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Controlling surface plasmon polariton losses in the visible spectrum
by temperature-induced interband transitions
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We study theoretically the temperature dynamics at the metal-dielectric interface excited by a strong pump
surface plasmon polariton pulse propagating along it. We demonstrate that the inclusion of the interband
transitions leads to much stronger temperature-induced modulation of the imaginary part of the dielectric
constant induced by the pump. We show that in the visible part of the spectrum a strong pump field can even lead
to the decrease in the extinction coefficient for the co- or contrapropagating probe wave.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs) represent highly local-
ized electromagnetic excitations propagating along a metal-
dielectric boundary. High confinement, increased sensitivity
to the surface conditions, enhanced electromagnetic field at
the interface, and relative flexibility in the engineering imple-
mentations make SPPs an attractive tool for applications such
as sensing, thin-film solar cells, second-harmonic generation,
fluorescence, integrated optical circuits, ultrafast switching,
and optical computing, just to name a few [1–4].

However, due to high conductivity of the metallic sub-
systems the SPPs suffer strong losses and are effectively
evanescent wave structures with a longitudinal decay rate
of the order of few micrometers in the visible range. It is
therefore desirable to find a mechanism that would allow one
to control the SPP extinction and manipulate it at picosecond
and subpicosecond time scales. This is necessary for ultrafast
optical switching and routing applications where plasmonics
is used.

In particular, an ultrafast SPP-based optical switch should
be able to control the extinction coefficient for a propagating
SPP (at a given spectral range) and by transiently reducing the
losses make the medium transparent in the longitudinal direc-
tion. One way of controlling the electromagnetic properties
of the SPP is by use of Bragg resonances in the plasmonic
system with artificially created one-dimensional (1D) or 2D
periodicity—so-called plasmonic crystals (PCs) [5–9]. Tran-
sient plasmonic crystals, where the periodic modulation of the
real part of the dielectric function was induced by a spatially
periodic pulse, were reported in Ref. [10], while in our previ-
ous publication [9] we have studied the periodic 2D plasmonic
crystal created by crisscross irradiation of the interface by two
plane waves. In particular, in Ref. [9] we have studied the
effect of the Bragg resonances on the SPP losses (the imag-

*stasd@bgu.ac.il

inary part of the dielectric function) and showed that rather
than opening a band gap in the band structure of the PC the
Bragg resonances caused increased transparency (decreased
extinction coefficient) near the resonant frequency.

In this paper, we look at the induced loss modulation
from a different angle and study a pump-probe configuration
when a weak probe SPP propagates in the medium excited
by a strong pump SPP pulse. The dissipated energy of the
strong SPP pump heats both electron and lattice subsystems
of the sample, and this temperature rise translates into the
change in the dielectric constant for a weaker collinear probe
plasmon. The main mechanisms of such variations are the
intraband and interband transitions in noble-metal substrate
(see, e.g., Ref. [2]). The former are well described by a free-
electron Drude model where electrons oscillate in response
to the pump electric field. The temperature effects enter the
Drude model via the increased electron-electron (e-e) and
electron-phonon (e-ph) scattering rates thus providing the
nonzero imaginary part of the dielectric constant. The inter-
band transitions are more subtle and occur from the lower
valence (d) band to the higher conduction (s) band due to
the heating-induced Fermi smearing. It has been well known
experimentally [11] that the contribution of the interband tran-
sitions cannot be neglected in noble metals at high energies
(corresponding to the visible range).

In this paper we show that by combining a well-established
two-temperature model (TTM) [12] for the temperature dy-
namics of the electron and lattice subsystems with the full
account of both the intra- and interband transitions we can
achieve a significant control of the losses (extinction coeffi-
cient) for a probe plasmon in the visible and near-infrared
(NIR) region. Moreover, we show that one can even achieve an
increased transmission around the green wavelength (λ ∼ 500
nm) by a pump wave working on the same wavelength. Such
an effect cannot be explained by the free-electron (Drude)
model, and we attribute this effect solely to the interband
transition mechanisms.
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FIG. 1. Problem geometry.

