 0.02, η = 0.04, and � = 0. This model
has the nodal line at the Fermi surface when μ = 0,� = 0
and the quantum metric term becomes large. We note that,

FIG. 9. Linear conductivity in a nodal-line semimetal. The pa-
rameters are T = 0.02, η = 0.04 in the top panel and T = 0.02, μ =
0 in the bottom panel. We perform the momentum integration by
250 × 250 × 250 and frequency integration by 1000. The blue, or-
ange, green, red plots, respectively, describe the Drude term, the
quantum metric term (σ zz

QM:re + σ zz
QM:im), the total conductivity calcu-

lated by the Green’s function methods, and the Matsubara term.

in this model, J z
nn is zero on the nodal line and therefore the

Drude term becomes almost zero at μ = 0, while the qunatum
metric term and the Matsubara term are finite due to the
broadening of the spectral weight and the hybridization.

In this case, the quantum metric term and the Matsubara
term cannot be ignored for finite eta, and the Matsubara
term is dominant when η > πT . Even when the system has
a quadratic band touching at the Fermi surface and the Drude
term is zero, if these bands are constructed by the hybridiza-
tion, the linear conductivity can be finite due to the quantum
metric term.

The bottom panel of Fig. 9 shows the η dependence of the
linear conductivity. Here the temperature T = 0.02, μ = 0,
and � = 0. In the small dissipation regime, the quantum met-
ric term and the Matsubara term are proportional to η and,
therefore, the Drude term is dominant. In our formulation,
η = πT , where the Fermi DF f (εn + iη) behaves as the Bose
DF fB(εn), is a singular. In the large dissipation regime where
η > πT , the contribution from the Drude term becomes al-
most zero. This large dissipation regime at low temperature
can be realized in the quantum critical regime because the
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large quantum fluctuation behaves as the large dissipation
from the single-particle point of view. In such a regime, the
SCB treatment and the RDM method are not appropriate, and
we must use the Green’s function methods.

The relaxation time τ in usual materials is about 1 ∼
100 picosecond [27], which equals to η 	 2.1 ∗ 10−5 ∼
2.1 ∗ 10−3[eV]. In this case, the temperature which satis-
fies πkBT > η is about T > 7.5 ∗ 10−2 ∼ 7.5[K], and this
condition is often not satisfied in condensed matter physics.
Therefore, our result shows that we should consider the broad-
ening of the spectral function or, say, the quantum dissipation
at low temperature, and the SCB treatment or the RDM for-
malism is not appropriate, especially when we consider the
transport at a degenerated Fermi surface.

APPENDIX D: DETAIL DERIVATION OF THE
DISSIPATION-INDUCED GEOMETRIC TERMS IN

NONLINEAR CONDUCTIVITY

The nonlinear conductivity is described with the Green’s
function formalism as

σ
α;βγ

dc =
∫ ∞

−∞

dω

2π
ImTr

[{
2J α

nm

∂GR
m

∂ω
J β

ml G
R
l J

γ

ln

(
GR

n − GA
n

)

+J α
nm

∂GR
m

∂ω
J βγ

mn

(
GR

n − GA
n

)}+ {β ↔ γ }
]
, (D1)

where J βγ = ∂β∂γHeff . By starting from this Green’s func-
tion formalism and performing the same procedure as in the
linear case, we can derive the following equation as

σ
α;βγ

dc =
∑

k

(
σ

α;βγ

M + σ̃
α;βγ

Drude + σ̃
α;βγ

BCD + +σ̃
α;βγ

inter

)
, (D2)

σ
α;βγ

Th =
∑
nml

∑
ωM>0

Re

[
∂

∂ω

{
2J α

nm

∂GR
m

∂ω
J β

mlG
R
l J

γ

ln

(
GR

n − GA
n

)+ J α
nm

∂GR
m

∂ω
J βγ

mn

(
GR

n − GA
n

)}+ {β ↔ γ
}]

ω=iωM

, (D3)

σ̃
α;βγ

Drude = 2
∑

n

τ 2Re

[
J α

n J β
n J γ

n

(
− ∂2 f

∂ω2

)
+ J α

n J βγ
n

(
− ∂ f

∂ω

)
+
∑

m( �=n)

J α
n

J β
nmJ

γ
mn + (β ↔ γ )

εnm + 2iη

(
− ∂ f

∂ω

)]
ω=εn+iη

, (D4)

