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Phonon blockade in an acoustic cavity coupled to a three-level artificial atom
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We theoretically investigated the phonon statistics of an acoustic cavity coupled to a three-level ladder-type
artificial atom. Based on the wave function method, we elucidated the optimal conditions for a strong phonon
antibunching effect at zero temperature and observed the coexistence of both conventional and unconventional
phonon blockades. Particularly, intersection points occurred between the antibunching structures of both block-
ades at a certain controlled field strength. Importantly, compared to the conventional/unconventional phonon
blockade, simultaneously strong antibunching and high brightness (mean phonon number) were realized at the
intersection point. Further, phonon blockade at a finite temperature was studied. We showed that thermal noise
affected the phonon blockade only at temperatures exceeding a certain threshold value. More interestingly, the
conventional phonon blockade was more robust against thermal noise than the unconventional phonon blockade.
Thus, this work provides a scheme for preparing high-quality single-phonon sources at finite temperatures.
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I. INTRODUCTION

Single-photon sources are among the important quantum
resources used in quantum communication, information pro-
cessing, and cryptography [1]. They have been prepared using
a variety of schemes such as resonant pulsed excitation in
quantum dots [2] and the photon blockade effect [3–7]. Pho-
ton blockade is a pure quantum phenomenon, in which the
strong nonlinearity of an optical cavity prevents more than
one photon from entering a cavity. Since it was first proposed,
it has been observed in experiments [8–11]. Recently, photon
blockade has been extended to multiphoton blockades [12–15]
and nonreciprocal cases [16,17], and it also has an acousti-
cal counterpart, which has been termed as phonon blockade
[18,19].

As quanta of mechanical vibration, phonons have low trav-
eling velocities and long wavelengths. They can facilitate the
integration of acoustic devices with various quantum systems
to explore different physical regions [20,21]. Owing to these
advantages, they are used as quantum information carriers and
show significant potential in the fields of quantum communi-
cation and information processing [22–24].

Phonon blockade refers to the phenomenon in which
the phonons in mechanical resonators exhibit antibunching
behavior. Therefore, using phonon blockade in preparing
single-/multiphonon sources [15,25] and other potential
single-phonon devices [23,24] is a natural solution. There are
two main physical mechanisms of phonon blockade: strong
nonlinearity leading to nonuniform energy ladders and quan-
tum interference between the different transition paths of
phonons. The former is called conventional phonon block-
ade (CPNB) [26–38], and the latter is called unconventional
phonon blockade (UCPNB) [39–49]. Compared with that of
UCPNB, the mean number of phonons (brightness) produced
by CPNB is usually larger, but the antibunching (purity) is

poorer. Usually, a strong nonlinearity or coupling strength
is the basic condition for CPNB, whereas the converse is
required for UCPNB. Owing to the weak intrinsic nonlinear-
ity of a mechanical resonator, CPNB is mainly observed in
a composite quantum system, such as a resonator-two-level
system [27,28] and an optomechanical system [29–34]. These
works about phonon blockade only study either CPNB or
UCPNB. Recently, investigations of CPNB and UCPNB in
the same system have been reported, among which some
works discussed CPNB and UCPNB in different parameter
regimes [50,51] and some works studied the overlap of CPB
and UCPB in the same parameter regime [52–55].