This mechanism of controlling electromagnetic proper-
ties of the SPP probe is somewhat reminiscent of the
fast-developing area of plasmonic photocatalysis in semi-
conductors where the absorbed photons are creating active
electrons and holes, which can then initiate the reduction
and/or oxidation of chemicals. This effect is drastically en-
hanced by introducing noble-metal nanoparticles; see, e.g.,
recent reviews [13,14]. While in this paper we are dealing with
a different type of medium (bulk noble metals) and different
mechanism (temperature), this analogy is still illuminating.

The paper is organized as follows: In Sec. II introduce the
main dynamical model (TTM driven by the pump plasmon).
In Sec. III solve the model in the quasilinear case when the
temperature change induced by the pump is relatively small
and compare the results with the full numerical simulations. In
Sec. IV we show how this temperature change translates to the
transient change in the effective extinction coefficient for the
weak probe plasmon (not strong enough to induce additional
change in temperature). Finally, in Sec. V we summarize the
findings and provide an outlook for further lines of research.

II. PUMP-INDUCED SPATIOTEMPORAL DYNAMICS
OF ELECTRONIC AND LATTICE TEMPERATURES

Consider a strong SPP pump pulse propagating along
a metal-dielectric interface z = 0 with piecewise constant
dielectric function ε(z) = εd , z > 0; ε(z) = εm(z), z < 0.
Assuming the x-traveling mode (ky = 0), the pump field ex-
pressions take the form [2]

�H0 = A(t ) (0, 1, 0) ei kx x+κ (z)z−iω0t ,

�E0 = A(t )

ω0ε0ε(z)
(−iκ (z), 0,−kx ) ei kx x+κ (z)z−iω0t ,

κ (z) = −sgn[z]
√

k2
x − k2

0ε(z), k0 = ω0/c,

kx = k0

√
εd εm

εd + εm
, Re(kx ) � k0

√
εd . (1)

Here, we assume that the localization length in metal is much
less than the width of the metal film so that we are in a bulk
geometry and the effects of the substrate can be neglected. The
geometry is shown in Fig. 1.

The pump amplitude A(t ) is a slowly varying enve-
lope function with the characteristic time scale τp. To be
specific, we shall assume a Gaussian pulse shape, A(t ) =
A0 exp(−t2/2τ 2

p ). We shall also assume that the spatial region
of interest is rather small and the pulse is long enough so

that one can neglect the dispersion spreading of the pump
pulse (although such effects can in principle be taken into
account [15]).

The electromagnetic energy dissipated in the bulk of the
metal acts as a source of heat diffusion described by a well-
established two-temperature model (TTM) for the electron
and lattice subsystems [12]:

Ce(Te)
∂Te

∂t
= ∇ · [Ke(Te, Tl )∇Te] − G(Te − Tl ) + pabs,

Cl (Tl )
∂Tl

∂t
= ∇ · [Kl (Tl )∇Tl ] + G(Te − Tl ). (2)

Here, Ce,l and Ke,l are the heat capacities and thermal con-
ductivities of the electrons and the lattice, and G is the
electron-phonon coupling factor related to the rate of energy
exchange between the electrons and the lattice. Note that both
heat capacities and thermal conductivities depend explicitly
on both temperatures, which makes the TTM model nonlinear.

The energy dissipation caused by the pump field is propor-
tional to the imaginary part of the dielectric permittivity [16]:

pabs(x, z, t ) = ε0ε
′′
mω| �E0(x, z, t )|2/2

= p0 e−t2/τ 2
p e− x/δx ez/δz , (3)

where

δ−1
x = 2 Im(kx ), δ−1

z = 2 Re
(√

k2
x − k2

0εm
)

(4)

are propagation and transverse SPP depths, respectively. For
the NIR and larger wavelengths these can be estimated from
the Drude theory [2]. If the carrier frequency ω is not too close
to the plasma frequency, the imaginary part of the dielectric
function ε′′

m is much less than the (negative) real one, and in
noble metals one has δz of the order of a few tens of nanome-
ters while δx is usually a few tens to hundreds of micrometers
although it can decrease to as low as a few micrometers in the
visible range.

