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Tunable large spin Nernst effect in a two-dimensional magnetic bilayer
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We theoretically investigate topological spin transport of the magnon polarons in a bilayer magnet with two-
dimensional square lattices. Our theory is motivated by recent reports on the van der Waals magnets which show
the reversible electrical switching of the interlayer magnetic order between antiferromagnetic and ferromagnetic
orders. The magnetoelastic interaction opens band gaps and allows the interband transition between different
excitation states. In the layered antiferromagnet, due to the interband transition between the magnon-polaron
states, the spin Berry curvature which allows the topological spin transport occurs even if the time-reversal
symmetry is preserved. We find that the spin Berry curvature in the layered antiferromagnet is very large due
to the small energy spacing between two magnonlike states. As a result, the spin Nernst conductivity shows a
sudden increase (or decrease) at the phase transition point between ferromagnetic and antiferromagnetic phases.
Our results suggest that the ubiquity of tunable topological spin transports in two-dimensional magnetic systems.
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I. INTRODUCTION

Magnonics and phononics are evolving research fields in
modern condensed matter physics. In magnetic insulators, the
energy and information are carried by the magnetic excita-
tions (magnons) and lattice vibrations (phonons). Because
these collective low-energy excitations open up the possibil-
ity of new schemes to manipulate and control the thermal
energy and information, intensive studies have focused on
these charge-neutral quasiparticles [1,2]. On this issue, one of
the fundamental interests is the topological Hall transport of
the collective excitations due to the Berry curvature. Previous
reports demonstrated that magnonic and phononic systems
can have topological bands exhibiting the magnon Hall ef-
fect in chiral magnetic systems [3–18] and the phonon Hall
effect in the presence of the spin-phonon interaction [19–25],
respectively.

In recent years, another mechanism for the topological Hall
transport of quasiparticles has been proposed. The magnon-
phonon interaction allows the nontrivial topology of the
hybrid excitation of the magnon and phonon (called magnon
polaron) even though each magnonic and phononic system is
topologically trivial [26–30]. The magnon-polaron bands can
have nontrivial topology in the presence of the long-range
dipolar interaction [26], the Dzyaloshinskii-Moriya interac-
tion [27], or the exchange-induced magnetoelastic coupling
in a noncollinear antiferromagnet (AFM) [28]. It has also
been shown that the topological magnon polaron can be ob-
tained in a simple square lattice collinear ferromagnet (FM)
[29] and AFM [30] by the anisotropy-induced magnetoe-
lastic coupling [31]. The topology of the magnon polaron
results in the thermal Hall transport of the quasiparticles.
For the topological spin transport of the magnon polarons,
the Dzyaloshinskii-Moriya interaction-induced spin Nernst
effect has been investigated [32]. However, the pure spin

transport carried by the topological magnon polarons without
the Dzyaloshinskii-Moriya interaction is still unexplored.

Meanwhile, intrinsic magnetism in two-dimensional (2D)
van der Waals materials has been discovered recently and
has attracted growing attention because of a fundamen-
tal scientific interest and unprecedented opportunities for
technological applications in reduced dimensions [33–43].
In particular, the chromium triiodide (CrI3) has a robust
magnetism in monolayer limit with a strong perpendicular
magnetic anisotropy [33,37]. The monolayer CrI3 is a FM
while a pristine bilayer CrI3 is an AFM composed of two
FM monolayers coupled antiferromagnetically [37]. A recent
study shows that square-lattice bilayer spin systems can also
be realized by using the other van der Waals materials such
as VOCl and FeOCl [44]. Because the topological particle
transports of the magnon polarons are allowed in a mono-
layer FM, the AFM phase of the bilayer magnets is expected
to show the pure spin transport of the topological magnon
polarons from its time-reversal symmetry. Moreover, recent
experiments demonstrate that an electric gating can change
the AFM interlayer order in the bilayer CrI3 to FM order and
vice versa [45–47], which enables the electric field control of
the topological quasiparticle and the spin transport.

In this paper, we theoretically investigate the topological
spin transport of the magnon polarons in a bilayer system
of square-lattice FM layers [see Fig. 1(a)]. We find that the
magnetoelastic interaction in the layered AFM induces the
finite spin Berry curvature to the magnon-polaron bands in
the absence of the magnetic field. Different from previous
studies [29,30], the dominant contribution of the topological
spin transport does not originate from the band anticrossings
between a magnonic and a phononic band. In the AFM,
the magnetoelastic interaction opens band gaps between two
magnonlike bands which are degenerate in the absence of the
magnetoelastic interaction. Because these band gaps are much
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FIG. 1. Schematic illustration of the thermal Hall and spin
Nernst effects in the bilayer (a) ferromagnet (FM) and (b) anti-
ferromagnet (AFM). (a) In a layered FM, the topological magnon
polarons exhibit the Hall response under a temperature gradient. Be-
cause the magnon possesses the spin angular momentum, the thermal
Hall transport of the magnon polaron ( jQ) leads to the transverse
spin current ( jS). (b) In a layered AFM, the thermal Hall effect of
the magnon polaron is prohibited by the time-reversal symmetry,
whereas the spin Nernst effect is induced by the magnetoelastic in-
teraction, which is shown to be large compared to that in the layered
FM (see the main text).

smaller than the anticrossing gap between a magnonic and
a phononic band, the spin Berry curvature from this effect
is large when the level broadening effect is small. We also
compute the spin Nernst and thermal Hall conductivities in
the layered magnet and find that a large enhancement of the
spin Nernst conductivity occurs when the interlayer exchange
becomes antiferromagnetic.

