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Double quantum dots are one of the promising two-state quantum systems for realizing qubits. In the quest of
successfully manipulating and reading information in qubit systems, it is of prime interest to control the charge
response of the system to a gate voltage, as filled in by the dynamical charge susceptibility. We theoretically
study this quantity for a nonequilibrium double quantum dot by using the functional integral approach and
derive its general analytical expression. One highlights the existence of two lines of maxima as a function of the
dot level energies, each of them being split under the action of a bias voltage. In the low frequency limit, we
derive the capacitance and the charge relaxation resistance of the equivalent quantum RC-circuit with a notable
difference in the range of variation for R depending on whether the system is connected in series or in parallel.
By incorporating an additional triplet state in order to describe the situation of a double quantum dot with spin,
we obtain results for the resonator phase response which are in qualitative agreement with recent experimental
observations in spin qubit systems. These results show the wealth of information brought by the knowledge of
dynamical charge susceptibility in double quantum dots with potential applications for spin qubits.
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I. INTRODUCTION

In double quantum dots (DQDs), the knowledge of the
dynamical charge susceptibility (DCS), which measures the
ability of a system to adapt its electronic charge to an ac
gate-voltage, is of fundamental interest in the general con-
text of circuit quantum electrodynamics with gated GaAs,
silicon, and germanium semiconductor quantum dots. This
field has become all the more important because of its ex-
pected implications in manipulation, control and readout of
spin qubits [1]. There certainly are some theoretical works on
charge susceptibility in DQD but they are mainly restricted to
the study at zero frequency [2–4] and in the low frequency
regime with the determination of mesoscopic admittance [5]
and quantum capacitance [6], or to calculations performed
at the lowest order in dot-lead coupling amplitude [7]. Elec-
trical transport experiments in DQD systems are, however,
restricted neither to the weak dot-lead coupling regime nor
to the measurement at low frequencies. On the contrary, in
the last ten years one has witnessed a considerable experi-
mental effort [8–16] with measurements performed by using
either on-chip superconducting resonant detectors [17–19] or
dispersive probed microwave spectroscopy via reflectometry
techniques [20–22], all of them made in the high frequency
regime. To accompany this growing experimental develop-
ment, it becomes of primary importance to progress on the
theoretical level in order to investigate circuit quantum elec-
trodynamics at high frequency in nanoscale systems. Indeed,
the interpretation of these experiments requires the precise
knowledge of the DCS at any frequency and temperature
range, in both equilibrium and out-of-equilibrium DQDs. This
article is precisely devoted to this theoretical issue. It is orga-
nized as follows: In Sec. II we present the functional integral

approach used to solve this problem and give the expression
for the dynamical charge susceptibility; in Sec. III we give the
results for both serial and parallel DQDs; in Sec. IV we focus
on the characterization of the equivalent quantum RC-circuit
to the DQD system. Finally, in Sec. V, we study the reflection
phase of the system considered as a resonator embedded in
an electromagnetic environment, shedding new light on recent
measurements performed in microwave reflectometry experi-
ments in spin qubit systems. We conclude in Sec. VI.

II. MODEL

A. Functional integral approach

Let us consider a DQD connected to two leads described by
the Hamiltonian Ĥ = Ĥleads + Ĥdots + Ĥhop, with Ĥleads =∑

α=L,R;k∈α εαk ĉ †
αk ĉαk , Ĥdots = ∑

i=1,2 εid̂
†

i d̂i + V12d̂ †
2 d̂1 +

V21d̂ †
1 d̂2, and Ĥhop = ∑

α=L,R;k∈α

∑
i=1,2 Vi,αk ĉ †

αkd̂i + H.c.,
where εi is the energy level of the dot i, V12 is the interdot
coupling, εαk is the energy of one electron with momentum
k in the lead α, and Vi,αk is the hopping energy between the
dot i and the lead α for momentum k. The very general form
considered in the expression for Ĥ allows one to describe
the situations where the two dots are connected in series as
well as in parallel (see Fig. 1). We use the functional integral
approach to derive the expression for the DCS. The partition
function of the system writes

Z =
∫ ∏

i=1,2

dd †
i ddi

∏
α=L,R

k∈α

dc †
αkdcαke− ∫ β

0 dτL(τ ), (1)

where L(τ ) = ∑
i=1,2 d̂ †

i ∂τ d̂i + ∑
α=L,R;k∈α ĉ †

αk∂τ ĉαk − Ĥ is

the Lagrangian, d (†)
i and c (†)