III. LINEAR THEORY

The full TTM (2) is clearly nonlinear and can only be
solved exactly using numerical simulations (see the end of
this section). However, in order to get some insight into the
typical scales and effects, an analytical solution can be sought
using a perturbation theory. We shall assume that initially
both the film and the dielectric are at the same equilibrium
temperature T eq and the deviation of both subsystems from
thermal equilibrium resulting from the irradiation is small.
Then we can linearize Eqs. (2), namely,

Te(�r, t ) = T eq + δTe(�r, t ), δTe � T eq,

Tl (�r, t ) = T eq + δTl (�r, t ), δTl � T eq, (5a)

Moreover, the smallness of the temperature deviation al-
lows us to neglect the spatiotemporal dependence of the heat
capacity and thermal conductivity so that

Ce,l ≈ Ceq
e,l 	 
Ce,l , δKl,e � Ke,l ≈ Keq

l,e. (6)
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TABLE I. Parameters used in the solution of the original (2) and
linearized [(7a)–(7c)] TTM.

Parameter Value Units Ref.

Ceq
e 2.1×104 J m−3 K−1 [17]

Ceq
l 2.5×106 J m−3 K−1 [17]

G 2.5×1016 J m−3 K−1 s−1 [18]

De 0.015 m2/s

Dl 2.5×10−6 m2/s

�Tl 1×1010 s−1 [19]

�Te 1.2×1012 s−1 [19]

λpump 500 nm

Keq
e 315 W m−1 K−1 [17]

Keq
l 2.5 W m−1 K−1 [20]

l 20 nm [2]
δz 10 nm
δx 10 μm
τp 0.1 ÷ 10 ps

Substitution of Eqs. (5a) and (5a) into Eqs. (2) and subsequent
linearization leads to the following linear system of equations:

∂δTe

∂t
= De ∇2δTe − �Te (δTe − δTl ) + f (�r, t ), (7a)

∂δTl

∂t
= Dl ∇2δTl + �Tl (δTe − δTl ), (7b)

f (�r, t ) ≡ pabs(�r, t )

Ceq
e

, (7c)

where �Te,l and De,l represent the decay rates and diffusion
coefficients of the electronic and lattice temperatures, respec-
tively,

�Te ≡ G

Ceq
e

, De ≡ Keq
e

Ceq
e

, (8a)

�Tl ≡ G

Cl
, Dl ≡ Keq

l

Cl
. (8b)

Typical values of parameters used in the analytical solution of
the linearized TTM [Eqs. (7a)–(7c)] are given in Table I.

The procedure for solving the linearized TTM model was
described in Ref. [9]. Here, however, we shall use a simplify-
ing assumption which makes the analysis much easier.

First, as noted previously the longitudinal length of the
pump plasmon δx is much larger than the transverse one δz.
As we shall see further in Sec. IV a typical value of δx for
gold in the visible range is δx ∼ 10 μm.

Therefore the maximum value of (Det )1/2/δx ∼ (De/�e)1/2/

δx ∼ 0.01 � 1 (according to Table I), and the inequality is
even stronger for the lattice. This means that both electron and
lattice diffusion in the longitudinal x direction can be safely
neglected and the temperature distributions in this direction
follow the slow decay of the source ∼ exp(−x/δx ). This
allows us to drop the x dependence altogether and consider an
essentially one-dimensional spatiotemporal dynamics in the
transverse direction (t, z) for the longitudinal distances of a

few micrometers or less. This dependence can be restored by
reintroducing the factor exp(−x/δx ).

