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Motivated by the �-spectrum proposal of unique gapped ground states by Kitaev, we study adiabatic cycles in
gapped quantum spin systems from various perspectives. We give a few exactly solvable models in one and two
spatial dimensions and discuss how nontrivial adiabatic cycles are detected. For one spatial dimension, we study
the adiabatic cycle in detail with the matrix product state and show that the symmetry charge can act on the space
of matrices without changing the physical states, which leads to nontrivial loops with symmetry charges. For
generic spatial dimensions, based on the Bockstein isomorphism Hd (G,U (1)) ∼= Hd+1(G,Z), we study a group
cohomology model of the adiabatic cycle that pumps a symmetry-protected topological phase on the boundary
by one period. It is shown that the spatial texture of the adiabatic Hamiltonian traps a symmetry-protected
topological phase in one dimension lower.
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I. INTRODUCTION

In the last 15 years, understanding the phase structure of
the gapped ground state of quantum many-body systems has
progressed. An equivalence class of gapped ground states by
identifying each other without a phase transition is called a
topological phase. In particular, the topological phases with
no ground-state degeneracy for any closed-space manifolds
are called invertible phases or symmetry-protected topological
(SPT) phases. Invertible phases have been studied from vari-
ous points of view, including invertible phases in free fermions
[1,2], classification and model construction in quantum spin
systems using group cohomology [3–7], and classification of
topological response actions using cobordism groups [8–10].

This paper is motivated by the Kitaev proposal that invert-
ible states form an � spectrum in generalized cohomology
theory [11–13]. Let Ed be the “space of invertible states” in d
spatial dimension, which has not yet been rigorously defined.
The space Ed is equipped with a base point as the trivial tensor
product state |0〉. The sequence of spaces {Ed}d∈Z is called an
� spectrum if and only if the based loop space �Ed+1 = {� :
S1 → Ed+1|�(0) = �(1) = |0〉}, the space of loops in (d + 1)-
dimensional invertible states that start and end at the trivial
state, is homotopically equivalent to Ed , the space of invertible
states one dimension lower. Mathematically, an � spectrum
defines a generalized cohomology theory. Thus, it is predicted
that a generalized cohomology theory gives the classification
of invertible phases. See [14] for a review of this perspective
for lattice models, and [15] for field theories.

The �-spectrum structure behind the invertible states is
supported by the following canonical construction of the map
Ed → �Ed+1, independent of the details of the system, from
the following defining property of invertible states. For an
invertible state |χ〉d in d dimensions, there is an invertible
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state |χ̄〉d such that the tensor product state |χ〉d ⊗ |χ̄〉d is adi-
abatically equivalent to the tensor product state |0〉d ⊗ |0〉d of
the trivial state |0〉d . Let |0〉d+1 = ⊗

x∈Z |x, 0〉d be the trivial
tensor product state in (d + 1) dimensions, where each state
|x, 0〉d is the copy of the trivial state of d dimensions. In the
first half period, the pair of trivial states at 2x − 1 and 2x are
adiabatically deformed to the tensor product |2x − 1, χ〉d ⊗
|2x, χ̄〉d , and in the second half, the pair of 2x and 2x + 1 sites
are adiabatically deformed into the trivial states |2x, χ〉d ⊗
|2x + 1, χ̄〉d ∼ |2x, 0〉d ⊗ |2x + 1, 0〉d , resulting in an adia-
batic cycle of �Ed+1 labeled by |χ〉d ∈ Ed [12]. We call this
construction Kitaev’s canonical pump. Clearly, for an open
chain composed of even sites, the invertible state |χ〉d and
|χ̄〉d appear at each edge by a period of the adiabatic cycle (see
Fig. 1). Although a canonical construction of the inverse map
�Ed+1 → Ed has not yet been known in lattice systems, �-
spectrum structure is consistent with various texture-induced
phenomena in invertible phases.

It should be noted that the Thouless pump [16], where a
Z charge pumped by an adiabatic cycle of one-dimensional
(1D) chain with U (1) symmetry, is generalized to any dis-
crete group symmetry and any spatial dimension. It is known
that the topological invariant of the Thouless pump is the
U (1) phase winding of the charge polarization, the ground-
state expectation value of the twist operator [17]. On the
one hand, for generic adiabatic cycles with discrete charge,
such a physical geometric quantity of which the target space
has a nontrivial first homotopy group labeled by the discrete
charge is still unknown. To search such a geometric quantity
is another motivation of this paper. We will see that in the
cases where a nonchiral phase is pumped, the group cocycle
ωθ ∈ Zd+1(G,U (1)) parametrized by the adiabatic parame-
ter θ hosts the topological charge of cycles. Mathematically,
this is understood from the isomorphism Hd (G,U (1)) ∼=
Hd+1(G,Z) from the Bockstein homomorphism associated
with the short exact sequence R → Z → U (1) of coefficients
of group cohomologies. There, the group (d + 1) cocycle
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FIG. 1. Kitaev’s canonical pump Ed → �Ed+1.

with Z coefficient is understood as the phase windings of
the cocycle ωθ . In Sec. V, we present an exactly solvable
model of adiabatic cycles from the Bockstein homomorphism,
in the flavor of Chen-Gu-Liu-Wen’s construction [6]. Our
construction turns out to be the same local unitary constructed
in Ref. [18].

For free fermions with or without translational invariance,
the �-spectrum structure is more tractable to formulate. For
massive Dirac fermions H = ∑d

μ=1 γμ∂μ + M in d dimen-
sion, the mass matrix M is found to belong to the classifying
space of the K theory, this is nothing but the � spectrum
of the K theory [2]. For translational invariant systems, the
parameter-dependent adiabatic Hamiltonian H(k, s) is classi-
fied by the K theory over the Bloch momentum and parameter
space. The topological classification of adiabatic cycles of the
Hamiltonian H(k, s) is found to be the same as for Hamiltoni-
ans in the same symmetry class in one lower dimension [19].

There are several related concepts and prior work for the
adiabatic cycle in invertible states. In the Floquet SPT phases,
periodically driven Hamiltonians are studied, and many pro-
tocols are known that pump an SPT phase at the boundary by
a period. In the Floquet SPT phase, many-body localization is
important to avoid thermalization. In this paper, we are inter-
ested in adiabatic cycles of the Hamiltonian, which closely
overlaps with the topological classification of the Floquet
SPT phase. We should note that it was shown that a part of
Floquet SPT phases are classified by the same classification of
SPT phases in one lower dimension (in addition to the static
phases), which is the same conclusion from the �-spectrum
structure. There, the time-translation Z symmetry is intro-
duced, which is generated by the Floquet unitary itself, and
it is concluded that the Floquet SPTs are classified by the total
symmetry group including Z [18,20–23]. In the context of
field theory, ’t Hooft anomalies are known to be classified by
invertible phases in one higher dimension. Adiabatic cycles
of invertible theories correspond to one-parameter loops in
nonanomalous or possibly anomalous theories on the bound-
ary. For a nontrivial adiabatic cycle, an anomalous theory is
pumped on the boundary, which leads to the existence of a
phase transition at some adiabatic parameter. Related phe-
nomena are discussed as the “global inconsistency” [24], the
“anomalies in the space of coupling constant” [25,26], and the
“diabolical points in parameter space” [27].

It is notable that adiabatic cycles with U (1) symmetry in
one-dimensional systems, i.e., Thouless pumps, have been
realized in the cold-atom system [28,29]. As a physical system

for realizing adiabatic cycles for generic finite group symme-
tries, the cold-atom system should be a promising candidate.

Before moving on to the main part of the paper, we have
some remarks. First, the solvable models discussed in Secs. II,
IV, and V are constructed by unitary transformations on refer-
ence Hamiltonians. Therefore, the spectrum does not change
in the adiabatic time evolution, however, the ground-state
wave function does change, and in the presence of onsite
symmetry of finite groups, the “change” of the wave function
in one period is quantized in some sense, which is the phe-
nomenon studied in this paper. It is similar to the Berry phase,
but the Berry phase is essentially a quantity for finite systems,
i.e., in 0-space dimension, but a new indicator is needed to
characterize the change of the wave function in infinite sys-
tems of d-space dimensions, and we will discuss below that
the group cocycle plays a role similar to the Berry phase.
Second, although the models discussed in Secs. II, IV, and
V are solvable and lack generality, the physical phenomena
demonstrated using the solvable model are characterized by
topological invariants of the adiabatic cycle and are expected
to be universal for adiabatic cycles in general.

The organization of this paper is as follows. In Sec. II,
we give a simple one-dimensional model of the adiabatic
pump with Z2 symmetry and study various tools to diagnose
how the adiabatic cycle is nontrivial or not. In Sec. III, we
study one-dimensional adiabatic cycles from the matrix prod-
uct state (MPS) description of one-dimensional spin systems.
In Sec. IV, we give a simple two-dimensional model of the
adiabatic cycle with time-reversal symmetry (TRS), which is
a model generalized from the Levin-Gu model [7]. In Sec. V,
we present an exactly solvable model in (d + 1)-dimensional
adiabatic cycles from a given group cocycle in d dimension.
We again emphasize that the resulting model is the same local
unitary constructed in Ref. [18]. We summarize this paper in
Sec. VI.

Throughout this paper, we use θ as the adiabatic parameter
with the period 2π . For a finite group G, we specify which g ∈
G is unitary or antiunitary as a symmetry operation by a homo-
morphism s : G → Z2 = {1,−1}. “d spatial dimension” and
“d-dimensional” are sometimes abbreviated as “dD”.

II. SPIN CHAIN WITH Z2 SYMMETRY

A. A toy model

The trivial disordered phase with Z2 symmetry in spin- 1
2

systems is described by the Hamiltonian

H0 = −
∑
j∈Z

σ x
j . (1)

We define the Z2 symmetry operator by

V =
∏
j∈Z

σ x
j . (2)

The ground state of H0 is the fully polarized state |�0〉 =
|· · · →→ · · ·〉 and, at the same time, it is written as the equal
weight sum of the domain wall configurations

|�0〉 =
∑
{σ j}

|. . . σ jσ j+1 . . .〉 , (3)
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FIG. 2. The toy model (4).

up to a normalization factor, where σ j ∈ {↑,↓}. One can find
this ground state can be modified by a U (1) parameter θ while
keeping Z2 symmetry as follows. Let Ndw be the number of
domain walls, namely, Ndw counts the states ↑↓ and ↓↑ in
a configuration |. . . σ jσ j+1 . . .〉. Ndw is defined explicitly by
Ndw = ∑

j∈Z(1 − σ z
j σ

z
j+1)/2 as an operator. We introduce the

modified ground state by assigning the U (1) phase eiθ/2 to
each domain wall as in

|�θ 〉 =
∑
{σ j}

e
iθ
2 Ndw |. . . σ jσ j+1 . . .〉 , (4)

as shown in Fig. 2. This state is given by the local unitary
transformation

Uθ =
∏
j∈Z

e
iθ
2

1−σ z
j σ z

j+1
2 (5)

on |�0〉. Therefore, the Hamiltonian of which the ground state
is |�θ 〉 is given by

Hθ = UθH0U
−1
θ = −

∑
j∈Z

Bθ
j , (6)

with

Bθ
j = σ x

j e
iθ
2 σ z

j (σ z
j−1+σ z

j+1 )

= 1 + cos θ

2
σ x

j − 1 − cos θ

2
σ z

j−1σ
x
j σ

z
j+1

+ 1

2
sin θ

(
σ z

j−1σ
y
j + σ

y
j σ

z
j+1

)
. (7)

Notably, although the local term Bθ
j of the adiabatic Hamilto-

nian Hθ is 2π periodic, the 2π periodicity of the ground state
|�θ 〉, or equivalently the local unitary Uθ , holds only on the
closed chain with the (anti)periodic boundary condition as the
number Ndw of domain walls is even (odd).

On an open chain with L sites, one may define the local
unitary

Uθ =
L−1∏
j=1

e
iθ
2

1−σ z
j σ z

j+1
2 . (8)

This local unitary is not 2π periodic at the boundary: There
remain the Z2 charged operators as Û2π = σ z

1σ z
L . One can

define another local unitary Ũθ that is the same one as Uθ on
closed chains. Let us consider

Ũθ =
L−1∏
j=1

eiθ
1+σ z

j
2

1−σ z
j+1

2 . (9)

This is 2π periodic even for open chains, but Z2 symmetry is
broken at the boundary.

B. Open chain

On an open chain with L sites, we consider the Hamiltonian
Hθ of the form

Hθ = Hbulk
θ + H edge

θ , (10)

where the bulk part Hbulk
θ is composed of local Hamiltonians

Bθ
j and the sum runs over all sites in the interior of the chain.

