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Low power consumption is of great importance for on-chip optical applications of nanolasers. To reduce the
lasing threshold, a high quality factor and strong Purcell effect are vital, while the latter is often hindered by the
above-diffraction-limit mode volume of photonic cavity, and its improvement generally requires complicated
cavity design. We show that by coupling to an off-resonant plasmonic antenna, the lasing threshold of a
photonic cavity can be reduced over a wide range of parameters where the plasmon-assisted coherent light-matter
interaction dominates over the plasmon-induced dissipation. We develop a semiclassical model of a two-level
nanolaser for such a hybrid plasmonic-photonic cavity, which is consistent with the quantum description of
the spectral density of a hybrid cavity. The analytical expression of the lasing threshold is derived, which
can be utilized to optimize the system parameters associated with cavities designed to obtain the minimum
lasing threshold. Through comprehensive study, we find that compared to all-dielectric photonic cavity, a
hybrid cavity can have prominent advantages in lasing with lower threshold, narrower emission linewidth, and
sustaining the higher-power output of laser field. Our paper demonstrates the possibility of utilizing a hybrid
plasmonic-photonic cavity to fabricate room-temperature low-threshold nanolasers.
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I. INTRODUCTION

A fast, compact, and power-efficient coherent light source
at nanoscale is highly desirable for a variety of practical ap-
plications, ranging from integrated optical circuits [1–3] and
near-field spectroscopy [4,5] to biological nanoprobe [6,7].
Since early demonstrations [8,9], reducing the lasing thresh-
old has been one of the primary research goals of nanolasers.
In the last decade, great efforts have been devoted to exploit-
ing the high Q-factor dielectric photonic structures for low
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energy loss, like microdisks [1,10], photonic crystal (PhC)
slabs [11,12] and various periodical arrays [13–15]. Besides
the intrinsic dissipation of a cavity, the lasing threshold also
depends on the β factor, the fraction of spontaneous emis-
sion (SE) directed into a lasing mode [16]. A large β factor
mainly results from the strong Purcell effect, meaning a strong
feedback between the lasing mode and the gain medium, and
hence the low lasing threshold. However, the Purcell factor
of a photonic cavity is limited by the mode volume, for
at least one dimension of dielectric cavity is comparable to
the resonant wavelength. Another technical route is found
to realize the metal-based nanolasers that utilize the surface
plasmon resonance of plasmonic resonators, called spasers
[7,17–19]. Spasers exhibit a physical size down to tens of
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nanometers in all dimensions and a Purcell factor exceeding
106 [20,21]. Nevertheless, this extreme light confinement far
below the diffraction limit is achieved by transferring the elec-
trical energy into the kinetic energy of free electrons in metal,
thus at the price of high nonradiative dissipation and low Q
factor [22]. Furthermore, strong quenching effect due to the
mode overlap between the dipolar mode and the higher order
modes results in a poor β factor [20,23–25]. These reverse the
advantage of strong Purcell effect in plasmonic resonators and
lead to a high lasing threshold and wide linewidth, in spite of
fs switching time [22].

Recent progress in the exploration of hybrid plasmonic-
photonic cavities demonstrates the possibility of combining
the advantages of both kinds of cavities, with enhanced co-
herent light-matter interaction between the photonic mode
and the quantum emitter (QE) while avoiding the unwanted
dissipation in metal [26–29]. The maximum Purcell rate of
transfer of population from QE to cavity mode can be found
at large plasmon-photon detuning, resulting from the trade-off
between the plasmon-induced field confinement and dissipa-
tion [26,30–32]. Therefore, plasmonic antennas can realize
the threshold reduction of dielectric nanolasers without the
demanding requirement of high Q factor and small mode
volume.

To understand the technical characteristic of lasing action
in the novel hybrid plasmonic-photonic cavity, a flexible and
physically transparent nanolaser model will be beneficial,
while to the best of our knowledge, is still lacking. The aim
of this paper is to develop a generalized semiclassical laser
theory for a plasmonic-photonic cavity and compare the lasing
characteristics with an all-dielectric microcavity.

The rest of paper is organized as follows. In Sec. II, we
present the semiclassical two-level laser theory for a hybrid
cavity with large plasmon-photon detuning. The minimum
lasing threshold and steady-state photon number are ana-
lytically obtained. Section III is devoted to comparing the
lasing characteristics of a hybrid cavity and bare microcavity.
Section IV demonstrates the lasing threshold reduction of a
realistic hybrid cavity. We conclude in Sec. V. The technical
details are given in the Appendixes.

II. SEMICLASSICAL NANOLASER THEORY
OF PLASMONIC-PHOTONIC CAVITY

The basic model of a two-level nanolaser is illustrated
in Fig. 1(a). We consider a dipolar plasmonic antenna since
the higher-order modes are nonradiative, then the plasmonic-
photonic cavity can be treated as two coupled single-mode
cavities with coupling strength g1 [26,32]. This hypothesis is
justified for plasmonic dimers [33,34] and common elongate
monomers like plasmonic rods [35,36] and ellipsoids [37],
whose dipolar mode are often well separated from the higher-
order modes. The gain medium is considered an ensemble of
N incoherently pumped two-level QEs. The kth QE couples to
the photonic mode of the microcavity and the plasmonic mode
of antenna with coupling strengths gk

c and gk
a, respectively.

The full Hamiltonian of the system under the rotating wave
approximation (RWA) can be written as

H = H0 + HI , (1)

FIG. 1. (a) Schematic of the two-level nanolaser model for hy-
brid cavity constituted of the interacting plasmonic antenna and
microcavity. (b) Sketch of the effective interaction between the
microcavity and the QE after eliminating the plasmonic modes.
(c) Spectral density for various plasmon-photon detuning �ca, with
the parameters Vm = 4 × 103 nm3 and Vc = 0.01 μm3. The solid and
dashed lines show the spectral density of the effective model and the
cQED model, respectively. Other parameters are mentioned in the
text.

with the free Hamiltonian

H0 = ωaa†a + ωcc†c + ω0

N∑
k

σ k
+σ k

− (2)

and the interaction Hamiltonian

HI =
N∑
k

gk
a(a†σ k

− + σ k
+a) +

N∑
k

gk
c(c†σ k

− + σ k
+c)