Next we notice from Table I that both the diffusion coef-
ficient and the decay rate for the lattice are smaller than their
electronic counterparts: Dl � De, �Tl � �Te . This means that
the induced change in the lattice temperature is much smaller
than that for the electrons, δTe 	 δTl . Thus in the first ap-
proximation the heating of the electronic subsystem does not
depend on the lattice. We can then solve Eq. (7a) assuming
δTl = 0 and then substitute the found solution into Eq. (7b) as
the effective source.

For both temperature disturbances we assume the zero-flux
(Neumann) boundary condition at the metal-dielectric inter-
face z = 0, and the equations are solved in the semi-infinite
region z < 0 occupied by the metal.

A. Electronic subsystem

We start from the electronic subsystem (7a), where accord-
ing to our approximation we neglect the lattice term. This is
a damped diffusion equation and its Green’s function in the
free space can be easily obtained using the standard Fourier
method. The result reads

G(
z; 
t ) = θ (
t )√
4πDe
t

exp[−�Te
t] exp

[
− 
z2

4De
t

]

= G(0)(
z; 
t ) exp[−�Te
t], (9)

where 
z = z − z′, 
t = t − t ′, θ (t ) is the Heaviside theta
function and G(0) is the undamped Green’s function of the free
space.

Next, to get the Green’s function in the considered semi-
infinite geometry with the Neumann boundary condition, one
can use the method of images (see, e.g., Ref. [21]):

G(z, z′; 
t ) = (G(0)(z − z′; 
t ) + G(0)(z + z′; 
t ))

× exp [−�Te
t]. (10)

Physically, the two terms above represent the (damped)
free-space contributions from the genuine source z′ and its
symmetric image −z′. Thus the response of the system to the
excitation (3) can be written as

δTe(z, t ) =
∫ t

−∞
dt ′

∫ 0

−∞
dz′ G(z, z′; t − t ′)

p0(z′, t ′)

C(eq)
e

=
∫ t

−∞
dt ′[F (z; t − t ′) + F (−z; t − t ′)]

× e−�Te (t−t ′ ) e−t ′2/τ 2
p

F (z; 
t ) = p0

2Ceq
e

eDe
t/δ2
z +z/δz

× erfc

[
(De
t )1/2

δz
+ z

2(De
t )1/2

]
, (11)

with erfc(x) being the complementary error function. In gen-
eral, the time integrals cannot be evaluated analytically, but
the treatment is simplified in two limiting cases: ultrafast
(femtosecond) pulses and long (>1 ps) pulses.
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1. Ultrafast pulse

In the ultrafast-pulse case, �Teτp � 1, which according to
Table I corresponds to femtosecond pulses. Thus one can sub-
stitute the pulse with the impulse response: exp(−t ′2/τ 2

p ) ≈√
π τp δ(t ′). Assuming that the observation time is not too

small, t � τp, one has

δTe(z, t ) = √
π τp [F (z; t ) + F (−z; t )] e−�Te t ,

�Teτp � 1 and t � τp. (12)

The above expression can be further simplified if we no-
tice that the minimum value of the parameter (Det )1/2/δz ∼
(Deτp)/δz ∼ 4 for a 100-fs pulse. Therefore the argument of
the complementary error function is large almost everywhere
apart from the vicinity of the resonance time line z∗(t ) =
−2(Det )/δz. This line naturally splits the metal region into
a near zone (|z| � z∗) and a far zone (|z| 	 z∗). In both
zones we can therefore use a large-argument expansion of the
complementary error function:

erfc(x) ≈ 2 θ [−x] + e−x2

√
πx

, |x| 	 1.

Then after some algebra we obtain the final result up to the
main terms:

δTe(z, t ) = p0τp

Ceq
e

, e−�Te t

{
δz√
Det

e−z2/4Det , |z| � z∗(t )

ez/δz , |z| 	 z∗(t )

for �Teτp � 1 and t � τp. (13)

Therefore one can see that the temperature in metal experi-
ences damped diffusion in the internal direction z in the near
zone followed by exponential decay with the same exponent δz

in the far zone. Uniform temporal decay is observed through-
out (with the exponent �Te ).