Namely, Hbulk
θ = −∑L−1

j=2 Bθ
j . The edge Hamiltonian H edge

θ is
any local Hamiltonian that acts spins near the edge and is
assumed to be small compared to the bulk gap. We first solve
the bulk Hamiltonian Hbulk

θ to get the degenerate ground states
and discuss the effect of H edge

θ as the perturbation. Hbulk
θ has

fourfold ground-state degeneracy because the edge spins σ z
1

and σ z
L are not determined. The ground states are explicitly

written as

|�θ (σ1, σL )〉 =
L−1∏
j=2

1 + Bθ
j

2
|σ1 ↑ . . . ↑ σL〉 , (11)

where σ1, σL ∈ {↑,↓}. Here, (1 + Bθ
j )/2 are projection opera-

tors, and the reference states |σ1 ↑ . . . ↑ σL〉 are chosen not to
vanish for the projections. It should be noted that the relative
phases among ground states {|�θ (σ1, σL )〉}σ1,σL∈{↑,↓} can not
be fixed in general and can depend on θ . We will discuss a
phase choice depending on θ in Sec. II D. The Z2 action on the
degenerate ground states becomes θ dependent and explicitly
written as

V |�θ (σ1, σL )〉 = eiθ σ1+σL
2 |�θ (−σ1,−σL )〉, (12)

where −σi denotes the opposite spin direction to σi. Introduc-
ing the Pauli matrices σ̄

μ
1 and σ̄

μ
L for the degenerate ground

states as in

σ̄
μ
1 =

∑
σL

|�θ (i, σL )〉 [σμ]i j 〈�θ ( j, σL )| , (13)

σ̄
μ
L =

∑
σ1

|�θ (σ1, i)〉 [σμ]i j 〈�θ (σ1, j)| , (14)

we have the factorized form

PθV Pθ = vθ
1vθ

L, (15)

with

vθ
j = σ̄ x

j e
iθ
2 σ̄ z

j (16)

for j = 1 and L. Here,

Pθ =
∑

σ1,σL∈{↑,↓}
|�θ (σ1, σL )〉 〈�θ (σ1, σL )| (17)

is the projection onto the ground states. As will see later,
one can define a Z2 invariant from the edge action vθ

1 , which
signals the nontrivial adiabatic cycle.

Note that the gauge choice of vθ
1 and vθ

L is not unique. To
be precise, the U (1) phase of vθ

1 is undetermined so that vθ
1 is

a projective representation of Z2. The gauge choice shown in
(16) is chosen such that (vθ

j )2 = 1 holds. However, the gauge
choice (16) breaks the 2π periodicity. Another gauge choice
is

ṽθ
1 = σ̄ x

1 eiθ
1+σ̄ z

1
2 , ṽθ

L = σ̄ x
L e−iθ

1−σ̄ z
L

2 . (18)
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This maintains the 2π periodicity, but breaks the Z2-ness as it
obeys (ṽθ

1 )2 = eiθ . We note that ṽθ
1 and ṽθ

L are still projective
representations of Z2.

Let us consider some edge Hamiltonians below.

1. Edge Hamiltonian with Z2 symmetry and without 2π periodicity

We first consider the edge Hamiltonian with Z2 symmetry
but without the 2π periodicity. Such an edge Hamiltonian is
given by, for example,

H edge
θ = −λUθ

(
σ x

1 + σ x
L

)
U −1

θ

= −λσ x
1 e

iθ
2 σ z

1 σ z
2 − λσ x

L e
iθ
2 σ z

L−1σ
z
L (19)

with Uθ the local unitary introduced in (8). H θ
edge is not 2π

periodic as Uθ so. The total Hamiltonian is still composed
of commuting local terms, implying that the eigenstates of
the edge-effective Hamiltonian Pθ H edge

θ Pθ are exact ones. The
edge-effective Hamiltonian reads as

PθH edge
θ Pθ = −σ̄ x

1 e
iθ
2 σ̄ z

1 − σ̄ x
L e

iθ
2 σ̄ z

L , (20)

and the ground state is given by

|�θ 〉 ∼
(

1
e

iθ
2

)
σ̄1

⊗
(

1
e

iθ
2

)
σ̄L

. (21)

Note that |�θ 〉 is not 2π periodic as H edge
θ explicitly breaks

it, and the Z2 charge at the edge can be constant as
vθ

1 (1, e
iθ
2 )T

σ̄1
= 1.

2. Edge Hamiltonian without Z2 symmetry and with 2π periodicity

Now consider the opposite case where Z2 is explicitly
broken but the 2π periodicity is possessed. An example of
such an edge Hamiltonian is given by

H edge
θ = −λŨθ

(
σ x

1 + σ x
L

)
[Ũθ ]−1

= −λσ x
1 e−iθσ z

1
1−σ z

2
2 − λσ x

L eiθσ z
L

1+σ z
L−1
2 , (22)

with Uθ the local unitary introduced in (9). The edge effective
Hamiltonian is

Pθ H edge
θ Pθ = −λσ̄ x

1 − λσ̄ x
L eiθσ̄ z

L , (23)

and the ground state is

|�〉 ∼
(

1
1

)
σ̄1

⊗
(

1
eiθ

)
σ̄L

. (24)

This is 2π periodic, but does not have Z2 symmetry.

3. Edge Hamiltonian with Z2 symmetry and 2π periodicity

An example of edge Hamiltonian satisfying both Z2 sym-
metry and the 2π periodicity is a constant one

H edge
θ = −λ

(
σ x

1 + σ x
L

)
. (25)

H edge
θ is not closed on the ground-state manifold as H edge

θ does
not commute with the bulk one Hbulk

θ . The first-order effective
edge Hamiltonian is given by

PθH edge
θ Pθ = −λ cos

θ

2

(
e− iθ

4 σ̄ z
1 σ̄ x

1 e
iθ
4 σ̄ z

1 + e− iθ
4 σ̄ z

L σ̄ x
L e

iθ
4 σ̄ z

L
)
.

(26)

FIG. 3. Edge spectrum of the edge Hamiltonian with Z2 symme-
try and the 2π periodicity. ζ ’s represent the eigenvalues of the edge
Z2 symmetry (18), a one-parameter family of projective representa-
tions of Z2.

There is a level crossing, and the ground state is degenerate at
θ = π . In other words, the ground state can not be unique for
all θ ∈ [0, 2π ]. The lowest two eigenstates of Pθ H edge

θ Pθ are
given by

|�±
θ 〉 ∼

(
1

±e
iθ
2

)
σ̄1

⊗
(

1
±e

iθ
2

)
σ̄L

. (27)

Two states |�+
θ 〉 and |�−

θ 〉 are interchanged by a period as
|�+

θ+2π 〉 = |�−
θ 〉. Although the effective edge Hamiltonian

Pθ H edge
θ Pθ is 2π periodic, the lowest two states can be re-

garded as a single state with the 4π periodicity.
Let us focus on the states

|ψ±
θ 〉 ∼

(
1

±e
iθ
2

)
σ̄1

at the left edge. To have a continuous eigenvalue of Z2 action,
we employ the gauge choice (18). We find that the eigenvalue
of ṽθ

1 is also 4π periodic as ṽθ
1 |ψ±

θ 〉 = ±eiθ/2 (see Fig. 3).
This nature of 4π periodicity is the origin of the unavoidable
level crossing, as discussed below.

C. Projective representation and Z2 invariant

In Sec. II B 3, we saw that there is a level crossing in
the edge spectrum for a Z2-symmetric and 2π -periodic edge
Hamiltonian in the first-order calculation. One can show that
the level crossing is a consequence of the nontrivial cycle of
the edge Z2 action (16).

Since the U (1) phase of the Z2 action vθ
1 at the left edge

is unfixed in the expression (15), the matrix vθ
1 should be

considered as a projective representation of Z2. For 1D SPT
phases in spin systems, the nontrivial factor system of the
projective representation of symmetry group G signals non-
trivial SPT phases [3–5]. On the one hand, since the Z2 group
has no nontrivial factor system as H2(Z2,U (1)) = 0, the
projective representation vθ

1 belongs to the trivial projective
representation.

Nevertheless, as a cycle of projective representation, the
factor system of vθ

1 is nontrivial. To see this, we first note
that a generic 2π -periodic projective representation of Z2, uθ

with (uθ )2 ∼ 1, defines a Z2 invariant. Let ωθ ∈ U (1) be the
two-cocycle (factor system) defined as (uθ )2 = ωθ1. The Z2
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FIG. 4. A function θ varying in space form 0 to 2π .

invariant is defined by

ν = 1

2π i

∮
d ln ωθ mod2. (28)

Even integers in ν’s are meaningless since if one replaces
the U (1) phase of uθ by uθ 
→ einθ uθ with an integer n, the
invariant ν changes by 2n. The edge Z2 action (18) has the
nontrivial Z2 invariant ν ≡ 1.

The level crossing is the consequence of ν ≡ 1: Suppose
that the ground state is unique for all θ , and Z2 symmetry
is unbroken. Then the edge-projective representation of Z2

is a one-dimensional representation uθ = eiα(θ ) in which the
Z2 invariant ν is trivial due to the 2π periodicity of eiα(θ ).
Therefore, we conclude that the nontrivial Z2 invariant ν ≡ 1
implies the ground-state degeneracy at some θ .

D. Comment on the relative phases of ground states

As commented in Sec. II B, the relative phase among the
degenerate ground states |�θ (σ1, σL )〉 can be chosen such that
they explicitly depend on θ . For example, let |�θ (σ1, σL )〉′ be
the basis obtained by the nonlocal unitary transformation on
|�θ (σ1, σL )〉 as in

|�θ (σ1, σL )〉′ = e−iθ
1−σ z

1
2

1−σ z
L

2 |�θ (σ1, σL )〉. (29)

We introduce the effective-edge spin operators σ̄
′μ
1 and σ̄

′μ
L

in the same way as (13) and (14) on the basis |�θ (σ1, σL )〉′.
The effective Z2 action reads as a constant PθV Pθ = σ̄ ′x

1 σ̄ ′x
L .

Correspondingly, the effective-edge Hamiltonian becomes
nonlocal. For example, the edge Hamiltonian (25) becomes

Pθ H edge
θ Pθ = −λ cos

θ

2

(
e

iθ
4 σ̄ ′z

1 σ̄ ′z
L σ̄ ′x

1 e− iθ
4 σ̄ ′z

1 σ̄ ′z
L

+ e
iθ
4 σ̄ ′z

1 σ̄ ′z
L σ̄ ′x

1 e− iθ
4 σ̄ ′z

L σ̄ ′z
L
)
. (30)

On the basis |�θ (σ1, σL )〉′, one can not extract the nontrivial
Z2 cycle from the effective-edge symmetry action. There-
fore, the locality of the phase choice of the ground states
|�θ (σ1, σL )〉 is crucial to define the Z2 invariant (28).

E. Z2 charge trapped on a spatial texture

Another way to detect the nontriviality of the adiabatic
cycle Hθ is to measure the symmetry charge of the ground
state under a spatial texture in which θ slowly varies in the
space from 0 to 2π .

Let θ (x) be a R-valued smooth function such that

θ (x) =
{

0 (x � x0),
2π (x � x1). (31)

Here, x0 and x1 are positions with x0 < x1, and |x1 − x0| is
large enough to the inverse of the energy gap. See Fig. 4 for

a function θ (x). The Hamiltonian with a spatial texture is of a
form

Htexture = −
∑

j

Bθ ( j)
j . (32)

We claim that the ratio of the Z2 charges of the ground states
between H0 and Htexture is the Z2 invariant to detect if a given
cycle Hθ is nontrivial or not. Although this strategy can be
applied to any adiabatic Hamiltonian Hθ with translational
invariance, we show that for models that obtained by the
local unitary transformation, one has a Hamiltonian which
approximates the texture Hamiltonian Htexture of the form (32),
as explained below.

By using the local unitary (9), the texture Hamiltonian is
given by H̃texture = ŨtwistH0[Utwist]−1 with

Ũtwist =
∏

j

eiθ ( j)
1+σ z

j
2

1−σ z
j+1

2 . (33)

However, since Ũtwist breaks the Z2 symmetry slightly as

VŨtwistV −1 = Ũtwiste
−i

∑
j σ z

j

θ j −θ j−1
2 , the ground-state expecta-

tion value of the Z2 operator V is quantized only in the
thermodynamic limit. We do not describe this type of the twist
operator in the details.

