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Effect of magnetic impurity scattering on transport in topological insulators
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Charge transport in topological insulators is primarily characterized by so-called topologically projected
helical edge states, where charge carriers are correlated in spin and momentum. In principle, dissipationless
current can be carried by these edge states as backscattering from impurities and defects is suppressed as long
as time-reversal symmetry is not broken. However, applied magnetic fields or underlying nuclear spin defects in
the substrate can break this time-reversal symmetry. In particular, magnetic impurities lead to backscattering by
spin-flip processes. We have investigated the effects of pointwise magnetic impurities on the transport properties
of helical edge states in the Bernevig, Hughes, and Zhang model using the nonequilibrium Green’s function
formalism and compared the results to a semianalytic approach. Using these techniques we study the influence of
impurity strength and spin impurity polarization. We observe a secondary effect of defect-defect interaction that
depends on the underlying material parameters which introduces a nonmonotonic response of the conductance
to defect density. This in turn suggests a qualitative difference in magnetotransport signatures in the dilute and
high-density spin impurity limits.
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I. INTRODUCTION

Since their experimental observation in 2007 [1], topo-
logical insulators (TIs) have represented a paradigm shift
in condensed matter physics. These materials exhibit novel
surface state conduction that originates from the underlying
topology character of the bulk material. These helical edge
states (HESs) have been shown to possess spin-momentum
locking, preventing backscatter when time-reversal symme-
try is preserved [2]. These effects offer a new opportunity
in device designs that utilize the underlying spin texture of
these edge states and present a new opportunity for spintronic
technologies. In order for these so-called protected symme-
tries to exist, time-reversal symmetry must not be broken.
Recent experiments have shown that nuclear spin states in the
underlying substrate are found to affect transport by breaking
this symmetry [3–5].

Theoretical work by several authors [6–8] suggests that
in the absence of strong nuclear dephasing, intrinsic nuclear
spins may become polarized due to the flow of spin-polarized
HESs in a TI. This results in little-to-no scattering once the nu-
clear spins are fully polarized. This polarization suggests that
one could design a so-called spin battery [6] that stores a spin
polarization that discharges when the edge states are “turned
off,” leading to questions of what its operational framework,
efficacy, and efficiencies might look like. Recent work by Tian
et al. [3] successfully demonstrated long-lived currents on the
40-h (4-h) timescale at 1.6 K (45 K) further stimulating these
questions. More generally, the role of magnetic impurities,
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either from intrinsic spins or effective charge puddles, is not
yet well understood in TIs [4,9].

In order to understand the interplay between underlying
charge carriers, nuclear spins, and atom-impurity defects, it
is useful to have spatially and energetically resolved spin,
charge, and probability densities. The nonequilibrium Green’s
function (NEGF) formalism allows us to probe each of these
quantities [10], allowing a fully spatially resolved simulation.
This type of simulation is essential for future device design,
and complements other theoretical approaches which have
previously been used to study the influence of impurities on
topological edge-state transport [2,11–30].

In this paper we study the influence of pointlike mag-
netic impurities on the conduction properties of the Bernevig,
Hughes, and Zhang (BHZ) model [31] using the NEGF
formalism. Furthermore, we also support our numerical
simulation with a semianalytic analysis to describe the
electron-defect interaction, where the backscattering is al-
lowed via spin-flip process. Our numerical and analytic
methods show good qualitative agreement. The paper is ar-
ranged as follows: In Sec. II we introduce the simulation
method including Hamiltonian and impurity models, then
investigate the effects of impurity polarization and spatial
position in Sec. III and then the effects of impurity-impurity
interaction in Sec. IV.

II. MODELING MAGNETIC IMPURITY SCATTERING IN
THE BHZ MODEL

In this section we detail the models that we will be using
for computing the transport response of the BHZ model in the
presence of magnetic defects.

