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Filling- and interaction-modulated pairing symmetry in twisted bilayer graphene
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Superconductivity in twisted bilayer graphene has attracted much attention in recent years. Based on the
significant experimental facts, there are many theoretical investigations on its superconducting mechanism and
pairing symmetry. In this paper, we study the theory of the electron-phonon coupling in magic-angle twisted
bilayer graphene starting from the work of Lian et al. [Phys. Rev. Lett. 122, 257002 (2019)] and thereby develop
a uniform framework for the low as well as high electron densities. From this beneficial approach, we obtain the
strongest superconductivity near the moiré band filling factor |ν| ≈ 2, consistent with the experimental results.
By associating it with the Coulomb interaction, we find that the pairing symmetry is strongly dependent on the
filling factor, with the p-wave, f -wave, and s-wave pairing states sequentially appearing. It can be confirmed
that the superconductivity mostly exists near the half filling of the lowest flat bands with an f -wave pairing
symmetry. We discuss the possible origin of these phenomena, the stability of the superconductivity, and also
the feasible experimental verification.
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I. INTRODUCTION

Twisted bilayer graphene with an accurately controlled
twist angle θ has recently emerged as a powerful platform
to study the superconductivity and strongly correlated Mott
insulating states [1–4]. A twisted graphene bilayer (TGB) is
constructed with two rotationally stacked graphene monolay-
ers (GMLs); near the so-called magic angle, two nearly flat
bands close to the neutrality point are separated from other
higher-energy bands [5–15]. This discovery has revived the
hope of unveiling the origin of superconductivity in high-
Tc materials, which is one of the long-standing puzzles in
strongly correlated electron systems. Traditionally, it has been
expected that the strong Coulomb interaction, which is much
larger than the kinetic energy of an electron when the carrier
density is lower and the Fermi level lies within the flat bands,
can drive the system into various phases. The amount of
theoretical work has surged on this subject for the purpose
of explaining exotic phenomena [16–26].

Although correlated effects have been observed in several
moiré systems, robust superconductivity has been reported
only in magic-angle twisted graphene bilayer and trilayer
systems [27–29]. This fact suggests that the correlated ef-
fects and superconductivity come from different origins.
Although theoretical consensus is not yet reached regarding
the mechanisms underlying the insulating and superconduc-
tivity states, more and more experimental evidence indicates
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that superconductivity may arise through electron-phonon
coupling [30–33]. For instance, it is found in experiments
that when the Coulomb interaction is weakened by screening,
the stability of superconductivity at the optimal doping is
enhanced [33]. Several theoretical models have been studied
based on the electron-phonon coupling mechanism [34–40],
and some experimental facts can be explained. Especially,
Ref. [36] points out that a TGB moiré system exhibits an
enhanced electron-phonon coupling which makes the con-
ventional superconductivity more favorable at the first magic
angle. Even though Ref. [36] provides pronounced results
of Bardeen-Cooper-Schrieffer (BCS) superconductivity in a
TGB, it is a pity that the electron-phonon coupling Hamil-
tonian was treated differently for low and high electron
densities.

In this paper, we develop the theory of electron-phonon
coupling in a TGB in three steps. (1) We derive the ana-
lytical electron-phonon coupling term from the deviation of
the continuum Hamiltonian without distinction in terms of
electron density. The key issue is to transform the Hamiltonian
from position space to momentum space. By successfully
doing so, we derive the phonon-induced interaction between
two electrons and the BCS superconductivity for any elec-
tron density. During numerical calculations, it can be shown
that the phonon-induced electron-electron coupling is attrac-
tive and anisotropic. This coupling alone will introduce an
s-wave superconductivity in the TGB. (2) We introduce an
isotropic Coulomb interaction into the system due to the
small bandwidth of the lowest bands. Combined with the
phonon-induced interaction, when the s-wave superconduc-
tivity diminishes, an f -wave superconductivity emerges near
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the filling factor |ν| ≈ 2, which is the number of electrons (or
holes) filled in a moiré unit cell. It is well known that the
f -wave pairing potential is an odd function of momentum
similar to a spin-triplet superconductor or superfluid, such
as 3He. The appearance of the f -wave superconductivity is
due to the repulsive nature of the total coupling, and the gap
function must change its sign across the Fermi surface. With
an increase in the strength of the Coulomb interaction, the
transition temperature for the region 1.5 < ν < 3 is stabilized
to a certain value, while in other regions the transition tem-
perature quickly drops to zero. This is consistent with the
experimental results showing that superconductivity is most
likely to appear around the filling factor ν ≈ 2. Actually,
both the filling factor and the Coulomb interaction can be
continuously modulated in experiment by a gate voltage and
proximity screening of the substrate [30,31], and the values
fall within the parameter space of our calculations. (3) We
obtain the solution of pairing symmetries for different filling
factors. It is found that the BCS superconductivity can exhibit
different symmetry functions when the filling factor varies.
Near |ν| = 2, the superconductivity exhibits the f -wave fea-
ture, while at low or high filling the pairing symmetry is p
wave or s wave. It is important to note that we do not address
the Mottness at integer fillings, which is beyond the realm of
the BCS theory.