σ̃
α;βγ

BCD = 2
∑

n

τ Im

[
Qαβ

D;nJ γ
n

(
− ∂ f

∂ω

)
+ (β ↔ γ )

]
ω=εn+iη

, (D5)

σ̃
α;βγ

inter = 2
∑

nm(m �=n)

Re

[ J α
nmJ

βγ
mn

(εnm + 2iη)2

(
− ∂ f

∂ω

)
+
∑
l �=n

J α
nmJ

β

mlJ
γ

ln + (β ↔ γ )

(εnm+2iη)2(εnl +2iη)

(
− ∂ f

∂ω

)]
ω=εn+iη.

(D6)

σ
α;βγ

M is the Matsubara term for the second order nonlinear
response. The tilde above the terms means the classification
of terms in the limit η → 0. First, we analyze the Drude term
σ̃

α;βγ

Drude, which corresponds to the Drude term in the conven-
tional analysis. While the first and second terms in Eq. (D4)
only get the contribution from the real part of the DF, the third
term has the contribution from the imaginary part. Under the
approximations Re f (εn + iη) 	 f (εn) and Im f (εn + iη) 	
η∂ f (εn)/∂ω, we can derive the following form from the third
term in Eq. (D4) as

∑
m( �=n)

J α
n

J β
nmJ

γ
mn + (β ↔ γ )

εnm + 2iη

(
− ∂ f

∂ω

)]
ω=εn+iη

= 2
∑
n �=m

τ 2εnmJ α
n gβγ

S;n,mRe

(
∂ f

∂ω

)
ω=εn+iη

+ 2
∑

n

τJ α
n gβγ

S;nIm

(
∂ f

∂ω

)
ω=εn+iη

(D7)

	 2
∑
n �=m

τ 2εnmJ α
n gβγ

S;n,m

(
∂ f

∂ω

)
ω=εn

+
∑

n

J α
n gβγ

S;n

(
∂2 f

∂ω2

)
ω=εn

.

(D8)

The second term newly arises from the imaginary part of the
DF, which represents the broadening of the spectral function.
We note that the other terms in σ̃Drude can be summarized into

the conventional Drude term as τ 2∑
n J α

n ∂β∂γ f (εn) in the
limit of η → 0. We can transform the second term into

σ̃
α;βγ

Drude = σ
α;βγ

Drude + σ
α;βγ

sQMD, (D9)

σ
α;βγ

Drude = 2τ 2
∑

n

J α
n

[
J β

n J γ
n Re

(
− ∂2 f

∂ω2

)

+
(
J βγ

n +
∑

m

εnmgβγ

S;n,m

)(
− ∂ f

∂ω

)]
|εn+iη

	 2τ 2
∑

n

J α
n ∂β∂γ f (εn), (D10)

σ
α;βγ

sQMD = 2
∑

n

τJ α
n gβγ

S;nIm

(
∂ f

∂ω

)
ω=εn+iη

	
∑

n

J α
n gβγ

S;n

(
∂2 f

∂ω2

)
ω=εn

=
∑

n

∂αgβγ
S;n

(
− ∂ f

∂ω

)
ω=εn

, (D11)

and therefore we call it the (smeared) quantum metric dipole
term. We note that this quantum metric dipole term is different
from that in Ref. [56], which needs nonuniform electric fields.
Because here it is the smeared quantum metric, when there is
a band-degeneracy at the Fermi surface, this term is propor-
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tional to τ 2 (because gβγ
S;n is proportional to τ 2 when εnm = 0)

and gives the multiband correction to the conventional non-
linear Drude term, the same as the linear conductivity. On the
other hand, in the regime |εn − εm|τ 
 1, this term becomes
almost independent from the strength of the dissipation even
though this term stems from the dissipation.