Instead, we consider the twist operator

Utwist =
∏

j

e
iθ ( j)

2

1−σ z
j σ z

j+1
2 (34)

which preserves Z2 symmetry VUtwistV −1 = Utwist. We note
that Utwist has the support only on x0 − 1 � j � x1 + 1 even

if the unitary transformation e
iθ
2

1−σ z
j σ z

j+1
2 per site is not 2π

periodic as it shows eiπ
1−σ z

j σ z
j+1

2 = σ z
j σ

z
j+1. This is because the

contributions from nearest-neighbor sites are canceled out for
j > x1 + 1, resulting in that the local terms of the texture
Hamiltonian UtwistH0U

−1
twist are unchanged for j < x0 − 1 and

j > x1 + 1.
However, remarkably, the twist operator Utwist does not

work to give a smooth texture Hamiltonian for closed chains
with the periodic boundary condition where the 1 and L + 1
sites are identified. To see this, let us try to apply the following
trial twist operator on the closed chain:

U S1

twist,trial =
L∏

j=1

e
iθ ( j)

2

1−σ z
j σ z

j+1
2 (35)

to get the texture Hamiltonian Htexture =
U S1

twist,trialH0[U S1
twist,trial]

−1 = −∑N
j=1 Btx

j . The local terms
read as

Btx
j = U S1

twist,trialσ
x
j

[
U S1

twist,trial

]−1

= cos
θ ( j − 1)

2
cos

θ ( j)

2
σ x

j

− sin
θ ( j − 1)

2
sin

θ ( j)

2
σ z

j−1σ
x
j σ

z
j+1

+ sin
θ ( j − 1)

2
cos

θ ( j)

2
σ z

j−1σ
y
j

+ cos
θ ( j − 1)

2
sin

θ ( j)

2
σ

y
j σ

z
j+1 (36)
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for j = 2, . . . , L, and

Btx
1 = U S1

twist,trialσ
x
1

[
U S1

twist,trial

]−1

= cos
θ (L)

2
cos

θ (1)

2
σ x

1 − sin
θ (L)

2
sin

θ (1)

2
σ z

Lσ x
1 σ z

2

+ sin
θ (L)

2
cos

θ (1)

2
σ z

Lσ
y
1 + cos

θ (L)

2
sin

θ (1)

2
σ

y
1 σ z

2 .

(37)

Since θ (N ) = 2π , Btx
j ’s are singular at site 1 and are not

smooth. To compensate for this discrepancy, the twist operator
needs to be modified for closed chains by inserting the Z2

charged operator at j = 1 as in

U S1

twist := σ z
1

L∏
j=1

e
iθ ( j)

2

1−σ z
j σ z

j+1
2 . (38)

With this twist operator, we have the texture Hamiltonian
Htexture = U S1

twistH0[U S1
twist]

−1 which smoothly varies in the
closed chain and has a unit winding of θ .

Now let us evaluate the ground-state expectation value
of the texture Hamiltonian Htexture. No explicit calculation is
needed. The ground state |�texture〉 of Htexture is given by the
unitary transformation |�texture〉 = U S1

twist|�0〉. From the alge-
braic relation

VU S1

twistV
−1 = −U S1

twist, (39)

where the factor (−1) comes from the charged operator σ z
1 , we

conclude that a spatial texture of the adiabatic Hamiltonian (6)
has the nontrivial Z2 charge.

In Sec. V D, we generalize the prescription here to adia-
batic cycles in any spatial dimensions for an exactly solvable
model.

F. Berry phase

In the previous section, we considered the spatial texture
of the adiabatic Hamiltonian. In this section, we consider an
alternative one, the temporal texture with the twisted bound-
ary condition. Let |�σ

θ 〉(|�0
θ 〉) be the family of the ground

states of the adiabatic Hamiltonian Hσ
θ (H0

θ ) for the twisted
boundary condition by Z2 symmetry (for the periodic bound-
ary condition, respectively). For the spin system introduced
in Sec. II A, the twisted boundary condition is defined by the
identification rule

σ j+L = V σ jV
−1 (40)

for the spin operators. Let eiγ0 and eiγσ be the Berry phases for
the periodic and boundary conditions, respectively. We claim
that the ratio of the Berry phases

eiγσ /eiγ0 (41)

is quantized to a Z2 value in the thermodynamic limit and
serves as the Z2 invariant of the adiabatic cycle.

For the toy model (6), the Berry phase is computed as fol-
lows. The ground state for the periodic and twisted boundary
condition is given by∣∣�0/σ

θ

〉 = U 0/σ

θ |�0〉 , (42)

where |�0〉 is the fully polarized state |�0〉 = |→→ · · ·〉, and
U 0/σ

θ = e
iθ
2 N0/σ

dw is the local unitary with

N0/σ

dw =
L−1∑
j=1

1 − σ z
j σ

z
j+1

2
+ 1 ∓ σ z

Lσ z
1

2
(43)

the operator counting domain walls for the periodic and
twisted boundary condition. Since U 0/σ

2π = ±Id holds as an
operator, the ground state satisfies the boundary condition
|�0/σ

2π 〉 = ± |�0/σ

0 〉, and it contributes the Berry phase by
eiπ for the twisted boundary condition. For both boundary
conditions, the contribution from the integral of the Berry
connection to the Berry phase results in a common value

e
∫ 2π

0 〈�0/σ

θ |dθ �
0/σ

θ 〉 = eiπ〈�0|Nσ
dw|�0〉 = iL. (44)

In sum, the Berry phases are eiγσ = −1 and eiγ0 = 1 and,
therefore, the adiabatic Hamiltonian (6) shows a nontrivial
ratio (−1) of the Berry phases.

Note that the ratio (41) is generally not quantized when
there is no symmetry to quantize the Berry phase. There is an
example of a model in which the ratio (41) is quantized only
in the thermodynamic limit [30].

G. Duality transformations

In the presence of Z2 onsite symmetry, one can apply the
Kramers-Wanner and the Jordan-Wigner duality maps to get
dual Hamiltonians. It should be instructive to see dual models
of (6).

1. Kramers-Wannier map

We apply the dictionary of the Kramers-Wannier duality
map

σ x
j 
→ τ

y
j τ

y
j+1, (45)

σ z
j σ

z
j+1 
→ τ z

j+1 (46)

to the model (6). We have the dual trivial Hamiltonian HKW
0

and the local unitary U KW
θ as follows:

HKW
0 = −

∑
j

τ
y
j τ

y
j+1, (47)

U KW
θ =

∏
j

e
iθ
2

1−τ z
j

2 . (48)

We also have the Z2 onsite symmetry (Wilson line) W in the
dual model

W =
∏

j

τ x
j . (49)

HKW
0 is the Ising Hamiltonian and the dual local unitary U KW

θ

can be seen as assigning the U (1) phase e
iθ
2 to the charged

objects τ z
j for the Z2 symmetry W . To be concrete, the dual

adiabatic Hamiltonian is still the Ising model but the spin axis
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is rotated by θ/2 around the z axis as in

HKW
θ = U KW

θ HKW
0

[
U KW

θ

]−1

= −
∑

j

τ
y
j

(
θ

2

)
τ

y
j

(
θ

2

)
, (50)

where τ j (φ) = e−iφ
τ z

j
2 τ jeiφ

τ z
j

2 .
Since the adiabatic Hamiltonian (50) is an Ising model for

all θ , the ground state is in a spontaneous symmetry-broken
phase. For the closed chain with the periodic boundary condi-
tion, the ground state has twofold degeneracy and is spanned
by the cat states |±(θ )〉 characterized by τ

y
j (θ/2) ≡ ±1 for

all j. Although the spin operator τ j (θ/2) is not 2π periodic
but 4π periodic, the Ising term τ

y
j ( θ

2 )τ y
j ( θ

2 ) is 2π periodic,
implying that during a period the two cat states are exchanged.

In this paper, we do not study the adiabatic cycles in
spontaneous symmetry-broken phases anymore. We should
note that the Floquet drives in spontaneous symmetry-broken
phases were studied in Ref. [31].

2. Jordan-Wigner map

Let a j, a†
j be complex fermion creation and annihilation

operators at site j. By introducing the Majorana fermion op-
erators c2 j−1, c2 j by

c2 j−1 = −i(a j − a†
j ), (51)

c2 j = a j + a†
j , (52)

the Jordan-Wigner transformation for the Z2 symmetry V is
given by

σ
y
j = c2 j

∏
i< j

(ic2i−1c2i ), (53)

σ z
j = c2 j−1

∏
i< j

(ic2i−1c2i ), (54)

σ x
j = ic2 j−1c2 j . (55)

Applying the Jordan-Wigner map to the model (6), we have
the dual Hamiltonian H JW

0 and the local unitary U JW
θ as

H JW
0 = −

∑
j

(ic2 j−1c2 j )

= −
∑

j

(1 − 2a†
j a j ), (56)

U JW
θ =

∏
j

e
iθ
2

1−ic2 j c2 j+1
2 . (57)

Importantly, the local unitary U JW
θ does not give a U (1) phase

on the local U (1) charge of the complex fermions a†
j , but

on the complex fermions living in bonds. The dual adiabatic
Hamiltonian is

H JW
θ = −

∑
j

BJW,θ
j (58)

with

BJW,θ
j = 1 + cos θ

2
(1 − 2a†

j a j )

− 1 − cos θ

2
(a j−1 + a†

j−1)(a j+1 − a†
j+1)

+ i sin θ (a ja j+1 + a†
j a

†
j+1). (59)

The adiabatic cycle H JW
θ is supposed to show a nontrivial

fermion parity pump. Since the state at θ = 0 is the vacuum,
the fermion parity pump of H JW

θ is realized in a Z2-trivial
superconductor which has no edge Majorana modes.

3. Kramer-Wannier and Jordan-Wigner map

The final duality map is the successive map of the Kramers-
Wannier map followed by the Jordan-Wigner transformation.
This is same as the half-lattice transformation c j 
→ c j+1 of
Majorana fermions. The resulting model at θ = 0 is the zero-
correlation limit of the Kitaev chain [32]

HKWJW
0 = −

∑
j

(ic2 jc2 j+1). (60)

The mapped local unitary is the eiθ/2 phase rotation of the
complex fermions

U KWJW
θ =

∏
j

e
iθ
2 a†

j a j . (61)

Thus, the dual adiabatic model HKWJW
θ is the 2π -phase rota-

tion of the superconducting gap function

HKWJW
θ =

∑
j

(−a†
j a j+1 − a†

j+1a j + eiθ a†
j a

†
j+1 + e−iθ a j+1a j ).

(62)

It is well known that the 2π -phase rotation of a Z2-nontrivial
superconductor gives rise to the fermion parity pump [32].

H. Other models

We present other models of the Z2 charge pump in spin
chains.

1. Cluster Hamiltonian

Let us consider the cluster Hamiltonian [33]

H0 = −
∑

j

σ z
j−1σ

x
j σ

z
j+1. (63)

This model has Z2 symmetry, of which the symmetry operator
is the same form as (2). The cluster Hamiltonian can be
modified while keeping the Z2 symmetry by the local unitary

Uθ =
∏

j

e
iθ
2

1−σx
j

2 . (64)

We consider the adiabatic Hamiltonian Hθ = UθH0U
−1
θ =

−∑
j Bθ

j with Bθ
j = σ z

j−1( θ
2 )σ x

j σ
z
j+1( θ

2 ) and σ j (φ) =
e−iφ

σx
j

2 σ jeiφ
σx

j
2 . Unlike the local unitary (5) discussed in

Sec. II A, the local unitary (64) for a period, U2π , is not
the identity, but coincides with the Z2 symmetry operator
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U2π = V . Since the Hamiltonian H0 is Z2 symmetric, Hθ

becomes 2π periodic.
Let us consider the model Hθ on an open chain. The

total Hamiltonian is of a form H θ
bulk + H θ

edge where H θ
bulk =

−∑N−1
j=2 Bθ

j . Since Bθ
j s are commuted each other, the ground

state of H θ
bulk is given by imposing Bθ

j = 1, for j =
2, . . . , N − 1, on the Hilbert space. The resulting ground-state
manifold has four states coming from the free edge spins. On
the ground-state manifold, the Z2 symmetry operator V looks

PθV Pθ = P

(
N∏

j=1

σ x
j

)
P = σ z

1

(
θ

2

)
σ z

N

(
θ

2

)
, (65)

where Pθ is the projection onto the ground-state manifold.
Here, the effective Z2 action on the edge σ z

1 ( θ
2 ) = σ z

1 e
iθ
2 σ x

1 is
the same form as (16). Therefore, as discussed in Sec. II C, the
edge Z2 action has the nontrivial Z2 invariant of the adiabatic
cycle.