Thus far, few experimental demonstrations of phonon
blockade have been reported [56]. The difficulties in experi-
mentally observing phonon blockade can be listed as follows:
First, the CPNB requires strong nonlinearity or strong cou-
pling. However, in most systems, the acoustic nonlinearity
is not sufficiently strong. Second, although the UCPNB can
occur in a weakly nonlinear regime, the rapid oscillation of
the correlation of the generated phonon field [57] and low
emission rate can limit observation of the phonon blockade
effect. Third, the coherence of phonons is easily destroyed by
thermal noise. Only when the phonon energy is greater than or
comparable to the thermal energy can the quantum behaviors
of the phonons be observed. With the continuous progress
in nanomechanical manufacturing technology [58–61], it is
possible to cool a mechanical resonator near to its quan-
tum ground state [62,63]. Notwithstanding, the thermal noise
in mechanical resonators cannot be eliminated, and phonon
blockade is fragile with the presence of thermal noise. How-
ever, researchers have found that the CPNB [27–29] is more
robust to thermal noise than the UCPNB [41,47]. Hence, ex-
plaining the destruction of the antibunching effect of phonons
by thermal noise and the preparation of single-phonon sources
with better performance at finite temperatures still remains
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FIG. 1. Sketch of the proposed model. A three-level ladder-type
artificial atom is coupled to an acoustic cavity, which consists of a
pair of acoustic Bragg mirrors. The |g〉 ↔ |e〉 transition is driven
by the acoustic cavity with an eigenfrequency ωa. The |e〉 ↔ |d〉
transition is driven by a control field. The acoustic cavity is driven
by a weak acoustic field with an eigenfrequency ωp.

challenging. More importantly, a scheme to generate a single
phonon that is robust to thermal noise with higher purity and
brightness is necessary.

Based on the above-mentioned points, we investigated the
phonon blockade effect in a system consisting of a three-level
ladder-type artificial atom coupled to an acoustic cavity and
a control field at both zero and finite temperatures. Com-
pared with the previous phonon antibunching or blockade
schemes, such as the resonator-two-level system [18,27,28],
our model has an additional control field to adjust the fea-
tures of CPNB and UCPNB to observe more complicated
phonon blockade effect. We found that CPNB and UCPNB
coexisted in this system for strong coupling strength with suit-
able control field strength. Moreover, similar to the photonic
counterpart in Refs. [52–55], they intersected, resulting in a
generated phonon field with both the advantages of a strong
antibunching effect and a relatively large mean phonon num-
ber. Therefore, in this work we can combine the advantages
of both CPNB and UCPNB. It is a key innovation of this
work. This offers an opportunity for experimental realization
of a single phonon with higher quality and also enabled us to
further understand the physical mechanism governing them.
In addition, as a phononic field is fragile to thermal noise, we
carefully study the influence of temperature on the properties
of the phononic field at the intersection point of CPNB and
UCPNB in our work, which is absent in the previous works
[52–55]. Our results facilitate the preparation of high-quality
single-phonon sources at finite temperature, providing po-
tential applications for on-chip quantum communication and
information processing.

The remainder of this paper is organized as follows. In
Sec. II, we describe the proposed model. In Sec. III, we derive
the optimal conditions for CPNB and UCPNB based on the
wave function method. In Sec. IV, we numerically discuss
the correlation function and the average phonon number of
the phonon field at zero and finite temperatures. Finally, we
conclude this paper in Sec. V.

II. MODEL

Figure 1 presents our proposed model, where a three-level
ladder-type artificial atom is embedded in an acoustic cavity
consisting of two Bragg acoustic mirrors. The artificial atom

can be a tunable gap superconducting flux qubit [64] or a
transmon-type superconducting circuit [65,66]. The energy
levels of the artificial atom are labeled as |g〉, |e〉, and |d〉. The
acoustic cavity is directly coupled to the |g〉 ↔ |e〉 transition.
It is driven by a weak external acoustic driving field with
frequency ωp and amplitude ε. A strong control field with
frequency ωq and amplitude � is directly coupled to the |e〉 ↔
|d〉 transition in a direction perpendicular to the cavity axis.
The control field can be an acoustic field [64] or microwave
field [65]. In the rotating-wave approximation frame of the
weak driving field and strong control field defined by U (t ) =
exp[−i(ωp(â†â + σ̂ee) + ωqσ̂dd )t], the Hamiltonian can be
written as (h̄ = 1),

Ĥ = �â†â + δ1σ̂ee + δ2σ̂dd + g(âσ̂eg + â†σ̂ge)

+�(σ̂ed + σ̂de) + ε(â + â†), (1)

where â(â†) is the annihilation (creation) operator of the
phonon mode in the acoustic cavity with the fundamental
mode frequency ωa. σ̂ j,k = | j〉〈k| is the transition operator
for the atomic states with { j, k} = {g, e, d}. ωe and ωd are
the eigenfrequencies of the first excited state |e〉 and the
second excited state |d〉, respectively. g is the phonon-atom
coupling strength. � = ωa − ωp is the detuning between the
acoustic cavity and the weak driving field. δ1 = ωe − ωp and
δ2 = ωd − ωq are atomic detunings.