αk , the Grassmann variables
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FIG. 1. Schematic view of the DQD in the (a), (c) serial and (b),
(d) parallel geometries. At ε1 = ε2 and for symmetrical couplings to
the leads, the bonding state λ− is disconnected from the leads in the
parallel geometry.

associated with the operators d̂ (†)
i and ĉ (†)

αk . By integrating
over the Grassmann variables c̃αk = cαk − ∑

j=1,2 Vj,αk (∂τ +
εαk )−1d j [23], one gets Z = ∫ ∏

i=1,2 dd †
i ddie− ∫ β

0 dτLeff (τ ),
where Leff(τ ) is an effective Lagrangian defined as

Leff(τ ) = (d †
1 d †

2 )

×
(

∂τ + ε1 + Σ11(τ ) Σ̃12(τ )

Σ̃21(τ ) ∂τ + ε2 + Σ22(τ )

)(
d1

d2

)
,

(2)

where Σi j (τ ) = ∑
α=L,R

∑
k∈α V ∗

i,αkgαk (τ )Vj,αk , Σ̃ii(ε) =
Σii(ε) + V∗

ii
, within the notation 1 = 2 and 2 = 1, and

gαk (τ ) = −(∂τ + εαk )−1 is the Green function in the lead α

for momentum k. In the wide-flat-band limit for electrons
in the leads and when Vi,αk is assumed to be k-independent,
one has Σr

i j (ε) = −i�i j/2 and �i j = ∑
α=L,R �α,i j , where

�α,i j = 2πV ∗
i,αkVj,αkρα . The density of states ρα in the lead α

is assumed to be equal to W −1, where W is the energy band
width taken as the energy unit in the rest of the article. From
Eq. (2) one extracts an effective Hamiltonian given by

Heff =
(

ε1 − i�11/2 V ∗
12 − i�12/2

V ∗
21 − i�21/2 ε2 − i�22/2

)
, (3)

which can be diagonalized leading to the eigenenergies

λ± = 1

2

(
ε1 − i

�11

2
+ ε2 − i

�22

2
± �

)
, (4)

with �2 = (ε1− i�11/2− ε2 + i�22/2)2+ 4(V ∗
12 − i�12/2) ×

(V ∗
21 − i�21/2). The corresponding eigenstates are the bond-

ing and anti-bonding states of the DQD. They have a finite
relaxation rate related to the imaginary parts of λ±, resulting
from energy dissipation through connections to leads [24].

B. Dynamical charge susceptibility

For a DQD, the charge susceptibility is Xc(t, t ′) =∑
i, j=1,2 αiα jXi j (t, t ′), where α1,2 are the lever-arm coeffi-

cients measuring the asymmetry of the capacitive couplings
of each of the two dots to the gate voltage [4]. In the linear
response theory it is related to a correlation function through a
Kubo-type formula Xi j (t, t ′) = i�(t − t ′)〈[�N̂i(t ),�N̂ j (t ′)]〉
with N̂i = d̂ †

i d̂i. Decomposing the correlation function in the
eigenstate basis and taking the Fourier transform, for the DCS

FIG. 2. Color-scale plots of |Xc(ω)| as a function of ε1 and ε2

for a serial DQD at various values of ω and V , with μL = eV/2 and
μR = −eV/2, and � = 0.01, V12 = 0.1, kBT = 0.01.

one gets: Xc(ω) = ∑
s1,s2=± Cs1s2Xs1s2 (ω), where Cs1s2 are co-

herence factors defined in Ref. [23]. Xs1s2 (ω) can be expressed
as a function of the Green functions in the dots following

Xs1s2 (ω) = i
∫ ∞

−∞

dε

2π

[
G<

s1s2
(ε)Ga

s2
(ε − h̄ω)

+ Gr
s1

(ε + h̄ω)G<
s1s2

(ε)
]
, (5)

where Gr,a,< are retarded, advanced, and nonequilib-
rium Green functions in the eigenstate basis. Gr,a are

diagonal matrices of elements Gr
±(ε) = (ε − λ±)−1 and

Ga
±(ε) = (ε − λ∗

±)−1. In the steady state, one has G<(ε) =
Gr (ε)U −1Σ<(ε)U Ga(ε), where U is the transition ma-
trix from the initial state basis to the eigenstate basis,
Σ<(ε) = i

∑
α=L,R fα (ε)�

α
, the nonequilibrium self-energy,

and fα (ε) = [1 + exp((ε − μα )/kBT )]−1, the Fermi-Dirac
distribution in the lead α of chemical potential μα and tem-
perature T . We have thus established a general expression
for the DCS of a nonequilibrium DQD, valid whatever its
geometry is.