The remaining part of this paper is organized as follows. In
Sec. II, we consider a minimal model describing the magnon
polarons in the bilayer AFM. In this section, we provide a
low-energy effective Hamiltonian and compute the spin Berry
curvature of the magnon-polaron bands. In Sec. III, we com-
pute the thermal Hall and spin Nernst effects of the magnon
polarons. In Sec. IV, we conclude with a brief summary and
discussion.

II. TOPOLOGICAL MAGNON POLARON
IN LAYERED ANTIFERROMAGNET

A. Model Hamiltonian

We start from a bilayer AFM on the 2D square lattice
described by the Hamiltonian

H = Hm + Hph + Hmp, (1)

where the magnetic part is

Hm = −J
∑

l∈{A,B}

∑
〈i, j〉

Sl
i · Sl

j − JAB

∑
i

SA
i · SB

i

− Kz

2

∑
i,l

(Sl
i,z )2 − B

∑
i,l

Sl
i,z, (2)

where 〈i, j〉 runs over all pairs of nearest neighbors, J > 0
is the ferromagnetic Heisenberg exchange interaction, Kz > 0
is the perpendicular easy-axis anisotropy, B is the external
magnetic field along the easy axis, and JAB is the Heisen-
berg exchange interaction between upper (l = A) and lower
(l = B) layers. Because J > 0, each layer is a ferromagnet
in which the ground state is the uniform spin configuration
along the easy axis. When the interlayer exchange coupling

is negative (JAB < 0), the ground state spin configurations of
the A and B layers are opposite to each other (i.e., SA = Sẑ and
SB = −Sẑ). The magnon Hamiltonian of the layered AFM can
be obtained by performing the Holstein-Primakoff transfor-
mation with the Bogoliubov transformation

Hm =
∑

k

[
εα

m,kα
†
kαk + ε

β

m,kβ
†
kβk

]
, (3)

where the eigenenergy of the α(β ) mode is

ε
α/β

m,k =
√

(ε0
m,k )2 + 2ε0

m,k|JAB|S ± B, (4)

and ε0
m,k = 2JS(2 − cos kx − cos ky) + KzS is the monolayer

magnon dispersion without the external magnetic field. We
note that the two magnonic modes (α and β modes) degener-
ate without the magnetic field.

For the phonon Hamiltonian describing the lattice dy-
namics, we focus on the out-of-plane components of the
displacement vector which is the only component that gives
the nontrivial topology through the magnetoelastic coupling
[29,30]. Then, we have

Hph =
∑

i,l

(pl
z,i )

2

2M
+ λ

2

∑
〈i, j〉,l

(ul
z,i − ul

z, j )
2

+ λAB

2

∑
i

(uA
z,i − uB

z,i )
2, (5)

where ul
z,i and pl

z,i are the out-of-plane displacement of the ith
ion in the lth layer and its conjugate momentum, respectively,
M is the ion mass, λ is the spring constant between nearest
neighbors in the same layer, and λAB is the interlayer spring
constant. Because of the interlayer lattice coupling λAB, the
lattice vibration modes split into antibonding and bonding
modes. By quantizing the lattice displacements and its con-
jugate momenta

uη

z,k =
√

h̄

Mω
η

p,k

(
bη,k + b†

η,−k√
2

)
,

pη

z,k =
√

h̄Mω
η

p,k

(
bη,−k − b†

η,k√
2i

)
,

(6)

we have the corresponding phonon Hamiltonian

Hph =
2∑

η=1

∑
k

h̄ω
η

p,kb†
η,kbη,k, (7)

where ω1
p,k = √

(ωp,k )2 + 2ω2
z is the dispersion of the an-

tibonding phonon and ω2
p,k = ωp,k is the dispersion of the

bonding phonon. Here, ωp,k = ω0
√

(4 − 2 cos kx − 2 cos ky)
is the monolayer phonon frequency. The characteristic fre-
quencies are ω0 = √

λ/M and ωz = √
λAB/M. Because we are

dealing with the out-of-plane phonon, the interlayer phonon
coupling ωz is large when the interlayer distance is sufficiently
small. In this case, the energy of the antibonding phonon
(h̄ω1

p,k) is much higher than the other bands. Because our
interest is in the low-energy excitations, we neglect the an-
tibonding phonon mode and drop the index η (i.e., bk ≡ b2,k).
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For the magnon-phonon interaction, we adopt the magne-
toelastic interaction derived by Kittel [31,48]. To linear order
in the magnon amplitude, this is given by [49]

Hmp = κ
∑

i,l

∑
ei

sgn[(Sl
i )z]

