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Optical properties of semiconducting monolayer transition metal dichalcogenides have received a lot of
attention in recent years, following the discovery of the valley selective optical population of either K+ or K−
valleys at the direct band gap, depending on the polarization of the incoming light. We use group theoretical
selection rules, as well as ab initio DFT calculations, to investigate whether this valley selectivity effect is
also present in x-ray optical transitions from the flat core level of the transition metal atom to the valence and
conduction band K valleys. Valley selectivity is predicted for s, p1/2, and p3/2 edges in transitions to and from
the valence band edges with circularly polarized radiation. Possible novel applications to the diagnostics of
valleytronic properties and intervalley dynamics are investigated and the feasibility of ultrafast pump-probe and
Kerr rotations experiments with suitable soft-x-ray free-electron laser sources is discussed.
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I. INTRODUCTION

Two-dimensional transition metal dichalcogenides (2D-
TMD) provide a very interesting platform for the investigation
of two-dimensional solids, with some specific features that
differentiate them from either graphene or hexagonal boron
nitride (hBN) [1]. In particular, the semiconducting members
of this family (MX2 compounds, with M = Mo, W and X =
S, Se, Te) display interesting optical properties in the funda-
mental gap region; the monolayer gap is direct, and located
at two distinct opposite corners of the Brillouin zone, denoted
in the following by K+, K−, referred to as “valleys,” where
pronounced exciton effects are observed and where selective
optical population of either valley, depending on the sign of
the circularly polarized incoming light [2,3], is observed. This
effect has led to investigate the potential use of these “val-
leytronics” effects for advanced technological applications.
The origin of the effect in 2D-TMD and other compounds
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with the same symmetry is ascribed to the lack of inversion
symmetry and to the mirroring of the K+, K− band extrema
under time-reversal symmetry [4]. The role of the spin-orbit
interaction, frequently emphasized in the literature, however,
is not essential (see Appendix A for a numerical example).

One of the hotly discussed topics is the understanding and
possible control of the decay time of the difference in occupa-
tion of the two valleys, related to the dynamics of electrons,
holes and excitons in interaction with the other elementary
excitations of the two-dimensional crystal. In this context,
it may be of interest to analyze alternative excitation paths,
that for example do not simultaneously generate valence band
holes and conduction electrons in the selected band valley.

Here we consider the possibility to excite electrons from
core levels by absorption of x-ray photons, or to fill core
holes by valence electrons in x-ray emission processes, in-
vestigating possible valley selectivity effects of the photon
polarization. Given that the conduction and valence band val-
leys have more than 75% metal d-states character [5], it is
to be expected that the most intense dipole allowed transitions
occur from the p-like core levels of the transition metal atoms,
for example, at the L2,3, M2,3, or N2,3 edges, corresponding
to 2p, 3p, 4p core levels (although the low, parity-breaking
lattice symmetry allows other possibilities, as we shall soon
see).

Very recently, ultrafast far-UV and soft-x-ray spectroscopy
investigations of transition metal dichalcogenides films, after
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excitation with a pump laser (with duration <5 fs), have been
performed using high harmonic generation sources [6,7], and
a free-electron laser [8], with a pump duration �50 fs; the
samples, however, were multilayer films with several tens
of nm thickness, and the photons were not circularly polar-
ized. These pioneering experiments were therefore addressing
interesting issues of carrier dynamics, but, because of the
sample and photon source properties, were not accessing val-
leytronic properties, which are the focus of the present work.

Practical reasons suggest to concentrate attention on rather
shallow core levels, with ionisation energies restricted to the
far UV or soft-x-ray regions. Spectroscopy with photon ener-
gies of several keV can only be performed with limited energy
resolution, unsuitable to differentiate band features such as
primary and secondary valleys; in addition, the photon wave
vector at such energies cannot be considered as negligible
with respect to the size of the Brillouin zone, and therefore
optical transitions cannot be described in the dipole approx-
imation, with initial and final single-electron states with the
same quasi momentum in the zone.

This paper is organized as follows. In Sec. II standard
group-theoretical techniques are applied to 2D-TMD, recover-
ing the known symmetry characters of valence and conduction
band edges [9] but also identifying the irreducible representa-
tions of the s-, p-, and d-like core-level edges and deriving
the selection rules for optical transitions, for both core and
valence excitations. The results, pointing to the valley selec-
tivity of circularly polarized x-ray transitions to the valence
bands from the s and p core-level edges, but not from the
d edges, are briefly discussed. Transitions into valence band
states, of course, require also that the Fermi level is below the
valence band top, which can occur by electrostatic gating, by
optical pumping or by p-type doping. In Sec. III, ab initio DFT
calculations of the x-ray absorption spectra are presented,
that confirm and complement the group theoretical results. In
Sec. IV, taking inspiration from existing experimental results
for multilayer TMD, we discuss possible contributions of
laser pump, soft-x-ray probe spectroscopy to the study of the
electronic properties and dynamics of valley-pumped systems.
The requirements on the soft-x-ray source (high intensity and
monochromaticity, short pulses, and variable polarization)
point in the direction of seeded free-electron lasers [10].

II. GROUP-THEORETICAL SELECTION RULES
FOR CORE ELECTRON TRANSITIONS

Van der Waals multilayer stackings of transition metal
dichalcogenides, MX2, have been investigated for many years.
The progress in the manipulation and exfoliation of two-
dimensional structures lead more recently to the fabrication
of monolayers of the 2H structure that, unlike the multilayer
versions, have a direct band gap [1]. In Figs. 1(a) and 1(b) a
schematic side and top view of the monolayer structure are
shown. It consists of three planes of a triangular arrangement
of atoms, with the metal M atoms at the central plane, sand-
wiched between the two chalcogen X planes, with a stacking
that locates metal and chalcogen atoms, when projected on
a single plane, at alternating vertices of regular hexagons. If
we denote by a the distance of two consecutive vertices of a
hexagon [Fig. 1(b)], then a is, e.g., approximately 0.182 nm

(a)

(b)

(c)

FIG. 1. Structure of MTMDs. Panel (a) shows a perspective side
view and panel (b) a top view, including the two unit vectors a1, a2

and an orthogonal cartesian frame to describe all vectors in real and
reciprocal space. (c) Brillouin zone for the two-dimensional lattice
structure, with the unit reciprocal lattice vectors b1, b2 and with the
two wave vectors of the band structure “valleys,” K+, K−. A vector
equivalent to K+ is shown for illustration purposes.

for MoS2 and 0.189 nm for WSe2, as can be derived from the
crystallographic data reproduced by Kormányos et al. [11]. In
terms of this a length, the cartesian coordinates of the lattice
unit vectors a1, a2 in terms of the x, y axes of Fig. 1(b) are

a1 = a

2
(3,

√
3), a2 = a

2
(3,−

√
3). (1)

In Fig. 1(c) the corresponding Brillouin zone (BZ) is
shown, with the unit vectors of the reciprocal lattice b1, b2
and with K+, K− as the two opposite, nonequivalent points
where the direct gap is located. It is important to note that, in
the same cartesian frame,

b1 = 2π

3a
(1,

√
3), b2 = 2π

3a
(1,−

√
3), (2)

and the K+ and K− points are not connected by a reciprocal
lattice vector,

K+ = 2π

3a
(1,

√
3/3) = −K−. (3)