2. Kitaev’s canonical pump

Let us consider the model Hamiltonian as well as the
ground state of the Kitaev’s canonical pump shown in Fig. 1
for the Z2 symmetry operator

V =
∏

j

σ z
j . (66)

The ground state shown in Fig. 1 is given by

|�θ 〉 =
{⊗ j |I, θ〉2 j−1,2 j (θ ∈ [0, π ]),
⊗ j |II, θ〉2 j,2 j+1 (θ ∈ [π, 2π ]), (67)

where we have introduced the notations

|I, θ〉i j = cos
θ

2
|↑〉i |↑〉 j + sin

θ

2
|↓〉i |↓〉 j (68)

and

|II, θ〉i j = − cos
θ

2
|↑〉i |↑〉 j + sin

θ

2
|↓〉i |↓〉 j . (69)

A Hamiltonian of which ground state is |�θ 〉, which is not
unique, is given by the sum of local projection operators

Hθ =
{−∑

j |I, θ〉2 j−1,2 j 〈I, θ |2 j−1,2 j (θ ∈ [0, π ]),
−∑

j |II, θ〉2 j,2 j+1 〈II, θ |2 j,2 j+1 (θ ∈ [π, 2π ]).
(70)

It is straightforward to show

Hθ = −1

4

∑
j

[
1 + σ z

2 j−1σ
z
2 j + cos θ

(
σ z

2 j−1 + σ z
2 j

)
+ sin θ

(
σ x

2 j−1σ
x
2 j − σ

y
2 j−1σ

y
2 j

)]
(71)

for θ ∈ [0, π ], and

Hθ = −1

4

∑
j

[
1 + σ z

2 jσ
z
2 j+1 + cos θ

(
σ z

2 j + σ z
2 j+1

)
− sin θ

(
σ x

2 jσ
x
2 j+1 − σ

y
2 jσ

y
2 j+1

)]
(72)

for θ ∈ [π, 2π ]. The Hamiltonian Hθ is discontinuous at θ =
π but it can be continuous by inserting the following two

adiabatic paths of t ∈ [0, 1] at θ = π :

−
∑

j

{
(1 − t )

1 − σ z
2 j−1

2

1 − σ z
2 j

2

+ t

(1 − σ z
2 j−1

2
+ 1 − σ z

2 j

2

)}
(73)

and

−
∑

j

{
(1 − t )

(1 − σ z
2 j−1

2
+ 1 − σ z

2 j

2

)

+ t
1 − σ z

2 j

2

1 − σ z
2 j+1

2

}
. (74)

After introducing the matrix product state description of adia-
batic cycles in the next section, we see that the state |�θ 〉 is a
nontrivial Z2 cycle (see Sec. III B 2).

III. MATRIX PRODUCT STATES

The discussion in Sec. II C to define the Z2 invariant of
adiabatic cycles from the edge symmetry action motivates us
to formulate the classification of adiabatic cycles by the MPS
representation of 1D quantum spin systems.

A. MPS with Z2 symmetry

We first generalize the adiabatic cycles in Z2-symmetric
systems by using the MPS. A translation-invariant MPS is
written as

|�〉 = Tr[. . . Amj Amj+1 . . . ] |. . . mjmj+1 . . .〉 , (75)

where the index mj stands for the basis of local Hilbert space
at site j, and Am = [Am]αβ are D × D square matrices on the
bond Hilbert space. A Z2-symmetry operator is written as a
tensor product of a local Z2 actions

Z =
∏

j

σ j, (76)

where σ j acts on the local Hilbert space as σ j |mj〉 =
|n j〉 [σ j]mj n j and satisfies σ 2

j = 1. The uniqueness of the state
|�〉 is encoded in the matrices Am’s: When |�〉 represents a
unique gapped ground state, the state |�〉 is Z2 symmetric if
and only if there exists a U (1) phase eiφ and unitary matrix
V ∈ U (D) such that [34,35]

[σ ]mnAn = eiφV †AmV (77)

holds. We note that the matrix dimension D of Am’s reflects
the entanglement between two sites.

1. Space of the matrix V

Since the subsequent Z2 actions and the identity are the
same, the uniqueness of the U (1) phase eiφ and the matrix
V guarantees that eiφ ∈ {±1} and V is a projective repre-
sentation of Z2, i.e., V square is proportional to the identity
matrix. Since V and eiαV represent the equivalent projective
representation, the matrix V is regarded as an element of the
projective unitary group PU (D) = U (D)/{eiα1D|eiα ∈ U (1)}.
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The constraint on V means that V 2 is the identity in the
projective unitary group PU (D).

We are interested in the topological nature of the “space of
gapped 1D spin systems,” especially in the homotopy equiva-
lence class of maps from S1 to that space. In the view of MPS
representation, the topology of gapped 1D spin systems may
be encoded in the space in which the matrices Am, the factor
eiφ , and V live. We focus on the space of matrices V and show
that its fundamental group is nontrivially given as Z2.

For the cases of D = 1 (a trivial tensor product state), the
projective unitary group is trivial PU (1) = {1}, which implies
no nontrivial adiabatic cycles.

For the cases of D = 2, the projective unitary group
is identified with the group of SO(3) rotations PU (2) ∼=
SU (2)/Z2

∼= SO(3). Let us write the equivalence class of the
matrix V by [V ] = {zV |z ∈ U (1)}. The constraint V 2 ∼ 12

implies that [V ] is either the identity [V ] = id of the SO(3)
group or a π rotation along an axis n̂ ∈ S2. For the former
case, we can not have a nontrivial cycle since the space to
which [V ] belongs is just a point {id} ⊂ SO(3). On the one
hand, we have a nontrivial loop for the latter case. Remark-
ably, n̂ and −n̂ represent the same π rotation, [V ] belongs
to the real projective plane RP2 = S2/Z2 ⊂ SO(3) where an-
tipodal points are identified in the 2-sphere S2. Therefore, we
have a nontrivial loop π1(RP2) = Z2 of the space of [V ].

To evaluate the fundamental group for generic matrix di-
mension D, let us diagonalize the unitary matrix V . Due to the
constraint V 2 ∼ 1D, V can be written as

V = zU

[
1N

−1D−N

]
U † (78)

with U a U (D) matrix and z a U (1) phase. N can be chosen
as 0 � N � D/2 because z 
→ −z exchanges the eigenvalues
1 and −1. Since the multiplication in the form

U 
→ U

[
W

W ′

]
(79)

with W ∈ U (N ) and W ′ ∈ U (D − N ) does not affect the ma-
trix V , the equivalence class [V ] belongs to the complex
Grassmannian manifold GN (CD) = U (D)/[U (N ) × U (D −
N )]. Since the complex Grassmannian manifold has the trivial
fundamental group π1(GrN (CD)) = 0, there are no nontrivial
adiabatic cycles. However, this conclusion is not true when
D = 2N . When D = 2N , there is an additional identification
of matrices U

U 
→ U

[
1N

1N

]
, (80)

which is not a block-diagonal matrix in the form (79), imply-
ing that the equivalence class [V ] should be regarded as an
element of the quotient space of the Grassmannian manifold
by the Z2 transformation (80), i.e., GrN (C2N )/Z2. This Z2

identification is the origin of a nontrivial adiabatic cycle.
Since π1(GrN (C2N )) = 0, the fundamental group is given by
π1(GrN (C2N )/Z2) ∼= π0(Z2) = Z2. Therefore, if D = 2N , a
nontrivial adiabatic cycle exists.

The above discussion provides us a simple way to judge
if there exists a nontrivial adiabatic cycle: There exists a
nontrivial adiabatic cycle if and only if the unitary matrix V

of projective representation of Z2 for the bond Hilbert space
satisfies tr [V ] = 0.

2. Gauge invariance of homotopy class

With the above thought, let us formulate how the Z2 non-
trivial adiabatic cycle is defined from a given cycle of MPS.
Let Am(θ ) with θ ∈ [0, 2π ] be a cycle of MPS with onsite Z2

symmetry. We enforce the periodicity of Am(θ ). Namely,

Am(2π ) = Am(0) (81)

for m = 1, . . . , dimH j . From onsite Z2 symmetry, one also
has one-parameter families of a U (1) phases eiφ(θ ) and U (D)
matrices V (θ ) by

[σ j]mnAn(θ ) = eiφ(θ )V (θ )†Am(θ )V (θ ) (82)

for θ ∈ [0, 2π ], where eiφ(θ ) is unique, and V (θ ) is unique up
to a U (1) phase. Also, as discussed above, the Z2-ness ensures
that eiφ(θ ) is a constant eiφ(θ ) ≡ ±1, and V (θ )2 is proportional
to the identity matrix. Hereafter, we focus on the U (D) matrix
V (θ ) only. The periodicity of Am(θ )s implies that the U (D)
matrix V (θ ) is also 2π periodic. The equivalence class [V (θ )]
is a loop in the topological space PU (D).

We should take care about on the gauge choice of Am’s.
The matrices Am are not unique. In fact, the following trans-
formation

Am 
→ Ãm = eiχW †AmW (83)

with eiχ a U (1) phase and W a U (D) matrix represents the
same state as Am. However, the homotopy class of [V (θ )]
is found to be independent with this gauge choice. Con-
sider a cycle of gauge transformation (eiχ (θ ),W (θ )) with
the periodicity eiχ (2π ) = eiχ (0) and W (2π ) = W (0) so that
the gauge-transformed matrices Am(θ ) maintain the period-
icity. Under the gauge transformation, the U (D) matrix V (t )
changes as

Ṽ (θ ) = W (θ )†V (θ )W (θ ). (84)

Since the U (1) phase of W (θ ) does not matter, one can think
of W (θ ) as a cycle in the special unitary group SU (D) which
is contractible, meaning that the cycle W (θ ) is homotopically
equivalent to the identity. Therefore, Ṽ (θ ) and V (θ ) have the
same homotopy class.

3. Z2 invariant

The Z2 invariant for MPS’s is defined in the completely
same manner as in Sec. II C. Let ω(θ ) ∈ U (1) be the two-
cocycle (factor system) defined by V (θ )2 = ω(θ )1. One can
define the Z2 invariant

ν = 1

2π i

∮
d ln ω(θ ) mod2. (85)

as in (28). The Z2 nature is because the redefinition of U (1)
phase of V (θ ) changes ν by an even integer.

B. Examples

To illustrate our strategy, we discuss a few examples.
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1. MPS of the toy model (4)

We consider the state (4) with a slight modification by a
real parameter r > 0 as

|�θ 〉 =
∑
{σ j}

(
re

iθ
2
)Ndw |. . . σ jσ j+1 . . .〉 . (86)

Namely, the complex weight reiθ/2 is assigned to each domain
wall. The MPS for (86) reads as

A↑(θ ) =
(

1 re
iθ
2

0 0

)
, A↓(θ ) =

(
0 0

re
iθ
2 1.

)
(87)

In this gauge choice, Z2 symmetry is written as

[σ x]σσ ′Aσ ′ (θ ) = τ xAσ (θ )τ x, (88)

where we have introduced the Pauli matrices τμ for the
bond-Hilbert space. The gauge choice in (87) breaks the 2π

periodicity, however, it can be 2π periodic by the gauge trans-
formation

Aσ (θ ) 
→ Ãσ (θ ) = W (θ )Aσ (θ )W (θ )−1 (89)

with, for example,

W (θ ) =
(

1
eiθ/2

)
. (90)

In doing so, we have a 2π -periodic one

Ã↑(θ ) =
(

1 r
0 0

)
, Ã↓(θ ) =

(
0 0

reiθ 1

)
. (91)

Z2 symmetry is rewritten as

[σ x]σσ ′ Ãσ ′ (θ ) = V (θ )†Ãσ (θ )V (θ ), (92)

V (θ ) ∼ W (θ )τ xW (θ )−1 =
(

0 e−iθ/2

eiθ/2 0

)
. (93)

This V (θ ) does not satisfy the 2π periodicity, but since the
U (1) phase of V (θ ) is arbitrary, V (θ ) can be 2π periodic by,
for example,

V (θ ) =
(

0 1
eiθ 0

)
. (94)

We have the nontrivial Z2 invariant ν ≡ 1 and conclude that
the cycle of the MPS (87) belongs to the nontrivial homotopy
class.

One can directly see the matrix V (θ ) wraps a nontrivial
Z2 loop in the topological space PU (2) ∼= SO(3). The ma-
trix V (θ ) ∼ cos θ

2 τx + sin θ
2 τy represents the SO(3) π rotation

around the (cos θ, sin θ, 0) axis. Since the π rotation around
the (1,0,0) and (−1, 0, 0) are the same, the equivalence class
[V (θ )] forms a nontrivial Z2 loop.