2469-9950/2022/106(11)/115420(14) 115420-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4184-2071
https://orcid.org/0000-0002-5608-0113
https://orcid.org/0000-0002-8943-6518
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.115420&domain=pdf&date_stamp=2022-09-16
https://doi.org/10.1103/PhysRevB.106.115420


VAITKUS, HO, AND COLE PHYSICAL REVIEW B 106, 115420 (2022)

A. BHZ Hamiltonian

We use the quantum spin Hall (QSH) insulator model of
Bernevig, Hughes, and Zhang [31,32], derived originally for
their work in HgTe/CdTe wells:

HBHZ = εkσ0τz + Ekσ0τ0 + �0σyτy

+ A0(kxσzτx − kyσ0τy), (1)

where Ek = C0 − D0(k2
x + k2

y ), εk = M0 − B0(k2
x + k2

y ), A0,
B0, C0, D0, M0, �0, are material parameters discussed below,
and σ and τ are Pauli matrices to denote spin and electron-
hole degrees of freedom, respectively. Making the canonical
substitution of kα → −i∂/∂α and expanding we arrive at

HBHZ = (M0 + B0∇2)σ0τz + (C0 + D0∇2)σ0τ0

+ �0σyτy − iA0

(
∂

∂x
σzτx − ∂

∂y
σ0τy

)
, (2)

where ∇2 is the Laplacian ( ∂2

∂x2 + ∂2

∂y2 ), A0 in units of (eV Å)

is the “Dirac” part of the equation, B0 (eV Å2) is the
“Schrödinger” part of the equation, C0 (eV) is an energy
offset, D0 (eV Å2) controls the asymmetry between valence
and conduction bands. M0 (eV) controls the inversion re-
gion, (topologically interesting regions being M0B0 > 0), and
also determines the character of the edge state at given kx

[33,34], whereas �0 controls the lowest-order bulk-inversion
asymmetry (BIA). Given two well-separated edge states, and
2|�0| � A2

0/|B0|, we obtain the effective edge Hamiltonian as

Hedge = ε0 + h̄v0σzkx, (3)

which has a linear dispersion about the Dirac point
εk = ε0 ± h̄v0kx, where ε0 = C0 − M0D0/B0, and v0 =√

B2
0 − D2

0|A0|/(h̄B0) corresponding to the spin-polarized
edge modes (see Appendix B of [7]).

We set C0 = 0 eV, D0 = 0 eV Å2, such that we have a
symmetric system centered at E = 0 eV. We set �0 = 1 μeV,
to serve as a method of lifting the degeneracy found between
the two subblocks. Note that this term does not violate the
Z2 symmetry class [35], but spin is no longer a conserved
property [36,37]. This judicious choice of �0 will make the
magnitude of any new effects very small, but its purpose is
solely to ease computational complexity found when dealing
with degeneracies and does not reduce the generality of our
results.

In HgTe/CdTe the experimentally observed �0 was ap-
proximately 1.6 meV, only one order of magnitude smaller
than the band gap [35]. However, the effects we study here
still apply qualitatively to such systems with much larger �0.
In the absence of an asymmetry parameter D0, the spatial and
energetic scales of the BHZ model may be found by

r0 = 2|B0|
A0

, E0 = A2
0

2|B0| . (4)

One may then invert the length scale parameters to find the
appropriate A0 and B0 parameters for a desired model:

A0 = r0E0, B0 = r2
0E0/2. (5)

The inclusion of an asymmetry parameter D0 breaks the
particle-hole symmetry and leads to competing energy and
length scales which is not of interest to this work.

As we employ a real-space Green’s function approach, we
express the Hamiltonian on a grid using the finite-difference
method. This means that the results of our calculations can be
expressed with respect to an arbitrary spatial scale, provided
the relationship to the energy scale is defined. In everything
that follows we choose A0 = 0.5 eVr0, B0 = 0.25 eVr2

0 , giv-
ing a spatial scale r0, corresponding to an energy scale of
E0 = 500 meV. We vary M0 from 1 to 2.25E0, demonstrated
in Fig. 1, noting that at M0 = A2

0/(2|B0|) = E0, the conven-
tional band edge crosses over from direct to an indirect band
gapped material. In addition, at M0 = E0, the bulk band gap is
at its largest ≈2E0 comparable to state-of-the-art materials in
this field [9].