With the inclusion of the acoustic cavity decay κ and
atomic spontaneous emission rates γ1 from |d〉 to |e〉(γ2 from
|e〉 to |g〉) states, we can express the non-Hermitian effective
Hamiltonian as

Ĥeff = �′â†â + δ′
1σ̂ee + δ′

2σ̂dd + g(âσ̂eg + â†σ̂ge)

+�(σ̂ed + σ̂de) + ε(â + â†), (2)

where the effective detunings are �′ = � − iκ/2, δ′
1 = δ1 −

iγ1/2, and δ′
2 = δ2 − iγ2/2. In fact, Eq. (2) describes electro-

magnetically induced acoustic transparency [66].

III. PHONON BLOCKADE CONDITION

In this section, we first derive approximate analytical ex-
pressions for the second-order correlation function at zero
temperature to study the statistical properties of the phonons
in the system. Under the condition {ε, γ } � κ � �, high-
phonon excitation states have very low populations, and the
state of the system in the few-phonon subspace can be de-
scribed by

|ψ〉 = C0,g|0, g〉 + C1,g|1, g〉 + C0,e|0, e〉 + C0,d |0, d〉
+C2,g|2, g〉 + C1,e|1, e〉 + C1,d |1, d〉, (3)

where the coefficient Cn,m is the probability amplitude of the
state |n, m〉 with n phonons (n = 0, 1, 2, ...) and the atomic
state |m〉 (m = g, e, d). By substituting the effective Hamilto-
nian Eq. (2) and wave function Eq. (3) into the Schrödinger
equation, i∂|ψ〉/∂t = Ĥeff |ψ〉 [67]. By considering {C0,g �
1} � {C1,g,C0,e,C0,d} � {C2,g,C1,e,C1,d}, a set of coefficient
equations can be obtained as follows:

iĊ1,g = �′C1,g + gC0,e + εC0,g, (4)

iĊ0,e = δ′
1C0,e + gC1,g + �C0,d , (5)
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iĊ0,d = δ′
2C0,d + �C0,e, (6)

iĊ2,g = 2�′C2,g +
√

2gC1,e +
√

2εC1,g, (7)

iĊ1,e = (�′ + δ′
1)C1,e +

√
2gC2,g + �C1,d + εC0,e, (8)

iĊ1,d = (�′ + δ′
2)C1,d + �C1,e + εC0,d . (9)

By setting ∂Cn,m/∂t = 0, we obtain steady-state solutions
for the coefficients C1,g and C2,g:

C1,g = − δ′
1δ

′
2 − �2

�′C − δ′
2g2

ε, (10)

C2,g = g2(δ′
2 + A) + C(B − A)√

2(�′C − δ′
2g2)(�′(B − A) − g2)

ε2, (11)

C2,g = g2(δ′
2B + �2) + C(B2 − �2)√

2(�′C − δ′
2g2)(�′(B2 − �2) − Bg2)

,

where A = �2/(�′ + δ′
2), B = �′ + δ′

1, and C = δ′
1δ

′
2 − �2.

In the following section, we consider only the simple cases:
δ1 = δ2 = δ and γ1 = γ2 = γ .

The approximate solution of the second-order correlation
function is expressed as

g(2)(0) = 〈�|〈â†â†ââ〉|�〉
〈�|〈â†â〉|�〉2 ≈ 2|C2,g|2

|C1,g|4
. (12)

From Eq. (12), mathematically, when �′(δ′2 − �2) − δ′g2 =
0 or g2[δ′(�′ + δ′) + �2] + [(�′ + δ′)2 − �2](δ′2 − �2) =
0, the second-order correlation function g(2)(0) will be zero.
In the following we discuss both cases.