Also, the star of K+ only contains (besides itself) K− because
all other vertices of the hexagonal BZ are connected to either
K+ or K− by a reciprocal lattice vector [an example is shown
in Fig. 1(c)]. It is important to remember that, since in the case
of the 2D-TMD inversion is absent, Kramers’ theorem [12]
does not apply, and nondegenerate spin bands occur through-
out the zone. Furthermore, the point group of the structure
shown in Fig. 1 is the dihedral group D3h. To determine the
symmetry properties and the selection rules for optical tran-
sitions of the Bloch functions at the K+ or at the K− point,
we have to consider the “small group” or “wave vector group”
at this point, the subgroup of D3h containing the operations
that leave this point invariant [13,14]. It easy to see that the C2

rotations and the corresponding σv mirror reflections of D3h

interchange the two (nonequivalent) vectors, and are therefore
not part of the small group. The remaining operations form the
point group C3h. This is a rather simple Abelian group, with
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six operations and six classes, each comprising one element,

E , C+
3 , C−

3 , σh, S+
3 , S−

3 , (4)

where E is the identity, and the 2π/3 rotations C3 and the
rotation-reflections S3 (about an axis perpendicular to the
layer and intersecting the center of a hexagon) are labeled
+ or −, depending on whether they are counterclockwise or
clockwise. To obtain all the required information about the
representations of the point group C3h and of other groups
we shall need later, such as the full rotation-reflection group
in three-dimensional space, O(3), many textbooks can be
consulted. In the following the notations and conventions of
the excellent compilation by Koster, Dimmock, Wheeler, and
Statz [15] (KDWS) shall be adopted.

To classify the symmetry of electronic states at the rel-
evant wave vectors K+ or K− we must first determine the
action of the six C3h operations on the corresponding Bloch
functions. We shall suitably adapt the treatment, as given in
Refs. [9,11,16], for the lowest conduction and upmost valence
bands to include the case of bands derived from core levels.

A. Symmetry character of conduction and valence levels at
K+, K−

To establish the basic methods, notations and conventions,
we sketch here the derivation of the symmetry properties and
optical selection rules for the valence to conduction band
transitions (for more details, see Appendix B).

Following the results of ab initio and semiempirical band
structure calculations, the dominant orbital character of lowest
conduction band valleys at K+ and K− is from the m =
0 d orbital of the metal atom (with a weight, e.g., for MoS2

estimated [5] at 82%). The remaining fraction is ascribed to
p orbitals of the chalcogen, but for symmetry considerations
this adds no relevant information. The Bloch function at K±
can be written in the general form [17]

�c,K± =
∑
j1, j2

eiK±·R j1 , j2 �2,0
(
r − R j1, j2

)
χ (σz ), (5)

where (see Fig. 2) the metal atomic sites are identified by the
integers j1, j2, according to

R j1, j2 = j1a1 + j2a2 + δ3, (6)

having introduced the vectors

δ1 = a

2
(1,

√
3), δ2 = a

2
(1,−

√
3), δ3 = a(−1, 0), (7)

and having shown in Fig. 2, next to a few atoms, the ( j1, j2)
integer values as examples.

In each term of Eq. (5), the first factor is the Bloch phase
factor, �2,0 is a Wannier function with l = 2, m = 0 character
and χ (σz ) denotes the spinor wave function, distinguishing
the spin up or down conduction valley. In adopting this form
of the Bloch function to discuss the symmetry properties, we
implicitly acknowledge that, in the fundamental gap region,
the crystal field effects, that lift the fivefold degeneracy of
the d orbitals of the metal atoms by several eV’s, are more
important than the spin orbit interaction, that mixes different
m and different σz values. To proceed, one must consider the
effect of the C3h operations on each factor. In doing so, we

FIG. 2. The middle plane of the monolayer structure, showing
the position of the metal atoms and the unit vectors a1, a2. Some
atoms are labeled with their j1, j2 coordinates as an example. The
three vectors δi, i = 1, 2, 3 are also shown. The dotted diagonal lines
are the wavefronts of the K+ Bloch waves, where (2 j1 + j2 − 1) is
constant (see text). The integers at the top end of the dotted lines are
(2 j1 + j2 mod 3).

follow the standard group-theoretical procedure [13–15] to
describe the effect of a space symmetry operation Ĉ on a
generic function f of the space coordinates r ≡ (x, y, z)

Ĉ f (r) = f (Ĉ−1r). (8)

As detailed in Appendix B, the Bloch phase factor at K+
transforms according to the �3 irreducible representation, and
at K− according to �2; the d-like Wannier function, however,
acquires a factor e−imφ for all rotations about the z axis; so
for m = 0 it is invariant for all rotations and also for the
perpendicular plane reflection, and therefore belongs to �1

[18]. As to the spin wave functions χ , they are by definition
a basis for the two-dimensional D+

1/2 representation of the
full rotation-reflection group O(3), where the + superscript
acknowledges that the spin pseudovector is parity even. It is
important to recall that when dealing with half-integer spin
systems we must consider the “double” groups, resulting from
introducing an additional operation E , that reverses the sign
of the half-integer spin functions, but does not affect the
space coordinates (equivalently, the additional elements of the
group are often described by adding 2π to the angle of every
rotation of the group) [13–15]; and consider only the so-called
additional representations, odd under E . When restricted to
the operations of C3h, D+

1/2 is reducible (the fact that C3h has 6
group elements (12 for the double group) and 6 group classes
(12 for the double group) implies that all irreducible represen-
tations are one-dimensional, corresponding to the absence of
spin degeneracy). We can reduce D+

1/2 (as C3h representation)
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as follows [19]:

D+
1/2 = �7 + �8. (9)

Therefore, from Ref. [20] at K+:

�3 ⊗ D+
1/2 = �3 ⊗ �7 + �3 ⊗ �8 = �10 + �12. (10)

Similarly, at K−:

�2 ⊗ D+
1/2 = �2 ⊗ �7 + �2 ⊗ �8 = �11 + �9, (11)

with the two representations corresponding to the two spin
directions.

Note that �9,11 are respective complex conjugates of the
�10,12. This is a reformulation of the time reversal symmetry
condition En(k,↑) = En(−k,↓) implied by the discussion
immediately following Eq. (3).

Consider now the top of the valence bands. The corre-
sponding dominant orbital is the metal d orbital with m = ±2
[17], schematically behaving as (x ± iy)2. We can write the
Bloch functions as

�v,K± =
∑
j1, j2

eiK±·R j1 , j2 �2,±2
(
r − R j1, j2

)
χ (σz ). (12)

In either case, namely, K+, m = +2 or K−, m = −2 it is
readily seen that the product of the Bloch factor and the
d-like Wannier function is invariant under all C3h operations
[2], belonging to the �1 identical representation. The overall
Bloch function with the spin part is a basis for the D+

1/2, and
we already know that D+

1/2 = �7 + �8.
On the basis of this symmetry assignment, it is possible

to establish the selection rules for optical transitions. The
group theoretical necessary but not sufficient prescription for
a nonvanishing transition matrix element from an initial state
ψi to a final state ψ f under the transition operator (T̂ α),

T̂ α
i, f = 〈ψi|T̂ α|ψ f 〉 =

∫
d3rψ∗

i (r)T̂ αψ f (r), (13)

can be expressed as [21]

�α ⊗ � f = �i. (14)

The fact that the “small” group of the wave vectors K+, K−
has only one-dimensional irreducible representations makes
our life much easier (do not need to specify and discuss in-
dividual rows of irreducible representations). For the valence
and conduction edges we determined the representations; for
the transition operator A · p, corresponding to dipole optical
transitions, we have the vector potential

