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Thermal transport and nonmechanical forces in metals
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We discuss contributions to the thermopower in an electron fluid. A simple argument based on Newton’s
second law with the pressure gradient as the force suggests that the thermopower is given by a thermodynamic
derivative, viz., the entropy per particle, rather than being an independent transport coefficient. The resolution
is the existence of an entropic force that results from a coupling between the mass current and the heat current
in the fluid. We also discuss and clarify some aspects of a recent paper [Phys. Rev. B 102, 214306 (2020)] that
provided a method for exactly solving electronic transport equations in the low-temperature limit.
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I. INTRODUCTION

A. Transport coefficients

Consider the number current density jn and the heat or en-
tropy current density js in a Fermi liquid without momentum
conservation. These currents are driven by gradients of the
chemical (or electrochemical) potential μ and the temperature
T , and the relevant transport coefficients Li j are defined by the
linear-response relations [1,2]

jn = −L11

T
∇μ − L12

T 2
∇T, (1.1a)

js = −L21

T
∇μ − L22

T 2
∇T . (1.1b)

Of the four transport coefficients, only three are independent,
since an Onsager reciprocal relation requires L21 = L12. The
independent coefficients are given by Kubo formulas [2,3]
that describe density-current–density-current correlations (for
L11), density-current–heat-current correlations (for L12), and
heat-current–heat-current correlations (for L22), respectively.
In a kinetic-theory framework they take the form of different
matrix elements of the inverse collision operator [4,5]. They
determine the electrical conductivity σ , the thermopower or
Seebeck coefficient S, and the heat conductivity κ via

σ = e2L11/T, (1.2a)

−eS = L12/T L11, (1.2b)

κ = 1

T 2
[L22 − (L12)2/L11], (1.2c)

with e the electron charge. The subtraction term in Eq. (1.2c)
arises if one defines the heat or thermal conductivity κ in
the absence of a number current, as we do here following
Refs. [2,6]. The quantity L22/T 2 by itself defines a different
heat transport coefficient that was denoted by σh in Ref. [7].

B. A simple argument for the thermopower

An elementary argument for the thermopower can be con-
structed as follows. The electron mass current density is
jm = m jn, with m the electron mass. Let τ be the momen-
tum relaxation time, which can be due to electron-impurity
scattering, or electron-phonon scattering, or any combination
of scattering processes that do not conserve the electronic mo-
mentum. Then the equation of motion for jm is, by Newton’s
second law,

∂t jm = −1

τ
jm + 1

V
F, (1.3)

with V the system volume and F the total force on the elec-
tron system [8]. One contribution to the force density is the
negative pressure gradient

F p/V = −∇p, (1.4)

where p is the electronic contribution to the pressure. Let us
assume for now that this is the only contribution to the force,
as would be the case in a purely mechanical description of the
fluid. In steady state, ∂t jm = 0, Eq. (1.3) then yields

jn = − τ

m
∇p

= − τ

m

(
∂ p

∂μ

)
T,V

∇μ − τ

m

(
∂ p

∂T

)
μ,V

∇T

= −nτ

m
∇μ − sτ

m
∇T . (1.5)

Here, n = N/V and s = S/V are the number density and
entropy density, respectively, and in going from the second
line to the third one we have used the fact that the pressure
derivatives at constant volume are just derivatives of the grand
canonical potential � = −pV . We note that the thermody-
namics of a Fermi liquid with a short-ranged interaction apply
since the effective force on the electrons is the unscreened
external force [9]. Comparing with Eq. (1.1a) we find for the
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electrical conductivity the Drude formula

σ = ne2τ/m, (1.6)

and for the thermopower

−eS = s/n = S/N. (1.7)

That is, according to this simple argument the thermopower is
given by a thermodynamic derivative, namely, the electronic
entropy per particle. This is because L11 and L12 are given by
thermodynamic derivatives multiplying the same relaxation
time τ , and therefore their ratio is simply a thermodynamic
derivative. This is at odds with the fact L11 and L12 are inde-
pendent transport coefficients.

Since L11 and L12 both describe the response of the same
current to a driving force, there is only one relaxation time
that can appear in Eq. (1.5). The conclusion is therefore that
there must be another contribution to the force in Eq. (1.3)
that has nothing to do with the pressure gradient. In the next
section we will use kinetic theory to elucidate the nature of
this nonmechanical or entropic force.