(i) �′(δ′2 − �2) − δ′g2 = 0. The optimal condition can be
decomposed into real and imaginary components:

g2δ + �(�2 − δ2) + (�γ + 2κδ)γ /4 = 0, (13)

((g2 − 2�δ)γ + κ (�2 − δ2) + κγ 2/4)/2 = 0. (14)

We can see that, in the limit of strong coupling, that is,
g � {κ, γ }, the imaginary part (the order of {κ, γ }) is much
less than the real part (the order of g). Therefore, under this
assumption, the optimal condition �′(δ′2 − �2) − δ′g2 = 0
can be reduced to

g2δ + �(�2 − δ2) � 0. (15)

To confirm the validity of the above approximation, we
present the absolute value of �′(δ′2 − �2) − δ′g2 and its real
and imaginary parts in Fig. 2(a). It is seen that, compared to
the real part, the imaginary part is too small to have influence
on the optimal condition. Thus, the real part itself can serve
as the optimal condition. Besides, from Fig. 2(a) we know
that Eq. (15) can determine the local minimized values of
the second-order correlation function, as shown by the black
vertical dashed lines. Equation (10) reveals that, when the
condition [Eq. (15)] holds, the single phonon state’s popu-
lation will be resonantly enhanced. This is a typical feature
of CPNB, similar to the photonic counterpart [68]. This is
because an anharmonic level of a quantum phononic system
induced by strong coupling between phonons prevents the
population of two-/multiphonon states [69]. Therefore, the

FIG. 2. Comparison between the optimal conditions and their
real and imaginary parts for the case of (a) CPNB and (b) UCPNB,
and second-order correlation function g(2)(0) with fixed � = 25κ ,
� = 10κ . The positions of best CPNB/UCPNB are indicated by
the black vertical dashed lines. The other parameters are taken as
g = 10κ, ε = 0.01κ, and γ = 0.01κ .

optimal condition [Eq. (15)] contributes toward CPNB. We
further observe that, without a control field, that is, � = 0, the
optimal condition reduces to g2 − �δ = 0, which is similar
to the optimal condition for the phonon blockade in a me-
chanical resonator coupled to a two-level system [27]. Here,
we must stress that, in a weak coupling regime, although
the optimal conditions [Eq. (15)] can be satisfied, the anhar-
monicity of a level structure is extremely small. Hence, two-
and multiphonon states can be resonantly excited as a single-
phonon state, which hinders the occurrence of the phonon
blockade.

(ii) g2[δ′(�′+δ′)+�2] + [(�′+δ′)2−�2](δ′2−�2) = 0.
This equation is perfectly satisfied within the limit of weak
coupling. However, we investigate the scenario of the coexis-
tence of both CPNB and UCPNB. Hence, we only consider
the case of the limit of strong coupling, that is, g � {κ, γ }.
Under this condition, we can obtain the real and imaginary
parts of the optimal condition as follows:

g2(�2 + δ2 + �δ) − (�2 − δ2)[(� + δ)2 − �2] � 0, (16)

γ (� + 2δ)

[
�2 − g2

2
− δ(� + δ)

]

+ κ

[
(� + δ)(�2 − δ2) − 1

2
δg2

]
� 0. (17)

Similarly, the imaginary part is much less than the real part in
the strong coupling limit. Therefore, we can approximately
use the real part of the optimal condition to determine the
optimal parameters for best antibunching effect. Figure 2(b)
shows that the curve of the real part [Eq. (16)] overlaps the
absolute value of the optimal condition and its dips exactly
correspond to the dips of the second-order correlation func-
tion whose values are considerably less than 1. Particularly,
the condition [Eq. (16)] minimizes the population for the
two-phonon state, while the populations of the other states
do not undergo significant changes. This is a typical fea-
ture of UPNB. Physics leading to the UCPNB effect is the
destructive quantum interference of the two-phonon state be-
tween different phonon transition pathways. Contrary to the
perfect destructive quantum interference in a weak coupling
regime, the condition [Eq. (16)] leads to imperfect quantum
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interference. Here we should stress that, due to the non-
Hermitian effective Hamiltonian excluding the thermal exci-
tation, the optimal conditions [Eqs. (15) and (16)] are merely
suitable for the case of zero temperature.