A · p ∼
∑
k,λ

[ελbk,λeik·r + ε∗
λb+

k,λe−ik·r] · p, (15)

where ε denotes the polarization vector of mode λ = ±1, 0 for
positive circular, negative circular and linear z polarization,
respectively, and b+, b are photon creation and annihilation
operators. Including also the photon states, we can precisely
define the transition operator in Eq. (15) for a photon absorp-
tion process as

〈ψi; nλ|T̂ α|ψ f ; nλ − 1〉
= 〈ψi; nλ|[ε∗

λb+
k,λe−ik·r] · p|ψ f ; nλ − 1〉, (16)

with nλ, nλ − 1 denoting the number of photons of the λ

polarization in the initial and final state, respectively.
The transition operator (in the k −→ 0 limit) contains

therefore ελ · p (for photon emission) and ε∗
λ · p (for photon

absorption), therefore transforms like the components of the
p vector, i.e., like the l = 1 spherical harmonics, or the D−

1
representation of O(3). The reduction of D−

1 in C3h is [22]

D−
1 = �2 + �3 + �4 (17)

and from a look at the character table of C3h, keeping in mind
the convention embodied in Eq. (8) and applying it to l = 1
spherical harmonics [23], it is easy to establish that

ε+1, ε
∗
−1 ∼ (px + ipy) −→ �3,

ε−1, ε
∗
+1 ∼ (px − ipy) −→ �2, (18)

ε0 ∼ pz −→ �4,

thus assigning the proper symmetry to positive and nega-
tive circular polarization for propagation perpendicular to the
plane, and to linear polarization perpendicular to the plane.
We are especially concerned with the first two, that determine
the chirality of optical properties of MTMD. Taking Eq. (16)
into account, we identify �2, (T̂ α ∼ ε∗

+1) as the “+” circular
polarization, and �3 (T̂ α ∼ ε∗

−1) as the “−” one, following the
convention implicitly assumed in Ref. [2].

A straightforward perusal of the C3h table of multiplication
[22] and character table [24], yields the following allowed
transitions from the valence band state �7, �8, for circularly
polarized positive (+) or negative (−) photons.

At K+:

Initial Final Polarization
�7 �10 +
�8 �12 +

At K−:

Initial Final Polarization
�7 �11 −
�8 �9 −

[It may appear surprising that photons with angular mo-
mentum ±1 may connect states labeled with m = 0 with states
m = ±2. This occurs because the symmetry of the crystal
breaks full rotation invariance around the z axis (normal to
the plane). Only rotations multiples of 2π/3 survive. For such
restricted set of rotations, the values of m are to be understood
as m mod 3, so that m = 2 mixes with m = −1, m = −2 with
m = 1, etc.]

This recovers the remarkable effect of the valley selectivity
for circularly polarized photons. It is important to observe
that although the excitonic character of the observed optical
transitions at the fundamental gap is very pronounced [1], this
does not alter the selection rules derived from one-electron
Bloch functions at the relevant edges, as the excitonic wave
function satisfies those symmetries.

B. Symmetry character of core levels at K+, K−

As already mentioned in the Introduction, the core electron
levels have very distinctive features when compared to va-
lence states: one is their very localized character, so that, when
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described in terms of bands in momentum space, they have
negligible dispersion and very large effective masses. In ad-
dition, the spin-orbit splitting of core levels (except the s-like
ones) is much larger than for valence states and constitutes an
energy scale exceeding the fundamental band gap and in most
cases the typical bandwidth of valence levels (see a compila-
tion of atomic binding energies of Mo and W in Appendix E).
Before dealing with the discussion of strongly spin-orbit-split
p and d core levels, let us briefly address the s-like core
levels. This can in point of fact proceed very quickly, as the
discussion parallels completely that of the conduction band
bottom. From the point of view of the C3h group, the con-
duction band Wannier function �2,0 and the s-like function
�0,0 have exactly the same symmetry properties of invariance
under all group operations. Therefore, we obtain the sym-
metry classification of �10, �12 for the two spin orientations
at K+ and �9, �11 at K−. This is enough to conclude that,
in p-type samples, transitions to the valence band top shall
display the valley selectivity of polarized photons. Transitions
to the conduction band minima, corresponding to states with
symmetry identical to the s core levels, are forbidden.

Going back to the strongly spin-orbit split p and d levels,
it appears appropriate to modify the description of Bloch
functions as given in Eqs. (5) or (12) by diagonalizing at the
very start the spin-orbit interactions and replacing the eigen-
functions of l, m, and σz with those of j and jz. Given the very
nearly dispersionless nature of the core bands, all the 2 j + 1
values of jz are degenerate, to a very good approximation,
throughout the Brillouin zone and constitute a basis for the
D±

j representation of O(3); the ± sign ambiguity depends on
the parity of the spatial wave functions, e.g., odd for p1/2 or
p3/2 levels, even for d3/2 or d5/2, etc.

Thus, the general form of a core wave function is

�n,l, j, jzK± =
∑
j1, j2

eiK±·R j1 , j2 �n,l, j, jz

(
r − R j1, j2

)
. (19)

From the discussion of the valence levels, we learned that the
Bloch factor in each addendum transforms like �3 for K+
and like �2 for K−. Therefore, the complete Bloch function
transforms like the product representation

K+ : �3 ⊗ D±
j , K− : �2 ⊗ D±

j , (20)

with the odd D−
j representation for p core levels, and the even

D+
j for the d-like levels.
From tabulated results [22] we have the following reduc-

tions:

D−
1/2 = �9 + �10, (21)

D−
3/2 = �9 + �10 + �11 + �12, (22)

which allow us to identify the reduction of the com-
plete Bloch functions for p1/2 and p3/2 functions, i.e., for
L2, L3, M2, M3, N2, N3,... core levels. Starting with the p1/2

levels at the K+ point, from Eq. (21) they belong to the
following representations:

�3 ⊗ �9 = �8; �3 ⊗ �10 = �11, (23)

and at the K− point, to the representations

�2 ⊗ �9 = �12; �2 ⊗ �10 = �7. (24)

We are then in a position to derive the selection rules for
optical transitions to the conduction band minima, using again
Eqs. (13)–(16). The only allowed transitions are
at K+:

Initial Final Polarization
�8 �12 +
�11 �10 −

at K− :

Initial Final Polarization
�12 �9 +
�7 �11 −

We therefore conclude that the valley selectivity effect for
dipole transitions to the conduction band edges does not occur
at the p1/2-like absorption edges L2, M2, N2. This includes the
cases of intrinsic or n-type samples, where the Fermi level is in
the gap or in the conduction bands. For samples, where empty
states near the top of the valence bands (i.e., in the �7 and/or
�8 bands) occur, however, the selection rules for transitions
from the p1/2 core levels are
at K+:

Initial Final Polarization
�11 �7 +

at K−:

Initial Final Polarization
�12 �8 −

In this case of p-type samples, therefore, the valley se-
lectivity should be in principle observable at the L2, M2, N2

absorption edges. Also, x-ray emission deriving from transi-
tions from the full valence band states to core holes should
obey related selection rules (interchanging initial and final
states and the sign of the polarization).