In this work we leave r0 as an arbitrary spatial scale,
which may then be chosen for a given material. To give
a sense of typical values for the length and energy scales,
for a 7-nm-wide quantum well in HgTe, r0 = 3.76 nm and
E0 = 96.8 meV [35]. Another example is the quantum spin
Hall insulator WTe2 which has a similar but not identical
effective Hamiltonian [38,39], which for our purposes we will
approximate as isotropic to fit the form of Eq. (2). In this
case, if we assume A0 ≈ 2.5 eV Å and |B0| ≈ 34 eV Å2 [39],
we obtain r0 ≈ 2.72 nm and E0 ≈ 92 meV. For reference, in
terms of Fermi velocity near the Dirac point HgTe/CdTe is
approximately 3.7 × 105 m/s [7] and WTe2 is approximately
3.9 × 105 m/s [39].

Following the work of Lunde et al. [7] it is suggested that
if strong spin-polarization effects are to be observed, then
the bias must be at least V = 5kBT/e; to this end we use
biases ranging from 50 to 250 mV, and therefore we model
our devices to be at an operating temperature of 116 K, i.e.,
kBT = 10 meV, approximately 1% of the band gap. It is worth
noting that additional temperature-dependent effects come
into play in a more detailed model of spin-flip scattering [30],
however, the focus here is on the direct interaction between
the edge-state conduction and the spin impurities and the op-
erating temperature given here simply sets the relevant energy
window.

To express the BHZ Hamiltonian in real space, we utilize
the second-order three-point finite-difference method to dis-
cretize our derivative operators on a finite square lattice, where
we set our discretization constant (in both dimensions) to be
0.25r0.

B. NEGF transport model

We use the nonequilibrium Green’s function formalism
[10] to explicitly model transport in the presence of magnetic
defects. The retarded Green’s function matrix is given by

Gr (E ) = [(E + i0+)S − H − �r]−1
, (6)

where E is energy, 0+ is a small positive number to provide
numerical stability, S is the basis overlap matrix (equal to the
identity in orthogonal bases and herein), H is the Hamiltonian,
�r is the sum of all retarded self-energy terms controlling
the inflow and outflow of particles. In this work we will
be using two sets of self-energy terms, one related to the
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FIG. 1. (a), (c) Local density of states (LDOS; grayscale plot), spin-projected charge density (SPCD; color plot) for leads or defects,
and (b), (d) band structure for M0 = 1.0E0 (a), (b) and 2.25E0 (c), (d), respectively. The defect spin-projected charge density is computed by
subtracting the SPCD for an edge state without a defect present (see Sec. III for details). All quantities are computed by integrating over the
bias window shaded in the band structure. M0 > A2

0/(2B) causes an inversion of the bands, greater confinement towards the edges, and adds
small extra nodes in the channel. For low k, these values of M0 correspond to highly confined edge states [34,40].

leads as calculated using the iterative method of [41,42] and
a second set related to spin-flip processes [43], discussed in
the following section. The distributions of input and output
states are given by the in- and out-scattering functions �in,out

respectively; in this work all leads may be described using
Fermi-Dirac distribution functions

fk (E ) =
[
exp

(E − μk

kBT

)
+ 1
]−1

(7)

for the kth lead. The lead in- and out-scattering functions are
given by weighted sum of the broadening matrices multiplied
by their Fermi-Dirac distribution functions:

�in
leads =

∑
k

fk	k, �out
leads =

∑
k

(1 − fk )	k, (8)

where the kth broadening matrix 	k is given by

	k = i(�k − �
†
k ). (9)

One may then compute the electron and hole Green’s func-
tions [10] by

Gn,p = G�in,outG†, �in,out = �
in,out
leads + �

in,out
sf , (10)

where �
in,out
sf is the in- (out-) scattering function due to spin-

flip model discussed in the following section. It should be
noted that electron and hole is a misnomer in this case, as
these matrices represent the occupied and unoccupied states,
sometimes referred to as the lesser and greater than functions
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(−iG< and iG>, respectively) which are in fact superpositions
of electron and hole states. Each of these Green’s functions
are then calculated by the recursive Green’s function (RGF)
approach [44].