+ g1(a†c + ac†), (3)

which describes the closed-loop coupling between the plas-
monic mode, the photonic mode, and the QEs. a and c are the
bosonic annihilation operators for the plasmonic mode and the
photonic mode, respectively, with resonance frequencies ωa

and ωc. σ k
− = |g〉〈e| denotes the lowering operator of the kth

QE. QEs are assumed to have the same transition frequency
ω0. The system dynamics follows the quantum master equa-
tion (QME),

∂ρ

∂t
= i[ρ, H] + γ//P

2
Lσ+ (ρ) + γ//

2
Lσ− (ρ) + γp

2
Lσz (ρ)

+κa

2
La(ρ) + κc

2
Lc(ρ), (4)

where Lô(ρ) = 2ôρô† − ô†ôρ − ρô†ô is the Liouvillian su-
peroperator for operator ô. γ// is the SE rate of QEs into modes
other than the plasmonic and photonic modes, and γ//P stands
for the incoherent pump rate. γp represents the dephasing rate
of QEs and κa/κc is the decay rate of plasmonic/photonic
mode. From the QME, we can obtain the following equa-
tions of motion:

〈ȧ〉 = −i
(
ωa − i

κa

2

)
〈a〉 − i

N∑
k

gk
a〈σ k

−〉 − ig1〈c〉, (5)

〈ċ〉 = −i
(
ωc − i

κc

2

)
〈c〉 − i

N∑
k

gk
c〈σ k

−〉 − ig1〈a〉, (6)
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〈σ̇ k
−〉 = −i

(
ω0 − i

γ⊥
2

)
〈σ k

−〉 + igk
a

〈
σ k

z

〉〈a〉 + igk
c〈σ k

z 〉〈c〉, (7)〈
σ̇ k

z

〉 = 2igk
a(〈a†〉〈σ k

−〉 − 〈σ k
+〉〈a〉)

+ 2igk
c(〈c†〉〈σ k

−〉 − 〈σ k
+〉〈c〉)

+ γ//P
(
1 − 〈

σ k
z

〉) − γ//

(〈
σ k

z

〉 + 1
)
, (8)

where γ⊥ = 2γp + γ//(P + 1) is the QE polarization decay.
We have neglected the QE-field correlation by factorizing
the second-order expectation values 〈σ k

z c〉, 〈c†σ k
−〉, and 〈σ k

+c〉
into the products of the first-order expectation values 〈σ k

z 〉〈c〉,
〈c†〉〈σ k

−〉, and 〈σ k
+〉〈c〉, respectively.

Previous studies reported the enhanced coherent light-
matter interaction in a hybrid cavity with red-detuned
plasmonic-photonic coupling (ωa > ωc) [26,38,39], which is
also the regime we focus on in this paper. In the case of
resonant or nearly resonant QE-cavity coupling, i.e., |�ca| =
|ωa − ωc| � |�0c| = |ωc − ω0|, lasing only occurs at the
photonic mode due to the high dissipation of plasmonic mode
and the large detuning from gain medium. In this case, the
intensity of the laser field in the photonic mode dominates
over the plasmonic mode. Therefore, the plasmonic mode
can be considered an auxiliary mode. By formally integrating
Eq. (5) and applying the Markovian approximation, we find
(see Appendix A for more details)

〈a〉 ≈ −
∑N

k gk
a

(ωa − ω0) − i κa
2

〈σ k
−〉 − g1

(ωa − ωc) − i κa
2

〈c〉. (9)

Plugging back into Eqs. (6)–(8), we can eliminate the plas-
monic mode and obtain the modified Maxwell-Bloch (MB)
equations in the semiclassical limit,

〈σ̇ k
−〉 = −i

(
ω′k

0 − i
γ k

eff

2

)
〈σ k

−〉 + igk
eff

〈
σ k

z

〉〈c〉, (10)

〈ċ〉 = −i
(
ω′

c − i
κeff

2

)
〈c〉 − i

∑
k

gk
eff〈σ k

−〉, (11)

〈σ̇ k
z 〉 = 2i

(
gk∗

eff 〈c†〉〈σ k
−〉 − gk

eff 〈σ k
+〉〈c〉)

−(
γ// + γ k

m

)(〈
σ k

z

〉 + 1
) + γ//P

(
1 − 〈

σ k
z

〉)
, (12)

where ω′k
0 = ω0 + δωk

0 and ω′
c = ωc + δωc are the modified

frequencies of the kth QE and lasing mode, respectively,
with δωk

0 = −|gk
a|2�ω0/|�0|2 and δωc = g2

1�ωc/|�c|2 being
the frequency shifts due to the perturbation of plasmonic
mode, where �X = �ωX − iκa/2 with �ωX = ωa − ωX be-
ing the frequency detuning and indices X = c, 0. gk

eff = gk
c −

gk
ag1/�c is the effective coupling strength between the las-

ing mode and the QE, which is complex-valued, and its
imaginary part represents the plasmon-mediated dissipative
interaction. The effective decay rates of lasing mode and QE
are κeff = κc + κm and γ k

eff = γ⊥ + γ k
m, respectively, where

κm = g2
1κa/|�c|2 and γ k

m = |gk
a|2κa/|�0|2 are the plasmon-

induced decay rates. The modified MB Eqs. (10)–(12) have
the same form as the MB equations of a single-mode cavity
[16,19], but replace the original decay rates and coupling
strength by the effective parameters γ k

eff , κeff , and gk
eff , and thus

describe the effective interaction between the lasing mode
and the QEs, as Fig. 1(b) depicts. Particularly, the complex-
valued gk

eff indicates that what distinguishes the hybrid cavity

from a single-mode cavity is that the plasmon-mediated QE-
cavity interaction demonstrates both coherent and dissipative
characteristics. It also indicates that the plasmonic mode
enhances the magnitude of QE-cavity coupling strength by
a factor α = 1 + |g1ga/gc�c|, which is mainly contributed
by the coherent component for large plasmonic-photonic
detuning.