II. MASS TRANSPORT FROM KINETIC THEORY

A. Linearized kinetic equation

In order to derive a kinetic theory for the mass or num-
ber current density, we recall the formalism developed in
Refs. [5,10]. Let

feq(p) = 1

eξp/T + 1
(2.1)

be the equilibrium Fermi-Dirac distribution. Here, ξp = εp −
μ, with μ the chemical potential and εp the equilibrium single-
particle energy. Here, and in what follows, “particle” means
quasiparticle in the sense of Landau Fermi-liquid (LFL) the-
ory [11,12]. For simplicity we consider spinless fermions, and
we keep only the first two LFL parameters, F0 and F1. Let
f (p, x, t ) be the μ-space or single-particle phase space distri-
bution function, consider small deviations from equilibrium,

f (p, x, t ) = feq(p) + δ f (p, x, t ), (2.2a)

and write δ f as

δ f (p, x, t ) = w(p)φ(p, x, t ), (2.2b)

with

w(p) = −∂ feq(p)/∂εp = 1

T
feq(p)[1 − feq(p)]

= 1

4T cosh2(ξp/2T )
. (2.2c)

It is useful to define a scalar product in the space of p-
dependent functions that employs w as a weight:

〈g(p)|h(p)〉 = 1

V

∑
p

w(p)g(p)h(p). (2.3)

In terms of this scalar product we can write density fluctua-
tions as

δn(x, t ) = 〈1|φ(x, t )〉. (2.4)

Similarly, we can write velocity fluctuations as

δu(x, t ) = 1

nm
〈p|φ(x, t )〉, (2.5a)

or, equivalently, the mass current density as

jm(x, t ) = 〈p|φ(x, t )〉. (2.5b)

Finally, temperature fluctuations, fluctuations of the en-
tropy density s = S/V , and pressure fluctuations can be
written as (see Ref. [10] for derivations)

δT (x, t ) = 1

cV
〈a5(p)|φ(p, x, t )〉, (2.6a)

δs(x, t ) = 〈εp|φ(p, x, t )〉 − μδn(x, t ), (2.6b)

δp(x, t ) =
(

∂ p

∂T

)
N,V

δT (x, t ) +
(

∂ p

∂n

)
T,V

δn(x, t ). (2.6c)

Here, cV is the specific heat at constant volume, and

a5(p) = εp − 〈εp|1〉/〈1|1〉. (2.7a)

The functions

a1(p) ≡ 1, (2.7b)

a2,3,4(p) = px, py, pz, (2.7c)

together with a5(p) constitute the five hydrodynamic modes.
They are mutually orthogonal with respect to the scalar prod-
uct defined in Eq. (2.3), and their normalizations are given
by [10]

〈1|1〉 = (∂n/∂μ)T,V (1 + F0), (2.8a)

〈p|p〉 = 3nm∗, (2.8b)

〈a5(p)|a5(p)〉 = cV T, (2.8c)

with m∗ = m(1 + F1/3) the quasiparticle effective mass.
Performing a Fourier transform in space and time, with k

the wave number and ω the frequency, we can write the lin-
earized kinetic equation for the μ-space distribution function
in the form [5,10][ − iω − �(p) + L(1)

k (p)
]|φ(p, k, ω)〉 = 0. (2.9)

Here, �(p) is the collision operator, and

L(1)
k (p) = ik · vp + F0

〈1|1〉 |ik · vp〉〈1|

+ F1

〈p|p〉 |(ik · vp)p〉 · 〈p| (2.10)

is a kinetic operator linear in k that comprises the stream-
ing term and the Fermi-liquid interaction. vp = p/m∗ is the
quasiparticle velocity. We are interested in a physical situation
where particle number and energy are conserved,

�(p)|1〉 = �(p)|a5(p)〉 = 0, (2.11a)

but momentum is not,

�(p)|p〉 �= 0. (2.11b)
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B. Kinetic equation for the mass current

We are interested in a mass current driven by gradients of
the chemical potential, or the density, and the temperature.
Accordingly, we want to derive an effective theory that ex-
plicitly keeps the five hydrodynamic modes. To this end, we
define a projection operator

P =
5∑

α=1

|aα〉 1

〈aα|aα〉 〈aα| (2.12a)

that projects on the hydrodynamic space Lh spanned by the
hydrodynamic modes, and another projection operator