(
Sl

i · ei
)(

ul
z,i − ul

z,i+ei

)
, (8)

where κ is the strength of the magnetoelastic coupling and
ei are the nearest-neighbor vectors. For the single-layer
FM, the magnon-phonon interaction breaks the (effective)
time-reversal symmetry [29]. However, for the bilayer AFM
with two FM monolayers, the relative sign of the magnon-
phonon interaction in the A and B layers is opposite and
the (effective) time-reversal symmetry is preserved. We note
that the magnon-phonon interaction contains both particle-
number-conserving terms and particle-number-nonconserving
terms. If we consider Hmp as a weak perturbation with well-
defined energies of magnons and phonons, the magnetoelastic
Hamiltonian expressed in magnon and phonon operators
is dominated by particle-number-conserving terms near the
band-crossing points [29,30]. Neglecting the particle-number-
nonconserving terms, we have

Hmp = i
∑

k

κ̄
(
s−α

†
kbk + s+β

†
kbk

) + H.c., (9)

where κ̄ = κ

√
h̄S

√
(1+2	)

2Mωp,k
, 	 = |JAB|S/ε0

m,k, and s± = sin kx ±
i sin ky.

From Eqs. (4), (7), and (9), we write an effective three-band
Hamiltonian

Heff ≈
∑

k

ψ
†
k

⎛
⎝ εα

m,k 0 iκ̄s−
0 ε

β

m,k iκ̄s+
−iκ̄s+ −iκ̄s− εp,k

⎞
⎠ψk, (10)

where ψk = (αk, βk, bk ) and εp,k = h̄ωp,k. In the presence of
the time-reversal symmetry (B = 0), α and β magnons are
energetically degenerate without the magnon-phonon interac-
tion (εα

m,k = ε
β

m,k ≡ εm,k). In this case, the energy eigenvalues
of the magnon-polaron Hamiltonian (10) are simplified to

ε1,k = ε+
k −

√
(ε−

k )2 + κ̄2 f (k),

ε2,k = εm,k,

ε3,k = ε+
k +

√
(ε−

k )2 + κ̄2 f (k),

(11)

where ε±
k = (εm,k ± εp,k )/2 and f (k) = 2 − cos(2kx ) −

cos(2ky). In Fig. 2(a), we show the bulk band structure without
an external magnetic field. Here we adopt the following
parameters used in Ref. [29]: J = 2.2 meV, Kz = 1.36 meV,
S = 3/2, Mc2 = 5 × 1010 eV, h̄ω0 = 10 meV, and

κ = 5 meV/Å. For the interlayer couplings, we assume that
ωz = 2ω0 and JAB = −J/10. The magnon-phonon interaction
hybridizes the magnon and phonon bands and opens the
band gap between ε1(k) and ε3(k). However, ε2(k) is not
perturbed by the magnon-phonon interaction because the
corresponding eigenstate is a mixture of two magnon states
(α and β magnons) without the phonon (see Appendix A).

B. Topological magnon polarons

Because the α and β magnons carry opposite spin angular
momenta (〈αk|Sz|αk〉 = −1, 〈βk|Sz|βk〉 = +1), the three-
band Hamiltonian (10) can lead to the topological spin
transport even if the time-reversal symmetry is preserved. The
topological spin transport of the nth band is characterized by
the spin Berry curvature (sometimes called generalized Berry
curvature) [32,50,51]

�s,n
xy (k) = lim

τ→∞ �s,n
xy (k, τ ), (12)

where

�s,n
xy (k, τ ) =

∑
m 
=n

Im
[−2h̄2〈nk| js,z

x |mk〉〈mk|vy|nk〉
]

(εn,k − εm,k )2 + (
h̄
τ

)2 , (13)

where vi = 1
h̄

∂Hk
∂ki

and js,z
x = 1

2 {Sz, vx} represent the velocity
and the spin current operators, respectively. Here, |nk〉 and
εn,k are the eigenstate and eigenenergy of the nth band, respec-
tively. The relaxation time τ ≡ (1/τn + 1/τm)−1 is introduced
to capture the level broadening effect for thermal transport
in the next section. For better understanding, we separate the
spin Berry curvature into two components:

�s,n
xy (k) = �s,n

xy,I(k) + �s,n
xy,II(k). (14)

The type-I spin Berry curvature is written as

�s,n
xy,I(k) =

∑
m 
=n

Sn
z,k

−h̄2Im[〈nk|vx|mk〉〈mk|vy|nk〉]
(εn,k − εm,k )2

− (n ↔ m)

= 1

2

∑
m 
=n

(
Sn

z,k + Sm
z,k

)
�nm

xy (k), (15)

where Sn
z,k = 〈nk|Sz|nk〉 is the spin expectation value of the

nth band. This term describes spin Hall transport due to
the (projected) Berry curvature �nm

xy (k). When the spin is
a good quantum number, the type-I spin Berry curvature is
related to the topologically protected charge (Chern number)
in quantum spin Hall systems [52,53]. Because |Sn

z,k| < 1, the
momentum integration of the type-I spin Berry curvature is
bounded to the quantized integer.

�s,n
xy,II(k) =

∑
m 
=n

{∑
l 
=n

−h̄2Im
[
Snl

z,k〈lk|vx|mk〉〈mk|vy|nk〉
]

(εn,k − εm,k )2
− (n ↔ m)

}
≡

∑
m 
=n

�s,nm
xy,II (k), (16)

where Snl
z,k = 〈nk|Sz|lk〉 is the off-diagonal spin expectation.