The remainder of this paper is structured as follows. In
Sec. II, we briefly review the effective continuum model for
a TGB and the lattice-distortion-induced momentum defor-
mation. We obtain the electron-phonon coupling Hamiltonian
from the deviation of the full Hamiltonian and derive the
equation for the BCS superconducting symmetry function at
any filling factor. In Sec. III, we obtain the superconducting
gap function near |ν| = 2 and find unusual pairing symmetry.
Finally, we give a brief conclusion in Sec. IV.

II. MODEL AND FORMALISM

A. Review of the continuum model

We construct a TGB by rotating layer 1 and layer 2 with
angles −θ/2 and +θ/2, respectively, in a totally overlapping
graphene bilayer. In the TGB, the lattice constant is L =
a/2 sin(θ/2), where a is the lattice constant of each GML.
In momentum space, as shown in Figs. 1(a) and 1(b), the two
Dirac points of the rotated graphene layers are separated by
kθ = 2K0 sin(θ/2), where K0 = 4π/3a.

When the twist angle θ is small, the low-energy band
structure can be described by the Dirac model around the
Dirac points of a monolayer, where the intervalley mixing can
be safely neglected. For a single valley, taking ξ = + as an
example, we can write the Hamiltonian with the interlayer
coupling by the moiré potential T (r) [5,9], that is,

H+
e =

(−ih̄vF σθ/2 · ∇ T (r)

T †(r) −ih̄vF σ−θ/2 · ∇
)

, (1)

where σθ/2 = e−(iθ/4)σz (σx, σy)e(iθ/4)σz , ∇ = (∂x, ∂y), and
T (r) = ∑3

j=1 Tje−iq j ·r. The three-momentum transfers

q j are q1 = kθ (0,−1), q2 = kθ (
√

3/2, 1/2), and q3 =
kθ (−√

3/2, 1/2), as shown in Fig. 1(c).

FIG. 1. (a) Brillouin zone folding in the TGB with a small twist
angle θ . The two large hexagons represent the first Brillouin zones
(BZs) of the two GMLs distinguished by red (layer 1) and green
(layer 2), with ±K1,2 as the valleys in the BZs. (b) The small hexagon
is the moiré Brillouin zone (MBZ) of the TGB, with K and K

′
as

the valleys in the MBZ. The three q j are the momentum transfers
that correspond to the three interlayer hopping processes. (c) Under
lattice deformations, q j are distorted in the momentum space.

The symmetry of the TGB requires the interlayer coupling
to have the form

Tj = wAAσ0 + wAB[σx cos( j − 1)φ + σy sin( j − 1)φ], (2)

where φ = 2π/3 and wAA and wAB are the interlayer hopping
parameters in the AA and AB stacking regions. Through-
out this paper we take h̄vF = √

3at/2, where t = 2.6 eV is
the hopping energy between the nearest-neighbor atoms on
a graphene layer, and we fix ωAA = 0.08 eV and ωAB =
0.1 eV [41].

The Hamiltonian for the other valley, ξ = −, can be easily
obtained by applying a time-reversal transformation to H+

e .
Since our model preserves the particle-hole-like symmetry
which transforms H+

e into −H−
e , we focus on the particle side

where the filling factor ν > 0.

B. Momentum deformation caused by lattice distortion

When small distortions are applied on the TGB lattice,
the change in the related momenta is schematically shown in
Fig. 1(c). Denoting the in-plane atom displacement field of
layer l (l = 1, 2) at r as u(l )(r) = (u(l )

x (r), u(l )
y (r)), the varia-

tion of the momentum transfer q j [36] is given as

δq j = kθγ∇Fj (r) + kθ∇Gj (r),

Fj (r) = ux cos( j − 1)φ + uy sin( j − 1)φ,

Gj (r) = −uc
x sin( j − 1)φ + uc

y cos( j − 1)φ, (3)

where we define γ = [2 tan(θ/2)]−1, the relative displace-
ment field u = u(1) − u(2), and the center-of-mass displace-
ment field uc = (u(1) + u(2) )/2. For small angle θ , δq j is
dominated by the relative displacement phonon field u since
γ � 1. This can be understood from the fact that a uniform
relative displacement u yields a significant displacement of
the AA stacking positions by γ |u| perpendicular to u [42–44].
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If the relative displacement u is nonuniform, it will induce
a large superlattice deformation due to the amplification fac-
tor γ . Accordingly, the low-energy electrons will experience
a strong coupling with the in-plane relative displacement
phonon field u.