III. RESULTS AND DISCUSSION

A. DQD in series

The results obtained for a DQD symmetrically connected
in series are shown in Fig. 2. The variation of the absolute
value of the DCS, |Xc(ω)|, is plotted in the form of color-scale
plots as a function of ε1 and ε2. Figures 2(a) and 2(b) show the
presence of peaks in |Xc(0)| along four branches denoted as
BL

−, BR
−, BL

+ and BR
+ corresponding to the alignment of the

bonding and anti-bonding state energies, with the chemical
potential in the leads occurring when Re{λ±} = μL,R [4]. Ac-
cording to Eq. (4), one has

λ± = 1
2 (ε1 + ε2 − i� ±

√
(ε1 − ε2)2 + 4|V12|2), (6)

making use of �L,11 = �R,22 ≡ �, �L,22 = �R,11 = 0, and
�L,12 = �R,12 = 0, and assuming α1 = α2 = 1 and V12 = V21.
At zero voltage, BL

− and BR
− coincide (the same for BL

+ and
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FIG. 3. Same as Fig. 2 for a parallel DQD.

BR
+). BL,R

− and BL,R
+ are two branches of a hyperbole of equa-

tions ε1ε2 = |V12|2, separated by a minimal distance along the
diagonal D of equation ε1 = ε2, taking the value of 2|V12|.
From Eq. (6), the imaginary part of λ± are both equal to
−�/2 and independent of ε1 and ε2. As a result, the width
of the charge susceptibility peak arcs is uniform along the
branches BL,R

± , as observed in Fig. 2(a). At finite voltage,
Fig. 2(b) shows the splitting of the peak arcs into two branches
BL

− and BR
−, respectively BL

+ and BR
+, with the reduction of

the intensity along half of the arcs due to the fact that for a
serial DQD, only the dot 1 is connected to lead L and the
dot 2 to lead R. Thus, only the horizontal end of BL

± or the
vertical end of BR

± lead to a significant value of |Xc(0)|. At
finite frequency, one observes a broadening of the peak arcs
located around the BL,R

± branches, together with the formation
of an additional central peak at ε1 = ε2 = 0 [see Figs. 2(c) and
2(d)]. An exact expression for Xc(ω) is derived from Eq. (5)
at T = 0 when ε1 = ε2 and V21 = V12 for a serial DQD [23].
It writes Xc(ω) = ∑

±
∑

α=L,R X±,α (ω) with

X±,α (ω)=− �

2hω(h̄ω + i�)
ln

(
1− hω(h̄ω + i�)

�
A±(μα )

)
,

(7)

where A±(ε) = −Im{Gr
±(ε)}/π are the spectral function con-

tributions from the anti-bonding and bonding states.

B. DQD in parallel

Figure 3 shows the results obtained for a parallel DQD with
symmetrical couplings: �α,i j ≡ �, ∀α, i, j, with α1 = α2 = 1
and V12 = V21. At zero frequency, one observes three dif-
ferences towards the situation in series: (i) the intensity of
|Xc(0)| is reduced on the branches BL,R

+ ; (ii) |Xc(0)| undergoes
an extinction of its intensity at the intersections between the
branches BL,R

− with the diagonal D; (iii) at finite voltage,
|Xc(0)| is of equal intensity along both halves of the branches
BL,R

− (respectively BL,R
+ ). These differences are understood as

follows. According to Eq. (4), one has

λ± = 1
2 (ε1 + ε2 − 2i� ±

√
(ε1 − ε2)2 + 4(V12 − i�)2). (8)

FIG. 4. Capacitance C and resistance R as a function of V12 for a
DQD in (a), (c) series and (b), (d) parallel at various values of V and
ε1 = ε2 = 0, � = 0.1, kBT = 0.01.