In MB equations, the lasing threshold is mainly determined
by the cavity decay rate and the coupling strength between
the gain medium and the lasing mode. These two parameters
of a cavity can be extracted from the spectral density, which
fully governs the interaction of a QE with an arbitrary electro-
magnetic (EM) environment [40]. For a single-mode cavity, in
general, the spectral density presents a Lorentzian line shape,
while the hybrid cavity is non-Lorentzian [26,38,41,42]. How-
ever, since the modified MB equations have the same form as
the MB equations of a single-mode cavity, the spectral density
of effective interaction in plasmonic-photonic cavity is still the
standard Lorentzian function:

Jeff (ω) = |geff |2 κeff/2

(ω − ω′
c)2 + (κeff/2)2 . (13)

On the other hand, the exact spectral density of a hybrid
cavity can be analytically derived from the cavity quantum-
electrodynamics (cQED) model (see Appendix C for a
detailed derivation), which yields

J (ω) = −g2
c Im [Jc(ω)] − 2gagc Im [Jac(ω)] − g2

a Im [Ja(ω)],
(14)

with

JX (ω) = χX (ω)
[
1 − g2

1χa(ω)χc(ω)
]−1

, (15)

Jac(ω) = g1χa(ω)χc(ω)
[
1 − g2

1χa(ω)χc(ω)
]−1

, (16)

where χX (ω) = [(ω − ωX ) + iκX /2]−1 for X = a, c. Fig-
ure 1(c) compares Jeff (ω) with J (ω) around the resonance
frequency of the lasing mode for �ca � 0.6eV, where it
shows good accordance between two models since in this
case J (ω) approximates the Lorentzian line shape. Therefore,
the modified MB equations can accurately describe the lasing
action in hybrid cavity in the case of large plasmonic-photonic
detuning.

The modified MB equations always have a trivial zero so-
lution, while the nontrivial solution corresponds to the lasing
action, which can be found from the characteristic matrix of
Eqs. (10) and (11),(

ω′
c + �c0 − i γeff

2 − ωs −geiθ
〈
σ s

z

〉
Ngeiθ ω′

c − i κeff
2 − ωs

)
, (17)

where we let geff ≡ geiθ . ωs is the lasing frequency and �c0 =
ω′

0 − ω′
c stands for the frequency detuning between the QE

and the lasing mode. By separating the real and imaginary
parts of the above characteristic matrix and setting to zero
[43], we can find that the minimum steady-state population
inversion is 〈σ s

z 〉 = κeff γeff /4Ng2 cos2(θ ), which yields the
minimum lasing threshold, achieved at �c0 = (γeff − κeff )
tan (θ )/2; the lasing frequency is determined as ωs = ω′

c −
κeff tan(θ )/2 (see details in Appendix B). On the other hand,
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Eqs. (10) and (12) give the steady-state photon number,

nc ≡ |c|2 = n−1
sat

(
1 − 〈

σ s
z

〉)
(P + vm) − 2vm〈

σ s
z

〉 , (18)

where vm = 1 + γm/γ// and the saturation photon number
nsat = 8g2 cos(θ )2/γ//γeff . It is worth noting that gcos(θ ) is
the real part of geff , and thus represents the magnitude of the
coherent component of the effective QE-cavity interaction.
It implies that the lasing is only determined by the coherent
light-matter interaction, which distinguishes from the quan-
tum dynamics of QE interacting with hybrid cavity, where the
dissipative interaction is crucial for manipulating the quantum
states of system [31,32,44].

From Eq. (18), the population inversion at lasing threshold
can be found by letting nc = 0; the solution is 〈σ th

z 〉 = (Pth −
vm)/(Pth + vm). Equating 〈σ th

z 〉 with 〈σ s
z 〉, we can obtain the

analytical expression of the lasing threshold,

Pth/γ// = n̄ − vs −
√

(n̄ − vs)2 − vm[2n̄ + (vs + vp)], (19)

where vs = vm + vp, vp = γp/γ//, and n̄ = NCeff/γ//, with
Ceff = 2g2 cos(θ )2/κeff being the effective Purcell rate of
transfer of population from QE to the lasing mode [45]. For
nanolasers, in general n̄, vp � 1, the second term in the radi-
cal sign is a small quantity, and thus the lasing threshold can
be approximately expressed as Pth/γ// ≈ vm(n̄ + vp)/(n̄ −
vp); while the threshold of a single-mode cavity is P0

th/γ// =
(n̄0 + vp)/(n̄0 − vp) [16,19], where n̄0 = NC0/γ// with C0 =
2g2

c/κc. By comparing with P0
th, the physical meaning of Pth is

clear: the plasmonic antenna constitutes nonlasing modes, and
thus the lasing threshold is scaled as vm and linearly increased
with the plasmon-induced QE decay; on the other hand, the
coherent interaction between the QE and the lasing mode is
enhanced through the plasmonic antenna, but the decay of
lasing mode increases as well. Therefore, the coupling of
a microcavity to a plasmonic antenna is not always benefi-
cial to lasing. Note that both the effective coupling strength
geff and dissipation κm, γm are related to �ca and become
greater as �ca decreases. Therefore, the plasmon-photon de-
tuning �ca plays an important role in determining the lasing
threshold.

III. LASING CHARACTERISTICS

We first consider a prototype model to investigate the
lasing action of hybrid cavity. The quality factor of the mi-
crocavity is taken as 104 considering the material absorption,
and we choose a gold nanoparticle as the plasmonic antenna.
The permittivity of gold is described by the Drude model
εm(ω) = ε∞ − ω2

pl/(ω2 + iωγpl ), where ε∞ = 1 is the con-
stant background permittivity, ωpl = 4eV is the resonance
frequency, and γpl = 0.2 eV represents the collision rate [32].
The dipole moment of the QE is μ = 1e × nm [46–48]. The
SE rate of QE is evaluated as γ// ≈ 0.1 meV, which takes
into account the radiation to higher order modes of plasmonic
antenna. The dephasing rate γp = 15 meV corresponds to the
typical linewidth of QE at room temperature [23,47,49]. It
is worth noting that the coupling strengths gc, ga, and g1

are not independent parameters but determined by the mode
volumes of microcavity (Vc) and plasmonic antenna (Vm); see

Appendix D for the relation between the coupling strength
and the mode volume of optical resonator. Therefore, in the
following study, we investigate the lasing action in terms
of mode volumes instead of coupling strengths. The mini-
mum mode volume of the PhC microcavity is given by Vc ∼
(λ/2n)3, where λ and n are the free-space wavelength and the
refractive index of the medium, respectively. While for PhC
slab [50], nanobeam [51,52], and whispering-gallery-mode
(WGM) microcavities [26,42,53], the mode volume will be
larger without elaborate design [54], which is typically on the
order of (λ/n)3. The mode volume of the plasmonic antenna
ranges from 104 nm3 to below 102 nm3, according to different
shapes [26,35,55].