Next, we analyze the originally BCD term. Under the ap-
proximation, we can derive

σ̃
α;βγ

BCD = σ
α;βγ

dBCD + σ
α;βγ

dQMD, (D12)

σ
α;βγ

dBCD = 2
∑

n

τ
αβ
D;nJ γ

n Re

(
− ∂ f

∂ω

)
εn+iη

+ (β ↔ γ )

= 4τ
∑

n

∂γ 
αβ
D;nRe f (εn + iη) + (β ↔ γ ), (D13)

σ
α;βγ

dQMD = −2
∑

n

gαβ
D;nJ γ

n Im

(
− ∂ f

∂ω

)
εn

+ (β ↔ γ )

= 4τ
∑

n

∂γ gαβ
D;nIm f (εn + iη) + (β ↔ γ ), (D14)

where 
αβ
D;n = ImQαβ

D;n is the dissipative Berry curvature and


αβ
D;n = 2ReQαβ

D;n is the dissipative quantum metric. In the
limit η → 0, Eq. (D13) becomes the well-known BCD term.
We note that the dissipative quantum geometry is different
from the smeared quantum geometry. In this representation,
because it is the dissipative geometry, the (dissipative) BCD
term is not necessarily the Hall conductivity. Therefore, it is
more convenient to convert the smeared geometric terms as
written as

σ
α;βγ

dBCD = 2τ
∑
n,m

[(
ε2

nmτ 2 − 1

ε2
nmτ 2 + 1


αβ
S;n,m − 2εnmτ

ε2
nmτ 2 + 1

gαβ
S;n,m

)

× J γ
n Re

(
− ∂ f

∂ω

)
εn+iη

+ (β ↔ γ )

]
(D15)

	 2τ
∑
n,m

[(


αβ
S;n − 2gαβ

S;n,m

εnmτ

)
J γ

n

(
− ∂ f

∂ω

)
εn

+ (β ↔ γ )

]

(D16)

σ
α;βγ

dQMD = 2τ
∑
n,m

[(
ε2

nmτ 2 − 1

ε2
nmτ 2 + 1

gαβ
S;n,m + 2εnmτ

ε2
nmτ 2 + 1


αβ
S;n,m

)

× J γ
n Im

(
− ∂ f

∂ω

)
εn+iη

+ (β ↔ γ )

]
(D17)

	
∑

n

[
−
(

∂γ gαβ
S;n

)(
− ∂ f

∂ω

)
εn

+ 2
αβ
S;n,m

εnmτ
J γ

n

(
− ∂2 f

∂ω2

)
εn

+ (β ↔ γ )

]
. (D18)

In the limit εnmτ 
 1, up to the first order of η, the first term
in Eq. (D15) is the conventional BCD term and the second
term is the terms pointed out in Refs. [37,57,58,59]. Here,
another QMD term emerges from the original BCD term.
Because it is the dissipative quantum metric, when there is
a band degeneracy at the Fermi surface, this term also gives

the multiband correction to the nonlinear Drude term. The
same as the smeared QMD term, in the limit |εn − εm|τ 
 1,
this behaves as almost independent of the strength of the
dissipation, while it stems from the dissipation. When consid-
ering the limit εnmτ 
 1 and approximating Im f (εn + iη) =
η(∂ f /∂ω)|εn , which is sufficiently justified at βη � 1, the
sum of the smeared QMD term and the first term in Eq. (D18)
can be written as

(
∂γ gαβ

S;n + ∂βgαγ
S;n − ∂αgβγ

S;n

)( ∂ f

∂ω

)
εn

= 2�
α;βγ
S;n

(
∂ f

∂ω

)
εn

,

(D19)

where �
α;βγ
S;n ≡ (∂γ gαβ

S;n + ∂βgαγ
S;n − ∂αgβγ

S;n)/2 can be called
the smeared Christoffel symbol, which is the generalization
of the Christoffel symbol in Ref. [45] to the dissipative case.
Therefore, we can call the sum of those terms the smeared
Christoffel symbol term’ at the Fermi surface.

Finally, we analyze the interband term σ̃
α;βγ

inter in Eq. (D6).
σ̃

α;βγ

inter can generate another Christoffel symbol term and the
gBC term as

σ
α;βγ

inter;1 = σ
α;βγ

ChS:II + σ
α;βγ

gBC , (D20)

σ
α;βγ

ChS:II = 2
∑

k

∑
n,m( �=n)

[
Re(J α

nmJ βγ
mn )Re

(
1

(εnm + 2iη)2

)

+
{∑

l ( �=n)

Re(J α
nmJ

β

mlJ
γ

ln )

× Re

(
1

(εnm + 2iη)2(εnl + 2iη)

)}

+{β ↔ γ }
]

Re

(
− ∂ f

∂ω

)
εn+iη

+ O(τ−2) (D21)

= 2
∑

k

∑
n

gα;βγ

S′;n

(
− ∂ f

∂ω

)
εn

= 2
∑

k

∑
n

�
α;βγ

S′;n

(
− ∂ f

∂ω

)
εn

(D22)