To compute the expectation value of various operators with
respect to the Green’s functions, we first recall the periodic
representation of the Hamiltonian:

H (k) = H0 + H1eika + H−1e−ika, (11)

where H0 is the onsite matrix, H1 = H†
−1 is matrix connecting

one unit cell to the next in the k direction, and a is the size of
the unit cell. From Eq. (11) we obtain the eigenproblem:

H (k)|
 j (k)〉 = Ej |
 j (k)〉, (12)

whose solutions form the bands in Fig. 1. Observables for the
band structure are then obtained by computing the expectation
value of the eigenfunction with respect to the operator

〈σaτb〉 = 〈
 j (k)|σaτb|
 j (k)〉. (13)

Similarly, the expectation value obtained from a Green’s func-
tion is taken by computing the trace of an operator product
with the Green’s function:

〈σaτb〉 = 1

2π
Tr[X (σaτb)], X = A, Gn, Gp. (14)

With common examples being Tr[A(σ0τ0)] for local density
of states (LDOS), and Tr[Gn(σzτ0)] for spin-projected charge
density (SPCD). The band structure, local density of states,
and the spin-projected charge density for the lead and defect
contributions are presented in Fig. 1.

Additionally, the standard current operator [10] through the
ith lead

Ii = − e

h

∫ ∞

−∞
Tr
[(

�in
i A − 	iG

n
)]

dE (15)

must be modified to account that the electrons and holes
traveling in the same direction each carry opposite currents,
and therefore we modify Eq. (15) to handle particle-hole
symmetries [45]:

Ii = − e

h

∫ ∞

−∞
Tr
[(

�in
i A − 	iG

n
)
σ0τz

]
dE . (16)

Alternatively, this may be written as a difference between the
partial traces across the electron and hole subspaces.

C. Effective scattering model

Before we compute numerical results using NEGF, it is
illustrative to first consider an effective scattering model in
which we consider a reduced system containing solely an elec-
tron and spin-defect described by the following Hamiltonian:

Heff = Hedge + Hi + Hint. (17)

In the above Hedge = h̄v0kxσz describes electrons in the edge
channel along the x direction given by Eq. (3). Hi is the
unperturbed Hamiltonian of the defect spin. In the absence
of external magnetic field, Hi describes degenerate states of
the defect spin and we set it as a constant Hi = 0 without loss
of generality. The last term is the interaction between electron
spin and defect spin given as [46–49]

Hint = F (x)[JzσzSz + Jx(σ−S+ + σ+S−)], (18)

where F (x) = �(wx/2 − |x|) is a range function describing
the effective size of the scattering region, S is the defect-spin
operator, and σ± = (σx ± iσy)/2. We note here that the dipolar
coupling between the defect spins is much weaker than the
hyperfine interaction [50,51], and thus can be ignored.

In the presence of electron-defect interaction, the time-
reversal symmetry is broken and allows backscattering via the
spin-flip process. For simplicity, we consider the case of spin-
1
2 scatterer, which is realistic in a HgTe quantum well [51,52].
We can construct four basis vectors as |σz, Sz〉 = |↑↑〉,
|↑↓〉, |↓↑〉, |↓↓〉, and the total Hamiltonian is cast into

Heff =

⎛
⎜⎝

h̄v0k + Jz 0 0 0
0 h̄v0k − Jz Jx 0
0 Jx −h̄v0k − Jz 0
0 0 0 −h̄v0k + Jz

⎞
⎟⎠. (19)

The middle block corresponds to the spin-flip scattering
(i.e., the total spin of electron and impurity is conserved
J = 〈σz + Sz〉 = 0), which is defined within the scattering
region. This reduced system may then be explicitly written
as [53]

Hsf =
(

kh̄v0 − Jz Jx

Jx −h̄v0k − Jz

)
. (20)

The eigenstates are given by

ψ+(q) =
(

cos θ/2
sin θ/2

)
eiqx, (21)