The imaginary parts of λ± depend on ε1 and ε2, contrary
to what happens in the case in series where the imaginary
parts of λ± were equal to −�/2 [see Eq. (6)]. Typically the
imaginary part of λ+ for the parallel DQD is large along the
branches BL,R

+ explaining the fact that the intensity of |Xc(0)|
on the latter branches are reduced [property (i)]. Along the
diagonal D of equation ε1 = ε2 = ε0, one has λ− = ε0 − V12

whereas λ+ = ε0 + V12 − 2i�. The imaginary part of λ− is
zero, meaning that the bonding state of the parallel DQD is
disconnected from the leads, eliminating any dissipation effect
through contacts to leads, and causing a significant reduction
in the intensity of |Xc(0)| at the intersection of branches BL,R

−
and diagonal D [property (ii)]. Finally, the property (iii) can be
understood as follows: At finite voltage |Xc(0)| is maximal on
the branches BL,R

− with equal intensity along both halves of the
branches since each dot are equally connected to L and R leads
for parallel DQD. At finite frequency, Figs. 3(c) and 3(d) show
the broadening of the branches BL,R

± and the widening of the
gap in the branches BL,R

− . At T = 0, ε1 = ε2 and V21 = V12, an
exact expression for Xc(ω) is derived from Eq. (5) in the par-
allel geometry [23]. It reads as Xc(ω) = ∑

±
∑

α=L,R X±,α (ω)
where X−,α (ω) = 0 and

X+,α (ω) = − 2�

hω(h̄ω + 4i�)

× ln

(
1 − hω(h̄ω + 4i�)

4�
A+(μα )

)
. (9)

IV. EQUIVALENT QUANTUM RC-CIRCUIT

We now focus on the characterization of the equivalent
quantum RC-circuit to the DQD whose capacitance and
charge relaxation resistance are respectively given by C =
e2Xc(0) and R = e2 limω→0 Im{Xc(ω)}/(ωC2) [25–27]. To
analyze them, we report in Fig. 4 their values, extracted from
Xc(ω), versus the interdot coupling V12. For a serial DQD, one
observes that C is maximal at V12 = eV/2. Strictly speaking,
C diverges towards infinity at V = T = 0 when V12 tends to 0
since the two dots are decoupled. For a parallel DQD, one has
a reduction of amplitude for C and the absence of a divergence
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when V12 tends to 0 at V = T = 0 because there is always
a way for the charges to travel from one lead to the other,
even at V12 = 0. As far as the charge relaxation resistance R is
concerned, the results reported in Figs. 4(c) and 4(d) show
that its value at V12 = 0 equals Rq/4 in the case in series
while it equals Rq/2 in the case in parallel, where Rq = h/e2

is the quantum of resistance. In both cases, R versus V12 in-
creases and then converges back to Rq/4, respectively Rq/2, at
strong V12. To explain why the variation ranges of R differ so
markedly depending whether the DQD is connected in series
or in parallel, let us start from Eqs. (7) and (9), which give
Xc(ω) at T = 0 and ε1 = ε2, respectively, for a serial and a
parallel DQD symmetrically coupled to the leads. For a serial
DQD, Eq. (7) leads to C = (e2/2)

∑
±

∑
α=L,R A±(μα ) and

R =
∑

±
∑

α=L,R A2
±(μα )( ∑

±
∑

α=L,R A±(μα )
)2 Rq. (10)

By putting the latter expression in the form
(
∑n

i=1 x2
i )(

∑n
i=1 y2

i )Rq/(
∑n

i=1 xiyi )2 with xi = A±(μα ),
yi = 1, and n = 4, and using the Cauchy-Schwarz inequality,
one deduces that R � Rq/4. Moreover, by knowing that∑n

i=1 z4
i � (

∑n
i=1 z2

i )2 with zi = √
A±(μα ), one concludes

that R � Rq [23]. Thus the range of variation for R is from
Rq/4 to Rq, in line with what is observed in Fig. 4(c). For a
parallel DQD, the expression for Xc(ω) given by Eq. (9) leads
to C = (e2/2)

∑
α=L,R A+(μα ) and

R =
∑

α=L,R A2
+(μα )( ∑

α=L,R A+(μα )
)2 Rq. (11)

By employing similar arguments to those used for a serial
DQD, and by noticing that n = 2 in the case in parallel, since
the bonding state is disconnected from the leads at ε1 = ε2,
one shows that R varies from Rq/2 to Rq, in agreement with
what is observed in Fig. 4(d). It means that when ε1 = ε2,
the number of quantum channels n allowing the charge to
travel are equal to four in the case in series whereas it equals
two in the case in parallel. The results given by Eqs. (10)
and (11) can be viewed as the extension to a DQD of the
results previously established in the cases of a single quantum
dot [28] or a quantum point contact [29–34]. As in such
systems, Xc(ω) in a DQD obeys a generalized Korringa-Shiba
relation [35,36] according to which limω→0 Im{Xc(ω)}/ω =∑