P⊥ = 1 − P (2.12b)

that projects onto the space L⊥ that is orthogonal to Lh.
Operating from the left with 〈p|P on Eq. (2.9), and using
P + P⊥ = 1 yields

(−iω + 1/τ0) jm = −〈p|L(1)
k P|φ〉 + 〈p|�P⊥|φ〉

− 〈p|L(1)
k P⊥|φ〉, (2.13a)

where

1

τ0
= −1

〈p|p〉 〈p|�(p)|p〉 (2.13b)

is a bare relaxation rate for the mass current. Operating on
Eq. (2.9) from the left with P⊥, and again using P + P⊥ = 1,
allows us to express P⊥|φ〉 in terms of jm and P|φ〉:

P⊥|φ〉 = GP⊥�|p〉 · 1

〈p|p〉 jm − GP⊥L(1)
k P|φ〉. (2.14)

Here, we have defined a propagator

G(p, k, ω) = [−iω − P⊥�(p)P⊥ + P⊥L(1)
k (p)P⊥

]−1
.

(2.15a)

For later reference we expand G to linear order in the wave
number k,

G = G0 − G0P⊥L(1)
k P⊥G0 + O(k2), (2.15b)

where

G0(p, ω) = [−iω − �⊥(p)]−1 (2.15c)

and �⊥ = P⊥�P⊥.

C. Analysis of the equation for the mass current

Consider the right-hand side of Eq. (2.13a). To zeroth order
in a gradient expansion the only contribution is from the
second term with G0 substituted for G in Eq. (2.14). This term
is proportional to jm, and thus a contribution to the relaxation
rate. To first order in a gradient expansion, all three terms
formally contribute. However, the part of the third one that
is formally of O(k) is proportional to jm, and in steady state
(ω = 0) the mass current itself is proportional to k. The third
term therefore is effectively of O(k2). The equation for the
mass current to linear order in the gradients thus reads

−iω jm = −1

τ
jm + f 1 + f 2, (2.16)

where

1

τ
= 1

τ0
− 1

〈p|p〉 〈p|�G0P⊥�|p〉. (2.17)

Of the two force density terms, the first one is

f 1 = −〈p|L(1)
k P|φ〉

= −ik
[

n

(∂n/∂μ)T,V
δn +

(
∂ p

∂T

)
N,V

δT

]
, (2.18)

where we have used the expression (2.12a) for the projec-
tion operator and various of the thermodynamic identities
derived in Appendix A of Ref. [10]. Transforming back to real
space and using general thermodynamic identities as well as
Eq. (2.6c), this can be written

f 1(x, t ) = −∇p(x, t ). (2.19)

We see that f 1 is the density of the mechanical or Newtonian
force F p from Eq. (1.4).

The second force density term is

f 2 = −〈p|�G0P⊥L(1)
k P|φ〉

= − 〈
p
∣∣��−1

⊥
∣∣i(k · vp)ψL(0)

5

〉 1

T
δT . (2.20a)

Here,

ψ
L(0)
5 (p) = a5(p) − T

n

(
∂ p

∂T

)
N,V

= εp − (T s/n + μ) (2.20b)

is the heat mode from Eq. (3.16) in Ref. [10], and the ket
vector in Eq. (2.20a) is the divergence of the heat current
(see Appendix B in Ref. [10]). The inverse projected collision
operator �−1

⊥ acting on the heat current is to be interpreted as
follows. Let |x〉 = �−1

⊥ |vpψ
L(0)
5 〉. Then |x〉 is the solution of

the integral equation

�⊥|x〉 = ∣∣vpψ
L(0)
5

〉
, (2.21)

with the solution made unique by the requirement |x〉 ∈ L⊥.
Transforming back to real space we have

f 2(x, t ) = −1

3T
〈p|�(p)�−1

⊥ (p)
∣∣vpψ

L(0)
5 (p)

〉∇T (x, t ). (2.22)

Note that f 2 is a pure temperature gradient and involves
no density gradient. The prefactor is a matrix element that
involves a heat current and a mass current. f 2 thus results
from the coupling between the number density and the heat
mode and represents a nonmechanical or entropic force. It is
generically nonzero, but vanishes for simple model collision
operators where ��−1

⊥ |vpψ
L(0)
5 〉 ∝ |vpψ

L(0)
5 〉, since the mass

and heat currents are mutually orthogonal.