IV. NUMERICAL SIMULATION AND ANALYSIS

As stated in Ref. [70], the non-Hermitian effective Hamil-
tonian may lead to a different result from that based on full
quantum treatment on an open quantum system. To verify
the analytical results presented in the previous section and
further investigate the effect of thermal noise on the quantum
statistics of the phononic field, we use the quantum master
equation to simulate the dynamics of the system:

ρ̇ = −i[Ĥ , ρ] + γ1

2
(2σgeρσ̂eg − σ̂egσ̂geρ − ρσ̂egσ̂ge)

+ γ2

2
(2σ̂edρσ̂de − σ̂deσ̂edρ − ρσ̂deσ̂ed )

+ κ

2
(nth + 1)(2âρâ† − â†âρ − ρâ†â)

+ κ

2
nth(2â†ρâ − ââ†ρ − ρââ†), (18)

where ρ is the density matrix of the phonon-atom system.
The thermal mean phonon number nth = [exp(T0/T ) − 1]−1,
where T is the environmental temperature and T0 = h̄ωa/kB

is the characteristic temperature of the system with the Boltz-
mann constant kB. In the infinite-time limit, the second-order
correlation function for the steady state is given by

g(2)(0) = Tr(â†â†ââρ)

Tr(â†âρ)2 , (19)

and the mean phonon number is

〈N〉 = Tr(â†âρ). (20)

A. Zero Temperature

We first consider the case at zero temperature when the sys-
tem is in a strong-coupling regime, that is, g � (γ , κ ). Here
we consider g = 10γ and γ = κ/100 [71] as an example. In
Fig. 3(a), we present g(2)(0) as a function of cavity detuning �

and atomic detuning δ based on the numerical simulation with
Eqs. (18) and (19). Moreover, a strong phonon antibunching
structure is observed [dark blue region indicates g(2)(0) � 1].
This implies that a strong phonon blockade exists in our
model. To distinguish the type of phonon antibunching struc-
ture, we plotted the optimal conditions for CPNB [Eq. (15)]
with green dashed lines and those for UCPNB [Eq. (16)] with
black dashed lines, as shown in Fig. 3(a). Further, the curves
for the optimal conditions [Eqs. (15) and (16)] perfectly match
the numerical results, which implies that CPNB and UCPNB
coexist in this situation. Interestingly, we found two intersec-
tion points (labeled A and B) between them, where both their
advantages could be retained.

We also numerically evaluated the mean phonon number in
Fig. 3(b). Compared with Fig. 3(a), we found that the struc-
ture of the maximum value of the mean phonon number was
similar to that of the CPNB. To explain the numerical results,

FIG. 3. (a) Second-order correlation function g(2)(0) (logarith-
mic scale) as a function of atomic detuning δ and cavity detuning
�. The green dashed lines represent the optimal condition to CPNB
given by Eq. (15) and the black dashed lines represent the optimal
condition to UCPNB given by Eq. (16). (b) Mean phonon number
(logarithmic scale) as a function of atomic detuning δ and cavity
detuning �. Other parameters are taken as g = 10κ, ε = 0.01κ, � =
10κ, and γ = 0.01κ .

we derived the expression of the mean phonon number:

〈N̂〉 � |C1,g|2

=
∣∣∣∣ (δ′2 − �2)ε

�′(δ′2 − �2) − δ′g2

∣∣∣∣
2

. (21)

Notably, when the optimal condition for CPNB [Eq. (15)]
holds, the mean phonon number [Eq. (21)] is resonantly en-
hanced, which is a typical characteristic of CPNB.