Contrary to the type-I spin Berry curvature, this term is not
related to the topologically protected charge. In other words,

the momentum integration of the type-II spin Berry curvature
is not restricted to a quantized integer. From the denominator
of Eq. (16), we read that the spin Berry curvature increases
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FIG. 2. The bulk band structure and spin Berry curvature in a layered AFM in the absence of an external magnetic field. (a) The band
structure of the three-band Hamiltonian. The square boxes show the band gaps where the spin Berry curvature can arise (zoomed-in images).
Spin Berry curvatures of (b) lower (solid line), (c) middle (dotted line), and (d) upper (dashed line) bands. Projected spin Berry curvatures
from the interband transition between (e) lower and upper (1 ↔ 3), (f) middle and upper (2 ↔ 3), and (g) lower and middle (1 ↔ 2) bands.
The dashed circles represent the anticrossing points between a magnon and a phonon band.

as the band gap decreases. By using the projected spin Berry
curvature �s,nm

xy (k) in Eq. (16), we provide a more detailed
understanding of the spin Berry curvature. As mentioned,
the magnon-phonon interaction hybridizes the magnon and
phonon bands and lifts the band degeneracy. A direct result
of this is the band anticrossing between a magnonic band
and a phononic band (anticrossing circle) which occurs at
εp,k = εm,k [dashed circles in Figs. 2(b)–2(g)]. From the in-
terband transition between the two bands (ε1,k and ε3,k) the
projected spin Berry curvature �s,13

xy (k) becomes finite. Be-
cause this effect is maximized at the anticrossing circle, the
projected spin Berry curvature �s,13

xy (k) is localized at these
points [Fig. 2(e)]. A more interesting point is that the spin
Berry curvature can be finite apart from the anticrossing circle.
The magnon-phonon interaction generates slight band gaps
between two magnonic bands which are degenerate without
it. As a result, the magnonlike bands possess a small phonon
character over the whole Brillouin zone causing the slight
band gaps apart from the anticrossing circle [Figs. 2(a-2) and
2(a-3)]. Because these band gaps are much smaller than the
anticrossing gap, the resultant projected spin Berry curva-
tures are large compared to that from the anticrossing circle

[Figs. 2(f) and 2(g)]. This is one of our central results: The
magnon-polaron band in the layered AFM can show the large
spin Berry curvature and the ensuing topological spin trans-
port even in the presence of the time-reversal symmetry.

III. THERMAL TRANSPORT

Here we discuss the topological transverse transport of par-
ticle and spin angular momenta of the layered magnet under
a temperature gradient. The linear response equations for the
thermal Hall and spin Nernst effects are given by [5,6,51,54]

jQ
y = −κxy∂xT, jSz

y = −αz
xy∂xT, (17)

where

κxy = −k2
BT

h̄V

∑
n,k

c2(ρn)�n
xy(k, τ ),

αz
xy = kBh̄

V

∑
n,k

c1(ρn)�s,n
xy (k, τ )

(18)
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FIG. 3. Thermal response functions of the layered magnet. (a) In-
terlayer exchange dependence of the spin Nernst and thermal Hall
conductivities. (b) Magnetoelastic interaction dependence of the spin
Nernst conductivity. (c) Magnetic field dependence of the spin Nernst
and thermal Hall conductivities in the layered AFM. For all figures,
α = 0.001 is used. For (a) and (b), B = 0 is used. For (a) and (c),
κ = 10 meV/Å is used. For (b), JAB = −0.1J and JAB = 0.1J are
used for AFM and FM, respectively.

are the corresponding conductivities, and

�n
xy(k, τ ) =

∑
m 
=n

Im
[−2h̄2〈nk|vx|mk〉〈mk|vy|nk〉

]
(εn,k − εm,k )2 + (

h̄
τ

)2 . (19)

Here, c1(ρ) = (1 + ρ)ln(1 + ρ) − ρ lnρ, c2(ρ) =
(1 + ρ)[ln(1 + ρ/ρ)]2 − (lnρ)2 − 2Li2(−ρ) where
ρn = (eεn/kBT − 1)−1 is the Bose-Einstein distribution
function with a zero chemical potential, kB is the Boltzmann
constant, T is the temperature, and Li2(ρ) is a polylogarithm
function.

In Fig. 3 we show the spin Nernst and thermal Hall con-
ductivities of the layered FM and AFM with a finite relaxation
time (see Appendix B for a detailed calculation in the layered
FM). For the relaxation time, we assume that the scattering

is dominated by the Gilbert damping τn = 2αωn,k, which is
valid for clean magnetic systems [55–57]. Figure 3(a) shows
the spin Nernst and thermal Hall conductivities by changing
the interlayer exchange which can be controlled by applying
the gate voltages [45–47,58]. In the layered AFM, the thermal
Hall conductivity vanishes due to the time-reversal symmetry
but the spin Nernst conductivity is finite. Because the JAB

changes the eigenenergy of the magnonic modes [see Eq. (4)]
and the corresponding magnon occupations, the spin Nernst
conductivity increases as |JAB| decreases. There are sudden
changes of the spin Nernst and thermal Hall conductivities
at the phase transition point between FM and AFM phases
[Fig. 3(a)]. Interestingly, the spin Nernst conductivity in the
AFM phase is about ten times larger than that in the FM
phase [Fig. 3(b)]. The sudden increase (or decrease) of the
spin Nernst conductivity at the phase transition point can be
observed by measuring the voltage induced by the inverse
spin Hall effect in the metallic leads [59]. The maximum
value of the spin Nernst conductivity in the layered AFM is
about 0.17kB at T = 40 K. We note that this value is quite
large: αz