D. Contributions to the thermopower

By comparing the coefficients in Eqs. (1.1a) and (2.16),
with f 1 and f 2 from Eqs. (2.19) and (2.22), respectively,
we can determine the Onsager coefficients L11 and L12 that
determine the electrical conductivity σ and the thermopower
S according to Eqs. (1.2). For the former we obtain the Drude

125105-3



AMAREL, BELITZ, AND KIRKPATRICK PHYSICAL REVIEW B 106, 125105 (2022)

formula (1.6), with τ given by Eq. (2.17). For the latter we
find

−eS = S

N
+ 1

3nT τ
〈p|��−1

⊥
∣∣vpψ

L(0)
5

〉
, (2.23)

which is Eq. (1.7) augmented by a contribution from the
entropic force.

III. EXAMPLES

An evaluation of the entropic force for a given collision
operator involves solving the integral equation (2.21). This is
equivalent to solving the Boltzmann equation with the same
collision operator. Alternatively, one can employ the hydro-
dynamic theories developed in Refs. [5,10]. In this section we
use two common scattering processes to illustrate how the
entropic force contributes to the thermopower.

A. Disordered Fermi liquid

As a simple example, consider the case of a Fermi liquid in
the presence of quenched disorder. In this case, particle num-
ber and energy are conserved, but momentum is not, as we
have assumed in Eqs. (2.11). Hydrodynamic equations for this
problem were derived in Ref. [5]. Within this hydrodynamic
formalism, the result for the Onsager coefficients L11 and L12

is [see Eqs. (3.22) and (3.23) in Ref. [5]]

L11 = −T

m2
〈k̂ · p|�−1(p)|k̂ · p〉, (3.1a)

L12 = −T

m2
〈k̂ · p|�−1(p)|(k̂ · p)(εp − μ)〉. (3.1b)

Here, the collision operator describes both electron-impurity
scattering and electron-electron scattering, and its inverse ex-
ists in this context since none of the vectors in the matrix
elements are conserved quantities. The two coefficients are
given by different matrix elements of the inverse collision
operator, and thus in general are independent. However, for
the simplest possible model of a constant relaxation rate,

� = −1

τ

[
1 − |1〉〈1|

〈1|1〉 − |a5〉〈a5|
〈a5|a5〉

]
, (3.2)

the rate drops out of the ratio L12/L11 and performing the
integrals yields

−eS = π2

2
T/εF, (3.3)

which is equal to the entropy per particle of a Fermi liquid
in the low-temperature limit [12,13]. For this simple model
collision operator we thus recover the result (1.7) of the naive
argument in Sec. I B. This is consistent with the analysis in
Sec. II C: With Eq. (3.2) for the collision operator, the solution
of Eq. (2.21) is |x〉 = −τ |vpψ

L
5 (0)〉, and hence the entropic

force, Eq. (2.22), vanishes.
This is no longer true, even within a simple relaxation-time

model, if we allow for an energy dependence of the relaxation
time. For instance, if we replace 1/τ in Eq. (3.2) by [14]

1

τ (εp)
= 1

τ

√
εp/εF (3.4)

and evaluate the integrals in Eqs. (3.1), we obtain Wilson’s
result [14]

−eS = π2

3
T/εF, (3.5)

consistent with the fact that now the entropic force is no longer
zero.

B. Electron-phonon scattering

As another example we consider the electron-phonon scat-
tering problem with the commonly used assumption that the
phonons remain in equilibrium [2,14]. In Ref. [7] we pro-
vided an exact solution of integral equations for transport
coefficients based on the Boltzmann equation. However, the
equations solved were not quite equivalent to the Boltzmann
equation since in their derivation various factors of the elec-
tron momentum p were replaced by the Fermi momentum pF.
As a result of this approximation the Onsager relation L21 =
L12 was violated, and the results for the transport coefficients
were different from what is obtained from the Boltzmann
equation proper. However, the solutions of the integral equa-
tions as written were exact. Here, we discuss the changes that
result from not making this approximation.