2. MPS of Kitaev’s canonical pump

The Kitaev’s canonical pump (67) is invariant under the
translation j 
→ j + 2. Regarding 2 j − 1 and 2 j sites as one
site, the matrix product state is given by

AI
↑↑(θ ) = cos

θ

2
, (95)

AI
↓↓(φ) = sin

θ

2
, (96)

AI
↑↓ = AI

↓↑ = 0, (97)

for θ ∈ [0, π ], and

AII
↑↑(θ ) =

(− cos θ
2 0

0 0

)
, (98)

AII
↓↓(θ ) =

(
0 0
0 sin θ

2

)
, (99)

AII
↑↓(θ ) =

(
0

√
− cos θ

2 sin θ
2

0 0

)
, (100)

AII
↓↑(θ ) =

(
0 0√

− cos θ
2 sin θ

2 0

)
, (101)

for θ ∈ [π, 2π ]. The matrix dimensions of AI(θ ) and AII(θ )
are not continuous at θ = π . To discuss the homotopy class of
the MPS, we enlarge the matrix dimension by 2 for AI(θ ) and
take the unitary transformation

AI
↑↑(θ ) = eiθτx/2

(
cos θ

2 0
0 0

)
e−iθτx/2, (102)

AI
↓↓(θ ) = eiθτx/2

(
sin θ

2 0
0 0

)
e−iθτx/2, (103)

AI
↑↓ = AI

↓↑ =
(

0 0
0 0

)
, (104)

to make the matrices AI(θ ) and AII(θ ) continuous in total.
We note that the set of matrices AI

σ1σ2
(θ ) have ambiguity as

the matrices AI
σ1σ2

(θ ) for σ1, σ2 ∈ {↑,↓} does not generate
the algebra of 2 × 2 matrices. In fact, AI

σ1σ2
(θ ) commutes

with the matrix eiθτx/2eiατz e−iθτx/2 for any α. This implies
that a unitary matrix defined by (77) is not unique: V (θ ) 
→
V (θ )eiθτx/2eiατz e−iθτx/2 for an arbitrary α satisfies (77).

Nevertheless, one can conclude that the adiabatic cycle
(67) belongs to a nontrivial homotopy class. The matrix V (θ )
defined by (77) reads as

V (θ ) ∼
{

eiθτx/2eiα(θ )τz e−iθτx/2 (θ ∈ [0, π ]),
iτz (θ ∈ [π, 2π ]),

(105)

where α(θ ) is a real function. V (θ ) for θ ∈ [0, π ] is not unique
as α(θ ) varies; however, to have a continuous unitary V (θ ),
α(θ ) obeys the constraint α(0), α(π ) ∈ {π/2,−π/2}. Note
that V (θ )2 ∼ 1 does not hold in general. Therefore, V (θ ) rep-
resents a loop in generic SO(3) rotations, not restricted in π

rotations. Recall that for an SU (2) matrix V , the 2 to 1 projec-
tion SU (2) � V 
→ (n, ϕ) ∈ SO(3), the ϕ rotation around the
n axis, is given by cos ϕ

2 = 1
2 tr [V ] and sin ϕ

2 n = 1
2 tr [−iσV ].

The SO(3) parameter of V (θ ) is then extracted as

(n, φ) =
{

((0, sin θ, cos θ ), 2α(θ )) (θ ∈ [0, π ]),
((0, 0, 1), π ) (θ ∈ [π, 2π ]). (106)

Irrespective to the choice of the function α(θ ), V (θ ) wraps a
nontrivial loop of the manifold SO(3).

C. Generic finite group symmetry

We generalize the above discussions to generic finite group
symmetry which can include antiunitary elements. Let G be
a finite group and s : G → Z2 = {1,−1} be the homomor-
phism specifying if g ∈ G is unitary (sg = 1) or antiunitary
(sg = −1). Let U (1)s be the G module with the left action
g.z = zsg for g ∈ G and z ∈ U (1).
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The following proof is much inspired by [36], where the
homotopy type of the space of homomorphisms from a group
to the projective unitary group on an infinite-dimensional
Hilbert space is discussed.

A simple and translation-invariant MPS is written as

|�〉 = Tr[. . . Amj Amj+1 . . . ] |. . . mjmj+1 . . .〉 (107)

with Am’s a set of D × D matrices which generate the algebra
of D × D complex matrices and |mj〉 the basis of local physi-
cal Hilbert space at site j. The symmetry group G acts on the
physical Hilbert space as the tensor product of local actions
ĝ = ⊗

j ĝ j with ĝ j |mj〉 = |n j〉 gmj n j . Unless misunderstand-
ing arises, we omit the site index j. At each site, ĝ j is a linear
representation of G.

A simple MPS |�〉 is invariant under the symmetry group
G if and only if there exists a U (1) phase eiφg and a unitary
matrix Vg ∈ U (D) such that gmnAn = eiθgV †

g AmVg for g ∈ G.
It is found that the U (1) phase eiθg is unique, and the uni-
tary Vg is unique up to a U (1) phase. The uniqueness of the
set of unitary matrices Vg implies that Vg’s form a projec-
tive representation of G, i.e., there exists a two-cocycle ω ∈
Z2(G,U (1)s) such that VgV

sg

h = ωg,hVgh holds. Here, we intro-
duced a notation: V sg = V for sg = 1 and V sg = V ∗

g for sg =
−1, where V ∗

g is the complex conjugation of Vg. The redefi-
nition Vg 
→ αgVg with αg ∈ C1(G,U (1)s) induces the change
of the two-cocycle ωg,h 
→ ωg,hα

sg

h αghαg. Since the U (1) phase
of Vg has no physical meaning, the group cohomology [ω] ∈
H2(G,U (1)s) = Z2(G,U (1)s)/B2(G,U (1)s) is regarded as a
physical quantity to specify a class of MPS with symmetry G
[3–5].

Let us fix a two-cocycle ω ∈ Z2(G,U (1)s), and we fo-
cus on the space of ω-projective representations themselves.
There may be additional identification among different ω-
projective representations, which comes from a redefinition of
the set of U (1) phases of Vg’s. Given a homomorphism ηg ∈
Hom(G,U (1)s) = H1(G,U (1)s), which satisfies ηgη

sg

h = ηgh,
the redefining of Vg by Vg 
→ ηgVg may or may not change
the ω-projective representation Vg while keeping the two-
cocycle ω.

Let ρ1, ρ2, . . . be the equivalence classes of irreducible
ω-projective representations. The equivalence class of an ω-
projective representation V is a direct sum V ∼ ⊕

a ρ⊕na
a of

ρas with na’s non-negative integers representing the num-
ber of ρa irreps in V . Let X ω

�n be the space of ω-projective
representations of which the equivalence class is

⊕
a ρ⊕na

a .
Here we introduced a vector notation �n = (n1, n2, . . . ). The
total space X ω of ω-projective representations is the disjoint
union X ω = ��nX ω

�n . The group Hom(G,U (1)s) acts on the
total space X ω by (ηV )g = ηgVg. Since Vg and ηgVg with
η ∈ Hom(G,U (1)s) are regarded as physically the same ac-
tion, the space of symmetry action on the bond Hilbert space
can be identified with the quotient space X ω/Hom(G,U (1)s).
Therefore, the adiabatic cycles of the MPS with G symmetry
are classified by the homotopy equivalence class

[S1, X ω/Hom(G,U (1)s)]. (108)

Let us focus on an orbit⋃
η∈Hom(G,U (1)s )

X ω
η(�n) (109)

to which a given ω-projective representation Vg with the vector
�n belongs. We denote the dimension of Vg by D. The quotient
space is given by⋃
η∈Hom(G,U (1)s )

X ω
η(�n)/Hom(G,U (1)s) ∼= X ω

�n /Hom(G,U (1)s)�n,

(110)

where we have introduced the stabilizer subgroup
Hom(G,U (1))�n:={η ∈ Hom(G,U (1)s)|η(�n)=�n}. Elements
of the stabilizer subgroup Hom(G,U (1))�n represent the
homomorphisms η ∈ Hom(G,U (1)) that does not change
the equivalence class of the ω representation specified by
�n. We find that the space X ω

�n is simply connected: Every
representation Vg belonging to the equivalence class �n is
written as Vg = WV ref

g W † with V ref
g a reference representation

and W a unitary matrix W ∈ U (D). Since the U (1) phase
part of W does not change Vg, W can be an element of the
special unitary group SU (D) that is simply connected. Then,
a loop V (θ ) : S1 → X ω

�n of ω-projective representations can
be written as Vg(θ ) = W (θ )V ref

g W (θ )† with W : S1 → SU (D)
a loop on SU (D). Since SU (D) is simply connected, there
is a homotopy equivalence W (θ ) ∼ 1D, which gives the
homotopy equivalence of V (θ ), Vg(θ ) ∼ V ref

g . Thus, we
conclude that[

S1, X ω
�n /Hom(G,U (1)s)�n

] ∼= Hom(G,U (1)s)�n. (111)

This is the central result of this section. The adiabatic cy-
cles of the MPS are classified by the stabilizer subgroup
Hom(G,U (1)s)�n, which is the space of G symmetry charges
keeping the ω-projective representation invariant as an equiv-
alence class.

There is a practical method to calculate the stabilizer sub-
group Hom(G,U (1)s)�n for a given projective representation
Vg. First, it is sufficient to consider the center group Z (G0) =
{g ∈ G0|gh = hg for allh ∈ G0} of the unitary subgroup G0 =
Ker (s) = {g ∈ G|sg = 1}. If there exists g ∈ Z (G0) such that
the both ηg �= 1 and tr [Vg] �= 0 hold, the representation ηV
defined by (ηV )g = ηgVg is not equivalent to V because
of the mismatch of the ω-projective character tr [Vg]. The
converse is also true. Thus, we arrive at the following state-
ment. For an MPS with a projective representation Vg of
G, the classification of adiabatic cycle is given by the sub-
group of Hom(G,U (1)s) composed of the elements η ∈
Hom(G,U (1)s) such that tr [Vg] = 0 holds for all g ∈ Z (G0)
with ηg �= 1.

D. Topological invariant from two-cocycle

Let Vg(θ ) be the G action on the bond Hilbert space of the
MPS Am(θ ) defined by gmnAn(θ ) = eiφg(θ )Vg(θ )†Am(θ )Vg(θ ).
Vg(θ ) is a projective representation of G with a two-cocycle
ωg,h(θ ) ∈ Z2(G,U (1)s) which also depends on θ . Namely,
Vg(θ )Vh(θ )sg = ωg,h(θ )Vgh(θ ). Vg(θ )’s can be chosen to be 2π

periodic. In doing so, the two-cocycle ωg,h(θ ) is also 2π

periodic, and one can define the Z-valued winding number

ng,h = 1

2π i

∮
d ln ωg,h(θ ) ∈ Z (112)

for each pair (g, h). The cocycle condition of ωg,h(θ ) im-
plies that ng,h is a two-cocycle of Z2(G,Zs), where Zs
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is the G module with the left G action gn = sgn for n ∈
Z. A redefinition Vg(θ ) 
→ Vg(θ )αg(θ ) with a 2π -periodic
U (1)-valued function αg(θ ) changes the two-cocycle by
the two-coboundary (dα(θ ))g,h = αh(θ )sgαgh(θ )−1αg(θ ). The
two-coboundary dα(θ ) defines the set of winding numbers by
(dm)g,h = sgmh − mgh + mg ∈ B2(G,Zs) with

mg = 1

2π i

∮
d ln αg(θ ) ∈ Z (113)

for g ∈ G. This gives the equivalence relation of two-cocycles
Z2(G,Zs). We conclude that the topological invariant of adi-
abatic cycles of MPSs lives in the cohomology group

[n] ∈ H2(G,Zs) = Z2(G,Zs)/B2(G,Zs). (114)

The isomorphism H2(G,Zs) ∼= H1(G,U (1)s) suggests that
the invariant (112) can be interpreted as the pumped charge
of the symmetry group G by a period. As shown in Sec. V,
we can indeed construct a model of 1D adiabatic cycle from
a given element of Z1(G,U (1)s) by using the Bockstein
homomorphism.

If the cohomology group H2(G,U (1)s) is not trivial,
the two-cocycle ωg,h(θ ) can run over a nontrivial sector of
Z2(G,U (1)s). This means the set [S1, Z2(G,U (1))] of homo-
topy equivalence classes of map S1 → Z2(G,U (1)) splits into
the sectors by H2(G,U (1)s). For each sector, one can define
the winding number ng,h in the same way. Thus, the homotopy
equivalence class is classified by

[S1, Z2(G,U (1)s)]
[S1, B2(G,U (1)s)]

∼= H2(G,U (1)s) × H2(G,Zs). (115)

This is in complete agreement with the classification of Flo-
quet SPTs in 1D [20–22].

IV. A TWO-DIMENSIONAL MODEL OF ADIABATIC PUMP
WITH TIME-REVERSAL SYMMETRY

In this section we present an exactly solvable model of the
adiabatic pump in two spatial dimensions with time-reversal
symmetry (TRS).