The typical value of the transition boundary is given by
z(τp) = 2(Deτp)/δz ∼ 300 nm (for a 100-fs pulse), which is
much deeper than the plasmon decay δz.

2. Long pulses

In the long-pulse case, one has �Teτp 	 1, which accord-
ing to Table I corresponds to pulses of duration of a few
tens of picoseconds. Thus we can approximate exp(−t ′2/τ 2

p )
with its value at t ′ = t , and the temporal dependence of the
temperature disturbance follows exactly the pulse shape. Con-
sequently, the value of the integral in (12) is time independent,
and the main contribution comes from the region t − t ′ ∼
�−1

Te
.

We are thus left with an integral:

δTe(z, t ) = p0

2Ceq
e

e−t2/τ 2
p [ f (z) + f (−z)],

f (z) =
∫ ∞

0
eDe
t/δ2

z +z/δz

× erfc

[
(De
t )1/2

δz
+ z

2(De
t )1/2

]
e−�Te 
t d
t .

Introducing the change of variables τ = (De
t/δ2
z )1/2,

ζ = z/δz, δ′
z = (De/�Te )1/2 = ξ δz, we can write

f (ζ ) = 2 δ2
z

De

∫ ∞

0
eτ 2+ζ erfc

[
τ + ζ

2τ

]
e−τ 2/ξ 2

τ dτ.

Remarkably, this integral can be evaluated in the closed form.
It is easy to check that it satisfies the following ordinary
differential equation (ODE):

df

dζ
= f (ζ ) − 2δ2

z√
π De

∫ ∞

0
e−ζ 2/4τ 2−τ 2/ξ 2

dτ

= f (ζ ) − δ2
z

De
ξ e−|ζ |/ξ ,

where in the second line we have used a table integral
(Ref. [22], Eq. 3.325). This equation can be easily solved
using the initial condition f (0) = (δ2

z /De)ξ 2/(1 + ξ ) (which
can be obtained by integrating by parts) obtaining

f (ζ ) = δ2
z

De
ξ 2

[
eζ

ξ + 1
+ e−|ζ |/ξ − ez

ξ + sgn(z)

]
.

Taking the symmetric combination of the above, the final
answer for the electron temperature reads

δTe(z, t ) = p0

G
e−t2/τ 2

p
ez/δ′

zξ − ez/δz

ξ 2 − 1
. (14)

One can easily verify that the above solution indeed has a
vanishing flux in the z direction at the interface.

Note that for the slow pulse the nature of the electron tem-
perature distribution inside the metal changes. Instead of the
diffusive spread (13), one now has an exponential decay with
the two scales, δz and δ′

z = ξδz. Typical values of parameter
ξ according to Eq. (4) and Table I are ξ ≈ 10. So there is
a strong component decaying at the enlarged effective skin
depth δ′

z ∼ 100 nm and a weaker component decaying at the
original skin depth δz = 10 nm whose role is to provide the
vanishing flux at the metal-dielectric interface.

From Eq. (14), one can approximate the peak value of the
electron temperature disturbance occurring at the origin at the
center of the temporal pulse, t = 0:

δTe,max = p0

G(ξ + 1)
. (15)

Thus for the input power density p0 = 3 MJ/(ps m3) the max-
imum electron temperature change is estimated as δTe,max =
9.7 K.

B. Lattice subsystem

Next, for the lattice temperature, one notices that the equa-
tion for the lattice dynamics (7b) has the same form as that for
the electrons only with the replacement of the electron decay
rates and diffusion with their lattice counterparts �Te → �TL ,
De → Dl and the role of the source is now being played by
the electron temperature perturbation f → �TL 
Te. We can
therefore reuse most of the results from the previous section.
We concentrate here on the case of a “slow” pulse �Teτp 	 1
as the most interesting one.