±
∑

α=L,R X 2
±,α (0), a characteristic of a Fermi liquid. It is

worthwhile to explore the variation of Xc(ω) at higher fre-
quencies and to see how its frequency dependence deviates
from this relation. Figure 5 reports the results obtained for
Im{Xc(ω)}/X 2

c (0) as a function of ω. For a serial DQD,
respectively parallel DQD, one observes a linear variation
with frequency according to ω/4, respectively ω/2, at low
frequencies in agreement with the generalized Korringa-Shiba
relation, confirming the difference of a factor two found for
the values of R between the cases in series and in parallel,
whereas it shows strong deviations at higher frequencies.

V. REFLECTION PHASE

We end up by discussing the reflection phase of the system
considered as a resonator embedded in an electromagnetic

FIG. 5. Im{Xc(ω)}/X 2
c (0) as a function of ω for a DQD in (a) se-

ries and (b) parallel at various values of V and ε1 = ε2 = 0, � = 0.1,
V12 = 0.01, kBT = 0.01. The equation of the dashed line is ω/4 for
the serial DQD and ω/2 for the parallel DQD.

environment, which is defined as the phase shift between
incoming and reflected microwaves, as measured in reflec-
tometry experiments [8–11,16]. A rapid calculation shows
that this phase is related to the DCS via the relation φ(ω) =
arctan(Re{Xc(ω)}/Im{Xc(ω)}) [23]. To compare our predic-
tions to the measurements performed in spin qubit systems,
we generalize the description of the spinless DQD in se-
ries made above by taking spin into account. This is simply
done by considering triplet states in addition to the bond-
ing and anti-bonding states, which correspond to the singlet
states in the case of a DQD with spin. The eigenenergy of
the triplet state is given by λT = (εd − i�)/2, where εd =
ε2 − ε1 is the detuning energy [37]. Figure 6(a) shows the
εd -dispersion of the eigenenergies λ± and λT . At T = 0, we
use a generalized expression for Xc(ω) obtained from Eq. (7)
by adding a term corresponding to the triplet state contribution
according to −3�/(2hω(h̄ω + i�))

∑
α=L,R ln(1 − hω(h̄ω +

i�)AT (μα )/�), where AT (ε) = −Im{Gr
T (ε)}/π with Gr

T (ε) =
(ε − λT )−1. The results for φ(ω) as a function of detuning
energy and frequency is shown in Fig. 6(b). One observes a
dip in phase inside two pockets spreading out symmetrically
around the vertical axis εd = 0, the two pockets being sepa-
rated by a gap area located around h̄ω = V12, spotted by the
dashed line. The existence of this gap is a direct consequence
of the presence of bonding and anti-bonding states whereas
the formation of the low-frequency pocket below the gap
results from the presence of the triplet state. Our prediction for
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FIG. 6. (a) εd -dispersion of the singlet and triplet eigenvalues at
ε1 + ε2 = 0. (b) Color-scale plot of φ(ω) in mrad as a function of
εd and ω at ε1 = T = V = 0, � = 0.04, and V12 = 0.5 for a serial
DQD. The dashed line corresponds to h̄ω = V12.
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φ(ω) is in good qualitative agreement with the experimental
results obtained in spin qubits [16].

VI. CONCLUSION

We have developed a model to calculate the DCS in a
nonequilibrium DQD. We have established a general expres-
sion for this quantity, which, at T = 0 is related to the spectral
function contributions from the bonding and anti-bonding
states, leading to the prediction of a splitting of the two
branches of maxima of the DCS as a function of the energy
levels of the dots resulting from the application of a finite
bias voltage driving the DQD out-of-equilibrium. It would be
interesting to check this prediction experimentally. In the low
frequency regime, we have analyzed the results in terms of
the capacitance and the resistance of the equivalent RC-circuit
in both serial and parallel geometries. In the high frequency
regime, by extending our results to take into account an addi-
tional triplet mode in order to describe spin qubits, we have

deduced the evolution for Xc(ω) as a function of ω and εd

and found a qualitative agreement with experimental results
recently obtained. The approach presented here can be used
in many other contexts: quantum dots with multiple energy
levels, submitted to the application of a magnetic field, in the
presence of exchange or Coulomb interactions [38–41] among
others.