We now consider the p3/2 levels. From Eq. (22) one ob-
tains that, at the K+ point they correspond to the following
representations:

�3 ⊗ �9 = �8; �3 ⊗ �10 = �11;

�3 ⊗ �11 = �7; �3 ⊗ �12 = �9, (25)

and at K−:

�2 ⊗ �9 = �12; �2 ⊗ �10 = �7;

�2 ⊗ �11 = �10; �2 ⊗ �12 = �8. (26)

Notice that �7 and �8 levels are present at both points, and
we know from the discussion of the valence band transitions
that these symmetries imply the valley selectivity of optical
absorption to the conduction bands. It remains to investigate
which transitions are allowed from the �9 and �11 levels to
the �10 and �12 levels at K+, and from the �10 and �12 levels
�9 and �11 levels at K−. The analysis based on Eq. (14) gives
the following results for allowed transitions
at K+:

Initial Final Polarization
�7 �10 +
�8 �12 +
�9 �12 −
�11 �10 −
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at K−:

Initial Final Polarization
�7 �11 −
�8 �9 −
�10 �11 +
�12 �9 +

Therefore, both valleys are accessible with both polarizations,
and no valley selectivity holds for transitions to the conduc-
tion bands. Once again, considering p-type samples (or x-ray
emission spectroscopy), we obtain, however, for �7, �8 final
states
at K+:

Initial Final Polarization
�11 �7 +
�9 �8 +

at K−:

Initial Final Polarization
�10 �7 −
�12 �8 −

Therefore, one can expect valley selective absorption in
p-type samples, or emission from valence band states to core
holes at L3, M3, and N3 edges.

Finally, let us now turn our attention to the d-like core lev-
els, that are split into d3/2 and d5/2, respectively corresponding
to the representations D+

3/2, D+
5/2. From Ref. [22] the reduction

to irreducible C3h representation gives

D+
3/2 = �7 + �8 + �11 + �12, (27)

D+
5/2 = �7 + �8 + �9 + �10 + �11 + �12. (28)

We thus see that the sixfold degenerate d5/2 state contains
all six additional irreducible representations of C3h. They shall
also all appear both at K+ (K−), because multiplication by
�2 (�3) of the whole list of representations shall deliver a
permutation of the same list. This tells us without further
calculations that the valley selectivity does not occur at d5/2

edges, where all possible symmetries and transitions occur
at both K± points. An explicit calculation shows that the
selectivity is lost also at the d3/2 edges. In fact, the fourfold de-
generacy of this state is split into four representations, namely,
at K+:

�3 ⊗ �7 = �10; �3 ⊗ �8 = �12;

�3 ⊗ �11 = �7; �3 ⊗ �12 = �9 (29)

and at K−:

�2 ⊗ �7 = �11; �2 ⊗ �8 = �9;

�2 ⊗ �11 = �10; �2 ⊗ �12 = �8. (30)

This combination of symmetries is not verifying valley
selectivity. For example, we find at K+:

Initial Final Polarization
�9 �12 −
�7 �10 +

and similarly at K−:

Initial Final Polarization
�10 �11 +
�8 �9 −

so that transitions with both polarizations are allowed in both
valleys. It is also easily verified that no selectivity is present
in p-type samples either. In the following section we will use
first-principle calculations to confirm all the selection rules
obtained for high symmetry points, and extend them through
large regions of the Brillouin zone.

III. NUMERICAL CALCULATIONS
OF TRANSITION RATES

To confirm the findings of the group-theoretical analysis of
the selection rules for the K+ and K− band edges, DFT ab
initio calculations were performed throughout the Brillouin
zone for the prototypical MoS2 MTMD, using the all-electron
exciting code [25] with linearized augmented plane-wave and
local orbitals (LAPW + lo) basis set [26]. In this way, the
rapid oscillation of the localized wave functions around the
nuclear position is handled in the local atomic orbital basis
within the sphere of the “muffin-tin” radii and the rest of
the solid (interstitial region) in the plane-wave basis. Due to
the dominance of the relativistic effects for the core states,
we obtained core-state wave functions by solving the set of
coupled Dirac equations in a spherically symmetric potential
as implemented in exciting [25,28]. In contrast, the conduc-
tion and valence states were obtained in the scalar-relativistic
approximation. The latter also implies that the small com-
ponents of the four-spinor wave function were neglected
when calculating the transition matrix elements. We employ
the generalized gradient approximation (GGA) PBE [27] for
exchange-correlation functional, a momentum space grid of
21 × 21 × 1 points, and a muffin-tin radius of 2 a.u. for both
species. Excitonic effects were not included at this stage, as
they should not alter the main results and conclusions, for the
reasons outlined later, at point 2 in Sec. V.

The selected core level is the Mo 3p3/2, or M3 level, which
(see Table I) is located about 390 eV below the Fermi energy.
The quantity that is computed and plotted is the normalized
“degree of optical polarization” η as defined in Ref. [2], for
the transitions from the four degenerate p3/2 levels to the band
b,

ηp3/2−b(k) =
3/2∑

j=−3/2

|D jb
+ (k)|2 − |D jb

− (k)|2
|D jb

+ (k)|2 + |D jb
− (k)|2

, (31)

where

D jb
± (k) = [

D jb
x (k) ± iD jb

y (k)
]
, (32)

and D is the appropriate component of the momentum matrix
element from the core level j to the valence or conduction
band edge b. The results for transitions to the valence and to
the conduction band are shown in Figs. 3 and 4, respectively.
Furthermore, to show the energy dependence of the corre-
sponding transition, we calculated the absorption spectra (σ )
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(a)

(b)

(c) (e)

(d)

FIG. 3. Valley selectivity for transitions from the Mo fourfold degenerate 3p3/2 level to the uppermost valence bands. (a), (c) Sketches
of the valence to conduction band transition (a) and the core to valence band transition (c); (b), (d) Computed normalized degree of optical
polarization η (see text) as a function of quasi-momentum k in the relevant portion of the Brillouin zone for the valence to conduction and core
to valence band transitions, respectively; (e) Partial absorption cross-section (σ ) obtained through integration over a circular area around K±
points for left (−) and right (+) circular polarization of the incoming x-ray photons [see also text and illustration of the absorption process in
the bottom of panel (e)].

in the independent particle limit in vicinity of K± points,

σ±(ω) =
∑

j,b

∫
�(kmax )

dk|D jb
± (k)|2δ[ω − Eb(k) − Ej (k)].

(33)

Here the integration area �(kmax) is defined by the parameter
kmax as |k − K±| < kmax. The latter is chosen to be the half

of the distance between the K+ and K− points. The transition
matrix elements Mjb(k) between core and valence (conduc-
tion) states were calculated in the dipole approximation and
Ej , Eb are the energies of the corresponding levels. A small
Lorentzian broadening was attributed to the resulting spectra
for visual purposes. Such partial absorption cross-sections are
equal for left and right circular polarization of the incoming
photon if there is no valley selectivity at a given energy

(a)

(b)

(c)

(d)

(e)

FIG. 4. Valley selectivity for transitions from the Mo fourfold degenerate 3p3/2 level to the lowest conduction band. (a), (c) Sketches of
the valence to conduction band transition (a) and the core to conduction band transition (c); (b), (d) computed normalized degree of optical
polarization η (see text) as a function of quasi-momentum k in the relevant portion of the Brillouin zone for the valence to conduction and core
to conduction band transitions, respectively; (e) partial absorption cross-section (σ ) obtained through the integration over circular area around
K± points for the left (−) and right (+) circular polarization of the incoming x-ray photons [see also text and illustration of the absorption
process in the bottom of panel (e)].
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FIG. 5. Band structure of MoS2 monolayer, where we highlight
the projection of the Kohn-Sham wave function onto the 4dm m =
{0, ±2} and 3pj=3/2 orbitals of the molybdenum atom.