The important difference in the lattice dynamics is that it is
very slow (inertial) compared with its electronic counterpart.
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Thus, for example, a pulse of duration 1–10 ps which can be
considered slow with respect to the electron subsystem will
have the typical values of �TL τp ∼ 0.01–0.1, i.e., the electron
temperature variation acting as a source for the lattice can be
considered fast. Therefore we can reuse most of the arguments
from Sec. III A 1. Moreover, according to the solution (14) the
spatiotemporal dependence of the electron temperature in the
regime of large ξ which is considered here mimics that of the
original perturbation up to the prefactor and the replacement
δz → δ′

z 	 δz.
Thus, making use of the ready expressions (11) and (12),

we immediately obtain

δTl (, z, t ) = √
π τp

[
F̃ (z; t ) + F̃ (−z; t )

]
e−�Tl t , t � τp,

F̃ (z; t ) = p0 �Tl

2Ceq
e ξ �Te

eDl t/δ′2
z +z/δ′

z

× erfc

[
(Dlt )1/2

δ′
z

+ z

2(Dlt )1/2

]
. (16)

However, in the z direction, one has (Dlt )1/2/δ′
z ∼

(Dl/�Tl )
1/2/δ′

z ∼ 0.14, i.e., also small. This means that unlike
the case of an electron subsystem reacting to a fast excitation
the lattice diffusion constant is simply too small to diffuse the
source on the relevant time scales.

Moreover, using the identity erfc(−x) = 2 − erfc(x), it is
easy to see that

ez/δ′
z erfc

[
z

2(De
t )1/2

]
+ e−z/δ′

z erfc

[
− z

2(De
t )1/2

]

= −2ez/δ′
z + 2 sinh(z/δ′

z ) erfc

[
− z

2(De
t )1/2

]
. (17)

So the answer can be rewritten as

δTl (z, t ) =
√

π�Tl τp p0

G ξ

(
ez/δ′

z − 2 sinh(z/δ′
z )

× erfc

[
− z

2 (Dlt )1/2

])
e−�Tl t , t � τp. (18)

During the lifetime of the lattice disturbance tl ∼ �−1
Tl

∼
100 ps the second term (representing the diffusion effects) can
be neglected, and the electron and lattice temperature distur-
bances at each point are proportional to the time-dependent
proportionality factor given by

δTl (z, t )

δTe(z, t )
= (�Tl τp)−1 1√

π
e−t2/τ 2

p +�Tl t , t � τp. (19)

Thus during the duration of the plasmon pump |t | ∼ τp the
electron-associated temperature disturbance dominates with
δTe/δTl ∼ (�Tl τp)−1 	 1; after the initial pulse duration the
electron component dies down, and there exists only a small
but persistent change in the lattice temperature up to the
times tl .

Finally, in order to verify the validity of the linear the-
ory considered above, we have performed full numerical
simulations of system (2) using well-known temperature de-
pendencies of heat capacities and thermal conductivities of
the electron and lattice subsystems (see, e.g., Ref. [9]). Equa-
tions (2) represent a system of coupled nonlinear partial
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FIG. 2. The spatiotemporal evolution of the induced tempera-
ture distribution when p0 = 3 MJ/(ps m3) and τp = 1 ps. (a) and
(b) Electron temperature Te and (c) and (d) lattice temperature Tl .
(a) and (c) Full numerics and (b) and (d) linear theory.

differential equations (PDEs) that can be solved using stan-
dard numerical methods (we used a standard MATLAB PDE
mesh-grid solver). The analytical and numerical results for Te

and Tl are represented in Figs. 2 and 3.
One can observe a reasonably good quantitative agreement

between theory and numerics. Moreover, the qualitative spa-
tiotemporal shape of the temperature disturbance is preserved
even for much higher energy density where the temperature
variation for the electron subsystem is not small and the per-
turbative analysis above is technically inapplicable; see Fig. 4.

IV. TEMPERATURE-INDUCED
TRANSMISSIVITY CHANGES

In this section we shall study how the temperature varia-
tions studied above and induced by a strong pump plasmon
translate into the change in the dielectric properties of the
medium for the weak coplanar probe plasmon.