ACKNOWLEDGMENTS

We dedicate this article to Marc Sanquer†. We pay tribute
to his memory for his role in the development of quantum
nanoelectronics. Marc had played a major role in our interest
in this topics and never ceased to provide us with encourage-
ment, sharing with us his expertise and enthusiasm for this
field of research. We would like to thank Romain Maurand for
valuable discussions and help and Vyacheslavs Kashcheyevs
for stimulating discussion.

[1] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M.
Taylor, A. A. Houck, and J. R. Petta, Circuit quantum electro-
dynamics with a spin qubit, Nature (London) 490, 380 (2012).

[2] M. R. Galpin, D. E. Logan, and H. R. Krishnamurthy, Renor-
malization group study of capacitively coupled double quantum
dots, J. Phys.: Condens. Matter 18, 6545 (2006).

[3] V. Talbo, M. Lavagna, T. Q. Duong, and A. Crépieux, Charge
susceptibility and conductances of a double quantum dot, AIP
Adv. 8, 101333 (2018).

[4] M. Lavagna, V. Talbo, T. Q. Duong, and A. Crépieux, Level
anticrossing effect in single-level or multi-level double quantum
dots: Electrical conductance, zero-frequency charge suscep-
tibility and Seebeck coefficient, Phys. Rev. B 102, 115112
(2020).

[5] A. Cottet, C. Mora, and T. Kontos, Mesoscopic admittance
of a double quantum dot, Phys. Rev. B 83, 121311(R)
(2011).

[6] R. Mizuta, R. M. Otxoa, A. C. Betz, and M. F. Gonzalez-Zalba,
Quantum and tunneling capacitance in charge and spin qubits,
Phys. Rev. B 95, 045414 (2017).

[7] L. E. Bruhat, T. Cubaynes, J. J. Viennot, M. C. Dartiailh,
M. M. Desjardins, A. Cottet, and T. Kontos, Circuit QED with a
quantum-dot charge qubit dressed by Cooper pairs, Phys. Rev.
B 98, 155313 (2018).

[8] M. D. Schroer, M. Jung, K. D. Petersson, and J. R. Petta, Radio
Frequency Charge Parity Meter, Phys. Rev. Lett. 109, 166804
(2012).

[9] S. J. Chorley, J. Wabnig, Z. V. Penfold-Fitch, K. D. Petersson,
J. Frake, C. G. Smith, and M. R. Buitelaar, Measuring the
Complex Admittance of a Carbon Nanotube Double Quantum
Dot, Phys. Rev. Lett. 108, 036802 (2012).

[10] J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C. Doherty,
H. Lu, A. C. Gossard, and D. J. Reilly, Dispersive Readout of a
Few-Electron Double Quantum Dot with Fast rf Gate Sensors,
Phys. Rev. Lett. 110, 046805 (2013).

[11] J. J. Viennot, M. R. Delbecq, M. C. Dartiailh, A. Cottet, and T.
Kontos, Out-of-equilibrium charge dynamics in a hybrid circuit

quantum electrodynamics architecture, Phys. Rev. B 89, 165404
(2014).

[12] X. Mi, S. Kohler, and J. R. Petta, Landau-Zener interferometry
of valley-orbit states in Si/SiGe double quantum dots, Phys.
Rev. B 98, 161404(R) (2018).

[13] S. P. Harvey, C. G. L. Bottcher, L. A. Orona, S. D. Bartlett,
A. C. Doherty, and A. Yacoby, Coupling two spin qubits with a
high-impedance resonator, Phys. Rev. B 97, 235409 (2018).

[14] P. Scarlino, D. J. van Woerkom, A. Stockklauser, J. V. Koski,
M. C. Collodo, S. Gasparinetti, C. Reichl, W. Wegscheider,
T. Ihn, K. Ensslin, and A. Wallraff, All-Microwave Control
and Dispersive Readout of Gate-Defined Quantum Dot Qubits
in Circuit Quantum Electrodynamics, Phys. Rev. Lett. 122,
206802 (2019).

[15] T. Lundberg, J. Li, L. Hutin, B. Bertrand, D. J. Ibberson, C.-M.
Lee, D. J. Niegemann, M. Urdampilleta, N. Stelmashenko, T.
Meunier, J. W. A. Robinson, L. Ibberson, M. Vinet, Y.-M.
Niquet, and M. F. Gonzalez-Zalba, Spin Quintet in a Silicon
Double Quantum Dot: Spin Blockade and Relaxation, Phys.
Rev. X 10, 041010 (2020).