(Fig. 4). The dominant contribution from the corresponding
valley (K+ for right circular polarization and K− for the left),
however, highlights strong selectivity (see Fig. 3).

The calculations, besides confirming the opposite value of
η at the K+, K− points for valence band transitions, also reveal
that the strong polarization character persists in very large
portions of the Brillouin zone, as one moves away from these
points; a fact that would not be easily predictable by group
theory, but that is in complete analogy to the findings of Cao
et al. [2] for transitions at the fundamental gap. This is an
aspect that is important for soft-x-ray spectroscopy, because it
implies that the valley selectivity is not going to be washed out
by the relatively larger bandwidth of x-ray pulses. The DFT
calculations also underline very different behavior of transi-
tions to the conduction bands, where, besides confirming the
zero selectivity at the K± points, they reveal a very different
distribution of η in the two regions surrounding the points.
To study the role of the orbital character in the selection
rules for the whole Brillouin we performed a projection of
the Kohn-Sham wave functions onto the basis of the local
orbitals of the molybdenum atom and results are presented in
Fig. 5. Qualitatively, instead of almost uniform distribution,
which we observed for the core to valence band transition,
the η distribution for the core to conduction band transi-
tions shows two types of subvalleys with the opposite signs.
The first type comprises the valleys around the K± point, and
the second the small triangular valleys in between K± and �.
The latter corresponds to the local minimum of the conduction
band (Fig. 5). The opposite selectivity of the two subvalleys
is related to the d orbital character of the conduction bands
where d2 and d−2 interchange each other around local and
global minima. From Fig. 5 we could also see that for the
conduction band in the close vicinity of the K± the d0 type of

orbitals have the most substantial contribution and correlate
with the absence of dichroism predicted from group theory.
Furthermore, for the valence band, orbital characters d±2 are
dominant in K± valleys, respectively, which expand almost up
to � point and lead to the more isotropic distribution of η. In
line with the conclusion of the previous section our ab initio
calculations highlight that the symmetry of the local orbitals
involved in the transition lies at the very origin of the valley
selectivity.

IV. SOFT-X-RAY CORE-LEVEL SPECTROSCOPY:
APPLICATIONS TO “VALLEYTRONICS”

The main result of the previous sections is the valley se-
lectivity of transitions from the metal s and p core levels
to the valence bands. To have empty states near the valence
band top, the available options are gated devices, typically
with a MTDM sandwiched between hBN layers with elec-
trodes at the bottom and the top [29], or optical pumping,
as in Refs. [6–8] and possibly p-type doping [30,31]. If we
postpone for the time being the discussion on the feasibility of
XUV and soft-x-ray transmission measurements in atomically
thin samples, then novel diagnostic tools for valleytronics can
be envisaged. For example, taking inspiration from the pump-
probe transient absorption experiments reported by Chang
et al. [7] at the W 5p3/2 edge of multilayer WS2 samples,
consider the pump-probe experiments for the monolayer case
schematically displayed in Figs. 6(c) and 6(d). Here we pro-
pose to use circularly polarized pump and probe pulses; we
argue that a circularly polarized pump pulse should induce
a pronounced circular dichroism in the pump absorption. If
the pump and the probe polarizations are the same [Fig. 6(c)],
then the transient absorption of the probe should be observed
at very small delay, because the transitions from the core
levels access the valley in which a hole population was created
by the pump. As the delay of the two pulses increases the
transient absorption should be attenuated, with characteristic
time τ , given by

1/τ = 1/τrec + 1/τtrans, (34)

because the hole population is reduced by recombination (rec)
and by transfer(trans) of holes to other valleys. If the probe
polarization is inverted [Fig. 6(d)], then the probe can now
promote core electrons only to the valley opposite to the one
populated with holes by the pump: the absorption signal is
therefore much smaller than in the previous case at short delay
times, and can possibly build up in time, if sufficient transfer
to the opposite valley takes place, with characteristic time

1/τ = 1/τ ′
trans (35)

(where the prime acknowledges that only transfers to the
opposite valley are included, and not, e.g., to the � valley).
At any delay time, therefore, the absorption of the pump pulse
should display circular dichroism and, according to Eqs. (33)
and (34), should deliver information on the characteristic de-
cay times of the valence valley polarization.

To consider specifics related to WS2 monolayer, we per-
formed calculations of the normalized polarization degree
for transitions first from the core levels (5p3/2 of W) to the
uppermost of the valence bands [Fig. 6(a)] and then from
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(a) (b)

(e) (f)

(i) (j)

(g) (h)

(d)(c)

FIG. 6. Valley selectivity of WS2 and schematic of pump-probe experiment. (a), (b) Normalized degree of optical polarization as a function
of quasi-momentum for transitions from W 5p3/2 levels to the uppermost valence band (a), and from the uppermost valence band to the lowest
conduction band (b). (f), (j) [(e), (i)] Partial absorption cross-sections calculated in vicinity of K± points for the valence to conduction (core to
valence) band transitions. (c), (d) Schematic representation of the core to valence and valence to conduction bands transitions for the optical and
x-ray photons with the same (c), and opposite (d), circular polarization. The vertical red arrows denote transitions from IR/visible laser pump
pulses, the blue arrows transitions from core levels. (g), (h) Schematic figures of the pump pulse (in red) and the transient probe absorption (in
blue) as a function of pump-probe delay �τ for the configuration of polarization presented in panels (c) and (d), respectively. See text for the
definition of the various characteristic times τ .

the uppermost of the valence bands to the lowest of the con-
duction bands [Fig. 6(b)]. As a result, both core and optical
transitions show pronounced valley selectivity with the same
sign in K+ and K− valleys. The latter means that if circular
polarization of the optical and x-ray photons are the same,
we can probe information about the single valley; and if,
however, they are different, contributions from cross valleys
processes will be dominant. In contrast to the previous sec-
tion, calculations for WS2 include relativistic effects for core
and valence electrons and consequently reproduce spin-orbit
splitting of ∼8 eV for 5p states of tungsten, and ∼0.3 eV for
the valence d states. The results are presented in Fig. 6 and
agrees with the group theoretical predictions. It is also worth
noticing that the two valleys are extended through the most
part of the Brillouin zone and manifest strong difference in
partial absorption. In Figs. 6(a), 6(e), and 6(i) we are showing
only characteristic contributions from those 5p3/2 fourfold
degenerate levels that participate in nonzero transitions at the
K± points, contribution from the rest of 5p3/2 levels favorably
support the conclusion in the extended valley region but lead
to the divergence of the polarization degree due to the zero
denominator. As expected from the group theoretical analysis
the core to the lowest conduction band transitions are not
valley selective at K±, but have certain selectivity for the small
parts of the Brillouin zone (see also Appendix C). Following

the approach stated in the previous section we obtained par-
tial absorption cross-sections for the both types of transitions
which confirms strong dichroism through the entire energy
range of the highest (lowest) valence (conduction) bands.

It is generally presumed that intervalley transfer occurs
for excitons, via exciton-exciton or exciton-phonon scatter-
ing, with much higher probability than for single carriers
(electrons or holes) as the latter case implies either a
spin flip or a sizable energy difference [1]. Nonetheless,
it is worthwhile to notice that the core electron circular
polarization transitions are strictly a probe of the hole pop-
ulation, unlike, e.g., photoluminescence. In special cases,
such as the presence of nonradiative recombination or trap-
ping centers for either carrier, the distinction may become
relevant.