	
∑

k

∑
n

(〈∂αn|∂βγ n〉 + 〈∂βγ n|∂αn〉)

(
− ∂ f

∂ω

)
εn

(D23)

= 2
∑

k

∑
n

�α;βγ
n

(
− ∂ f

∂ω

)
εn

(D24)

�α;βγ
n = 1

2 (∂γ gαβ
n + ∂βgγα

n − ∂αgβγ
n )

= 1
2 (〈∂αn|∂βγ n〉 + 〈∂βγ n|∂αn〉), (D25)

σ
α;βγ

gBC = σ
α;βγ

gBC:re + σ
α;βγ

gBC:im + σ
α;βγ

gBC:add, (D26)

σ
α;βγ

gBC:re + σ
α;βγ

gBC:add

= 2
∑

k

∑
n,m( �=n)

[
Im(J α

nmJ βγ
mn )Im

(
1

(εnm + 2iη)2

)
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+
{∑

l ( �=n)

Im(J α
nmJ

β

mlJ
γ

ln )Im

(
1

(εnm+2iη)2(εnl +2iη)

)}

+{β ↔ γ }
]

Re

(
∂ f

∂ω

)
εn+iη

x (D27)

=
∑

k

∑
n,m( �=n)


α,βγ

S′;n,m

εnmτ

(
− ∂ f

∂ω

)
εn

+ σ
α;βγ

gBC:add + O(τ−2),

(D28)

σ
α;βγ

gBC:add 	 2
∑

k

∑
n,m,l ( �=n)

Im(J α
nmJ

β

mlJ
γ

ln )

ε2
nmεnl

(
1

εnmτ
− 1

εnlτ

)

×
(

− ∂ f

∂ω

)
εn

+ (β ↔ γ ), (D29)

σ
α;βγ

gBC:im

= 2
∑

k

∑
n,m( �=n)

[
Im(J α

nmJ βγ
mn )Re

(
1

(εnm + 2iη)2

)

+
{∑

l ( �=n)

Im(J α
nmJ

β

mlJ
γ

ln )Re

(
1

(εnm+2iη)2(εnl +2iη)

)}

+
{
β ↔ γ

}]
Im

(
∂ f

∂ω

)
εn+iη

(D30)

= −
∑

k

∑
n


α,βγ

S′;n

τ

(
− ∂2 f

∂ω2

)
εn

+ O(τ 2), (D31)

where the 
α,βγ

S′;n,m(gα,βγ

S′;n,m) is the smeared Berry curvature
(quantum metric) generalized to the higher-order derivative,

which can be derived by the following substitution from


α,βγ
n,m (gα,βγ

n,m ):

{
1

ε2
nm

→ 1
ε2

nm+4η2

1
εnm

→ εnm
ε2

nm+4η2 ,
(D32)

gα,βγ
n,m = Re 〈∂αn|m〉 〈m|∂βγ n〉 = �α;βγ

n,m (D33)

= 2Re

[J α
nm

εnm

1

εnm

(
J βγ

mn + J β

mlJ
γ

ln + (β ↔ γ )

εnl

)]
, (D34)

α,βγ
n,m = 2Im 〈∂αn|m〉 〈m|∂βγ n〉 . (D35)

If we consider ∂βγ as the derivative to the new direction,


α,βγ

S′;n,m(gα,βγ

S′;n,m) is also the smeared Berry curvature (quantum
metric) generalized to the higher-order derivative. We note
that in two-band systems under TRS, only the first term in
Eq. (D27) can induce the nonreciprocal conductivity σα;αα .
Under TRS, the Drude term, the smeared Christoffel term, and
the other terms proportional to the smeared quantum metric
are zero. Moreover, the terms proportional to the conventional
smeared Berry curvature are also zero because α = β = γ .
However, the extended Berry curvature α,αα can be finite
because ∂αα is different from ∂α . As we can see in Eqs. (D28),
(D29), and (D31), this nonreciprocal term under TRS be-
comes zero when η → 0, which is pointed out in Ref. [18].
Here we also find another necessary condition, which is that
the Hamiltonian must have the quadratic term because J αα

becomes zero without it. Therefore, nonreciprocal transport
under TRS in the dc limit is zero, for example, in the Weyl
system with linear dispersion.
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