A. Model

We consider a model slightly modified from the Levin-Gu
model [7], which is a prototypical model for SPT phases in
2D. In the same way as in Sec. II A, we start up with the
trivial paramagnet as the model for the initial parameter, and
take a local unitary transformation with θ . Let us consider the
spin- 1

2 degrees of freedom on the triangular lattice. We denote
the spin operator at site j by σ

μ
j for μ = x, y, z. The initial

Hamiltonian is

H0 = −
∑

j

σ x
j . (116)

We apply the local unitary [7,37]

Uθ =
∏
〈pqr〉

e
iθ
24 (3σ z

pσ
z
q σ z

r −σ z
p−σ z

q −σ z
r )

=
∏

j

e− iθ
12 σ z

j

∑ j
pq

1−σ z
pσ z

q
2 (117)

FIG. 5. The wave function (121) over a torus. This figure shows
a spin configuration with N↑ = N↓ = 2. The U (1) phase factor eiθ

(e−iθ ) is attached to the blue (orange) loops.

to H0. Here, 〈pqr〉 runs over all triangles, and the sum
∑ j

pq
means that pq stands for all the nearest-neighbor links of j.
Here we showed two expressions in (117), the same local
unitary in bulk but different with a boundary. We define the
adiabatic Hamiltonian by

Hθ = UθH0U
−1
θ = −

∑
j

Bθ
j , (118)

with

Bθ
j = Uθσ

x
j U −1

θ = σ x
j e

iθ
2 σ z

j

∑ j
pq

1−σ z
pσ z

q
2 e−iθσ z

j . (119)

We find that B2π
j = σ x

j , meaning that the periodicity of Hθ is
2π . In particular, Hθ=π is recast as the Levin-Gu model as
Hθ=π has Z2 symmetry defined by

∏
j σ

x
j . For generic θ , no

unitary Z2 symmetry exists, but there is TRS defined by

T =
(∏

j

σ x
j

)
K, (120)

where we have denoted the complex conjugation by K.
On a closed manifold, the ground state is unique, as is H0,

and the ground-state wave function is given by

〈{σ j}|�〉 = eiθ (N↑−N↓ ) (121)

on the basis of σ z
j = ±1. Here, N↑ (N↓) is the number of

contractible loops whose interior near the loop is up (down)
spins. See Fig. 5 for a snapshot wave function. It should be
noted that no U (1) phases are attached to the noncontractible
loops.

On a closed manifold, the local unitary Uθ is 2π periodic
and preserves TRS. However, on an open manifold like an
open disk, depending on local terms near the boundary, Uθ can
be either 2π periodic or time-reversal symmetric. This issue
is discussed from a more general perspective in Sec. V B.

B. Open disk

We consider the model (118) on an open disk. The cal-
culations in this section are almost parallel to Ref. [7]. The
Hamiltonian is of the form Hθ = Hbulk

θ + Hbdy
θ with Hbulk

θ =∑
j∈bulk Bθ

j , and Hbdy
θ is composed of local Hamiltonians near

the boundary with 2π periodicity and TRS. Here, the sum∑
j∈bulk runs over sites strictly interior of the system. We first

solve Hbulk
θ to get the degenerate ground-state manifold and
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FIG. 6. Labeling sites near the boundary.

discuss the effect of the boundary Hamiltonian Hbdy
θ from the

degenerate perturbation theory.
We denote the site index on the boundary by n ∈ bdy. The

ground-state manifold of Hbulk
θ is specified by the boundary

spins σn ∈ ±1 as

|�θ ({σn∈bdy})〉 ∼
∏

j∈bulk

(
1 + Bθ

j

)|{σ j∈bulk ≡ 1}, {σn∈bdy}〉.

(122)

The relative U (1) phases among ground states |�θ ({σn})〉 are
undetermined in general. However, as seen in Sec. II D, to
make the effective boundary Hamiltonian a local one, it is
important to satisfy a kind of locality for the choice of the
relative phases among |�θ ({σn})〉. Here we employ the same
prescription as Ref. [7]. We assume the “ghost spins” outside
of the system and fix these spins to the up states. With this
prescription, the relative phases are determined as

〈{σ j∈bulk} | �θ ({σn})〉 = eiθ (N↑−N↓ ), (123)

where N↑ and N↓ are the ones introduced before.
Introduce the spin operators σ̄ μ

n with μ = x, y, z acting on
the ground-state manifold |�θ ({σn})〉. Note that σ̄ μ

n is different
from σμ

n , the original spin operators on the boundary. Let Pθ

be the projection onto the ground-state manifold. One can find
the TRS operator on the ground-state manifold is

T̄θ := Pθ T Pθ

=
∏

n

(
σ̄ x

n eiθ e
iθ
2

1−σ̄ z
n σ̄ z

n+1
2

)
K

∼
(∏

n

σ̄ x
n

)(∏
n

e
iθ
2

1−σ̄ z
n σ̄ z

n+1
2

)
K. (124)

Here, we have ignored an unimportant U (1) phase factor.
The unitary part of T̄θ is not a product of a unitary operator
at each site, which is a characteristic feature of SPT phases
in 2D [7,38]. Note that without the edge of the boundary,
(T bdy

θ )2 = 1 holds.

C. Microscopic edge theory

Following Ref. [7], we first introduce the boundary local
Hamiltonian B↑,θ

n to be the same form as bulk ones Bθ
j but

with the fixed ghost spins outside of the system:

B↑,θ
n = σ x

n e
iθ
2 σ z

n (
1−σ z

n−1
2 + 1−σ z

n+1
2 +∑n

〈 j j′ 〉
1−σ z

j σ z
j′

2 )e−iθσ z
n . (125)

Here,
∑n

j j′ runs over the triangles 〈n j j′〉 containing the
boundary sites n (see Fig. 6). The advantage of this boundary
term is that B↑,θ

n commutes with bulk ones Bj , meaning that
the eigenstates of the effective edge Hamiltonian are the exact
eigenstates of the total system. On the ground-state manifold,

we have

Pθ B↑,θ
n Pθ = σ̄ x

n . (126)

But, this does not satisfy TRS T̄θ . To enforce TRS, we add the
local term

T̄θ σ̄
x
n T̄ −1

θ = σ̄ x
n e

iθ
2 σ̄ z

n (σ̄ z
n−1+σ̄ z

n+1 ) (127)

to get the 2π -periodic and time-reversal symmetric effective
boundary Hamiltonian

H̄bdy
θ := PθHbdy

θ Pθ

= −λ
∑

n

(
σ̄ x

n + σ̄ x
n e

iθ
2 σ̄ z

n (σ̄ z
n−1+σ̄ z

n+1 )
)

(128)

with λ a small constant.
We would like to prove that the ground states of any

one-parameter family of effective boundary Hamiltonians H̄θ

respecting TRS T̄θ can not be unique for all θ ∈ [0, 2π ]. In
this paper, we could not prove this no go. In the rest of this
section, we leave a discussion on ingappability of the effective
boundary Hamiltonian of the form (128).

1. Discussion: Fermionic dual model and ingappability

The effective Hamiltonian (128) accidentally has Z2 onsite
symmetry defined by

∏
n σ x

n in addition to TRS T̄θ . Apply-
ing the Kramers-Wannier duality map (45) and (46) and the
Jordan-Wigner transformation (53) and (54), and (55) to the
effective Hamiltonian (128), we get the dual-fermion model
called the Kitaev chain [32]

Ȟθ = 2λ
∑

n

[
− a†

nan+1 − a†
n+1an

+ e
iθ
2 cos

θ

2
a†

na†
n+1 + e− iθ

2 cos
θ

2
an+1an

]
(129)

and the dual TRS

Ťθ = e
iθ
2

∑
n a†

nanK. (130)

Importantly, the dual TRS is not 2π periodic, while it obeys

Ť2π = (−1)FK, (131)

where (−1)F is the fermion parity operator. This is the sym-
metry class BDI in fermionic SPT phases. The classification
is known to be Z8 [39].

We first discuss ingappability as free fermions, where the
topological classification is Z which is characterized by some
winding number. The BdG Hamiltonian Hθ

BdG defined by
Ȟθ = 1

2

∑
n,n′ [Hθ

BdG]n,n′ has the θ -dependent chiral symmetry

�θHθ
BdG�−1

θ = −Hθ
BdG with �θ = ( 0 eiθ/2

e−iθ/2 0 ). With transla-
tional invariance, the winding number Nw is written by the
BdG Hamiltonian Hθ

BdG(k) in the Bloch-momentum space as
Nw = 1

4π i

∮
dk tr [�θ [Hθ

BdG(k)]−1∂kHθ
BdG(k)] ∈ Z. Since the

winding number Nω is quantized as it takes a value in integers,
Nω remains a constant unless no gapless points of Hθ

BdG(k)
arise for all θ ∈ [0, 2π ]. On the one hand, the periodicity of
Hθ

BdG and �2π = −�0 imply that Nω = 0 if no gapless points
arise. Therefore, if Nω �= 0 at θ = 0, there must be a gapless
point at some θ ∈ (0, 2π ). For example, the Kitaev chain
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(129) shows |Nω| = 1 at θ = 0, and it is consistent with the
gapless point of (129) at θ = π .

For the many-body fermionic Hilbert space, ingappability
is more subtle since we have to distinguish 1 ∈ Z8 and −1 ∈
Z8 phases. Namely, a Z4 many-body invariant is needed.
In the Euclidean space-time path-integral picture, the Z8 in-
variant ν ∈ Z8 is known to be the discrete U (1) phase of
the partition function over the real projective plane RP2,
Z (RP2,±) = |Z (RP2,±)|e± 2π iν

8 [9]. Here, ± means two dif-
ferent Pin− structure on RP2, which is exchanged by the local
fermion parity transformation on the orientation-reversing
patch intersection introduced by the TRS operator Ťθ . Then,
the relation Ť2π = (−1)F Ť0 implies that the Z8 invariant
should satisfy ν ≡ −ν modulo 8 if the ground state is unique.
This is only consistent when ν ≡ 0, 4 modulo 8, implying
that if ν ≡ 1, 2, 3 modulo 4 at θ = 0, there must be a phase
transition in θ ∈ (0, 2π ).

We note that the discussion in this section is based on the
assumption of the additional Z2 symmetry by

∏
n σ x

n .

D. Z2 invariant from three-cocycle

In this section, we discuss how the adiabatic cycle of
(118) is nontrivial in the viewpoint of the three-cocycle.
Since the ground state of (118) is unique and symmetric, we
can in principle extract the one-parameter family of three-
cocycle ωθ ∈ Z3(ZT

2 ,U (1)s) characterizing the ground state
with TRS, where U (1)s the left Z2 module defined in the same
way as in Sec. III C.

1. Z2 invariant

Before computing the three-cocycle of the ground state
(121), we first investigate how the space Z3(ZT

2 ,U (1)s) looks
like. Solving the cocycle condition

(dω)(g, h, k, l ) = ω(h, k, l )sgω(gh, k, l )−1,

ω(g, hk, l )ω(g, h, kl )−1ω(g, h, k) = 0 (132)

directly, we have Z3(ZT
2 ,U (1)s) ∼= U (1)3 which is indepen-

dently parametrized by, for example, ω(e, e, T ), ω(T, T, e),
and ω(T, T, T ). Therefore, given a 2π -periodic three-cocycle
ωθ , one can define three Z invariants as winding numbers
of these representatives. However, a part of Z invariants is
trivialized by 2π -periodic three-coboundaries dαθ with αθ ∈
C2(ZT

2 ,U (1)s). Under the three-coboundary dα, ω changes as

ω(e, e, T ) 
→ ω(e, e, T )α(e, T )α(e, e)−1, (133)

ω(T, T, e) 
→ ω(T, T, e)α(T, e)−1α(e, e)−1, (134)

ω(T, T, T ) 
→ ω(T, T, T )α(T, T )−2α(e, T )−1α(T, e).
(135)

Therefore, the only one Z2 invariant is well defined. Explic-
itly, given a 2π -periodic three-cocycle ωθ , the Z2 invariant is
defined by

ν = 1

2π i

∮
d ln[ωθ (e, e, T )ωθ (T, T, e)ωθ (T, T, T )] (136)

modulo 2.