The actual feasibility of core-level absorption spec-
troscopy on single layer samples deserves discussion,
in particular in the pump-probe mode as discussed
above, although recent XAS measurements of monolayer
MoS2 at various core thresholds, performed by elec-
tron yield at the SSRL synchrotron in Stanford, are
encouraging [32].

With respect to the results reported in Ref. [7], there is, on
the one hand, the reduction from several tens of layers to one,
and the requirement of circularly polarized photons, on the
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other hand. To the former challenge, the possible strategies
could involve the growth of samples in which single layers
are stacked with a hBN spacer in between; and also the
selection of a more intense source. By replacing the HHG
source used in Ref. [7] with a free-electron laser such as
the FERMI facility [10], the intensity increases by about 2
to 3 orders of magnitude; and one can ripe the additional
benefit of satisfying the requirement of circularly polarized
photons.

Another technique to explore the intervalley relaxation of
carriers is time-resolved Kerr rotation (TRKR) [33,34] which
has been used in samples where tuning the Fermi level by
the gate potential produces, independent of optical pumping,
an equilibrium population of electrons or one of holes. In
presence of these so-called resident carriers, optical pumping
with circularly polarized photons near the band gap produces,
in one of the valleys, a rapidly decaying population of charged
excitons, or trions, which results in an upset of the balance
in the population of the two valleys. The imbalance corre-
sponds to a nonzero value of the orbital angular momentum.
The exact role of the trions decay and the role of non ra-
diative traps due to impurities is not completely clear [34].
In any event, the measurement of the decay time of the Kerr
rotation allows access to the decay times of the difference
in valley population of electrons in n-type samples and of
holes in p-type samples. The latter case is especially inter-
esting as decay times as long as several μs are observed.
In these samples, generation of the holes imbalance between
the valleys could be produced by transitions from the core
levels with circularly polarized x-ray photons to the valence
bands, without intermediate stages in which excitons or trions
are present. The core hole would be very rapidly filled by
Auger processes or by x-ray fluorescence from electron levels
from the whole valence bands; such core hole annihilation
should not involve any valley selectivity and should therefore
not influence the Kerr rotation signal. This would therefore
simplify the understanding of the imbalance relaxation paths
and of the corresponding timescales.

V. CONCLUSIONS

In summary the conclusions of the present analysis of the
selection rules for transitions in core-level spectroscopy in
MTMD are that:

(1) The valley selectivity of circular polarization transitions
to the conduction band minima is not to be expected for s-,
p-, or d-like metal core levels, as shown by group-theoretical
arguments and by ab initio calculations, in contrast to the
well-known top of the valence to conduction valleytronic se-
lectivity.

(2) Valley selectivity is, however, expected for transitions
from s- and p-like core levels (but not for d-like levels)
to valence states (in contrast to the well known top of
the valence-to-conduction selectivity, valleytronics), and con-
versely for x-ray emission. This conclusion assumes of course
that the valence bands are not completely full, as can be
obtained in a static way by electrostatic biasing, or in a static
or time-dependent way by optical pumping.

(3) We argued that these selection rules open the way to a
new tool for the study and time resolved monitoring of val-
leytronics in 2D-TMD, and a specific example was discussed.

The potential applications, however, are not limited to the
idea of using an x-ray pulse as a probe. In fact, another
possibility to profit from derived selection rules is to use the
core-to-valence transition under circularly polarized light to
create an imbalanced population in the two valleys for the
initially hole-doped TMD sample. That would allow more
direct access to dynamics of the hole/electron carriers with-
out creating multiparticle excitations (e.g., excitonis, trions),
which accompany transitions in the optical region.

Before further considering possible experimental implica-
tions of the results derived here for core-level transitions, the
following points should be taken into account:

(1) Feasibility of specific experiments, depending on the
actual cross sections, considering the extremely diluted char-
acter of monolayer samples.

(2) Excitonic effects. The valence to conduction spec-
troscopy is strongly affected by exciton effects [1], as
expected from considerations on screening of the electron-
hole interaction in low-dimensional systems. The same
arguments should apply to electron-core hole interactions,
and core excitons can be expected to modify the transition
energies and intensities, but not necessarily the symmetry
considerations discussed here. In general, if a pair of bands
are connected by an allowed dipole transition, then so is the
corresponding ground exciton state.

(3) The just mentioned dipole approximation, i.e., the
assumption that the photon momentum is negligible in com-
parison to the size of the Brillouin zone. This is reasonable
for the shallowest core levels, like the M edges of Mo or the
N edges of W, but certainly not for the deeper ones.

(4) The lifetime broadening of core levels (especially the
deeper ones) is a limitation of the achievable energy reso-
lution. In some cases it can prevent a clear distinction of
transitions to the K± valleys from nearby secondary band
extrema, requiring a specific discussion of each compound.

Finally, we considered a material with close structural sym-
metry but without strong spin-orbit coupling such as hBN.
We confirmed valley selectivity for excitations in the optical
region and derived corresponding selection rules. However,
there are very few dipole allowed transitions from core levels
to the lowest conduction and valence band and in total they do
not show the valley selectivity.
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(a) (b)

FIG. 7. (a) Computed normalized degree of optical polarization η (see text) for transitions from the hBN highest valence band the lowest
conduction band, as a function of quasi-momentum k in the relevant portion of the Brillouin zone. (b) Partial absorption cross-section calculated
for the circular area around K± points for left (−) and right (+) circular polarization of the incoming photons (see also Sec. III).

APPENDIX A: VALLEY SELECTIVITY WITHOUT
SPIN-ORBIT COUPLING: hBN

The purpose of this Appendix is to briefly consider the
valley-selective effects in monolayer hexagonal boron nitride,
hBN, with a simple extension of the discussion given in
Sec. II A. In fact, the lattice symmetry for a monolayer of
hBN is identical to that of 2D-TMD, with D3h as point group
and C3h as the wave vector group at the K± points [35].
According to the prevailing results of DFT theoretical work,
the valence band top of monolayer hBN is located at the K±
points; whether the conduction band minimum is at � or at
K± is a very close call [36–39] and the computed gap is
extremely sensitive to the chosen functional and to details of
the numerical procedure [40]. Nonetheless, even if the lowest
gap is indirect, optical properties are very likely dominated
by the larger oscillator strength of the direct transition, and
experimental evidence [41] points in this direction. We are
going to consider transitions at these direct gaps to provide
an example of nonvanishing valley selectivity in a system in
which, with good approximation, the spin-orbit interaction
can be neglected (see Fig. 7).