Figure 2(a) shows the lasing threshold of hybrid cavity
as the function of plasmonic mode volume Vm and plasmon-
photon detuning �ca with 40 QEs, normalized by that of
a bare microcavity. The mode volume of microcavity Vc =
0.15 μm3 corresponds to gc = 0.31 meV. An optimal param-
eter (Vm, �ca)=(1.8 × 104 nm3, 0.68 eV) can be found for
a minimum threshold, demonstrating a 30% reduction com-
pared to a bare microcavity. On the other hand, we can see
that a 25% reduction of threshold can be achieved in a wide
range of parameters, with Vm > 104 nm3 and �ca > 0.5 eV,
and the threshold reduction only excludes the region of small
Vm and �ca. It shows that the hybrid cavity provides a flexi-
ble and robust platform for realizing low-threshold nanolaser,
without requiring the precise control of system parameters. As
Eq. (19) indicates, the threshold is determined by the Purcell
rate and the plasmon-induced QE decay, which we plot in
Figs. 2(b) and 2(c), respectively. We can see that the small Vm

and �ca indeed produce larger Ceff, however, the enhancement
of Ceff is much smaller than γm. For Vm = 1.5 × 104 nm3,
γm manifests a threefold enhancement when �ca decreases
from 0.7 eV to 0.3 eV, while the enhancement of Ceff is less
than 15% due to the great plasmon-induced dissipation of
microcavity at small �ca. Furthermore, as we discuss above,
the threshold is linearly increased with γm. These two fac-
tors together make the small �ca unsuitable for reducing
the lasing threshold, and the same conclusion can be drawn
for Vm.

Figures 2(d) and 2(e) show another configuration with
a smaller mode volume of microcavity Vc = 0.06 μm3, and
thus stronger QE-cavity interaction. In this case, the min-
imum threshold achieves at smaller Vm and larger �ca. A
37% reduction of lasing threshold is found, with the optimal
parameters (Vm, �ca)=(6 × 103 nm3, 1.08 eV). The threshold
curves shown in Fig. 2(f) imply that the hybrid cavity is suit-
able for QEs operating at near infrared, such as InAs/GaAs
QDs [56,57] and InAs/InP QDs [58], and are thus promising
in fabricating the room-temperature nanolaser operating at
communication bands.

Figure 3(a) plots the normalized lasing threshold of a hy-
brid cavity as the function of �ca and QE number N , for
mode volumes Vm = 1.5 × 104 nm3 and Vc = 0.15 μm3. The
minimal QE number for lasing a hybrid cavity is Nmin =
21, while the bare microcavity needs more than 30 QEs
to lase. However, we can see that N reaches the minimum
at �ca = 0.4 eV and becomes larger as �ca increases. This
phenomenon can be understood from Eq. (18), which indi-
cates that the lasing requires the minimal QE number Nmin ≈
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FIG. 2. (a)–(c) Contour plot of Pth/P0
th, Ceff/C0, and γm/γ// versus Vm and �ca. The white dashed-dotted line traces the minimum Pth.

(d) and (e) are the same as (a) and (b), respectively, but for Vc = 0.06 μm3 and N = 15. (f) Lasing threshold versus �ca for various Vm. Other
parameters are the same as (d).

(2γp + γ//Pth )/4Ceff . Since we assume a large γp, then Nmin

mainly depends on Ceff, which reaches the maximum at �ca ≈

FIG. 3. (a) Contour plot of Pth/P0
th as a function of N and �ca.

The white area is the parameter region where the lasing can occur
in the hybrid cavity but not in the microcavity, while in the gray
area both hybrid and microcavity cannot lase. The mode volumes are
Vm = 1.5 × 104 nm3 and Vc = 0.15 μm3. (b) is the same as (a) while
Vc = 0.06 μm3. (c), (d) nc and the corresponding linewidth �v as a
function of incoherent pump rate for N = 20 and Vm = 6 × 103 nm3.
Other parameters are the same as (b).

0.35 eV, as Fig. 2(b) shows. The increasing of the QE number
rapidly decreases the threshold pump to the value that is
comparable to γm, thus γm takes effect and the optimal �ca

corresponding to Nmin becomes larger. For the microcavity
with Vc = 0.06 μm3, stronger QE-cavity interaction lowers
the requirement of the QE number to lase, and Nmin for
both kinds of cavities are close, as Fig. 3(b) shows. Even
in this case, the hybrid cavity can demonstrate a significant
reduction of lasing threshold with small N . Therefore, we
can expect that the hybrid cavity has a prominent advantage
in few-atom lasing; however, it requires QME [Eq. (4)] in-
stead of the semiclassical MB equations to describe such a
nanolaser.

On the other hand, Figs. 3(a) and 3(b) show that a QE
ensemble with large N seems to diminish or even reverse
the positive effect of the introduced plasmonic antenna.
Figure 3(c) compares the input-output curves of a bare micro-
cavity and hybrid cavity with QE number N = 20. It shows
that though the lasing threshold of the bare microcavity is
lower than the hybrid cavity for �ca = 0.6 eV, its field inten-
sity demonstrates an early self-quenching around P = 150γ//,
where the averaged photon number is about 125 and much
smaller than the maximum nc of the hybrid cavity, which can
reach ∼200 for �ca = 0.6 eV and ∼270 for �ca = 1.2 eV.

Besides the threshold and field intensity, linewidth is an-
other important quantity for characterizing lasing behavior.
To evaluate the linewidth, we rewrite the atomic polarization
and cavity field operators as the sum of a steady-state term
X s and a fluctuation term δX , i.e., X = X s + δX [59,60].
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The linearization of Eqs. (10) and (11) yields the following
equations for fluctuations:

δv̇− = −γeff

2
sec(θ )eiθ δv− + geiθ

(〈
σ s

z

〉
δc + δσz〈cs〉) + Fv−

(20)

δċ = −κeff

2
sec(θ )eiθ δc + Ngeiθ δv−, (21)

where v− = −i〈σ−〉, and we introduced the Langevin noise
operator for QE polarization Fv− . The phase quadrature for
field fluctuation, which is related to the linewidth of laser field,
is expressed as δϕ = Im[δc − δc∗]/2i. With θ ≈ 0, which is
true for |�ca| � |�0c|, the fluctuation spectrum for phase
quadrature of the cavity field can be obtained from Eqs. (20)
and (21),