[16] R. Ezzouch, S. Zihlmann, V. P. Michal, J. Li, A. Aprá, B.
Bertrand, L. Hutin, M. Vinet, M. Urdampilleta, T. Meunier, X.
Jehl, Y.-M. Niquet, M. Sanquer, S. De Franceschi, R. Maurand,
Dispersively Probed Microwave Spectroscopy of a Silicon Hole
Double Quantum Dot, Phys. Rev. Appl. 16, 034031 (2021).

[17] G. Zheng, N. Samkharadze, M. L. Noordam, N. Kalhor, D.
Brousse, A. Sammak, G. Scappucci, and L. M. K. Vandersypen,
Rapid gate-based spin read-out in silicon using an on-chip res-
onator, Nat. Nanotechnol. 14, 742 (2019).

[18] D. de Jong, C. G. Prosko, D. M. A. Waardenburg, L. Han, F. K.
Malinowski, P. Krogstrup, L. P. Kouwenhoven, J. V. Koski, and
W. Pfaf, Rapid Microwave-Only Characterization and Readout
of Quantum Dots Using Multiplexed Gigahertz-Frequency Res-
onators, Phys. Rev. Appl. 16, 014007 (2021).

[19] P. Scarlino, J. H. Ungerer, D. J. van Woerkom, M. Mancini,
P. Stano, C. Muller, A. J. Landig, J. V. Koski, C. Reichl,
W. Wegscheider, T. Ihn, K. Ensslin, and A. Wallraff, In-situ

115439-5

https://doi.org/10.1038/nature11559
https://doi.org/10.1088/0953-8984/18/29/001
https://doi.org/10.1063/1.5043108
https://doi.org/10.1103/PhysRevB.102.115112
https://doi.org/10.1103/PhysRevB.83.121311
https://doi.org/10.1103/PhysRevB.95.045414
https://doi.org/10.1103/PhysRevB.98.155313
https://doi.org/10.1103/PhysRevLett.109.166804
https://doi.org/10.1103/PhysRevLett.108.036802
https://doi.org/10.1103/PhysRevLett.110.046805
https://doi.org/10.1103/PhysRevB.89.165404
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevB.97.235409
https://doi.org/10.1103/PhysRevLett.122.206802
https://doi.org/10.1103/PhysRevX.10.041010
https://doi.org/10.1103/PhysRevApplied.16.034031
https://doi.org/10.1038/s41565-019-0488-9
https://doi.org/10.1103/PhysRevApplied.16.014007


A. CRÉPIEUX AND M. LAVAGNA PHYSICAL REVIEW B 106, 115439 (2022)

tuning of the electric dipole strength of a double dot charge
qubit: Charge noise protection and ultra strong coupling,
Phys. Rev. X 12, 031004 (2022).

[20] A. Crippa, R. Ezzouch, A. Aprá, A. Amisse, R. Laviéville, L.
Hutin, B. Bertrand, M. Vinet, M. Urdampilleta, T. Meunier,
M. Sanquer, X. Jehl, R. Maurand, and S. De Franceschi, Gate-
reflectometry dispersive readout and coherent control of a spin
qubit in silicon, Nat. Commun. 10, 2776 (2019).

[21] S. Bugu, S. Nishiyama, K. Kato, Y. Liu, T. Mori, and T. Kodera,
RF reflectometry for readout of charge transition in a physically
defined p-channel MOS silicon quantum dot, Jpn. J. Appl. Phys.
60, SBBI07 (2021).

[22] M. J. Filmer, M. Huebner, T. A. Zirkle, X. Jehl, M. Sanquer,
J. D. Chisum, A. O. Orlov, and G. L. Snider, Gate reflectometry
of single-electron box arrays using calibrated low temperature
matching networks, Sci. Rep. 12, 3098 (2022).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.106.115439 for the detailed calculations.

[24] I. Rotter, A non-Hermitian Hamilton operator and the physics
of open quantum systems, J. Phys. A: Math. Theor. 42, 153001
(2009).

[25] M. Büttiker, H. Thomas, and A. Prêtre, Mesoscopic capacitors,
Phys. Lett. A 180, 364 (1993).

[26] M. Büttiker, A. Prêtre, and H. Thomas, Dynamic Conductance
and the Scattering Matrix of Small Conductors, Phys. Rev. Lett.
70, 4114 (1993).

[27] M. Filippone, K. Le Hur, and C. Mora, Admittance of the SU(2)
and SU(4) Anderson quantum RC circuits, Phys. Rev. B 88,
045302 (2013).