The group theoretical analysis can follow the pattern of
Eq. (5) and following of Sec. II A, the only difference being
the orbital character of the Wannier-like functions for hBN.
According to the band structure calculations, see for example
Ref. [36], the dominant character of the conduction band
minima is derived from the B 2pz states, whereas the valence
band top is ascribed to 2pz orbitals of the N atoms. Given the
low atomic number of these elements, spin-orbit interactions
are negligible. Starting with the conduction band minimum
at K+, we observe that the 2pz orbitals are invariant for all
proper rotations about the z axis (m = 0), but are odd under
all operations reversing the z axis directions, i.e., σz, S±

3 . A
look at the character table of C3h associates this behavior to
�4 representation. The symmetry character of the exponential
Bloch factor for the metal sites is identical to the MTMD
case and belongs to the �3 irreducible representation. Finally,
the spin wave function belongs to the reduction of the D+

1/2
representation that gives �7 + �8. Putting all together, the

conduction band minimum at K+ for the two spin directions
is associated to

�3 ⊗ �4 ⊗ �7 = �8, �3 ⊗ �4 ⊗ �8 = �11. (A1)

Consider now the top valence bands, corresponding to
similar 2pz orbitals of N , centered however on the “empty”
vertices of the lattice sketched in Fig. 2. These sites can be
indexed in analogy to Eq. (6) as

RN
j1, j2 = j1a1 + j2a2 + δ3 + δ2. (A2)

Note that with this indexing, since K+ · δ2 = 0, both j1, j2
-indexed anion and cation sites belong to the same wavefront
and have a common phase,

exp
[
iK+ · RB,N

j1, j2

] = exp

[
i(2 j1 + j2 − 1)

2π

3

]
. (A3)

Repeating the procedure outlined in Appendix B, and not-
ing that C−

3 δ2 = δ3 we find that after a C+
3 rotation, the phase

factor of the N sites becomes

exp

[
i(− j1 − 2 j2)

2π

3

]
≡ exp

[
i(2 j1 + j2)

2π

3

]
, (A4)

and, in general, C±
3 , S±

3 produce a factor e±(i2π/3), which al-
lows us to associate the Bloch factor at the N sites to the �2

representation.
The valence bands analogous of Eq. (A1) becomes then

�2 ⊗ �4 ⊗ �7 = �12, �2 ⊗ �4 ⊗ �8 = �7. (A5)

It is readily seen that if we now consider the same bands at
K− we must interchange �2 and �3 in Eqs. (A1) and (A5),
obtaining the band schematic diagram in Fig. 8. The usual
procedure allows us to derive the selection rules for circularly
polarized light at K+:

Initial Final Polarization
�12 �8 −
�7 �11 −
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FIG. 8. Schematics of the valence and conduction band edges
and their symmetry labels for hBN at the K± points.

at K−:

Initial Final Polarization
�11 �7 +
�8 �12 +

showing as valley selectivity effect at the K± valleys of hBN.
Our numerical calculations (Fig. 7) confirm such analysis;
however, they also suggest that the valley are smaller then
in case of MTMD and elongate toward the � point. In con-
sidering the transitions from the 1s core levels, however, we
find no valley selective circular dichroism probing the highest
valence and the lowest conduction bands. This is however
not attributable to the negligible spin-orbit interaction, but
rather to 2pz, m = 0 character of both band edges, resulting
in forbidden transitions for circular polarization.

APPENDIX B: SYMMETRY CHARACTER OF THE SPACE
PART OF THE BLOCH FUNCTIONS AT K+

For completeness, we enumerate the steps leading to the
conclusion that the space part of the Bloch function (i.e., the
part that does not include spin variables) at K+ transforms as
the �3 representation of C3h. The first observation is that the σh

leaves all factors unchanged, because atomic position vectors
lie in the plane, �2,0 ∼ (3z2 − r2) is even and the spin is a
pseudovector. Consider now the counterclockwise rotation by
2π/3,C+

3 . To determine its effect on the spatial part of the
wave function, i.e., on∑

j1, j2

eiK+·R j1 , j2 �2,0
(
r − R j1, j2

)
, (B1)

following Eq. (8) we have to evaluate∑
j1, j2

eiK+·R j1 , j2 �2,0
(
C−

3 (r) − R j1, j2

)
. (B2)

This can be done by noticing that the sum is unchanged if each
R j1, j2 is replaced by C−

3 (R j1, j2 ), i.e.,∑
j1, j2

eiK+·R j1 , j2 �2,0
(
C−

3 (r) − R j1, j2

)

=
∑
j1, j2

eiK+·C−
3

(
R j1 , j2

)
�2,0

[
C−

3

(
r − R j1, j2

)]
. (B3)

This is because, when j1, j2 run over all integers, both sums
on the right- and on the left-hand side run once over each and

every metal site. To make further progress, we determine the
lines of constant phase of the unrotated Bloch wave [the Bloch
wavefronts, shown as dotted lines in Fig. 2, the integer near
the top of each line being (2 j1 + j2 mod 3)]; the phase factor
being given by

eiK+·( j1a1+ j2a2+δ3 ) = ei(2 j1+ j2−1) 2π
3 . (B4)

To see the effect of the C−
3 rotation, we notice that its effect

is to transport the atom located at j1a1 + j2a2 + δ3 to the
new location −( j1 + j2)a1 + j1a2 + δ1. This is readily seen
by inspection of Fig. 2, because

C−
3 a1 = a2 − a1, C−

3 a2 = −a1, C−
3 δ3 = δ1. (B5)

The phase factor associated to the j1, j2 term after the rotation
becomes

ei(− j1−2 j2+1) 2π
3 ≡ ei(2 j1+ j2+1) 2π

3 , (B6)

where the right-hand side results from inserting factors
ei3 ji

2π
3 = 1, i = 1, 2; comparing to Eq. (12) it is immediately

apparent that the action of C+
3 multiplies each addendum of

the Bloch sum by e(i4π/3) ≡ e(−i2π/3), and likewise in general
the elements C±

3 , S±
3 produce a factor e∓(i2π/3).

Now a simple look at the character table of C3h [15] reveals
that these complex factors reproduce exactly the characters of
the �3 representation.

The m = 0 d-like Wannier function, however, is unaffected
by all rotations about the z axis, and it does not affect the
overall symmetry of the Bloch function.

APPENDIX C: CORRESPONDENCE BETWEEN
SPIN-ORBIT PARTNERS AND IRREDUCIBLE

REPRESENTATIONS

The purpose of this Appendix is to deepen the symmetry
assignments of the electronic states at K±; for example, it was
established, Eqs. (23) and (24), that the doublet of p1/2 states
with jz = ±1/2 belong to the �8 and �11 representations at
K+; which one corresponds to the jz = +1/2 state? This
should allow us to identify the wave functions for a specific
representation and to obtain a direct, intuitive picture of the
optical selection rules.

The procedure to associate a specific wave function to an
irreducible representation, in the somewhat subtle case of a
double group, can be derived from Ref. [44].

Let us start from the simple case of the conduction band,
where we can basically ignore the spin-orbit interaction. Go-
ing back to Eq. (5) and considering one addendum of the
Bloch sum, we can write the wave function for spin-up and
-down as

eiK+·R�2,0(r − R)

(
1
0

)
, (C1)

eiK+·R�2,0(r − R)

(
0
1

)
. (C2)

There are therefore three parts of the wave function: Bloch
sum, a spherical harmonic type orbital, and a spinor. When
we act with a C3h operation on it, the wave function is mul-
tiplied by a factor that is the product of factors related to the
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Bloch exponential, to the orbital and to the spinor. Evaluating
this product gives us the character of the operation in the
corresponding irreducible representation, and comparing to
the character table we can identify the symmetry type of
the wave function. The fact that all representations are one-
dimensional is of course making this particularly simple. Let
us start with the spin-up case and with C+

3 . Looking back to
Appendix B, we know already that the Bloch term contributes
a factor e−i2π/3, and the m = 0 function a factor 1. The spinors
transform according to the D+

1/2 representation of O(3), and
following Eqs. (3.10)–(3.16) of KDWS, a rotation by an angle
α about the z axis corresponds to the matrix

D+
1/2(α) =

[
eiα/2 0

0 e−iα/2

]
. (C3)

Therefore, for a −2π/3 rotation, there is a factor e−iπ/3 for the
spin-up case, eiπ/3 for the spin down. Putting it all together,
for C+