(δϕ)ω = Dv+v−

2ω2

N2g2 cos(θ )2

ω2 + (κeff + γeff )2/4
, (22)

where we have used the correlation function
〈Fv+ (ω)Fv− (ω′)〉 = 2Dv+v−δ(ω + ω′), with the diffusion
coefficient 2Dv+v− = γeff (〈σ s

z 〉 + 1)/2, according to the
fluctuation-dissipative theorem [40,61]. From Eq. (22),
we can evaluate the low-frequency asymptotic of the
spectral correlation function for phase quadrature component
as 〈δϕ(ω)δϕ(ω′)〉 = ncω

−2�vδ(ω + ω′) [62], where the
linewidth �v is given by

�v = κcκeffγeff

(κeff + γeff )2

h̄ω′
c

Pout
N2

〈
σ s

ee

〉
Ceff , (23)

where Pout = h̄ω′
cκcnc is the mean power of the laser field

exciting the cavity and 〈σ s
ee〉 = (〈σ s

z 〉 + 1)/2.
In Fig. 3(d), we plot the linewidth of the laser field. We can

see that even the hybrid cavity with �ca = 0.8 eV has a lower
threshold and higher field intensity than a bare microcavity;
it features comparable phase and intensity fluctuations for
P < 50γ//, implying that the plasmonic antenna introduces
extra dissipation to the system. However, the advantage of
the hybrid cavity is obvious at high pump rate. For example,
the linewidth of the hybrid cavity with �ca = 0.6 eV can be
narrower than the bare microcavity when P > 120γ//; while
for the hybrid cavity with �ca = 1.2 eV, a 50% narrowing of
linewidth can be found at P = 150γ//.

In Fig. 4(a), we compare the self-quenching and the output
power of laser field for a hybrid cavity and bare microcavity.
For a configuration of a hybrid cavity with parameters Vm =
1.5 × 104 nm3, Vc = 0.15 μm3, and �ca = 0.7 eV, a QE num-
ber N = 40 can sustain lasing output at P = 350γ//, while for
a bare microcavity the lasing action terminates at P = 180γ//.
Furthermore, we can see that even the enhancement of lasing
output power of the hybrid cavity drops as N increases [see η

plotted in the right of Fig. 4(a)], the difference of termination
pump rate enlarges.

In the end of this section, we address an important issue:
to what extent the lasing threshold can be reduced by us-
ing a hybrid cavity. Figure 4(b) plots the minimum of the
normalized threshold as the function of |g1| and ga instead
of mode volumes, which is beneficial to explore the limit
of threshold reduction. It shows that the strong plasmon-
photon interaction is favorable and a coupling strength of
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FIG. 4. (a) Contour plot of nc of hybrid cavity versus N and P.
The parameters are Vm = 1.5 × 104 nm3, Vc = 0.15 μm3, and �ca =
0.7 eV. The dashed lines denote the ratio of nc of hybrid cavity to
that of microcavity. The solid black line plots the boundary where
the lasing terminates in microcavity, while the gray area indicates
the lasing termination in hybrid cavity. η = max[nc]/max[n0

c ] is the
enhancement of the maximum lasing output for hybrid cavity, where
n0

c is the steady-state photon number of bare microcavity. (b) Contour
plot of the minimum Pth/P0

th as the function of the coupling strengths
of g1 and ga for N = 10 and gc = 0.54 meV. The dashed lines indi-
cate the corresponding plasmon-photon detuning �ca = 0.6, 0.8, 1.0
and 1.2 eV.

|g1| > 20 meV is required for reducing the threshold. This
value is easily achieved for nanophotonic structures like
the dimer rod-on-nanobeam [27,52]. Figure 4(b) also shows
that with |g1| = 40 meV and moderate QE-plasmon coupling
strength (ga ≈ 50 meV), more than 50% reduction of the las-
ing threshold is achievable. A 70% reduction of threshold
can also be found with |g1| = 70 meV; however, a coupling
strength exceeding 50 meV is hard to achieve for plasmon-
photon interaction, which may require elaborate design of a
hybrid cavity [52,54].

IV. A PHYSICAL REALIZATION

We now go beyond the prototype model and demonstrate
the lasing threshold reduction in a realistic hybrid cavity.
Figure 5(a) depicts the structure and the geometry parameters
of the hybrid cavity, which is based on a SiN WGM mi-
crodisk resonator, with a plasmonic antenna on the top of the
microdisk. For a QE oriented at the radial direction of the mi-
crodisk and located in the gap center of the antenna, Fig. 5(b)
shows the Purcell factor P(ω) obtained from EM simulations
in the frequency range of 1.4 eV to 1.7 eV, where the hybrid
cavity manifests about 20 times enhancement of the Purcell
effect compared to a bare microcavity. The spectral density
connects with the Purcell factor through relation P(ω) =
2πJ (ω)/γ// + 1. Figures 5(c) and 5(d) compare the spec-
tral density around two cavity resonances ωc = 1.5670 eV
and 1.5151 eV, respectively. The former corresponds to the
WGM mode for the maximum Purcell factor of the hybrid
cavity.

To investigate the lasing characteristics of the hybrid
cavity, we need to determine the coupling strengths in
modified MB equations. This can be done by fitting the
spectral density of hybrid cavity using the analytical ex-
pressions Eqs. (14)–(16) derived from the two-mode cQED
model. Taking the cavity resonance ωc = 1.5670 eV for an
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FIG. 5. (a) Schematic diagram of a hybrid cavity consisting of a
WGM microcavity and a gold dimer rods. The gap of gold dimer is
30 nm, and the diameter of rods is 40 nm. Other geometry parameters
are indicated in the figure. The refractive index of microcavity is
n = 2, the permittivity also has an imaginary component of 4 × 10−6

to include the material absorption. (b) Purcell factor for plasmonic
antenna, microcavity, and hybrid cavity. (c), (d) The fitting results
of the spectral density of hybrid cavity for two cavity resonances,
ωc = 1.5670 eV and 1.5151 eV, respectively. The fitting is based on
the cQED model of the spectral density given by Eqs. (14)–(16). (e)
nc of hybrid cavity and microcavity as the function of pump rate P
for N = 100. The inset compares nc at the low pump. (f) shows the
corresponding time evolution of nc for hybrid cavity (upper panel)
and microcavity (lower panel) at P = 30γ// in (e).

example, the parameters of bare components are evaluated
as (κc, gc) = (0.2958 meV, 29.33 μeV) and (ωa, κa, ga) =
(2.25 eV, 255 meV, 3.31 meV) for microcavity and plasmonic
antenna, respectively. Subsequently, the plasmon-photon in-
teraction is determined as g1 = −20.2 meV by simple curve
fitting using Eqs. (14)–(16). The black dashed lines in
Figs. 5(c) and 5(d) show the analytical results, where
we can see good accordance between the EM simula-
tions and the cQED model. Note that for the WGM
mode of ωc = 1.5151 eV [Fig. 5(d)], we obtain (κc, gc) =
(0.3093 meV, 30 μeV), while other parameters remain the
same as Fig. 5(c).