To verify the validity of the approximate analytical anal-
yses based on the non-Hermitian Hamiltonian [Eq. (2)],
we plotted the second-order correlation function and mean
phonon number using both approximate analytical results and
exact numerical results in Fig. 4. We can see that, for the case
of a weak control field, i.e., � = 0.001κ , the analytical results
are consistent with the numerical ones. With increasing the
control field strength, the analytical results gradually deviate
from the numerical results. In spite of this deviation, the
positions for the minimal values of the second-order corre-
lation functions on the analytical curves agree well with those
on numerical curves. In other words, the analytical optimal
conditions [Eqs. (15) and (16)] are valid.

To thoroughly investigate the properties of the phononic
field at intersection point A, we plotted the second-order
and higher-order correlation functions and the mean phonon
number < N̂ > as a function of δ around point A in
Figs. 5(a)– 5(c). Here the nth-order equal-time correlation
function is defined as g(n)(0) = Tr(â†nânρ)/Tr(â†âρ)n (n =
2, 3, ...)[53,72]. Figures 4(a) and 4(b) describe g(2)(0), g(3)(0),
and g(4)(0) when the parameters satisfy the optimal conditions
for CPNB and UCPNB, respectively, which corresponds to
the green (black) arrow in Fig. 3(a). In particular, when δ �
−7.7κ , which corresponds to the intersection point, a sharp
and deep dip occurs on the curve of the correlation func-
tion for both CPNB and UCPNB cases. From Fig. 5(a), it is
seen that 1 � g(2)(0) � g(3)(0) � g(4)(0) under the optimal
condition of CPNB in the entire parameter region; however,
for the UCPNB case, 1 � g(2)(0) � g(3)(0) � g(4)(0) only
holds for the intersection point and its vicinity, while in the
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FIG. 4. Second-order correlation function g(2)(0) and mean phonon number as a function of atomic detuning δ with fixed � = 20κ for
different control field strengths: (a) � = 0.001κ; (b) � = 5κ; and (c) � = 10κ . The dashed lines are given by Eq. (12) and 〈N〉 = |C1,g|2,
respectively. Other parameters are taken as g = 10κ, ε = 0.01κ, and γ = 0.01κ .

region far away from the intersection point the correlation
function satisfies the relation g(3)(0) > g(4)(0) > 1 > g(2)(0).
This means the phononic field at the intersection point has
the feature of CPNB rather than that of UCPNB. In particu-
lar, the value of the second-order correlation function at the
dip on the curve of the CPNB is the smallest one in the
parameter region shown in Fig. 5(a). Therefore, the phonon
blockade is enhanced at the intersection point. On the other
hand, the mean phonon number of UCPNB is resonantly
enhanced at the intersection point, and the maximum value
equals that of the CPNB, as shown in Fig. 5(c). Based on
the above discussion, we can conclude that it is possible to
produce a single phonon with the advantages of both the high
purity (phonon antibunching) of CPNB and the high bright-
ness (mean phonon number) of UCPNB. To further explore
the antibunching feature of the phonon field at intersection
point A, we calculated the time-delayed second-order correla-
tion function using the quantum regression theorem g(2)(τ ) =
Tr {â†âeL̂τ [âρ̂ssâ†]}/Tr (â†âρ̂ss)2 [73]. The numerical result of
g(2)(τ ) is plotted in Fig. 5(d) and it is seen that g(2)(0) � 1 and
g(2)(0) < g(2)(τ ). As discussed in Ref. [72], 1 � g(2)(0) �
g(3)(0) � g(4)(0) means that the higher-order phonon-number
probabilities (n = 2, 3, ...) can be safely ignored and it is an
important index for a high-quality single-phonon source. This

indicates that the phononic field at the intersection point is in
a high-quality single-phonon state and can serve as a high-
quality single-phonon source.