While the momentum vectors q j are distorted by the
phonon field, the interlayer coupling matrices Tj remain un-
affected. This can be understood as follows: The continuum
model captures the most essential properties in the moiré po-
tential, i.e., the interlayer coupling forms in the AA, AB, and
BA regions are exact. Even though the moiré pattern is signif-
icantly changed by the phonon field, the exact interlayer cou-
pling forms in the new AA, AB, and BA regions require the
interlayer coupling matrices Tj to be unchanged. Therefore, in
the continuum model Hamiltonian, only q j is changed under
the deformation. We ignore the second term in δq j hereinafter

and focus on the coupling between the low-energy electrons
and the in-plane relative displacement phonon field u.

C. Electron-phonon coupling Hamiltonian

Since the momentum deformations can be expressed using
the phonon fields, the change in the continuum model Hamil-
tonian H+

e gives the low-energy electron-phonon coupling
term, namely,

H+
ep = H+

e (q j + δq j ) − H+
e (q j ). (4)

However, we can see that the change in the moiré potential
cannot be transformed to the momentum space by expanding
δT (r) ≈ −i

∑3
j=1 Tje−iq j ·rδq j · r to the linear order of δq j · r.

Hence we solve this problem in the momentum space.
In the momentum space, the electron Hamiltonian has infi-

nite dimensions:

H+
e (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(k) U1 U2

U †
1 h(k − q1) 0

U †
2 0 h(k − q2) 0 · · ·

0 . . .

... h(k − qn)
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where h(k) = h̄vF σ · k is the Dirac Hamiltonian of the
GML. The dependence of h(k) on angle is parametri-
cally small and can be neglected for the first magic angle.
qn = ∑

j mn
j q j is the possible combinations of q j , where

mn
j are integer numbers. When the phonon fields are con-

sidered, the variation of the Hamiltonian H+
e (k), i.e., the

electron-phonon coupling term, is simply given as H+
ep =

−diag[0, h(δq1), h(δq2), . . . , h(δqn), . . .]. For low electron
density, this Hamiltonian can be truncated to a 4 × 4 block
matrix which can be treated analytically. For high electron
density, however, the pattern of δqn is unclear. One of our main
contributions in this paper is to find a way to relate δqn to the
known pattern of qn.

By rotating q j by 90◦, i.e., ẑ × q j = kθ ( cos( j −
1)φ, sin( j − 1)φ), we have (ẑ × q j/kθ ) · u = Fj (r). Hence
the variation of the momentum transfer q j is expressed as

δq j = γ∇(u · (ẑ × q j )). (6)

Furthermore, since qn is the linear combinations of q j , the
variation of qn is finally given as

δqn = γ∇(u · (ẑ × qn)). (7)

D. The BCS electron-electron interaction

In the TGB system the interlayer van der Waals interaction
between two GMLs is much weaker than the intralayer atomic
interaction, and the in-plane polarized phonons of the two
GMLs are nearly decoupled [45,46]. The phonon bands in
the MBZ are simply obtained by folding the phonon bands of
the GMLs into the superlattice MBZ, and the long-wavelength

relative displacement phonon field is combined from the GML
phonon field given by

u(r) =
∑

p

eip·r
√

Ns�s
(i p̂up,L + iẑ × p̂up,T ),

up,L/T =
√

h̄�

2Mωp,L/T
(ap,L/T + a†

−p,L/T ), (8)

where Ns�s is the area of the sample, p̂ = p/p is the unit
vector along momentum p, ẑ is the unit vector along the
out-of-plane direction, and � is the area of the unit cell of the
GML. There are two in-plane acoustic phonon eigenmodes,
namely, the longitudinal (up,L) and transverse (up,T ) modes; M
and ωp,L/T are the atom mass and the eigenmode frequency;
and ap,L/T and a†

p,L/T are the phonon annihilation and creation
operators.

Finally, the matrix element of the electron-phonon cou-
pling Hamiltonian can be written as

〈k|H+
ep|k′〉 = − h̄vF γ p

√
h̄�√

2MωpNs�s
〈k|A+(p)|k′〉, (9)

where A+(p) = diag(0, . . . , A+
n (p), . . . ) and

A+
n (p) = eip·rσ · p̂[ p̂ · (ẑ × qn)(ap,L + a†

−p,L )

+ p̂ · qn(ap,T + a†
−p,T )], (10)

where |k〉 and |k′〉 are the eigenstates of H+
e , p = k −

k′, and we assume ωp,L ≈ ωp,T = ωp. It is worth noticing
that Eq. (10) describes the electron-phonon coupling in the
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ξ = + valley, while in the ξ = − valley the electron-phonon
coupling Hamiltonian can be obtained using the time-reversal
transformation.