Most of the results cited in the literature regarding the
temperature effects on the electromagnetic properties of no-
ble metals assume a simple Drude model for the dielectric

(a) (b)

FIG. 3. Analytical (red) and numerical (blue) temporal depen-
dence of the electron Te (a) and lattice Tl (b) temperatures at z = 0
(solid) and z = 100 nm (dashed) curves.
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FIG. 4. Spatiotemporal variation of (a) Te and (b) Tl assum-
ing that the incident energy density is p0 = 0.2 GJ/(ps m3) and
τp = 3 ps.

permittivity [2]:

εm = 1 − ω2
p

ω(ω + iγ )
, (20)

where ωp is the plasma frequency and γ is the electron scat-
tering rate. This model describes only intraband transitions,
and the electron and lattice heating as described in the pre-
vious section is translated into the monotonic increase of the
scattering rate γ . An important consequence of this is that the
imaginary part of the permittivity is given by

ε′′
m = Im εm = ω2

pγ

ω(ω2 + γ 2)

and it grows with the scattering rate (and hence the tempera-
ture) up to γ = ω. However, in the near-infrared and visible
region the Drude model is not sufficient to explain empirical
measurements because of two interband absorption peaks at
λ = 500 and 730 nm [23,24]. In this paper, we show that if
the latter are taken into account, the variability of the induced
losses is much higher, and one can even observe a pump-
induced increase in the probe propagation in the visible part
of the spectrum.

To account for the effect of interband transitions on
optical properties of Au, we use the model developed in
Refs. [23–28]. In Fig. 5, we compare the experimental data of
Johnson and Christy [11] with the theoretical model of Stoll
et al. [25] assuming that the metal is at room temperature. We
can see that the model almost perfectly describes the data in
the visible region.
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FIG. 5. Wavelength dependence of the dielectric function of Au
assuming that Te = Tl = 300 K: (a) imaginary part and (b) real part.
The blue dashed curve represents the data obtained by the use of the
model of Stoll et al. [25], while the black solid curve represents the
experimental data of Ref. [11].
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FIG. 6. Variation of the imaginary (a) and real (b) parts of
dielectric function of Au assuming that p0 = 0.2 GJ/(ps m3),
τp = 3 ps, and λ = 500 nm.

The above comparison between the theoretical calculation
of the real and imaginary parts of the dielectric constant and
the experimental data is made to validate the assumption that
the theoretical model can simulate the experimental data quite
well. Thus it can be used for different temperature values.
With this in mind, using the TTM (2), we calculate the temper-
ature variation induced by the pump which leads to variation
of the inter- and intraband terms of the imaginary and real
parts of the dielectric function as felt by a weak probe. It
is important that throughout this section we are not relying
on the results of Sec. III or the linearized model but rather
perform full numerical simulations.

These results are presented in Fig. 6, where both intra-
and interband transitions are taken into account. We only plot
the relative change in the dielectric constant 
ε = ε − εeq,
where εeq is the equilibrium value of the dielectric function in
metal at T = 300 K. One can clearly see the transient nature
of the induced variation of the dielectric constant following
the transient nature of the temperature variation as correctly
predicted by the linear theory of Sec. III.

After the passing of the pulse excitation the change in
the real part of the dielectric constant is washed out, but the
change in the imaginary part persists up to the times of the
lattice cooling tp and retains a virtually uniform spatial profile
corresponding to 
ε′′

max ≈ 0.25. Therefore in the time interval
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FIG. 7. Spectral dependence of absorption coefficient α

(dB/μm). The solid curves represent the pretransit values (t = 0 ps),
while the dashed curves are the post-transit ones (t = 10 ps).
(a) Comparison between Drude model (black) and the full model
(red) for Au assuming that p0 = 0.2 GJ/(ps m3), τp = 3 ps.
(b) Blown-up region [blue rectangle in (a)] which shows the region
of increased propagation length for the full model. (c) Same as (b),
but for the Drude model. (d) Comparison of the relative change
in the absorption coefficient 
α = α(t = 10 ps) − α(t = 0 ps)
between the Drude model (black solid curve) and the full model
(red solid curve).

after the pump transient and up to lattice cooling, i.e., 3 ps
� t � 100 ps, the medium remains uniform, and one can
use the expressions (1) for the probe plasmon but witwh the
changed dielectric constant of metal.