As shown in Fig. 6, we also investigated the effect of the
coupling strength g and the controlled field strength � on
the correlation function g(2)(0) and the mean phonon num-
ber < N̂ > at intersection point A. Figure 6(a) shows that
the value of the second-order correlation function g(2)(0) de-
creases while the mean phonon number slightly increases as
g increases. This indicates that strong coupling is beneficial
for phonon blockade. Similarly, the strong control strength �

leads to a stronger phonon antibunching effect, as shown in
Fig. 6(b).

To more intuitively demonstrate the effect of the control
field on the correlation function of the phonon field in Fig. 7,
we plot the images of the second-order correlation function of
the phonon field g(2)(0) as a function of � and δ, with � =
5κ, 10κ , and 15κ , respectively. At � = 5κ , the intersection
of CPNB and UCPNB is noticeable. However, it disappears
when � = 15κ . Moreover, the intersection point gradually
disappears as the intensity of the control field increases. In ad-
dition, two antibunching structures, symmetrically distributed
about the zero atomic detuning, occur when the control
field exists. The distance between the two centers of the
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FIG. 6. Second-order correlation function g(2)(0) and mean phonon number 〈N〉 as a function of (a) phonon-atom coupling strength g
with � = 10κ and (b) control field strength � with g = 10κ . The values of atomic and cavity detunings locate at intersection point A.
(c) Second-order correlation function g(2)(0) as a function of the pure dephasing rate with fixed g = 10κ and � = 10κ . The black dashed line
denotes the position of atomic decay rate γ . Other parameters are taken as ε = 0.01κ and γ = 0.01κ .

antibunching structures is equal to 2� . When the control field
is small, the two antibunching structures overlap, resulting
in an intersection between CPNB and UCPNB. When the
control field becomes stronger, the intersection points shift to
the weak antibunching region and finally disappear. Further,
under the action of the strong control field, the excited state |e〉
splits into |e±〉, with the energy level shift δω± = ±� owing
to the Autler-Townes splitting [74]. Moreover, the transition
|g〉 ↔ |e〉 in the bare atomic state becomes |g〉 ↔ |e±〉 in the
dressed states. In this situation, we can regard our system, with
a strong control field, as two independent J-C-like phononic
systems. With suitable control field strength, the CPNB and
UCPNB structures of two independent J-C-like models can
overlap in the parameter space.

As mentioned in Ref. [5], pure dephasing can affect the
degree of antibunching of the photonic mode and degrade the
quality of a single-photon source. Thus, we should investigate
the effect of pure dephasing on the coherence of the phononic
field. We add the Lindblad terms Ld [Â] = γd

2 [2Â†ÂρÂ†Â −
(Â†Â)2ρ − ρ(Â†Â)2] with Â = σge(σed ) to describe the pure
dephasing of the three-level artificial atom in the quantum
master equation [18]. For simplicity, we have assumed the
same dephasing rate γd for energy levels |e〉 and |d〉. We
plot the second-order correlation function of the phonon field
versus the pure dephasing rate γd in Fig. 6. It is seen that,

when the pure dephasing rate is smaller than the spontaneous
emission rate of the artificial atom, i.e., γd < γ , g(2)(0) al-
most remains a constant with varying γd . It indicates that the
pure dephasing does not weaken the phononic antibunching.
On increasing the pure dephasing rate, the antibunching is
progressively reduced, and finally the system behaves as a co-
herent acoustic source. We can conclude that our conclusions
hold under the condition of low dephasing rate, i.e., γd < γ .

B. Finite temperature

Contrary to a photonic system, a phononic system has a
lower eigenfrequency and is more sensitive to thermal noise.
However, it is difficult to experimentally cool the mechanical
resonator to zero temperature. Therefore, it is necessary to
study the phonon blockade at finite temperature. In Fig. 8(a),
we plot g(2)(0) as a function of the environmental temperature
T for both CPNB and UCPNB. Here, we set a fixed atomic
detuning δ = −10κ , and the cavity detuning is determined
by the optimal conditions [Eqs. (15) and (16)]. Notably, for
CPNB in the temperature region [0, 0.07T0], g(2)(0) is a
small constant value, which is significantly less than 1. This
implies a strong antibunching effect in this region and that
the quantum coherence of the phonon field is well main-
tained in this region. We can conclude that thermal noise
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cannot affect the coherence of a quantum phonon system at
a very low temperature for the CPNB. With an increase in
the bath temperature and when the threshold value 0.07T0