Within the formalism of Ref. [7] the Onsager coefficients
L11 and L12 are are given by

L11 = nT

m
〈ν3|ϕ0〉, (3.6a)

L12 = nT

m
〈ν3|ϕ1〉, (3.6b)

where

ν(ε) =
√

1 + ε/εF, (3.7)

and the functions ϕ0 and ϕ1 are the solutions of integral
equations

�(ε)ϕ0(ε) = −ν(ε), (3.8a)

�(ε)ϕ1(ε) = −ε ν(ε), (3.8b)

with � a collision operator. The factors ν(ε) on the right-hand
sides of Eqs. (3.8) result from a factor pF/p that appears
in the angular integrations that reduce the linearized Boltz-
mann equation to a one-dimensional integral equation [see
Eqs. (C2a) and (C3) in Ref. [7]] [15]. The ν3 in Eqs. (3.6)
result from one factor of p/pF in the radial p-integration
measure, and one factor of p/pF from each of the two current
vertices. All of these factors were approximated by ν(ε) ≈ 1
in Ref. [7].

The Onsager coefficients L21 and L22 can also be obtained
from the solutions of Eqs. (3.8):

L21 = nT

m
〈ε ν3|ϕ0〉, (3.9a)

L22 = nT 2

m
〈ε ν3|ϕ1〉. (3.9b)

The collision operator � is given by

�(ε) =
∫

du[K (ε, u)Rε→u − K0(ε, u)], (3.10)
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with Rε→u f (ε) = f (u) the replacement operator. The kernel
K has three contributions,

K (ε, u) = K0(ε, u) − K1(ε, u) − K2(ε, u). (3.11)

K0 and K1 are given by Eqs. (2.18a)–(2.18c) in Ref. [7]. K2

gets modified by a factor of (pF/p)2 in the last line of Eq. (C3)
in that reference that also had been approximated by 1. This
leads to

K2(ε, u) = 1

2

(
1 − T 2

1

2ε2
F

)(u − ε

T1

)2

K0(ε, u), (3.12)

which replaces Eq. (2.18d) in Ref. [7]. Here, T1 is the bosonic
energy scale that appears in the electron-phonon collision
integral and is on the order of the Debye temperature [7].

The integral equations (3.8) can be solved exactly in the
low-temperature limit by the same method as in Ref. [7]. The
result is

σ (T → 0) = ne2

m

1

120 ζ (5)g0

1

1 − T 2
1 /4ε2

F

T 4
1

T 5
+ O(1/T 3),

(3.13a)

−eS(T →0) = π2

3

T

εF
+ O(T 3), (3.13b)

κ (T →0)/T = n

m

η

g0

T 2
1

T 3
+ O(1/T ). (3.13c)

Here, g0 is the electron-phonon coupling constant from
Eq. (2.6) in Ref. [7], and η is the number from Eq. (3.39b)
in that paper. These results replace Eqs. (3.36a), (3.37), and
(3.39a), respectively, in the same reference [16]. The Onsager
relation L21 = L12 is now satisfied, and the result for the

thermopower agrees with Wilson’s solution of the Boltzmann
equation [14]. We emphasize that these results are exact solu-
tions of the Boltzmann equation in the low-temperature limit.
The result for the thermopower, Eq. (3.13b), is consistent with
the fact that the collision operator has a complicated energy
dependence and hence the entropic force, Eq. (2.22), does not
vanish.

IV. SUMMARY AND CONCLUSION

In summary, we have identified two physically different
contributions to the thermopower in a metal. One is due to
the mechanical force on the electrons, i.e., the gradient of the
pressure of the Fermi liquid. The other one is an entropic force
that arises from the mass current coupling to the heat current.
This is analogous at some level to the contributions to the
sound velocity in either a classical fluid [17] or a fermionic
quantum fluid [10]. A purely mechanical theory would con-
clude that the speed of sound is given by the isothermal
compressibility of the fluid; it is the coupling to the heat mode
that changes this to the adiabatic compressibility. However,
an important difference is that the thermopower is a transport
coefficient, whereas the speed of sound is a thermodynamic
derivative; the only question is which derivative.

We also have clarified some aspects of Ref. [7], which
gave a method exactly solving electronic transport problems
in the low-temperature limit. Specifically, the integral equa-
tions solved exactly in that reference were not quite equivalent
to the Boltzmann equation due to some approximations in
the procedure that transforms the Boltzmann equation into a
one-dimensional integral equation. These approximations are
not necessary, and eliminating them leads to the exact solution
of the Boltzmann equation proper that is given in Sec. III B.
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