Figure 5(e) compares the input-output curves of a hybrid
cavity and bare microcavity for various ωc, where the WGM
mode of ωc = 1.4627 eV cannot lase in a microcavity. The
lasing threshold of a hybrid cavity exhibits a reduction of
about 40% for the other two WGM modes. Furthermore,
the lasing output of a hybrid cavity still linearly increases at

P = 80γ// with nc > 600, while the bare microcavity reaches
the maximum of nc ≈ 200. Figure 5(f) displays the time
evolution of the laser field intensity, where the hybrid cav-
ity starts to lase at 4 ps after applying the QE pump, and
reaches the steady state within 6 ps. By contrast, the las-
ing action of bare microcavity onsets at around 200 ps, and
takes 50 ps to reach the maximum. The results not only
confirm the lasing threshold reduction of a hybrid cavity but
also demonstrate the advantages in fast response and switch-
ing of lasing action due to the introduction of plasmonic
antenna.

Finally, it is worth noting that the above results and conclu-
sions are also valid for other configurations of hybrid cavities,
for example, where the plasmonic antenna is inside the WGM
resonator [42] or replaced by 2D transition metal dichalco-
genide materials [63,64], since their spectral densities share
similar features with the plasmonic-photonic cavity studied in
this paper.

V. CONCLUSION

In conclusion, we propose a general method to reduce the
lasing threshold of various microcavity-based nanolasers by
coupling to an off-resonant plasmonic antenna, and develop
the corresponding two-level nanolaser theory. We find that
compared to a bare dielectric microcavity, a hybrid cavity with
suitable plasmon-photon detuning can have prominent advan-
tages in terms of lasing threshold, linewidth, output power,
and switching time at a wide range of parameters. Our paper
opens a pathway for realizing low-threshold and high-power
nanolasers at ambient conditions.
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APPENDIX A: DERIVATION OF THE MODIFIED
MAXWELL-BLOCH EQUATIONS

The Hamiltonian of the system under the RWA is written
as

H = H0 + HI , (A1)

with

H0 = ωaa†a + ωcc†c + ω0

N∑
k

σ k
+σ k

−, (A2)

HI =
N∑
k

gk
a

(
a†σ k

− + σ k
+a

) +
N∑
k

gk
c

(
c†σ k

− + σ k
+c

)
+ g1(a†c + ac†). (A3)
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The expectation value of operator O is given by 〈Ȯ〉 =
Tr[iO[ρ, H] + OLLi (ρ)], where ρ is the density ma-
trix and the Lindblad superoperators LLi (ρ) takes the
form

LLi (ρ) = 1

2

(
2LiρL†

i − {
L†

i Li, ρ
})

(A4)

with L1 = √
Pγ//σ+ for QE pump, L2 = √

γ//σ− for QE SE,
L3 = √

γpσz for QE dephasing, L4 = √
κaa a for plasmonic

decay, and L5 = √
κcc for microcavity decay. We thus can

obtain the following equations of motion:

ȧ = −i
(
ωa − i

κa

2

)
a − i

N∑
k

gk
aσ

k
− − ig1c, (A5)

ċ = −i
(
ωc − i

κc

2

)
c − i

N∑
k

gk
cσ

k
− − ig1a, (A6)

σ̇ k
− = −i

(
ω0 − i

γ⊥
2

)
σ k

− + igk
aσ

k
z a + igk

cσ
k
z c, (A7)

σ̇ k
z = 2igk

a

(
a†σ k

− − σ k
+a

) + 2igk
c

(
c†σ k

− − σ k
+c

)
− γ//

(
σ k

z + 1
) + γ//P

(
1 − σ k

z

)
, (A8)

where we have neglected the QE-field correlation by factor-
izing the second-order expectation values 〈σ k

z c〉, 〈c†σ k
−〉 and

〈σ k
+c〉 into the products of the first-order expectation values

〈σ k
z 〉〈c〉, 〈c†〉〈σ k

−〉, and 〈σ k
+〉〈c〉, respectively. We also omit

the angle brackets 〈·〉 that indicate the expectation values in

Eqs. (A5)–(A8). The formal integration of Eqs. (A5)–(A7)
yields

a(t ) = a(t0)e−i(ωa−i κa
2 )t

− i
∫ t

t0

(
N∑
k

gk
aσ

k
−(τ ) + g1c(τ )

)
e−i(ωa−i κa

2 )(t−τ )dτ,

(A9)

c(t ) = c(t0)e−i(ωc−i κc
2 )t

− i
∫ t

t0

(
N∑
k

gk
cσ

k
−(τ ) + g1a(τ )

)
e−i(ωc−i κc

2 )(t−τ )dτ,

(A10)

σ k
−(t ) = σ k

−(t0)e−i(ω0−i γ⊥
2 )t

+ i
∫ t

t0

(
gk

aσ
k
z (τ )a(τ ) + gk

cσ
k
z (τ )c(τ )

)
× e−i(ω0−i γ⊥

2 )(t−τ )dτ. (A11)

The photonic mode and QEs dynamics are less affected by
plasmonic antennas for large plasmonic-photonic detuning,
and thus we can apply the Markovian approximation to obtain

c(τ ) = c(t )ei(ωc−i Kc
2 )(t−τ ), (A12)

σ k
−(τ ) = σ k

−(t )ei(ω0−i γ⊥
2 )(t−τ ). (A13)

Substituting back into Eq. (A9), we have

a(t ) = a(t0)e−i(ωa−i κa
2 )t − i

∫ t

t0

N∑
k

gk
aσ

k
−(t )ei(ω0−i γ⊥

2 )(t−τ )e−i(ωa−i κa
2 )(t−τ )dτ i

∫ t

t0

g1c(t )ei(ωc−i κc
2 )(t−τ )e−i(ωa−i κa

2 )(t−τ )dτ,

= a(t0)e−i(ωa−i κa
2 )t − i

∫ t

t0

N∑
k

gk
aσ

k
−(t )e−i((ωa−ω0 )−i

(κa−γ⊥ )
2 )(t−τ )dτ − i

∫ t

t0

g1c(t )e−i((ωa−ωc )−i (κa−κc )
2 )(t−τ )dτ. (A14)

By changing the integration variable τ to t ′ = t − τ , we can
obtain

a(t ) = a(t0)e−i(ωa−i κa
2 )t

− i
∫ t−t0

0

N∑
k

gk
aσ

k
−(t )e−i((ωa−ω0 )−i

(κa−γ⊥ )
2 )t ′

dt ′

− i
∫ t−t0

0
g1c(t )e−i((ωa−ωc )−i (κa−κc )

2 )t ′
dt ′. (A15)

Omitting the fast decay terms, we obtain

a(t ) ≈ −
∑N

k gk
aσ

k
−(t )

(ωa − ω0) − i (κa−γ⊥ )
2

− g1c(t )

(ωa − ωc) − i (κa−κc )
2

.