is exceeded, g(2)(0) increases rapidly, and the phonon field
changes from strong antibunching to bunching. Eventually,
g(2)(0) approaches a constant 2. In other words, the system
finally reaches a thermal state and completely loses the quan-
tum coherence. Hence, we can say that thermal noise at high
temperatures destroys the quantum coherence of the phonon
field. Concerning UCPNB, the behavior of the second-order
correlation function is similar to that of CPNB. However,
there are several different aspects. First, the temperature range
[0, 0.04T0] for the quantum coherence preserved is smaller
than that in CPNB. In other words, the threshold value for
UCPNB is lower than that for CPNB. Second, the transition
of the phonon field from strong antibunching to a thermal
state is faster than in CPNB. Moreover, in the region [0.06T0,
0.07T0], the quantum coherence is completely preserved in
CPNB, while the phonon state in UCPNB is the thermal state.
Therefore, CPNB is more robust against the disturbance of
thermal noise than UCPNB.

To better demonstrate the effect of thermal noise on CPNB
and UCPNB, we plot the second-order correlation function
at different temperatures: T = 0.03T0, 0.05T0, 0.07T0, 0.1T0,
and 0.2T0; this is shown in Figs. 8(b)– 8(f). Based on a com-
parison with the zero-temperature case [as shown in Fig. 8(a)],
when T = 0.03T0, the suppression of phonon antibunching by
thermal noise is not evident; thus, both CPNB and UCPNB
are well preserved in our system. At T = 0.05T0, the anti-
bunching structure for UCPNB becomes unclear, whereas that
for CPNB still remains unchanged. When the temperature
increases to 0.07T0, the antibunching structure for UCPNB
completely disappears, whereas the strong antibunching struc-
ture for CPNB is unchanged. With a further increase in
temperature, for example, at T = 0.1T0, the strong antibunch-

ing structure for CPNB is weakened. Moreover, at T = 0.2T0,
the antibunching structure completely disappears.

Remark. To construct a practical single-phonon source
based on the scheme discussed in this work, the properties
of the output phononic field of the phononic cavity should be
evaluated. According to the input-output relation of an open
quantum system [75], the output phonon field is given by
âout = √

κoutâ + âinput with the output coupling strength κout

between the phonon cavity and the reservoir and âinput is the
input field, which is assumed to be a vacuum. Therefore, the
quantum statistics of the output phononic field is the same as
that of the intracavity phonon field. If the system is operated at
the intersection point of CPNB and UCPNB, we can obtain a
high-quality single-phonon source. Additionally, to measure
the second-order correlation function of the phononic field
generated by our system, one can adopt indirect measurement
methods, such as coupling the phonons to an optical system
[15,26,76,77].

V. CONCLUSION

We proposed a feasible scheme to realize a strong phonon
blockade by coupling a three-level artificial atom with an
acoustic cavity and a coupling field. The optimal parameter
conditions for CPNB and UCPNB were analytically presented
based on the wave function method and verified by numerical
results based on the master equation. We found that CPNB
and UCPNB can be realized in a current quantum phononic
system. More interestingly, they can coexist at certain parame-
ter values, and these intersection points gradually disappeared
with the increasing amplitude of the coupling field. At the
intersection point, the second-order correlation function of
the phonon field was the same as that of UCPNB, and the
mean phonon number was the same as that of CPNB at or-
dinary points. Therefore, we leveraged both the advantages
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of the strong phonon antibunching effect in UCPNB and the
relatively large phonon number in CPNB to realize a higher-
quality single-phonon state. Finally, the effect of thermal noise
on the phonon blockade was investigated. It was found that
thermal noise could not affect phonon antibunching until the
temperature exceeded a certain threshold value and that CPNB
was more insensitive to thermal noise than UCPNB.
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