xy in the AFM due to the magnon-phonon interaction
is two orders of magnitude larger than αz

xy obtained in pre-
vious studies [12,51]. The large spin Nernst conductivity in
the AFM phase can be explained by the following argument.
In the FM phases, the spin Nernst conductivity is caused
by the magnon Hall effect which is characterized by the
Chern integer. However, in the AFM phases, the dominant
contribution of the spin Nernst conductivity comes from the
type-II spin Berry curvature which is not restricted to the
quantized integer. As a result, the spin Nernst conductivity in
AFM phases can be much larger than that in FM phases. The
large spin Nernst conductivity can be obtained for sufficiently
long relaxation time because the level broadening suppresses
the energy splitting from the magnon-phonon interaction (see
Appendix C for the level broadening effect of the spin Nernst
conductivity). In Fig. 3(c), we also show the magnetic field
dependence of the spin Nernst conductivity and thermal Hall
conductivity in the layered AFM. As expected, the spin Nernst
conductivity is even in B [αz

xy(B) = αz
xy(−B)] while ther-

mal Hall conductivity is odd in B [κxy(B) = −κxy(−B)] (see
Appendix D).

IV. DISCUSSION

In this paper, we study topological spin transport of the
magnon-polaron bands in the bilayer system with two FM
monolayers. The magnetoelastic interaction opens the band
gaps between different excitation bands and generates the spin
Berry curvature even if the time-reversal symmetry is pre-
served. Previous studies [29,30] report that the magnetoelastic
interaction opens band-anticrossing gaps between a magnonic
and a phononic band. In our theory, the dominant contribution
to the spin Berry curvature does not originate from the band
anticrossings between a magnonic and a phononic band. Due
to the magnetoelastic interaction, the originally degenerate
two magnonic bands (α and β magnons) hybridize with the
phononic band. As a result, there are slight band gaps between
two magnonlike bands distant from the anticrossing circle.
Because these band gaps are much smaller than the anticross-
ing gap, they give a dominant contribution to the spin Berry
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curvature. For an experimental probe of our predictions, we
compute the spin Nernst and thermal Hall conductivities in
our model. We find that the spin Nernst conductivity increases
significantly when the interlayer exchange becomes antifer-
romagnetic. We note that the large spin Nernst conductivity
from the small band gap is analogous to the additional in-
trinsic spin-orbit torque in the antiferromagnet with a small
noncollinearity [60]. The phase tunability of the magnetic
bilayer by the external electric field [45–47,58] possibly pro-
vides an efficient control scheme of the energy and angular
momentum transfer for future spintronic devices. For accurate
quantitative predictions for transport properties, studying the
effect of nonmagnetic ions in magnon-phonon hybridization
and the resultant transport properties is necessary, which we
leave as a future research topic. We end this paper by noting
that our theory is applicable for general antiferromagnetic
materials. As mentioned, the effective Hamiltonian of the
antiferromagnetically coupled bilayer is equivalent to that of
the monolayer AFM [30] in low-energy limit. Also, our theo-
retical model is based on the simple square-lattice magnet and
does not require a specific lattice structure. These results sug-
gest the ubiquity of topological spin transports in conventional
AFMs with reduced dimensions.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE BILAYER ANTIFERROMAGNET

1. Magnon part

We divide the magnetic Hamiltonian into the intralayer and
interlayer parts Hm = H0

m + H1
m, where

H0
m = −J

∑
l∈{A,B}

∑
〈i, j〉

Sl
i · Sl

j − Kz

2

∑
i,l

(Sl
i,z )2 − B

∑
i,l

Sl
i,z,

H1
m = −JAB

∑
i

SA
i · SB

i . (A1)

By using the Holstein-Primakoff transformation

S+
A =

√
2SaA, S−

A =
√

2Sa†
A, Sz

A = S − a†
AaA,

S+
B =

√
2Sa†

B, S−
B =

√
2SaB, Sz

B = a†
BaB − S,

and the Fourier transformation ai = ∑
k eik·Ri ak/N , we have

H0
m =

∑
k

[
εA

m,ka†
A,kaA,k + εB

m,ka†
B,kaB,k

]
, (A2)

where ε
A/B
m,k = 2JS(2 − cos kx − cos ky) + KzS ± B and

H1
m = |JAB|

∑
i

SA
i · SB

i = |JAB|
∑

i

[
1

2
(S+

A,iS
−
B,i + S−

A,iS
+
B,i ) + Sz

A,iS
z
B,i

]

≈ |JAB|S
∑

k

(aA,kaB,−k + a†
A,ka†

B,−k + a†
A,kaA,k + a†

B,kaB,k ).