We now calculate the phonon-mediated electron-electron
interaction near the Fermi surface. We do not necessarily

assume that the Fermi surface is near the Dirac points,
and the following procedure can be performed at any elec-
tron filling. Using the standard second-order perturbation
theory, we obtain the BCS electron-electron interaction
as

Vk,k′

�s
= h̄2γ 2v2

F�

2MC2�s

h̄2ω2
p

h̄2ω2 − h̄2ω2
p

∑
χ=L,T

〈k′ξ ,−k′ξ̄ |Aξ̄ (p)|k′ξ ,−kξ̄ , pχ 〉〈k′ξ ,−kξ̄ , pχ |Aξ (p)|kξ ,−kξ̄ 〉. (11)

Together with Eq. (10), we can obtain the expression for
the electron-electron interaction. Accordingly, in the second
quantization language, the phonon-mediated electron-electron
interaction in the Cooper channel is

Hint = 1

Ns�s

∑
k,k′

Vk,k′c†ξ

k′ c†ξ̄

−k′c
ξ̄

−kcξ

k . (12)

The detailed derivation can be found in the Appendix.

E. Competition between the phonon-induced attraction
and the Coulomb repulsion

If we confine our considerations to the vicinity of the Fermi
surface, the effective electron-electron interaction is most
likely to be attractive when ω 	 ωp and BCS superconduc-
tivity will occur. From a rough estimation using the realistic
system parameters t = 2.6 eV, C ≈ 104 m/s, θ = 1.05◦, we
obtain the interaction strength V/�s ≈ −1 meV, which is
comparable to the superconductivity transition temperature in
experiments. The results of the numerical calculations show
that the average value of Vkk′ across the BZ is about 1.08 meV;
however, the variation of Vkk′ is relatively large. The maximum
of Vkk′ can reach 3 meV, while the minimum of Vkk′ approaches
zero. On the other hand, due to the flatness of the lowest
conduction or highest valence band, the Coulomb repulsion is
non-negligible. It is reasonable to consider that the screened
Coulomb interaction strength is of the order of 10 meV.
Afterwards, we will consider a uniform effective Coulomb
repulsion as well as the phonon-mediated attraction. Even
though the Coulomb interaction is much stronger than the
phonon-induced electron-electron coupling, the superconduc-
tivity is not utterly suppressed in this system. If the attraction
is also uniform, i.e., introduces an isotropic s-wave supercon-
ductivity, the Coulomb interaction will decrease the critical
temperature and even destroy the superconductivity. However,
if the attraction is anisotropy along the Fermi surface, the
Coulomb interaction can reverse the sign of the interaction on
parts of the Fermi surface. In this case, the leading symmetry
of the superconductivity will change.

Normally, a uniform Coulomb interaction term can be writ-
ten as

Hc = U

Ns�s

∑
k,k′

c†ξ

k′ c†ξ̄

−k′c
ξ̄

−kcξ

k, (13)

and the total interaction Hamiltonian in the Cooper channel
can become

Htotal = 1

Ns�s

∑
k,k′

(U + Vk,k′ )c†ξ

k′ c†ξ̄

−k′c
ξ̄

−kcξ

k . (14)

The superconductivity could be contributed by the lowest
four separated moiré bands (two per valley). Therefore, in
principle, we should consider all of them and calculate both
the intra- and interband pairing. However, the zero-frequency
pairing susceptibility is proportional to (εk1 + εk2 − 2E f )−1,
where εk is the energy dispersion of the lowest bands. With-
out considering the modulation of the bands by interaction,
the conduction band and the valence band are energetically
separated from each other. Therefore the energy difference of
the two electrons from different bands is relatively big, so that
the contribution from interband pairing can be safely ignored.
Here, we only retain the first conduction band for simplicity.
With the mean-field approximation, the self-consistency gap
equation [47] is given as

�(k) =
∑

k′
χk,k′�(k′),

χk,k′ = U + Vk,k′

2Ns�s

tanh ε(k′ )−EF

2kBT

ε(k′) − EF
. (15)

The transition temperature Tc is determined by the highest T
such that χ yields an eigenvalue of 1.

To be more concrete, we only treat Eq. (15) along the Fermi
surface, i.e., ε(k′) ≈ EF . We decompose the superconducting
gap into an amplitude � and a normalized symmetry function
g(k) and define a dimensionless pairing strength function as

λ[g(k)] = −
∮

C
dk

v(k)

∮
C′

dk′
v(k′ ) g(k)(U + Vk,k′ )g(k′)

(2π )2
∮

C
dk

v(k) [g(k)]2
, (16)

where the integral
∮

C(C′ ) is along the momentum path defined

on the Fermi surface in the ξ valley and v(k) = 1
h̄ |∇kεk| is the

corresponding Fermi velocity. From the stationary condition,
we derive the following generalized eigenequation:

−
∮

C′

dk′

(2π )2v(k′)
(U + Vk,k′ )gα (k′) = λαgα (k). (17)

This is our fundamental theoretical formula, from which we
can get the leading pairing function. There are two common
methods to solve Eq. (17). One is to decompose the pairing
interaction vertex �k,k′ = U + Vk,k′ in momentum space to
selected pairing channels with different pairing symmetries
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allowed by group symmetry. In this way, the pairing chan-
nels are always restricted to the leading angular harmonics
for simplification. The gap function can be recovered by the
eigenvector corresponding to the most positive eigenvalue.