ψ−(q) =
(− sin θ/2

cos θ/2

)
eiqx, (22)

for some wave vector q, where we have defined angles
sin θ =Jx/

√
J2

x + (h̄v0q)2, cos θ = h̄v0q/
√

J2
x + (h̄v0q)2,

and the corresponding energies are
E± = −Jz ±√J2

x + (h̄v0q)2.
It is worth noting that the interaction between electron

spin and defect spin can in general be more complicated, in
particular when considering higher-spin defects [21,26,29].
However, the numerical approach detailed here is general and
can be adapted to most interaction types and magnetic impu-
rities. We focus on the spin- 1

2 case with the interaction given
by Eq. (18) as this describes the key mechanism of interest.
The fundamental idea can be illustrated using an idealized
scattering model, which we first introduce before presenting
the numerical NEGF simulations.
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1. Single defect

Using the wave functions of the underlying edge states we
consider the elastic scattering of an electron with energy E >

0 incident from the left of the defect. Outside the scattering
region, the electron wave functions on the left and right sides
of the defect are

ψL =
(

αeikx

rαe−ikx

)
, ψR =

(
tαeikx

0

)
(23)

with r, t being reflection and transmission coefficients, respec-
tively, and the momentum is given by k = E/h̄v0.

At the same time, elastic scattering requires that the energy
of electron in the scattering region is also positive, which is
given by E+ > 0. In this case, the wave function of electron
in the scattering region is given by

ψc =c1ψ+(q)eiqx + c2ψ+(−q)e−iqx (24)

with q = √(E + Jz )2 − J2
x /(h̄v0).

Imposing the continuity relation at the left and right
sides of the scattering region, ψL(−wx/2) = ψc(−wx/2),
ψR(wx/2) = ψc(wx/2), we obtain the transmission and reflec-
tion coefficients as

T = |t | 2 = cos2 θ

1 − sin2 θ cos 2 qwx
, (25)

R = |r|2 = sin2 qwx

sin2 qwx + cot2 θ
, (26)

which satisfy the relation R + T = 1.
Having obtained the transmission probability, the conduc-

tance is simply derived as σ = G0〈T 〉, where 〈. . . 〉 represents
taking average value over all occupied states. The conduc-
tance decrease in the one-dimensional (1D) edge channel is

δσ = G0〈δT 〉 = G0

∫
[ fR(E ) − fL(E )]δT (E )dE (27)

between the left (L) and right (R) leads.
For pointlike defect, we can assume that the scattering

region is small (weak interaction), i.e., kwx � 1, then to the
leading order in w and at low temperature, the transmission
simplifies to

T ≈ 1 − q2w2
x tan2 θ. (28)

Noting that tan θ = Jx/(h̄v0q), we obtain the change in the
transmission coefficient due to the scattering as

δT = R =
(wxJx

h̄v0

)2

. (29)

From this expression we see that to lowest order, the reflection
should scale with the square of the effective defect length J2

x
and inversely with the Fermi velocity squared. Surprisingly,
the reflection coefficient is independent of the energy and mo-
mentum of the incident electron, and it is entirely expressed
as a function of the defect parameters (defect size, hyperfine
interaction) and the edge-state Fermi velocity.

2. Multiple defects

Similarly, we can extend the above arguments to the scat-
tering problem with NI defects. For simplicity, we assume that
the defects are linearly distributed along the edge channel with
equal separation l . The transmission probability for NI defects
can be obtained by

TNI ≈ 1 − δT

(
sin NI kl

sin kl

)2

, (30)

with δT given in Eq. (29). In the presence of multiple defects,
the net change in transmission coefficient is not simply addi-
tive. Consequently, the effect of multiple defects in spin-flip
scattering is nontrivial, as we will also see in the NEGF
analysis.

Nevertheless, when the separation between defects is large,
i.e., l � 1/kf, as is the case for low defect density, Eq. (30) is
simplified to

TNI = 1 − NIδT, (31)

which gives an approximate scaling of the multiple defects.
This scaling indicates a trivial additive effect and can be
understood as a consequence of the decoupling between well-
separated defects, where the net transmission coefficient is
just the product of individual coefficients at each site, i.e.,
TNI = T NI

1 = (1 − δT )NI ≈ 1 − NIδT . It is worth noting here
that this additive limit is what was assumed (for example) in
Ref. [6] resulting in a trivial dependence on the density of spin
impurities.