By using the Bogoliubov transformation,

aA,k = ukαk + vkβ
†
−k, aB,k = ukβk + vkα

†
−k, (A3)

we have

Hm =
∑

k

{[(
εA

m,k + |JAB|S)
u2

k + (
εB

m,k + |JAB|S)
v2

k + 2|JAB|Sukvk
]
α

†
kαk

+ [(
εA

m,k + |JAB|S)
v2

k + (
εB

m,k + |JAB|S)
u2

k + 2|JAB|Sukvk
]
β

†
kβk

+ [(
εA

m,k + εB
m,k + 2|JAB|S)

ukvk + |JAB|S(
u2

k + v2
k

)]
(αkβ−k + α

†
kβ

†
−k )

}
. (A4)

In order to eliminate the αkβ−k + α
†
kβ

†
−k terms, we set

uk = cosh θk, vk = sinh θk, tanh 2θk = − 2|JAB|S
εA

m,k + εB
m,k + 2|JAB|S .

Note that both uk and vk are real and u−k = uk and v−k = vk.
Then, we have

Hm =
∑

k

(
εα

m,kα
†
kαk + ε

β

m,kβ
†
kβk

)
, (A5)

where ε
α/β

m,k =
√

(ε0
m,k )2 + 2ε0

m,k|JAB|S ± B and ε0
m,k =

2JS(2 − cos kx − cos ky) + KzS.
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FIG. 4. The bulk band structure of the effective three-band
Hamiltonian (left) and that of the full 8 × 8 Hamiltonian (right).
Material parameters are J = 2.2 meV, Kz = 1.36 meV, S = 3/2,
Mc2 = 5 × 1010 eV, h̄ω0 = 10 meV, κ = 5 meV/Å, ωz = 2ω0, and
JAB = −J/10.

2. Phonon part

The momentum space representation of the phonon Hamil-
tonian is

Hph =
∑

k

[
pz

−k pz
k

2M
+ 1

2
uz

−k�(k)uz
k

]
, (A6)

where

�(k) =(
Mω2

p,k + Mω2
z

)
I2×2 + Mω2

z

(
0 1
1 0

)
. (A7)

The spring constant matrix �(k) can be diagonalized by the
similarity transformation S−1�(k)S , where

S = 1√
2

(
1 1
1 −1

)
. (A8)

By introducing the canonical quantization of the lattice vibra-
tion and conjugate momentum in the diagonalized basis,

uz
i,k =

√
h̄

Mωp,i(k)

(
bi,k + b†

i,−k√
2

)
, (A9)

pz
i,k = √

h̄Mωp,i(k)

(
bi,−k − b†

i,k√
2i

)
, (A10)

we have

Hph =
∑

k

[
h̄ωp,1(k)b†

1,kb1,k + h̄ωp,2(k)b†
2,kb2,k

]
, (A11)

where ωp,1(k) =
√

ω2
p,k + 2ω2

z and ωp,2(k) = ωp,k are fre-

quencies of the antibonding and bonding phonons, respec-
tively.

3. Magnon-phonon interaction

The magnon-phonon interaction in the bilayer system is

Hmp = κ
∑

i

{[
SA

i,x

(
uz

A,i − uz
A,i+ax̂

) + SA
i,y

(
uz

A,i − uz
A,i+aŷ

) − SA
i,x

(
uz

A,i − uz
A,i−ax̂

) − SA
i,y

(
uz

A,i − uz
A,i−aŷ

)]

− [
SB

i,x

(
uz

B,i − uz
B,i+ax̂

) + SB
i,y

(
uz

B,i − uz
B,i+aŷ

) − SB
i,x

(
uz

B,i − uz
B,i−ax̂

) − SB
i,y

(
uz

B,i − uz
B,i−aŷ

)]}

= 2κ
√

S
∑

k

[
i sin kxuz

A,−k

(
aA,k + a†

A,−k√
2

)
+ i sin kyuz

A,−k

(
aA,k − a†

A,−k√
2i

)]

− 2κ
√

S
∑

k

[
i sin kxuz

B,−k

(
aB,k + a†

B,−k√
2

)
− i sin kyuz

B,−k

(
aB,k − a†

B,−k√
2i

)]
.

By enacting the similarity transformation which diagonalizes the spring constant matrix, we have.

Hmp = 2κ
√

S
∑

k

[
i sin kx

(
uz

1,−k + uz
2,−k√

2

)(
aA,k + a†

A,−k√
2

)
+ i sin ky

(
uz

1,−k + uz
2,−k√

2

)(
aA,k − a†

A,−k√
2i

)]

− 2κ
√

S
∑

k

[
i sin kx

(
uz

1,−k − uz
2,−k√

2

)(
aB,k + a†

B,−k√
2

)
− i sin ky

(
uz

1,−k − uz
2,−k√

2

)(
aB,k − a†

B,−k√
2i

)]
.