The other method (which we adopted in this paper) is to
project the pairing interaction to the Fermi surface and solve
the reduced eigenproblem. In this procedure, no pairing sym-
metries are excluded beforehand. The gap function with the
most positive eigenvalue corresponds to the highest possible
pairing symmetry. The eigenvalue λ is to be related to the tran-
sition temperature as Tc ≈ �0e−1/λ, where �0 is an energy
scale. Hence the largest eigenvalue will lead to the highest
superconducting transition temperature, and its eigenfunction
determines the symmetry of the gap. In the BCS framework,
the advantage of this method is that it considers only the states
near the Fermi surface and greatly simplifies the calculations.

III. RESULTS AND DISCUSSION

A. The f -wave superconductivity near ν = 2

One of the main results we obtain here is that the su-
perconducting gap near the filling ν = 2 has an f -wave
symmetry during the normal-metal–superconductor phase
transition with the presence of both the phonon-induced
electron-electron attraction and the Coulomb repulsion. In
Figs. 2(a) and 2(b), we calculate and plot the BCS supercon-
ducting gap function g(k) on the Fermi surface at ν = 2.1
for U = 0 and U = 2 meV; the color from red to blue de-
notes the positive to negative sign of the gap function. In the
U = 0 case, the phonon-induced electron-electron coupling
is purely attractive, and the BCS superconducting gap has a
normal s-wave symmetry. However, in the U = 2 meV case,
our results show that the BCS superconducting gap for the
first-magic-angle TGB exhibits the unique symmetry that the
gap function changes sign six times, with six 0 nodes, along
the Fermi surface; this is the f -wave symmetry. Previous
research [38,40] has argued for the presence of f -wave pairing
in the trilayer system based on the sublattice space classifica-
tion of the pairings. In that research, the intrasublattice (s- or
f -wave) pairing and the intersublattice (p- or d-wave) pairing
were assigned in advance.

It should be pointed out that the pairing potential in the po-
sition space does not have explicit dependence on momentum.
This is unusual since the spin-triplet pairing potential should
be an odd function of momentum. In our research, we do
not preassume any preferred symmetry, and the momentum-
dependent f -wave pairing gap naturally emerges along with
the disappearance of the s-wave symmetry. In the C3v point
group, the s-wave and f -wave symmetries belong to the
same irreducible representation A1; hence the f -wave sym-
metry is favorable when the repulsion U destroys the s-wave
symmetry.

In order to give a better description, we restrict ourselves
to finding the smallest number of harmonics necessary for a
reasonable fit of the pairing symmetry solution which has the
k dependence. It is in the form

gf (k) = gf
0 sin kx

(
sin k2

x − 3 sin k2
y

)
, (18)

FIG. 2. (a) and (b) The numerical results of the phonon-induced
BCS superconducting gap function at ν = 2.1. Six gap nodes are
found along the highly symmetric curve for U = 2 meV. (c) The
f -wave symmetry gap function g(k) along the Fermi surface (FS);
the x axis is the number of the points along the FS. We compare a fit
of g(k) (blue curve) with the numerical values of g(k) (red curve). It
is clear that the fit function captures the essential feature of g(k).
(d) The transition temperature, i.e., λ, changes with the increase
in the Coulomb interaction strength U . For the anisotropic case
(black curve), λ drops quickly when U exists initially. However, λ

is stabilized at 0.03 when U exceeds 2 meV. On the other hand, if we
choose Vk,k′ = V0 = 1.08 meV for the isotropic case (the red curve),
λ drops to zero rapidly, which means that the Coulomb interaction
destroys the s-wave superconductivity completely.

where gf
0 is the normalization constant. In Fig. 2(c) we show

the f -wave symmetry function g(k) along the Fermi surface at
ν = 2.1. We compare the fit (blue curve) with the numerically
calculated values of g(k) (red curve). It can be seen that the
fit captures the main feature of g(k). The pairing symmetry
solution for the s-wave pairing has an anisotropic feature that
is similar to that of the f -wave g(k) pairing. This may stem
from their common irreducible representation A1. Using the
analytical expression of g(k), the f -wave pairing symmetry
can be experimentally detected by the field-angle dependence
of the transport and thermodynamical quantities.

In addition, one can find the solutions of the largest pairing
eigenvalues and pairing eigenfunctions for different Coulomb
interaction strengths. In Fig. 2(d) we plot the variation of λ

with the increase in the Coulomb interaction from U = 0 to
U = 5 meV. We find that in the region 0 < U < 1 meV, there
is an s-wave pairing solution and that otherwise the pairing
symmetry is of f -wave type. We notice that the Coulomb
repulsion does not destroy the superconductivity. Instead, as
U increases, both g(k) and λ are stabilized at certain values.
In Fig. 2(d), we can see that when U > 2 meV, λ becomes
almost invariant. As a comparison, in the isotropic case, i.e.,
Vk,k′ = −V0, where V0 is the average attraction strength, λ

rapidly drops to zero when U > V0.
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FIG. 3. Pairing symmetry changes with the filling factor.
(a) Phase diagram of interaction and filling, in which there are three
regions corresponding to p-, f -, and s-wave pairing symmetries.
(b) A p-wave pairing at low filling with U = 1.5 meV. The Fermi
surface splits into two closed parts around the MBZ corners. The two
axes are perpendicular to each other. (c) and (d) An f - and an s-wave
pairing at moderate and high filling, respectively, with U = 1.5 meV.
Their Fermi surfaces are singly closed. The three pairing symmetries
correspond to the three dots in the phase diagram.