2. Review on Else-Nayak’s method

We adapt the method in Ref. [40], where they showed how
the (d + 1)-cocycle emerges from the local (anti)unitaries
defined on the (d − 1)-dimensional boundary. Let G be a
symmetry group possibly including antiunitary elements and
U (g ∈ G) be the local symmetry action on the 1D boundary of
a 2D nonchiral invertible state. Because U (g) is written with
local operators, one can restrict U (g) on an interval I = [a, b]
to get the symmetry action UI (g) on the interval I . UI (g) is
only defined modulo local unitaries acting near the edge of I ,
which leads the breaking the group law near the edge as in

UI (g)UI (h) = �∂I (g, h)UI (gh), (137)

where �∂I (g, h) is a local unitary near the edge ∂I . The asso-
ciativity of UI (g)s implies the following constraint condition
on �∂I (g, h),

�∂I (g, h)�∂I (gh, k) = UI (g)�∂I (h, k)�∂I (g, hk), (138)

with UI (g)�∂I (h, k) = UI (g)�∂I (h, k)UI (g)−1. We further re-
strict �∂I (g, h) to the left edge part, which we denote by
�a(g, h). For �a(g, h), the condition (138) holds true only
modulo a U (1) phase

�a(g, h)�a(gh, k) = ω(g, h, k)UI (g)�a(h, k)�a(g, hk).
(139)

It is shown that ω(g, h, k) defined in (139) satisfies the three-
cocycle condition.

3. Boundary TRS and three-cocycle

We consider the local antiunitary (124) as the TRS operator
on an interval. For our purpose to extract the 2π -periodic
three-cocycle, the local antiunitary on the interval should also
be 2π periodic. Such a 2π -periodic local antiunitary is

U θ
I (T ) =

(
N∏

n=1

σ x
n

)(
N−1∏
n=1

eiθ 1+σ z
n

2

1−σ z
n+1
2

)
K (140)

for TRS and U θ
I (e) = Id. One can read off the boundary

unitaries �θ
∂I (g, h) parametrized by θ as

�θ
∂I (T, T ) = e− iθ

2 σ z
1 e

iθ
2 σ z

N (141)

and �θ
∂I (g, h) = Id otherwise. Restricting �θ

∂I (T, T ) to the left

edge, we have �θ
a (T, T ) = eiθ

1−σ z
1

2 which is 2π periodic. The
three-cocycle defined by (139) is given by ωθ (T, T, T ) = eiθ

and ωθ (g, h, k) = 1 otherwise, resulting in the nontrivial Z2

invariant (136) ν ≡ 1. Thus, the one-parameter family of the
local TRS (124) forms a Z2 nontrivial loop which can not be
deformed to a constant local TRS.

E. Haldane chain pump

Interestingly, the local unitary (117) by a period is viewed
as pumping a Haldane chain protected by TRS on the bound-
ary of 2D systems [18,41,42]. To see this, we consider the
local unitary on the open disk in the form

U open
θ =

∏
〈pqr〉

e
iθ
24 (3σ z

pσ
z
q σ z

r −σ z
p−σ z

q −σ z
r ), (142)
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where 〈pqr〉 runs over the all triangles of the open disk. Note
that U open

θ is chosen to have TRS, but no 2π periodicity. A
spin operator σ

μ
n∈bdy on the boundary transforms as

B̃θ,μ
n = U open

θ σμ
n

(
U open

θ

)−1

= σμ
n e

iθ
2 σ z

n

∑n
〈 j j′ 〉

1−σ z
j σ z

j′
2 e− iθ

2 σ z
n (143)

for μ = x, y and B̃θ,z
n = U open

θ σ z
n (U open

θ )−1 = σ z
n . Here, the

sum
∑n

〈 j j′〉 runs over the all triangles containing the boundary
site n (see Fig. 6). Note the difference from the boundary
interaction (125) introduced before. Equation (125) preserves
the 2π periodicity, but breaks TRS. In contrast, B̃θ,μ

n preserves
TRS but breaks the 2π periodicity

B̃2π,μ
n = −σμ

n (−1)
1−σ z

n−1σ z
n

2 + 1−σ z
nσ z

n+1
2 (144)

for μ = x, y. Importantly, the pumped spin operators B̃θ,μ
n

depend only on the boundary spins, meaning that the 2π

periodicity of U open
θ breaks only on the boundary.

The pumped boundary spin operators (144) are also given
by the local unitary on the boundary

Ubdy =
∏

n∈bdy

e
iπ
2

1−σ z
nσ z

n+1
2 . (145)

Thus, we have the operator relation

U open
2π = Ubdy (146)

up to a constant factor. Ubdy is known as the local unitary
giving the Haldane chain for TRS (

∏
n σ x

n )K [6]. Therefore,
we can say the local unitary U open

θ pumps a Haldane chain
phase by a period.

We note that such a picture of the SPT phase pumped on the
boundary for higher dimensions is well known in the context
of Floquet SPTs [18,41,42].

V. ADIABATIC CYCLE IN ANY DIMENSION

We integrate the results obtained in the previous sec-
tions and discuss a general theory of a kind of solvable
model for any dimension. This section has much overlap with
Ref. [18], where the group cohomology construction of Flo-
quet SPT drives in any dimension is given. The local unitary
Uθ obtained in Sec. V B is the same one in Ref. [18].

A. Topological invariant from group cocycle

Let |�θ 〉 be an adiabatic cycle of gapped G-symmetric
nonchiral ground state in d spatial dimensions. Suppose
that we have the inhomogeneous (d + 1)-cocycle ωθ ∈
Zd+1(G,U (1)s) associated with the ground states |�θ 〉. We
also assume the 2π periodicity of ωθ . Define the set of Z
invariants from ωθ by

n(g1, . . . , gd+1) := 1

2π i

∮
dωθ (g1, . . . , gd+1). (147)

The cocycle condition of ωθ implies that n is a (d + 1)-
cocycle with the Z coefficient, i.e., n ∈ Zd+1(G,Zs). The
(d + 1)-cocycle ωθ is not unique. For a 2π -periodic d-cochain
αθ ∈ Cd (G,U (1)s), ωθ and ωθdαθ represent physically the

same ground states |�θ 〉. Let

m(g1, . . . , gd ) := 1

2π i

∮
dαθ (g1, . . . , gd ) (148)

be the set of Z invariants of αθ ’s. The equivalence ωθ ∼
ωθdαθ means that the equivalence relation n ∼ n + dm by the
Z-valued (d + 1)-coboundary dm ∈ Bd+1(G,Zs). Therefore,
given a cycle of (d + 1)-cocycle ωθ , one can define the set of
integer invariants [n] living in the group cohomology

Hd+1(G,Zs) = Zd+1(G,Zs)/Bd+1(G,Zs). (149)

B. Group cohomology construction

From the isomorphism Hd (G,U (1)s) ∼= Hd+1(G,Zs), the
invariant [n] may be interpreted as the pump of an SPT
phase in (d − 1) spatial dimensions. The isomorphism
Hd (G,U (1)s) → Hd+1(G,Zs) is given by the Bockstein ho-
momorphism associated with the short exact sequence of the
coefficients Z → R → U (1). As we will see in this section,
the Bockstein homomorphism gives us an exactly solvable
lattice model of adiabatic cycles in the basis of Chen-Gu-Liu-
Wen’s construction [6].

In this section we employ the homogeneous cochain ν ∈
Cd (G,U (1)s). The relation to the inhomogeneous cochain ω

is

ν(g0, g1, . . . , gd ) = ω
(
g−1

0 g1, . . . , g−1
d−1gd

)sg0 . (150)

Let ν(g0, . . . , gd ) ∈ Zd (G,U (1)s) be an homogeneous d-
cocycle, of which the equivalence class [ν] ∈ Hd (G,U (1)s)
is what we want to pump in (d − 1)D. Let us denote
ν(g0, . . . , gd ) = eiφν (g0,...,gd ) and introduce a lift

φν (g0, . . . , gd ) → φ̃ν (g0, . . . , gd ) ∈ R. (151)

The cocycle condition of ν ensures that the differential of φ̃ν is
a (d + 1)-cocycle of the Z coefficient 1

2π
dφ̃ν ∈ Zd+1(G,Zs),

and the equivalence class [ 1
2π

dφ̃ν] gives the isomorphism
Hd (G,U (1)s) ∼= Hd+1(G,Zs).

For an adiabatic cycle in dD, we introduce a 2π -periodic
homogeneous (d + 1)-cocycle

ν
(d+1)
θ (g0, . . . , gd+1) = e

iθ
2π

(dφ̃ν )(g0,...,gd+1 ). (152)

According to the recipe by Chen-Gu-Liu-Wen [6], we get
a model of d-dimensional exactly solvable model parame-
terized by θ . To be precise, we consider a d-dimensional
manifold with a triangulation with a branching structure
equipped with the local Hilbert space spanned by the group
basis |g〉 for g ∈ G. The G action is defined by ĝ |h〉 = |gh〉sg

for each site. The local unitary Uθ sending the trivial tensor
product state to a state with the group cocycle ν

(d+1)
θ is given

by [6]

Ũθ =
∑
{g j}

∏
�d

ν
(d+1)
θ (g∗, g0, . . . , gd )�

d | |{g j}〉 〈{g j}| , (153)

where the product
∏

�d runs over all the d-simplices, |�d | ∈
{±1} represents the orientation of the d-simplex �d , and
g∗ ∈ G is an arbitrary fixed group element. The choice of g∗
does not affect the local unitary in bulk. This local unitary
Ũθ is manifestly 2π periodic, but breaks G symmetry on the
boundary [6].
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Instead, we introduce an alternative form of the local uni-
tary. Let us expand the differential of dφ̃:

dφ̃ν (g∗, g0, . . . , gd )

= φ̃ν (g0, g1, . . . , gd ) − φ̃ν (g∗, g1, . . . , gd )

+ · · · + (−1)d+1φ̃ν (g∗, g0, g1, . . . , gd−1). (154)

We realize that except for the first term in the right-hand
side, this is the d-coboundary dα̃ of the (d − 1)-cochain
α̃(g0, . . . , gd−1) := φ̃ν (g∗, g0, . . . , gd−1). We have

Ũθ =
∑
{g j }

∏
�d

e
iθ
2π

|�d |(φ̃ν (g0,...,gd )−(dα̃)(g0,...,gd )) |{g j}〉 〈{g j}| .

(155)

The coboundary term dα̃ canceled out each other with adja-
cent d-simplices in bulk. Therefore, the local unitary

Uθ =
∑
{g j}

∏
�d

e
iθ
2π

|�d |φ̃ν (g0,...,gd ) |{g j}〉 〈{g j}| (156)

provides the same action on the degrees of freedom strictly
interior of bulk as that of Ũθ . The local unitary Uθ is the same
one as in Ref. [18].

Compared to Ũθ , the local unitary Uθ has no periodicity
for θ , but preserves G symmetry even in the presence of the
boundary

ĝUθ ĝ−1 = Uθ . (157)

This is from the homogeneous condition φ̃ν (gg0, . . . , ggd ) =
sgφ̃ν (g0, . . . , gd ). More generally, for any function θ (�d ) from
the set of d-simplices to R, the space-dependent local unitary

U [θ ] =
∑
{g j }

∏
�d

e
iθ (�d )

2π
|�d |φ̃ν (g0,...,gd ) |{g j}〉 〈{g j}| (158)

is G symmetric

ĝU [θ ]ĝ−1 = U [θ ] (159)

even in the presence of boundary.
The adiabatic Hamiltonian Hθ is defined by the unitary

transformation by Uθ (or Ũθ ) on the trivial Hamiltonian H0

as in

Hθ = UθH0U
−1
θ . (160)

Here, H0 is defined by the sum of local projectors onto the
disordered state

H0 = −
∑

j

|φ〉 j 〈φ| j , (161)

|φ〉 j = 1√|G|
∑
g∈G

|g〉 j . (162)

In the rest of this section, we examine the properties of the
adiabatic cycle Hθ as well as the local unitary Uθ .

C. SPT phase pumped on the boundary

One can show that Uθ pumps the (d − 1)D SPT phase
with the d-cocycle ν directly [18]. For a period θ = 2π , no

FIG. 7. The basic moves to remove internal sites. Here we omit-
ted the branching structure.

ambiguity from the lift φ → φ̃ remains, so we can safely write

U2π =
∑
{g j}

∏
�d

ei|�d |φν (g0,...,gd ) |{g j}〉 〈{g j}|

=
∑
{g j}

∏
�d

ν(g0, . . . , gd )|�
d | |{g j}〉 〈{g j}| . (163)

Note that U2π is the identity for a closed-space manifold
because of the property

∏
�d ν(g0, . . . , gd )|�

d | = 1. With
boundary, by using the basic moves (cocycle condition) to
remove the internal sites except for one site i, the amplitude is
simplified as∏

�d

ν(g0, . . . , gd )|�
d | =

∏
�d−1

ν(gi, g0, . . . , gd−1)|�
d−1|, (164)

where the product
∏

�d−1 runs over the all boundary (d − 1)-
simplices. We illustrate the basic moves to remove the internal
sites in Fig. 7 for d = 2.