By using aA,k = ukαk + vkβ
†
−k, aB,k = ukβk + vkα

†
−k, and uz

i,−k =
√

h̄

Mωp,i(k)
(
bi,−k + b†

i,k√
2

), we have

H = H1
mp + H2

mp, (A12)
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where

H1
mp = κ

2

∑
k

√
2h̄S

Mωp,1(k)
(uk − vk )ψ†

1,k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i sin kx 0

0 0 0 0 i sin ky 0

0 0 0 0 −i sin kx 0

0 0 0 0 i sin ky 0

−i sin kx −i sin ky i sin kx −i sin ky 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ1,k,

H2
mp = κ

2

∑
k

√
2h̄S

Mωp,2(k)
(uk + vk )ψ†

2,k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 i sin kx 0

0 0 0 0 i sin ky 0

0 0 0 0 i sin kx 0

0 0 0 0 −i sin ky 0

−i sin kx −i sin ky −i sin kx i sin ky 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ2,k, (A13)

and

ψi,k =
(

αk + α
†
−k√

2
,
αk − α

†
−k√

2i
,
βk + β

†
−k√

2
,
βk − β

†
−k√

2i
,

bi,−k + b†
i,k√

2
,

bi,−k − b†
i,k√

2i

)T

, ψ
†
i,k = ψi,−k. (A14)

After some algebra, we have

uk ± vk =
√

cosh 2θk ± sinh 2θk =
(

1 + δ ± δ√
1 + 2δ

)1/2

, (A15)

where δ = 2JABS/ε0
m,k. Then, we write the total Hamiltonian as

Htot = H0 + Hc
mp + Hnc

mp, (A16)

where H0 is the Hamiltonian without magnon-phonon interaction. Hc
mp (Hnc

mp) is the particle-number-conserving (particle-
number-nonconserving) interaction. Neglecting the high-energy phonon state (antibonding phonon), we have

Hc
mp = κ

2

∑
k

ψ̄
†
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 iMx − My 0

0 0 0 0 0 iMx + My

0 0 0 0 iMx + My 0

0 0 0 0 0 iMx − My

−iMx − My 0 −iMx + My 0 0 0

0 −iMx + My 0 −iMx − My 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ̄k, (A17)

Hnc
mp = κ

2

∑
k

ψ̄
†
k

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 iMx − My

0 0 0 0 iMx + My 0

0 0 0 0 0 iMx + My

0 0 0 0 iMx − My 0

0 −iMx − My 0 −iMx + My 0 0

−iMx + My 0 −iMx − My 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ψ̄k, (A18)

where the transformed basis is ψ̄k = (α†
−k, αk, β

†
−k, βk, b†

2,k, b2,−k )T and

Mx =
√

h̄S

2Mωp,2(k)
(uk + vk ) sin kx, My =

√
h̄S

2Mωp,2(k)
(uk + vk ) sin ky. (A19)

In order to compare the effect of Hc
mp and Hnc

mp, we compute the energy eigenvalues of H0 + Hc
mp and H0 + Hnc

mp. In the absence
of the external magnetic field, we obtain

ε1,k ≈ εm − κ2

2

(
M2

x + M2
y

εp − εm

)
, ε2,k ≈ εm, ε3,k ≈ εp + κ2

2

(
M2

x + M2
y

εp − εm

)
, (A20)
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for H0 + Hc
mp and

ε1,k ≈ εm − κ2

2

(
M2

x + M2
y

εp + εm

)
, ε2,k ≈ εm, ε3,k ≈ εp − κ2

2

(
M2

x + M2
y

εp + εm

)
, (A21)

for H0 + Hnc
mp. We note that the prominent effect of the magnon-phonon interaction is to lift the degeneracy at band-crossing

points (εp ≈ εm). At these points, the effect of the particle-number-nonconserving terms is much smaller than that of particle-
number-conserving terms.

Collecting the particle-number-conserving terms, we have the effective three-band Hamiltonian of the magnetoelastic
interaction

Hmp = κ
∑

k

√
h̄S

2Mωp(k)
(uk + vk )ψ†

k

⎛
⎜⎝

0 0 i sin kx + sin ky

0 0 i sin kx − sin ky

−i sin kx + sin ky −i sin kx − sin ky 0

⎞
⎟⎠ψk, (A22)

where ψk = (αk, βk, bk )

4. Effective Hamiltonian

By collecting Eqs. (A5), (A11), and (A22), we obtain the effective three-band Hamiltonian of the layered antiferromagnet

H = Hm + Hp + Hmp, (A23)

where

H =
∑

k

ψ
†
k

⎛
⎝ εα

m,k(k) 0 κ̄ (k)(i sin kx + sin ky)
0 ε

β

m,k κ̄ (k)(i sin kx − sin ky)
κ̄ (k)(−i sin kx + sin ky) κ̄2(k)(−i sin kx − sin ky) εp,k

⎞
⎠ψk, (A24)

where

κ̄ = κ

√
h̄S

√
(1 + 2δ)

2Mωp,k
. (A25)

In Fig. 4, we show the band structure of the effective three-
band Hamiltonian and that of the full 8 × 8 Hamiltonian. The
highest state of the full 8 × 8 Hamiltonian is the antibonding
phonon mode which is neglected in the effective Hamiltonian.
The band structures in both models are almost the same for
small κ .