The above phenomena can be understood by a three-patch
toy model [22] in which we construct the order parameters
�(k) = �[g(Q1), g(Q2), g(Q3)]T. Q j=1,2,3 are the main seg-

ments on the Fermi surface where Q j = C j− j′
3 Q j′ and g(Q j )

reach the maximum (or minimum). Thus Vk,k′ is truncated to
a 3 × 3 matrix, and Eq. (17) is written as⎛

⎜⎝
−U + V0 −U + V0 − δ −U + V0 − δ

−U + V0 − δ −U + V0 −U + V0 − δ

−U + V0 − δ −U + V0 − δ −U + V0

⎞
⎟⎠g

= v(Q)λg, (19)

where δ represents the anisotropy. Clearly, in this toy model,
the maximum value of λ = δ/v keeps unchanged as long
as U � V0 − δ. Therefore the Coulomb repulsion, no matter
how large it is, does not destroy the superconductivity if the
anisotropic interaction term δ > 0.

B. Pairing symmetry changes with filling factor

In Fig. 3(a), we plot the U -ν phase diagram and distinguish
the phase regions by the number of nodes on the Fermi sur-
face. The phase diagram is divided into three regions, where
each region represents a uniform superconducting symmetry.
In the low-filling region, a small but finite U can lead the sys-
tem into a p-wave symmetry. By traversing a phase boundary
which is a straight line parallel to the U axis, the system enters

into the f -wave symmetry. By checking the Fermi surface we
find that this phase boundary corresponds to the transition of
the Fermi surface from two separated circles to one united
circle around ν ≈ 1.3. Due to the fact that we consider the
single-electron band structure in the calculations, U does not
change the shape of the Fermi surface. At ν ≈ 1.3 the Fermi
surface fuses from two separate ones into a large complete
Fermi surface. After this transition, the corresponding quan-
tities such as λ and pairing symmetry experience a sudden
change. The other phase boundary of this middle region is
determined by the critical value of U at the transition point
increasing parabolically with the increase in the filling factor
ν. After this phase boundary, the system becomes s-wave
symmetric. We conclude that the superconductivity symmetry
is variable with both the number taken by the filling factor and
the strength of the Coulomb interaction.

In the low-filling case, the Coulomb interaction drives the
system into a stable p-wave superconducting state. In Fig. 3(b)
we calculate the BCS superconducting gap for ν = 0.4 and
U = 1.5 meV. The Fermi surface is divided into two parts
enclosing the two inequivalent MBZ corners. As illustrated in
Fig. 3(b), each Fermi surface exhibits a p-wave symmetry, and
the pairing function is antisymmetric about the tilted x and y
axes. By projecting onto the new coordinate system, one can
fit the p-wave pairing symmetry using the usual p-wave form
factor, i.e., sin(kx) and sin(ky).

In the moderate-filling case, the Coulomb interaction
drives the system into a stable f -wave superconducting state.
In Fig. 3(c) we calculate the BCS superconducting gap for
ν = 2.1 and U = 1.5 meV. The pairing symmetry is the same
as in the previous section.

In the high-filling case, however, the Coulomb interaction
does not change the symmetry of the superconductivity. As
shown in Fig. 3(d), the symmetry is unchanged for ν = 3.8
and U = 1.5 meV. This is due to the fact that the Fermi surface
is concentrated near the � point resulting in relatively close
wave functions and weak anisotropy of the interactions. When
the strength of a uniform Coulomb interaction exceeds that of
the average attraction, λ rapidly drops to zero, representing
that the Coulomb interaction quenches the superconductivity
instead of stabilizing it as in the half-filling case.

C. The most probable region for superconductivity

In Fig. 3, we take the largest eigenvalue for a certain com-
bination of (U, ν) and mark the corresponding symmetry in
the phase diagram. For clarity, we have shown the variation
of λ with ν in Fig. 4 for several U using the same criterion
as in Fig. 3(a). The higher values of λ give the more probable
regions for superconductivity.