(A16)
Plugging Eq. (A16) back into Eqs. (A6)–(A8), we arrive at the
modified MB equations Eqs. (10)–(12) in the main text,

σ̇ k
− = −i

(
ωk′

0 − i
γ k

eff

2

)
σ k

− + igk
effσ

k
z c, (A17)

ċ = −i
(
ω′

c − i
κeff

2

)
c − i

∑
k

gk
effσ

k
−, (A18)

σ̇ k
z = 2i

(
gk∗

effc
†σ k

− − gk
effσ

k
+c

) − (
γ// + γ k

m

)(
σ k

z + 1
)

+ γ//P
(
1 − σ k

z

)
. (A19)

APPENDIX B: LASING CHARACTERISTICS

If the transition frequency of the QE does not match the
resonance frequency of the lasing mode, the lasing frequency
is not equal to either of them. We can see that Eqs. (A18) and
(A19) always have a trivial zero solution, while the nontrivial
solution corresponds to the lasing action, which can be found
from the characteristic matrix of Eqs. (A18) and (A19) [43],(

ω′
c + �c0 − i γeff

2 − ωs −geiθσ s
z

Ngeiθ ω′
c − i κeff

2 − ωs

)
, (B1)

where ωs is the lasing frequency and �c0 stands for the
frequency detuning between the QE and the lasing mode.
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We made the assumption of an identical QE and let
geff ≡ geiθ . By separating the real and imaginary parts of

the determinant of Eq. (B1) and setting to be zero, we
have

ω2
s − (�c0 + 2ω′

c)ωs + ω′2
c + �c0ω

′
c − κeffγeff

4
+ σ s

z g2N cos(2θ ) = 0, (B2)

ωs(κeff + γeff ) − (κeff + γeff )ω′
c − κeff�c0 + σ s

e g2N sin(2θ ) = 0. (B3)

The solutions of Eqs. (B2) and (B3) with σ S
z > 0 are

ωs = ω′
c + �c0 + (κeff + γeff ) cot(2θ ) −

√
[�c0 + (κeff + γeff ) cot(2θ )]2 + 4κeff [γeff − �c0 cot(2θ )]

2
, (B4)

σ s
z = csc(2θ )

2g2N

(
�c0(κeff − γeff ) − (κeff + γeff )2 cot(2θ )

)

+
(κeff + γeff )

√
�2

c0 + κ2
eff + γ 2

eff + 6κeffγeff + [
(κeff − γeff )2 − �2

c0

]
cos(2θ ) − 2�c0(κeff − γeff ) sin(2θ )

2
√

2g2N sin(2θ )2
.

(B5)

We find the optimal �c0 for the minimal lasing threshold by solving ∂σ s
z /∂�c0 = 0, and the result is �c0 = (γeff − κeff ) tan(θ )/2.

Substituting back into Eqs. (B4) and (B5), we can obtain the steady-state population inversion σ S
z = κeff γeff /4Ng2 cos2(θ ) and

the corresponding lasing frequency ωs = ω′
c − κeff tan(θ )/2.

APPENDIX C: ANALYTICAL EXPRESSIONS
OF THE SPECTRAL DENSITY OF HYBRID CAVITY

The hybrid cavity constructs a structured environment that
features a non-Lorentzian spectral density, which in general
requires to be treated as continuous bosonic modes in cQED
[65,66]. By decomposing the system in a non-Markovian core
(QE cavities and cavity-cavity interaction) and Markovian
environment (cavity-reservoir interaction), the Hamiltonian of
the hybrid cavity reads

H ′ = H ′
0 + H ′

I , (C1)

with the free Hamiltonian H ′
0 and interaction Hamiltonian H ′

I ,

H ′
0 = ωaa†a + ωcc†c +

∑
μ

ωμα†
μαμ, (C2)

H ′
I =

∑
μ

[(
Vμa† + Uμc†

)
αμ + α†

μ

(
V ∗

μ a + U ∗
μc

)]
+g1

(
a†c + c†a

)
, (C3)

where the Markovian environment is described by a bosonic
reservoir, with αμ and ωμ being the annihilation operator
and frequency of the μth mode, respectively. Vμ and Uμ are
the corresponding coupling strengths to plasmonic antenna
and microcavity, respectively. We can obtain the equations of
motion for three bosonic fields:

ȧ = −iωaa − ig1c − i
∑

μ

Vμαμ, (C4)

ċ = −iωcc − ig1a − i
∑

μ

Uμαμ, (C5)

α̇μ = −iωμαμ − i
(
V ∗

μ a + U ∗
μc

)
. (C6)

Formally integrating the equation for αμ, we have

aμ = e−iωμ(t−t0 )α0
μ − i

∫ t

0
dτe−iωμ(t−τ )

(
V ∗

μ a + U ∗
μc

)
, (C7)

where a0
μ stands for the initial conditions at t = 0. The

cavity-reservoir interaction follows the Markovian dynamics,
thus it is sufficient to use the zero-order approximation
a(τ ) ≈ a(t )eiωa (t−τ ) and c(τ ) ≈ c(t )eiωc (t−τ ). Substituting into
Eq. (C7), we obtain

aμ = −i
∫ t

0
dτei(ωμ−ωa )(τ−t )V ∗

μ a − i
∫ t

0
dτei(ωμ−ωc )(τ−t )U ∗

μc,

(C8)
where we assume the initial condition a0

μ = 0. The time inte-
gration yields a delta function and thus

aμ = −iπδ(ωμ − ωa)V ∗
μ a − iπδ(ωμ − ωc)U ∗

μc. (C9)