APPENDIX B: DERIVATION OF THE EFFECTIVE
HAMILTONIAN IN THE BILAYER FERROMAGNET

When the interlayer Heisenberg exchange is ferromag-
netic, we have

Hm =
∑

k

[(
ε0

m,k + |JAB|S)
(a†

A,kaA,k + a†
B,kaB,k )

− JABS(a†
B,kaA,k + a†

A,kaB,k )
]
,

=
∑

k

ψ†
m

[(
ε0

m,k + |JAB|S)
I2×2 − |JAB|S

(
0 1
1 0

)]
ψm,

(B1)

where ψm = (aA,k, aB,k ). We note the the phonon Hamil-
tonian is the same as that in the layered antiferromagnet.
The submatrices Hmag can be diagonalized by the sim-
ilarity transformations S−1HmagS . In this new basis, we
have

Hm =
∑

k

[(
ε0

m,k + 2|JAB|S)
a†

1,ka1,k + ε0
m,ka†

2,ka2,k
]
. (B2)

We note that the magnon-phonon interaction

Hmp =
∑

i

∑
ei

(Si · ei )(u
z
i − uz

i+ei
) = 2κ

√
S

∑
k

[
i sin kxu−k

(
ak + a†

−k√
2

)
+ i sin kyu−k

(
ak − a†

−k√
2i

)]
(B3)
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is invariant under the basis transformation, i.e., Hmp
k = S−1Hmp

k S . Then, we write the total Hamiltonian in the new basis

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0
m,k + 2|JAB|S 0 κM1

1 0 0 0 0 0

0 ε0
m,k + 2|JAB|S κM1

2 0 0 0 0 0

κ (M1
1 )∗ κ (M1

2 )∗ h̄ωp,1(k) 0 0 0 0 0

0 0 0 h̄ωp,1(k) 0 0 0 0

0 0 0 0 ε0
m,k 0 κM2

1 0

0 0 0 0 0 ε0
m,k κM2

2 0

0 0 0 0 κ (M2
1 )∗ κ (M2

2 )∗ h̄ωp,2(k) 0

0 0 0 0 0 0 0 h̄ωp,2(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

where

(M1)i = 2i

√
h̄S

Mωi,k
sin kx,

(M2)i = −2i

√
h̄S

Mωi,k
sin ky (i = 1, 2). (B5)

By neglecting the high-frequency antibonding phonon and
particle-number-nonconserving terms, we have

H =
∑

k

(
a†

1,k a†
2,k b†

2,k

)
Hk

⎛
⎝a1,k

a2,k
b2,k

⎞
⎠, (B6)

FIG. 5. The bulk band structure and (spin) Berry curvatures in
the FM in the absence of an external magnetic field. (a) The band
structure of the effective two-band Hamiltonian. Berry curvatures of
(b) lower and (c) upper bands. Spin Berry curvatures of (d) lower and
(e) upper bands. For the material parameters, we use J = 2.2 meV,
Kz = 1.36 meV, S = 3/2, Mc2 = 5 × 1010 eV, h̄ω0 = 10 meV, and
κ = 5 meV/Å.

where

Hk =
⎛
⎝ε0

m,k + 2|JAB|S 0 0
0 ε0

m,k κ̃ (sin ky − i sin kx )
0 κ̃ (sin ky + i sin kx ) h̄ωp,2(k)

⎞
⎠,

(B7)

and κ̃ = κ
√

h̄S
Mωp,2(k) .

The (antibonding) magnon state is topologically trivial be-
cause it does not interact with the other states. Neglecting the
trivial state, we obtain effective two-band Hamiltonian

H2×2
k =

(
ε0

m,k κ̃ (sin ky − i sin kx )
κ̃ (sin ky + i sin kx ) h̄ωp,2(k)

)
. (B8)

In Fig. 5, we show the energy dispersion of the topological
magnon-polaron bands of the effective two-band model with
corresponding (spin) Berry curvatures.

APPENDIX C: EFFECT OF THE LEVEL BROADENING

Because the dominant contribution of the spin Berry curva-
ture in the AFM comes from the small energy spacing between
two magnonlike bands (α and β magnons), the spin Nernst
conductivity is suppressed by the level broadening effect. To
see this, we show the damping constant dependence of the
spin Nernst conductivity of the layered AFM in Fig. 6.

0.02 0.040

0.1

0
0.06

FIG. 6. Damping constant dependence of the spin Nernst con-
ductivity without the external magnetic field. For the material
parameters, we use J = 2.2 meV, Kz = 1.36 meV, S = 3/2, Mc2 =
5 × 1010 eV, h̄ω0 = 10 meV, κ = 10 meV/Å, ωz = 2ω0, and JAB =
−J/10.
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FIG. 7. Berry curvatures and spin Berry curvatures under the magnetic field B = 0.02 meV. For the material parameters, we use J =
2.2 meV, Kz = 1.36 meV, S = 3/2, Mc2 = 5 × 1010 eV, h̄ω0 = 10 meV, κ = 5 meV/Å, ωz = 2ω0, and JAB = −J/10.

APPENDIX D: EFFECT OF THE EXTERNAL
MAGNETIC FIELD

As discussed in Ref. [30], the nontrivial topology of the
magnon polaron (characterized by the Chern number) is in-
duced by the external magnetic field. Thus, the signs of the

Berry curvatures are reversed when the sign of the magnetic
field is reversed. However, the spin Berry curvature in the
layered AFM is finite without the magnetic field and does not
change under a sign reversal of the external magnetic field (see
Figs. 7 and 8).

FIG. 8. Berry curvatures and spin Berry curvatures under the magnetic field B = −0.02 meV. For the material parameters, we use J =
2.2 meV, Kz = 1.36 meV, S = 3/2, Mc2 = 5 × 1010 eV, h̄ω0 = 10 meV, κ = 5 meV/Å, ωz = 2ω0, and JAB = −J/10.
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