We investigate the evolution of the leading eigenvalue λ as
a function of the filling factor ν and show the numerical results
in Fig. 4. The meaningful range of values for ν is between 0
and 4. In the case of no Coulomb interaction, we find that the
phonon-induced electron-electron coupling is strongest in the
region 1.8 < ν < 2.8, which is caused by the largest density
of states (DOS) being in this region. In the region ν < 1.8 and
ν > 2.8, λ drops rapidly due to the reduced DOS. When the
Coulomb interaction is present, it can be seen that λ drops
very quickly with the increase in U in the region 3.5 < ν < 4,
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FIG. 4. The leading eigenvalue λ vs filling factor ν for different
Coulomb interactions U . Near ν = 2 the eigenvalue reaches its max-
imum, which means that the superconducting transition temperature
reaches its maximum. The disconnected computational results are
fitted by solid curves through the numerical fitting approach. The
influence of noise on the results can be corrected, and we can still
see a peak of λ near ν = 2, which is consistent with experimental
measurement.

while in the region 1.5 < ν < 3, λ greatly decreases initially
when U is added but barely changes when U > 5 meV.

This phenomenon can be explained by the result of the pre-
vious section. In the region 3.5 < ν < 4, the wave functions
along the Fermi surface are very similar to each other, and
the anisotropy of Vk,k′ is small. Hence the isotropic Coulomb
repulsion U destroys the superconductivity rapidly. However,
in the region 1.5 < ν < 3, the anisotropy of Vk,k′ is relatively
large, and the superconductivity transition temperature is sta-
bilized when U exceeds a certain value. In the low-filling
region ν < 1.3, the superconductivity is stabilized to a p-wave
state as λ is relatively small. These results indicate that the
superconductivity is most likely to appear around the filling
factor ν ≈ 2 and the corresponding symmetry is a f -wave
pairing symmetry. Away from this region, the transition tem-
perature is seriously dropped as the eigenvalue λ is decreased.
This is consistent with the experimental results.

It is a little surprising to find that the values in Fig. 4
are so noisy, and one may ask, What is the main source of
uncertainty? On the other hand, the fluctuation of the data
points seems to be very correlated across different values of
U . In particular, this seems most evident by comparing the
data sets U = {0, 0.5} meV and U = {1, 10} meV. Actually,
in the numerical calculations of pairing symmetry, we can
only take a finite number of points on the Fermi surface, say,
400, and build a matrix of finite dimension for the numerical
solutions. When the filling level changes, we retake other
points for calculations. In this process, the discrete points on
the Fermi surface obtained from adjacent filling levels are
difficult to change continuously, so the numerical results will
be slightly noisy. As for the correlation of the data for different
U , we can understand it qualitatively. First of all, the overall

superconducting transition temperature is decreasing as U
becomes larger. Secondly, at smaller U , a higher peak appears
near the half filling, coinciding with the peak of the DOS. In
contrast, at larger U , this peak is not obvious, indicating that
the superconducting state is highly modulated by Coulomb
interaction. The boundary between these two types of data
is around U ∼ 0.8 meV, a value that is also approximately
the average strength of electron-phonon interactions. Below
this value, the dominant electron-phonon interactions lead to
s-wave pairing; above this value, Coulomb interactions begin
to dominate and eventually lead to the appearance of the
f -wave pairing.

The odd-parity pairing symmetry holds a special inter-
est in the community in pursuit of governing triplet pairing,
chiral pairing, topological superconductivity, and Majorana
edge modes. It naturally arises in the spin-triplet channel of
strongly correlated systems. The f -wave pairing has been sug-
gested in heavy-fermion UPt3 [48,49], monolayer MoS2 [50],
the cold-atom optical lattice [51], and other honeycomb lat-
tices [52]. However, it is beneficial that the f -wave pairing
in the TGB system requires neither strong correlation nor
nesting-induced instability.

IV. CONCLUSIONS

We have developed a superconductivity theory in a twisted
graphene bilayer in a uniform framework taking into account
the low and high electron densities simultaneously. We have
derived an efficient generalized eigenequation and solved it
with the phonon-induced effective electron-electron interac-
tions. Combining the filling factor ν among [0,4] with the
Coulomb repulsion U , a U -ν phase diagram has been plotted
for the superconducting pairing symmetry, where the p-wave,
f -wave, and s-wave pairing symmetries are distinguished by
different U and ν. We have obtained an unusual f -wave pair-
ing symmetry in the BCS channel and found that the f -wave
superconducting gap only appears near |ν| ≈ 2, where the su-
perconductivity is confirmed experimentally. We have verified
that in the case of no Coulomb interaction, the superconduc-
tivity is most favorable in the region 1.8 < |ν| < 2.8 with
s-wave symmetry. When the Coulomb interaction is turned
on, the superconductivity is severely depressed and is stabi-
lized in the region 1.5 < ν < 3 as observed in experiments.
Furthermore, the superconductivity transition temperature is
slightly enhanced when the Coulomb interaction is decreased,
which is also consistent with experimental results. We only
consider the noninteraction band structure in the calculations;
correlation effects such as Hartree deformation of the bands
could bring some changes to our results. The Hartree potential
contributes to the Hamiltonian of the TGB as a diagonal term
in the sublattice or layer subspace; hence the band structure, as
well as the DOS, is possibly altered. Previous research shows
that the Van Hove singularity is pinned at the Fermi level for
a large range of dopings [53]. Since the DOS plays a major
role in the electron-phonon interactions, the Hartree poten-
tial might increase the value of λ in a large range of filling
for small U , with the dominant electron-phonon interactions
leading to s-wave pairing. On the other hand, for large U , i.e.,
away from the s-wave region, Coulomb interactions begin to
dominate, and the effect of the DOS change might be less
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obvious. The f -pairing gap in our model is an odd function
of momentum, and it can be tested by the field-angle signal
of the transport experiments or angle-resolved photoemission
spectroscopy (ARPES) experiments.
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APPENDIX: ELECTRON-ELECTRON INTERACTION
MEDIATED BY PHONONS