The amplitude (164) is further simplified by using the
cocycle condition

ν(gi, g0, . . . , gd−1)

= ν(g∗, g0, . . . , gd−1)ν(gi, g∗, g1, . . . , gd−1)−1

. . . ν(gi, g∗, g0, . . . , gd−2)(−1)d−1
, (165)

where g∗ ∈ G is an arbitrary group element. In (165), the fac-
tors including gi are canceled out with adjacent d-simplices,
resulting in that U2π is the local unitary acting only on the
boundary operators

U2π = Ubdy(ν)

=
∑

{gn∈bdy}

∏
�d−1

ν(g∗, g0, . . . , gd−1)|�
d−1| |{gn}〉 〈{gn}| ,

(166)

where the sum
∑

gn
runs over the boundary sites and the prod-

uct
∏

�d−1 runs over the boundary simplices. U2π is nothing
but the local unitary giving the (d − 1)D SPT phase labeled
by the group d-cocycle ν ∈ Zd (G,U (1)s) [6].
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(a) (b)

FIG. 8. The intensity of the red color represents the function θ .
The codimension-one surface Md−1 is represented by the blue line in
figures.

D. Texture-induced SPT phase

The local unitary Uθ can be used to generate a tex-
ture Hamiltonian which is exactly solvable. Let θ : {�d} →
[0, 2π ] be a function from d-simplices to the circle [0, 2π ]
where 2π and 0 are identified. We consider the trial twist
operator in the form

U [θ ] =
∑
{g j}

∏
�d

e
iθ (�d )

2π
|�d |φ̃ν (g0,...,gd ) |{g j}〉 〈{g j}| . (167)

As seen in Sec. II E, because of the lack of the 2π periodicity
of Uθ on the boundary, the twist operator U [θ ] should be
modified to give a smooth texture Hamiltonian. To do so,
we introduce the (d − 1)-dimensional manifold Md−1 as the
codimension-one surface on which θ (�d ) changes from 2π to
0, and insert the local unitary (166) over Md−1. See Fig. 8(a)
for the illustration of Md−1. Explicitly,

U (Md−1) =
∑

{gn∈Md−1 }

∏
�d−1∈Md−1

× ν(g∗, g0, . . . , gd−1)|�
d−1| |{gn}〉 〈{gn}| , (168)

where n runs over Md−1. The proper twist operator is defined
as

Utwist = U (Md−1)−1U [θ ]. (169)

Accordingly, the smooth texture Hamiltonian is given by

Htexture = UtwistH0[Utwist]
−1. (170)

The point is that we can explicitly write the ground state

|�texture〉 = Utwist|�0〉, (171)

which we can concretely examine the properties of the texture
ground state.

We note that our construction can also be applied for
the vortex localized modes if θ (�d ) has a singularity with
nonzero winding number. For such cases, the codimension-
one surface Md−1 has a boundary on the singularity of θ [see
Fig. 8(b)]. The local unitary sending the trivial Hamiltonian
H0 to the vortex Hamiltonian is defined in the same way as
(169).

We expect that the inserted local unitary U (Md−1) is the
origin of the emergence of the SPT phase in the texture. We
consider this issue for 1D and higher dimensions separately.

1. 1D

We already see the emergence of 0D SPT phase for G = Z2

in Sec. II E. We here revisit this for the exactly solvable model
(160).

Given a one-dimensional representation eiαg ∈
Hom(G,U (1)s) = Z1(G,U (1)s), we introduce a lift
αg → α̃g ∈ R. The twist operator (169) is given by

Utwist =
∑
{g j}

e−iαg1

N∏
j=1

e
iθ j
2π

sg j α̃g−1
j gg+1 |{g j}〉 〈{g j}| . (172)

Here, θ j is, for example, θ j = 2π j
N . We confirm that the texture

Hamiltonian Htexture = −∑
j B j = −∑

j UtwistPj[Utwist]−1 is
indeed composed of smooth local terms, where Pj =

1
|G|

∑
g,h |g〉 j 〈h| j , as follows. We have

Bj = 1

|G|
∑

g j−1,g j ,h j ,g j+1

e
iθ j−1

2π
sg j−1 (α̃

g−1
j−1g j

−α̃
g−1

j−1h j
)+ iθ j

2π
sg j (α̃

g−1
j g j+1

−α̃
h−1

j g j+1
) |g j−1g jg j+1〉 〈g j−1h jg j+1| (173)

for j = 2, . . . , N , and

B1 = 1

|G|
∑

gN ,g1,h1,g2

e−i(αg1 −αh1 )e
iθN
2π

sgN (α̃
g−1

N g1
−α̃

g−1
N h1

)+ iθ1
2π

sg1 (α̃
g−1

1 g2
−α̃

h−1
1 g2

) |gN g1g2〉 〈gN h1g2|

= 1

|G|
∑

gN ,g1,h1,g2

e
iθ1
2π

(α̃
g−1

1 g2
−α̃

h−1
1 g2

) |gN g1g2〉 〈gN h1g2| . (174)

Here we have used θN = 2π and eiαgh = eiαgeisgαh . Note that without inserting the unitary
∑

g1
e−iαg1 |g1〉 〈g1|, the texture

Hamiltonian is not smooth.
The texture-induced 0D state is evident from the symmetry property of the twist operator. We have

ĝUtwistĝ
−1 =

∑
{g j }

e−sgiαg1

N∏
j=1

e
sg

iθ j
2π

sg j α̃g−1
j gg+1 |{gg j}〉 〈{gg j}| = eiαgUtwist. (175)
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This implies that the ground state |�twist〉 = Utwist|�0〉 of the texture Hamiltonian Htexture has the U (1) charge eiαg compared to
the trivial ground state |�0〉.

2. Higher dimensions

To show that the texture Hamiltonian Htexture traps an SPT phase in one dimension lower, we explicitly compute the symmetry
action on the boundary. Let Xd be a d-dimensional space manifold with boundary and Md−1 be the codimension-one surface
on which θ jumps from 2π to 0. Let us denote gj∈X̊d

and gn∈∂Xd for group elements living inside bulk and boundary of Xd ,
respectively. The ground-state manifold |�({gn∈∂Xd })〉 of the texture Hamiltonian is explicitly written as

|�({gn∈∂Xd })〉 =
∑

{g j∈X̊d
}

∏
�d−1∈Md−1

ν(g∗, g0, . . . , gd−1)−|�d−1| ∏
�d ∈Xd

e
iθ (�d )

2π
φ̃ν (g0,...,gd )|�d | |{g j}, {gn}〉 . (176)

Note that the relative phases among the ground states |�({gn})〉 are arbitrary in general. We fix a set of relative phases as (176).
Let us compute the symmetry action on the ground-state manifold:

ĝ|�({gn∈∂Xd })〉 =
∑

{g j∈X̊d
}

∏
�d−1∈Md−1

ν(g∗, g0, . . . , gd−1)−sg|�d−1| ∏
�d ∈Xd

e
sgiθ (�d )

2π
φ̃ν (g0,...,gd )|�d | |{gg j}, {ggn}〉sg

=
∑

{g j∈X̊d
}

∏
�d−1∈Md−1

ν(gg∗, g̃0, . . . , g̃d−1)−|�d−1| ∏
�d ∈Xd

e
iθ (�d )

2π
φ̃ν (g̃0,...,g̃d )|�d | |{g j}, {ggn}〉sg . (177)

Here, we used the homogeneous condition of ν and φ̃ν and introduced the notation

g̃x =
{

gx (x ∈ X̊d ),
ggx (x ∈ ∂Xd ).

(178)

At this stage, we find that the symmetry acts only on the codimension-one surface Md−1 and, thus, the problem is completely
reduced to how the symmetry acts on the boundary of Md−1, which is well known. See, for example, Ref. [40]. For self-
contentedness, we further compute the boundary symmetry action. Using the cocycle condition

ν(gg∗, g̃0, . . . , g̃d−1)ν(g∗, g̃0, . . . , g̃d−1)−1ν(g∗, gg∗, g̃1, . . . , g̃d−1)

× ν(g∗, gg∗, g̃0, g̃2, . . . , g̃d−1)−1 · · · ν(g∗, gg∗, g̃0, . . . , g̃d−2)(−1)d+1 = 1, (179)

we have

ĝ|�({gn∈∂Xd })〉 =
∏

�d−2∈∂Md−1

ν(g∗, gg∗, gg0, . . . , ggd−2)|�
d−2|

×
∑

{g j∈X̊d
}

∏
�d−1∈Md−1

ν(g∗, g̃0, . . . , g̃d−1)−|�d−1| ∏
�d ∈Xd

e
iθ (�d )

2π
φ̃ν (g̃0,...,g̃d )|�d | |{g j}, {ggn}〉sg

= N∂Md−1 (g)S∂Xd (g)Ksg|�({gn}〉. (180)

Here, we have introduced the local unitaries N∂Md−1 and S∂Xd acting on the ground-state manifold |�({gn})〉 which has supports
on ∂Md−1 and ∂Xd , respectively, by [40]

S∂Xd (g)|�({gn}〉 = |�({ggn}〉, (181)

N∂Md−1 (g)|�({gn}〉 =
∏

�d−2∈∂Md−1

ν(g∗, gg∗, g0, . . . , gd−2)|�
d−2||�({gn}〉. (182)

The local unitary N∂Md−1 (g)S∂Xd (g)Ksg (restricted to ∂Md−1) is known as an anomalous symmetry action of the (d − 1)D SPT
phase with the cocycle ν ∈ Zd (G,U (1)s). Thus, we have shown that the texture Hamiltonian (170) indeed traps the (d − 1)D
SPT phase.

E. Examples of local unitary

We illustrate the local unitary (158) with a few examples.
See also Ref. [18].

1. 1D, Z2 symmetry

Let us consider the unitary symmetry group G = Z2 =
{e, σ }. There is only one nontrivial representation of Z2,

eiασ = −1. A lift is given by α̃σ = π . The local unitary (156)
reads as

Uθ =
∑
{σ j}

∏
j

e
iθ
2

1−σ j σ j+1
2 |{σ j}〉 〈{σ j}| . (183)

This is nothing but the local unitary (5) discussed in Sec. II.
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2. 2D, ZT
2 symmetry

Let us consider ZT
2 time-reversal symmetry. The in-

homogeneous cocycle ω representing the nontrivial group
cohomology H2(ZT

2 ,U (1)s) = Z2 is

ω(g, h) =
{−1 (g = h = σ ),

1 (else). (184)

Accordingly, a lift is given by

φ̃(g, h) =
{
π (g = h = σ ),
0 (else). (185)

The local unitary (156) is

Uθ =
∑
{σ j}

∏
�2

e
iθ
2 |�2| 1−σ0σ1

2
1−σ1σ2

2 |{σ j}〉 〈{σ j}|

=
∏
�2

e
iθ
2 |�2| 1−σ z

0σ z
1

2

1−σ z
1σ z

2
2 . (186)

This differs from the local unitary (117) discussed in
Sec. IV A, but supposed to belong to the same adiabatic cycle.

3. 3D, Z2 symmetry

We here present only one example of adiabatic cycle in
3D that pumps a nontrivial 2D SPT phase on the boundary.
For G = Z2, SPT phases are classified by H3(Z2,U (1)) =
Z2 and a representative inhomogeneous three-cocycle ω ∈
Z3(Z2,U (1)) is given by

ω(g, h, k) =
{−1 (g = h = k = σ ),

1 (else). (187)

Correspondingly, the local unitary in 3D is given by

Uθ =
∏
�3

e
iθ
2 |�3| 1−σ z

0σ z
1

2

1−σ z
1σ z

2
2

1−σ z
2σ z

3
2 . (188)

VI. SUMMARY

We studied adiabatic cycles in quantum spin systems with
unique gapped ground states. Through the detailed calcula-
tion of the toy models in one and two dimensions and the
MPS representation for one dimension, we show that the set
of winding numbers of (d + 1)-cocycle in Zd+1(G,U (1)s),
which characterizes a unique gapped ground state with G
symmetry, serves as topological invariants of adiabatic cycles.
These topological invariants are found to live in the group
cohomology Hd+1(G,Zs). The Bockstein homomorphism
Hd (G,U (1)s) → Hd+1(G,Zs) gives us an exactly solvable
model of the adiabatic cycle by Chen-Gu-Liu-Wen’s group
cohomology construction [6]. The obtained one-parameter
local unitary is the same as that in Ref. [18]. We demonstrated
that an SPT phase emerges at the spatial texture on which the
adiabatic parameter winds a period.

Note added. Recently, the author was informed of the video
[43]. Some points in [43] overlap with Sec. II in this paper.
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