3. Dependence on lateral position of defects

For the previous derivation we assumed that defects act as
one-dimensional scatterers, and computed the reflection coef-
ficient assuming such. In fact, the coupling of spin defects to
the edge-state transport will depend on their spatial positions
due to the spatial variation of the edge modes.

Assuming well-separated edges and vanishingly small �0,
the wave function is given by a lateral localized function f (y)
of the form [7,33]

f (y) =
√

2λ1λ2(λ1 + λ2)

(λ1 − λ2)2
(e−λ1y − e−λ2y), (32)

where parameters λ1,2 are determined near the Dirac point by

λ1,2 = 1√
B2

0 − D2
0

( |A0|
2

± √
W0

)
, (33)

with W0 = A2
0/4 − M0(B2

0 − D2
0)/B0.

From the wave function in Eq. (32), we can determine the
effective width of the helical edge states as well as the lateral
position for maximum electron density. Explicitly, solving
f ′(y) = 0 we obtain

ypeak = log λ1 − log λ2

λ1 − λ2
. (34)
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For a defect placed at y = yi, the average value of the conduc-
tance decrease across the lateral direction is

〈δG〉 = 1

Ly

∫
Ly

δG| f (y)|2g(y)dy

= 1

Ly

∫
Ly

δG| f (y)|2�(wy/2 − |y − yi|)dy

≈ δG
wy

Ly
| f (yi )|2. (35)

where δG is the proportional conductance decrease for a given
event (assumed independent), Ly is the integration width for
computing the average, and g(y) is the spatial distribution of
defects. Here for simplicity we assume the spatial distribution
of the defect is given by a � function which defines a constant
region of width wy where the defect is “turned on.” From this,
we can see that the true defect reduction is

δT = R = wy

Ly

(
wxJx| f (yi )|

h̄v0

)2

. (36)

From Eq. (36) we see that the conductance decrease is directly
proportional to the underlying probability density of the car-
rier wave functions. As a consequence, defects in the bulk
will have only small contributions to the scattering process
and transport in two-dimensional (2D) TI films.

D. Spin-flip model NEGF

Now we introduce the mechanism of spin flipping in our
NEGF approach by utilizing a spin-flip self-energy based on
the derivation by Yanik et al. [43] extended to support po-
larized nuclear spin impurities. First, we consider the nuclear
spins as a bath with density matrix

ρ =
(

Fu �

�∗ Fd

)
, (37)

where Fu,d are the fraction of spins that are up (down),
Fu + Fd = 1, and � is the coherence between these popula-
tions. For consistency with the derivation of Yanik we keep
the Fu, Fd nomenclature, however, one may transform this
expression into magnetization 〈m〉 by

Fu,d = 1
2 (1 ± 〈m〉), (38)

by noting that 〈m〉 = Fu − Fd . By explicitly assuming that
the energy required for a spin flip is elastic, one arrives at
the following fourth-order tensor relations for the in- and
out-scattering matrices �in,out:⎡
⎢⎢⎢⎢⎣

(�in,out
↑↑ ) j j

(�in,out
↓↓ ) j j

(�in,out
↑↓ ) j j

(�in,out
↓↑ ) j j

⎤
⎥⎥⎥⎥⎦ = K

⎡
⎢⎢⎢⎢⎣

(Gn,p
↑↑ ) j j

(Gn,p
↓↓ ) j j

(Gn,p
↑↓ ) j j

(Gn,p
↓↑ ) j j

⎤
⎥⎥⎥⎥⎦,

K = 〈J2〉NI

⎡
⎢⎢⎣

1/4 Fu,d −�∗
2 −�

2
Fd,u 1/4 −�∗

2 −�
2

�
2

�
2 −1/4 0

�∗
2

�∗
2 0 −1/4

⎤
⎥⎥⎦,

(39)

where 〈J2〉 is the effective squared coupling rate after averag-
ing over NI impurities and energy, suppressing the x subscript
for brevity and noting that j is the lattice site. Throughout
we use 〈J2〉NI = 30 meV2. In general, each parameter in the
model can be considered to be spatially varying; however,
we suppress spatial variation in what follows without loss of
generality. Note that in this form, Eq. (39) is written in terms
of the individual elements of the scattering matrix �in,out.
Explicitly evaluating Eq. (39) for �in matrix gives