It is known that the in-plane phonons of the two layers of a
TGB are nearly decoupled [45]. Therefore the TGB in-plane
phonon spectrum is approximately that of two isolated GMLs
folded in the MBZ, and the low-energy acoustic phonon
Hamiltonian is

Hph =
∑

p,χ=L,T

h̄ωp,χa†
p,χap,χ , (A1)

where the frequency ωp,χ of the low-energy phonons is lin-
early proportional to p, i.e., ωp,L ≈ ωp,T ≈ C p. One can
follow the standard second-order perturbation theory to calcu-
late the phonon-mediated electron-electron interaction where
the electron Hamiltonian H ξ

e and the phonon Hamiltonian Hph

are treated as the unperturbed Hamiltonian and H ξ
ep is the

perturbation term. Consider the initial state |�i〉 = |kξ
1, kξ ′

2 〉
of two electrons which have momenta k1 and k2, respectively,
where the spin index is omitted since the electron-phonon cou-
pling term H ξ

ep is spin independent. Mediated by the phonon
emission and absorption, the initial state is scattered to the
final state |� f 〉 = |kξ

3, kξ ′
4 〉 through two intermediate states by

emitting a phonon with polarization χ : One state is |�1,χ 〉 =
|kξ

3, kξ ′
2 , pχ 〉, where a phonon with momentum p and polariza-

tion χ is emitted from the first electron, while the other state
is |�2,χ 〉 = |kξ

1, kξ ′
4 ,−pχ 〉, where a phonon with momentum

−p and polarization χ is emitted from the second electron.
The conservation laws require p = k1 − k3 = k4 − k2 and
εk1 + εk2 = εk3 + εk4 , where εk and |kξ 〉 are the eigenenergy
and eigenfunction of H ξ , respectively.

According to the second-order perturbation theory, we cal-
culate the interaction between the two electrons given as

V ξξ ′
k1k2,k3k4

Ns�s
=

∑
χ=L,T

(
〈� f |H ξ ′

ep|�1,χ 〉〈�1,χ |H ξ
ep|�i〉

εk3 − εk1 − h̄ωp,χ
+ 〈� f |H ξ

ep|�2,χ 〉〈�2,χ |H ξ ′
ep|�i〉

εk4 − εk2 − h̄ω−p,χ

)
. (A2)

Previous research [36] shows that the intervalley interaction at low electron density takes the attractive form which is preferable
for BCS superconductivity. Hence we focus on the Cooper channel of the interaction where the two electrons have opposite
momenta and valley indices, i.e., k1 = −k2 = k, k3 = −k4 = k′, and ξ ′ = −ξ = ξ̄ . The Cooper channel electron-electron
interaction is then

Vk,k′

Ns�s
=

∑
χ=L,T

〈k′ξ ,−k′ξ̄ |H ξ̄
ep(p)|k′ξ ,−kξ̄ , pχ 〉〈k′ξ ,−kξ̄ , pχ |H ξ

ep(p)|kξ ,−kξ̄ 〉
h̄ω − h̄ωp

+ 〈k′ξ ,−k′ξ̄ |H ξ
ep(p)|kξ ,−k′ξ̄ ,−pχ 〉〈kξ ,−k′ξ̄ ,−pχ |H ξ̄

ep(p)|kξ ,−kξ̄ 〉
−h̄ω − h̄ωp

, (A3)

where h̄ω = εk′ − εk, p = k − k′, and we assume ωp,χ = ω−p,χ = ωp.
We notice that the matrix elements satisfy

〈k′ξ ,−kξ̄ , pχ |H ξ
ep(p)|kξ ,−kξ̄ 〉 = 〈k′ξ ,−k′ξ̄ |H ξ

ep(p)|kξ ,−k′ξ̄ ,−pχ 〉 (A4)

and

〈k′ξ ,−k′ξ̄ |H ξ̄
ep(p)|k′ξ ,−kξ̄ , pχ 〉 = 〈kξ ,−k′ξ̄ ,−pχ |H ξ̄

ep(p)|kξ ,−kξ̄ 〉. (A5)

Based on the above expression, we can obtain Eq. (12) in the text.
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