In particular, according to the Beer-Lambert law the in-
tensity of the probe plasmon decays exponentially with the
propagation distance [2]:

Ipr (x) = I0e−α x, α = 2 Im[k′
x],

k′
x = k0

√
εd (εm + i
ε′′)
εd + εm + i
ε′′ . (21)

In the equation above, the absorption coefficient is defined
in the asymptotic regions prior to and after the transient of
the pump, and it is interesting to compare the two in the
visible region where the losses are generally high. In the
above equation the correction to the real part of the dielectric
function due to the pump contributes only to the higher-order
terms in the extinction ratio and therefore can be neglected.
It is also interesting to compare these results with the Drude
model (20), which, as stated earlier, takes into account only
intraband transitions. These results are presented in Fig. 7.

The first observation one makes from Fig. 7(a) is that the
Drude model severely underestimates losses in the visible
region of the spectrum. The difference disappears at the NIR
boundary, where intraband transitions described by the Drude
model dominate. More interesting is the difference between
pre- and post-transit absorption coefficients. Figure 7(b)
shows the enlarged region roughly corresponding to the yel-
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FIG. 8. Spectral dependence of the propagation constant
β = Re[k′

x] (nm−1). The solid curves represent the pretransit values
(t = 0 ps), while the dashed curves are the post-transit ones (t = 10
ps). The results are shown for the full model (a) and Drude model
(b) for Au assuming that p0 = 0.2 GJ/(ps m3), τp = 3 ps.

low wavelength. One can see that in this region the post-transit
value is less than the pretransit one, i.e., the pump wave leads
to decreased absorption for the probe wave. This is an attribute
of the interband transition absent in the Drude model [as
attested by Fig. 7(c)]. Moreover, the spectral region where
this decreased absorption occurs is relatively narrow, as seen
in both Figs. 7(b) and 7(d). Note that the difference between
pre- and post-transit propagation distances shown in Fig. 8 is
much less pronounced.

How large is this effect in real terms? In our simulations for
the waveguide length equal to the typical longitudinal length
of an SPP L ∼ δ−1

x ∼ 10 μm and for the maximum decrease
in the imaginary part of the refractive index 
ε′′ = −0.3 the
increase in the transmittance is constituted by


T = exp (2Im[kx − k′
x]L) ≈ 3 dB, (22)

where kx is the longitudinal wave vector of the probe prior
to the transit of the pump. Thus one can conclude that the
induced transmittance gain is quite tangible.

V. CONCLUSION

We have demonstrated that one can strongly control the
absorption of the SPP in the visible and NIR region in the
pump-probe configuration via temperature-induced changes
in the intraband transition in noble metals. A large pump
pulse propagating at the metal-dielectric interface heats both
electron and lattice subsystems, and the latter leads to large
variation of the extinction coefficient for a visible-NIR weak
probe plasmon due to the interband transitions in metal.
Around the wavelength λ ∼ 500 nm this change can even be
negative, i.e., the propagation length can be increased for the
probe after the transient of the pump. We estimate that for
gold, one can increase the transmission coefficient for the
probe by ∼3 dB during a time window of up to 100 ps,
which significantly exceeds the few-picosecond duration of
the pump pulse. We believe that these findings can help fa-
cilitate the development of novel ultrafast plasmonic switches
and optoelectronic gates.

Some future avenues of research regarding this problem
may include full-wave simulations with wide-band sources
in Kretschmann’s or Otto’s configurations [4,29,30] as well
as the study of the edge effects at the probe insertion
point [31,32].
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