[28] A. Prêtre, H. Thomas, and M. Büttiker, Dynamic admittance of
mesoscopic conductors: Discrete-potential model, Phys. Rev. B
54, 8130 (1996).

[29] J. Gabelli, G. Fève, J.-M. Berroir, B. Plaçais, A. Cavanna, B.
Etienne, Y. Jin, D. C. Glattli, Violation of Kirchhoff’s Laws for
a Coherent RC Circuit, Science 313, 499 (2006).

[30] S. E. Nigg, R. López, and M. Büttiker, Mesoscopic Charge
Relaxation, Phys. Rev. Lett. 97, 206804 (2006).

[31] C. Mora and K. Le Hur, Universal resistances of the
quantum resistance-capacitance circuit, Nat. Phys. 6, 697
(2010).

[32] J. Gabelli, G. Fève, J.-M. Berroir, and B. Plaçais, A coherent
RC circuit, Rep. Prog. Phys. 75, 126504 (2012).

[33] M. Filippone, A. Marguerite, K. Le Hur, G. Fève, and C. Mora,
Phase-coherent dynamics of quantum devices with local inter-
actions, Entropy 22, 847 (2020).

[34] H. Duprez, F. Pierre, E. Sivre, A. Aassime, F. D. Parmentier,
A. Cavanna, A. Ouerghi, U. Gennser, I. Safi, C. Mora, and A.
Anthore, Dynamical Coulomb blockade under a temperature
bias, Phys. Rev. Res. 3, 023122 (2021).

[35] M. Filippone and C. Mora, Fermi liquid approach to the
quantum RC circuit: Renormalization group analysis of the
Anderson and Coulomb blockade models, Phys. Rev. B 86,
125311 (2012).

[36] M. Garst, P. Wölfle, L. Borda, J. von Delft, and L. Glazman,
Energy-resolved inelastic electron scattering off a magnetic im-
purity, Phys. Rev. B 72, 205125 (2005).

[37] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Coherent manipulation of coupled electron spins in semicon-
ductor quantum dots, Science 309, 2180 (2005).

[38] R. López, R. Aguado, and G. Platero, Nonequilibrium Transport
through Double Quantum Dots: Kondo Effect versus Antiferro-
magnetic Coupling, Phys. Rev. Lett. 89, 136802 (2002).

[39] D. M. Schröer, A. K. Hüttel, K. Eberl, S. Ludwig, M. N.
Kiselev, B. L. Altshuler, Kondo effect in a one-electron dou-
ble quantum dot: Oscillations of the Kondo current in a weak
magnetic field, Phys. Rev. B 74, 233301 (2006).

[40] V. Kashcheyevs, A. Schiller, A. Aharony, and O. Entin-
Wohlman, Unified description of phase lapses, population
inversion, and correlation-induced resonances in double quan-
tum dots, Phys. Rev. B 75, 115313 (2007).

[41] S. Juergens, F. Haupt, M. Moskalets, and J. Splettstoesser, Ther-
moelectric performance of a driven double quantum dot, Phys.
Rev. B 87, 245423 (2013).

115439-6

https://doi.org/10.1103/PhysRevX.12.031004
https://doi.org/10.1038/s41467-019-10848-z
https://doi.org/10.35848/1347-4065/abeac1
https://doi.org/10.1038/s41598-022-06727-1
http://link.aps.org/supplemental/10.1103/PhysRevB.106.115439
https://doi.org/10.1088/1751-8113/42/15/153001
https://doi.org/10.1016/0375-9601(93)91193-9
https://doi.org/10.1103/PhysRevLett.70.4114
https://doi.org/10.1103/PhysRevB.88.045302
https://doi.org/10.1103/PhysRevB.54.8130
https://doi.org/10.1126/science.1126940
https://doi.org/10.1103/PhysRevLett.97.206804
https://doi.org/10.1038/nphys1690
https://doi.org/10.1088/0034-4885/75/12/126504
https://doi.org/10.3390/e22080847
https://doi.org/10.1103/PhysRevResearch.3.023122
https://doi.org/10.1103/PhysRevB.86.125311
https://doi.org/10.1103/PhysRevB.72.205125
https://doi.org/10.1126/science.1116955
https://doi.org/10.1103/PhysRevLett.89.136802
https://doi.org/10.1103/PhysRevB.74.233301
https://doi.org/10.1103/PhysRevB.75.115313
https://doi.org/10.1103/PhysRevB.87.245423