3 , we get an overall factor −1 for spin up, and e−iπ/3

for spin down. Taking a look at the character table (Table 57
on page 59 of KDWS) this is already sufficient to establish
that spin up is �12 and spin down is �10, as Eq. (10) has
already restricted the selection to these two representations.
For future reference and to appreciate the care needed for the
double groups in the general case, it is instructive to obtain the
same result again, but this time choosing the σh operation.
Since Eq. (8), or the equivalent Eqs. (3-10) and (3-11) of
KDWS, lead us to apply the inverse of σh, we must avoid the
pitfall of identifying σh as its own inverse: in fact the inverse
of σh is σh, which is σh plus a 2π rotation (that for a spinor
does not coincide with the identity E , because it changes all
signs). In fact [43],

σhσh = E , σhσh = E . (C4)

So we know that the effect of σh on the Bloch factor and on the
m = 0 orbital is a factor of 1, to find the action on the spinors
we must remember that σh = C2 Î , a rotation by π times the
space inversion. We therefore obtain

D+
1/2(σh) = −D+

1/2(σh) =
[−eiπ/2 0

0 −e−iπ/2

]
, (C5)

where we used the fact that D+
1/2 is even under the inversion,

and therefore the action of σh is equivalent to that of C2. We
therefore conclude that the effect of σh for the spin-up state
is to multiply it by a factor −i, and for the spin-down by i,
and a look at the character table confirms the �12 assignment
for spin up, �10 for spin down. At K− the states transforming
as �9 and �11 correspond, respectively, to spin up and spin
down as they are identifiable as the time-reversal partners
of, respectively, �10 and �12, as already pointed out in the
discussion following Eq. (11).

Following the reasoning already adopted at the beginning
of Sec. II B, the same assignments are valid also for s-like core
levels.

Next we consider the top valence bands. They are
unique in their symmetry properties, because as described in
Sec. II A, the Bloch factor for K+ and the m = 2 d orbital

combine to form a C3h invariant function, and the same
happens at K− with the m = −2 orbital. Therefore, only
the behavior of the up and down spinors characterizes the
symmetry behavior of the top valence bands, and on the
basis of Eq. (42) we can assign �8 to spin up and �7

to spin down. Again the time reversal invariance imposes
E (K+, �8) = E (K−, �7).

Let us now consider the p1/2 levels. The corresponding
Bloch functions at K+ can be written, in spinor notation, as∑

j1, j2

eiK+·R j1 , j2 �1/2, jz

(
r − R j1, j2

)
, (C6)

where, for jz = +1/2

�1/2,1/2 =
( −√

1/3z√
2/3(x + iy)

)
, (C7)

and, for jz = −1/2,

�1/2,−1/2 =
(√

2/3(x − iy)
−√

1/3z

)
. (C8)

To compute the character of an operation Ĉ, following the
usual procedure, we must evaluate∑

j1, j2

eiK+·Ĉ−1R j1 , j2 D−
1/2(Ĉ−1)�1/2, jz (Ĉ

−1
(
r − R j1, j2

)
. (C9)

The effect on the exponential Bloch factor can be evaluated
as in the previous sections, and for the spinor we apply the
procedure described by KDWS on p. 10 ff., Eqs. (3-13)–
(3-16). For example, for the C+

3 operation, the exponential
acquires a factor e−i2π/3, for the D matrix we can use
Eq. (C3) (the ± parity sign intervening for improper rotations
only)

D−
1/2

(
C−1

3

) =
[

e−iπ/3 0
0 eiπ/3

]
, (C10)

and for the spinor component we simply apply C−
3 (z) = z,

C−
3 (x ± iy) = ei∓2π/3(x ± iy), to obtain

C+
3

∑
j1, j2

eiK+·R j1 , j2

( −√
1/3z√

2/3(x + iy)

)

= e−i2π/3
∑
j1, j2

eiK+·R j1 , j2

( −e−iπ/3√1/3z
eiπ/3√2/3e−i2π/3(x + iy)

)
.

(C11)

Therefore, the 1/2, 1/2 partner of the p1/2 doublet is multi-
plied by −1 when acted upon by C+

3 , which associates it to
the �11 representation [see Eq. (23)], while, necessarily, the
1/2,−1/2 partner belongs to �8.

The assignment at K− can be inferred by time reversal
symmetry, with 1/2, 1/2 belonging to �7, and 1/2,−1/2
belonging to �12.

A similar treatment yields the assignments for the four irre-
ducible representations for the p3/2 quartet. The four Wannier
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(a) (b)

FIG. 9. Computed normalized degree of optical polarization η for transitions from the fourfold degenerate 5p3/2 levels of tungsten in
monolayer WS2 to the lowest conduction band, as a function of quasi-momentum k in the relevant portion of the Brillouin zone (a). Partial
absorption cross-section calculated for the circular area around K± points for left (−) and right (+) circular polarization polarization of the
incoming photons (see also Sec. III).

functions can be expressed in spinor notation as

�3/2, jz=3/2 =
(

(x + iy)

0

)
, (C12)

�3/2, jz=1/2 =
( √

2/3z
√

1/3(x + iy)

)
, (C13)

�3/2, jz=−1/2 =
(√

1/3(x − iy)
√

2/3z

)
, (C14)

�3/2, jz=−3/2 =
(

0
(x − iy)

)
, (C15)

and repeating the previous procedure we get
at K+:

�3/2, jz=3/2 −→ �9, �3/2, jz=1/2 −→ �11,

�3/2, jz=−1/2 −→ �8, �3/2, jz=−3/2 −→ �7, (C16)

and by time-reversal at K−:

�3/2, jz=3/2 −→ �8, �3/2, jz=1/2 −→ �7,

�3/2, jz=−1/2 −→ �12, �3/2, jz=−3/2 −→ �10. (C17)

APPENDIX D: WS2: CORE-TO-CONDUCTION
BAND TRANSITIONS

For the experiment described in Sec. IV, it is essential to
have valley selectivity for the transitions from and to the top
of the valence band. However, the valley selectivity is not
expected for transitions from p core levels to the conduction
band minima at the K± points, according to the findings of
the group theoretical analysis of Sec. II. It is interesting to
explore the first principle calculations for the WS2 monolayer
in some detail (see Fig. 9). In fact, transitions from each
individual W 5p3/2,mj level are valley selective, but transitions
with positive and negative mj have an equal and opposite
valley sensitivity and cancel each other completely around the
K± points. Similar to what is found also in MoS2, there are
small secondary valleys in between � and K± points which
show a partial degree of dichroism [see Fig. 9(b)]. The latter
could be relevant for the future studies involving relaxation
and intervalley scattering.

APPENDIX E: X-RAY EDGES FOR Mo AND W

We reproduce here the atomic binding energies of some of
the core levels of Mo and W, for convenience of the reader
(Table I).

TABLE I. Atomic binding energies of Mo and W core levels in eV; hard x-ray levels >3 keV are omitted (from Ref. [42]).

Level L1(2s1/2) M1(3s1/2) N1(4s1/2) O1(5s1/2) M2(3p1/2) M3(3p3/2) M4(3d3/2)

Mo 2866 506.3 63.2 411.6 394.0 231.1
W 2820 594.1 75.6 2575 2281 1872

Level M5(3d5/2) N2(4p1/2) N3(4p3/2) N4(4d3/2) N5(4d5/2) O2(5p1/2) O3(5p3/2)

Mo 227.9 37.6 35.5
W 1809 490.4 423.6 255.9 243.5 45.3 36.8
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