Plugging back into Eqs. (C4) and (C5), we arrive at

ȧ = −i
(
ωa − iκa

2

)
a − i

(
g1 − i

√
κ0

a κc

2

)
c, (C10)

ċ = −i
(
ωc − iκc

2

)
c − i

(
g1 − i

√
κ0

a κc

2

)
a, (C11)

where κ0
a = 2π |V |2, κ0

c = 2π |U |2 and we assume the re-
sponse of reservoir is flat enough compared to the linewidth
of cavities so V and U are frequency independent and the
subscript μ has been dropped. Note that κ0

a represents the
radiative cavity decay. The typical value of κ0

a for plasmonic
antenna is ∼10 meV, and thus we can assume a real coupling
strength between two cavities. The spectral density of hybrid
cavity is given by [38,65,66]

J (ω) =
∫ +∞

−∞
dτ

〈
[gaa(τ ) + gcc(τ )]

[
gaa†(0) + gcc†(0)

]〉
eiωt ,

(C12)

where the two-time correlation functions 〈a(τ )a†(0)〉,
〈a(τ )c†(0)〉, and 〈c(τ )c†(0)〉 can be calculated using the quan-
tum regression theorem with Eqs. (C10) and (C11). Then we
can obtain the analytical expression of the spectral density of a
hybrid cavity using the independent parameters of two cavities
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and their coupling strength, which is given by

J (ω) = −g2
c Im [Jc(ω)] − 2gagc Im [Jac(ω)] − g2

a Im [Ja(ω)],

(C13)

with

JX (ω) = χX (ω)
[
1 − g2

1χa(ω)χc(ω)
]−1

, (C14)

Jac(ω) = g1χa(ω)χc(ω)
[
1 − g2

1χa(ω)χc(ω)
]−1

, (C15)

where χX (ω) = [(ω − ωX ) + iκX /2]−1 for X = a, c. In
Fig. 1(c) in the main text, the spectral density plotted with
dashed lines are given by Eqs. (C13)–(C15).

For large plasmonic-photonic detuning, we can replace
χa(ω) by χa(ωa) in Eq. (C13). Then we can obtain the ap-
proximate expressions of three terms on the right-hand side
of Eq. (C13), which allows us to find the maximal spectral
density around the cavity frequency ω′

c. The first term is the
plasmon-modified cavity response:

− Im [Jc(ω)] =
κeff
2

(ω − ω′
c)2 + (

κeff
2

)2 . (C16)

We can see that this term shows a standard Lorentzian line
shape with slight frequency shifting and broaden linewidth.
The second term stands for the interference of two cavities:

− Im [Jac(ω)] = 1

g1

κm
2 (ω − ω′

c) + δωc
κeff
2

(ω − ω′
c)2 + (

κeff
2

)2 . (C17)

For nanolasers 2δωc � κm, the maximum approximately
achieves at ω = ω′

c, and the corresponding linewidth is κeff.
The last term is the cavity-modified antenna response, which
presents a Fano line shape,

− Im [Ja(ω)] = κm

2g2
1

(� + q)2 + C1

(1+rc )2

�2 + 1
, (C18)

where � = 2(ω − ω′
c)/κeff , rC = κm/κc, q = 2δωc/κeff , and

C1 = 4g2
1/κaκc. For C1 � |q| > 1, the linewidth is ∼κeff and

the maximum is located at ω′
c. Then the total spectral density

at ω′
c is given by

J (ω′
c) = 2

κeff

(
g2

c + 2gagcδωc

g1
+ g2

a

κmκc

κaκeff

)
. (C19)

One can verify that if κeff ≈ κc, then J (ω′
c) = 2|geff |2/κeff ,

therefore around the cavity frequency ω′
c the spectral den-

sity J (ω) fits well with the effective model Jeff (ω) =
|geff |2 κeff/2

(ω−ω′
c )2+(κeff /2)2 , as Fig. 1(c) shows. The equivalence of

two methods lies in the fact that the spectral density of a hy-
brid cavity with large plasmonic-photonic detuning presents
a nearly perfect Lorentzian line shape around the resonance
frequency of the photonic mode. Therefore, the modified
MB equation is consistent with the quantum description of
spectral density. The consistence breaks down in the case
of small plasmonic-photonic detuning, where the plasmonic

mode strongly affects the dynamics of microcavity and QEs,
and the spectral density evolves into a Fano shape.

APPENDIX D: EVALUATION OF COUPLING
STRENGTHS FROM MODE VOLUMES

The coupling strength between the QEs and the photonic
mode is given by

gc = d · Ec, (D1)

with cavity field

Ec =
√

h̄ωc

2ε0Vc
f (r0)(c† + c), (D2)

where f (r0) is the normalized electric field at QE position r0,
and ε0 is the permittivity of vacuum.

For a metallic nanoparticle, the electric field of a dipolar
plasmonic mode interacting with an x-oriented dipole emitter
(transversa plasmon-QE coupling) reads

Ea =
√

h̄ωa

2ε0εgVm
G(r0)(a† + a), (D3)

where εg = Re[ ∂ (ωεm )
∂ω

|ω=ωa ], with εm being the metal permit-
tivity. The mode distribution G(r) is given by [55,67]

G(r) =
{

nx r < R
−R3

r3 [3(nx · nr )nr − nr] r > R,
(D4)

where nx/nr is the unitary vector along r/x direction and R
is the radius of nanoparticle. The mode volume of plasmonic
mode in Eq. (D3) can be evaluated as [55]

Vm =
∫ R

0 |G(r)|2εgd3r + ∫ ∞
R |G(r)|2εbd3r

|G(0)|2εg

= 4

3
πR3 2εb + 1

εb + 1
, (D5)

where εb is the background permittivity. Then the coupling
strength between the QEs and the plasmonic mode is straight-
forward,

ga = d · Ea = μ

√
h̄ωa

2ε0εgVm

R3

r3
, (D6)

and the coupling strength of plasmonic-photonic interaction
can be calculated as

g1 = −2πR3h̄
√

ω1ωc

εgVmVc
|f (ra)|, (D7)

where ra is the location of nanoparticle. We assume
|f (ra)| = 1 in calculations, and replace the physical radius R
of nanoparticle by its mode volume in Eqs. (D6) and (D7)
using Eq. (D5), so all coupling strengths can be determined
through mode volumes.
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