�in/J2 =
(

FuGn
↓↓ 0

0 Fd Gn
↑↑

)
+ 1

4

(
Gn

↑↑ −Gn
↑↓

−Gn
↓↑ Gn

↓↓

)

+ 1

2

(−Gn
↑↓�∗ − Gn

↓↑� (Gn
↓↓ + Gn

↑↑)�
(Gn

↓↓ + Gn
↑↑)�∗ −Gn

↑↓�∗ − Gn
↓↑�

)
,

(40)

where we have absorbed NI into 〈J2〉 and dropped the an-
gled brackets for brevity, J2 = NI〈J2〉. We may repeat this
similarly for �out, and noting that 	 = �in + �out, and Gp =
A − Gn, we arrive at the broadening matrix due to spin flips:

	sf/J2 = (Fu − Fd )

(
Gn

↓↓ 0
0 −Gn

↑↑

)

+
(

Fd A↓↓ 0
0 FuA↑↑

)
+ 1

4

(
A↑↑ −A↑↓

−A↓↑ A↓↓

)

− 1

2

(
A↑↓�∗ + A↓↑� −(A↓↓ + A↑↑)�

−(A↓↓ + A↑↑)�∗ A↑↓�∗ + A↓↑�

)
,

(41)

where the first two terms correspond to spin-flip processes
and the remaining to spin-dephasing and bath coherence
processes, respectively; therefore, this model involves both
spin-conserving and non-spin-conserving processes. In Yanik
et al. spin-dephasing processes were omitted, as it was as-
sumed they did not contribute significantly to the observables
being studied [43]. In this work we found their numerical
inclusion to be sufficiently inexpensive, and therefore we can
determine if these effects were in fact insignificant, which will
be discussed in Sec. III. We assume that the bath of nuclear
spins is in an incoherent mixture at all times and therefore set
� = 0.

To obtain the self-energy of a given broadening matrix, one
computes the Hilbert transform

�r (E ) = − i	(E )

2
+ 1

π

∫
	(E ′)/2

E − E ′ + i0+ dE ′, (42)

often written as the principal part (about the divergence), we
add a finite imaginary term to avoid this divergence. Note that
for pure dephasing, one may set Fu = Fd , and compute the
spin-flip self-energies without involving the Hilbert transform
as the spectral function is unambiguously related to the re-
tarded Green’s function; 	 → �r, A → Gr , and is given by

�r
sf/J2 = 1

2

(
Gr

↓↓ 0
0 Gr

↑↑

)
+ 1

4

(
Gr

↑↑ −Gr
↑↓

−Gr
↓↑ Gr

↓↓

)
. (43)

However, for any other polarization, such a statement can-
not be made about the electron and hole Green’s functions
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FIG. 2. Current contribution due to impurity scattering as a function of defect magnetization. As the magnetization is shifted from up to
down, the scatter current contribution also smoothly shifts from one direction to the other. For the scattered carriers, negative spin flow upwards
and positive spin flow downwards due to spin-momentum locking. Note that at total polarization 〈m〉 = ±1, some charge is reinjected with the
same spin, corresponding to the spin-dephasing processes. Data have been rescaled by their extrema such that they fit on the same color scale.

and we must evaluate the Hilbert transform explicitly. For
more discussion about how we compute the Hilbert transform

efficiently, see Appendix A. Explicitly defining H[ f (x)] to be
the Hilbert transform of f (x), we arrive at the self-energy

�r
sf/J2 =

(
Fd Gr

↓↓ 0
0 FuGr

↑↑

)
+ 1

4

(
Gr

↑↑ −Gr
↑↓

−Gr
↓↑ Gr

↓↓

)

− 1

2
(Fu − Fd )

(+iGn
↓↓ − H[Gn

↓↓] 0
0 −iGn

↑↑ + H[Gn
↑↑]

)
. (44)

In previous works [54,55] it was shown that for certain
models the in-scattering function may be replaced with some
simpler form corresponding to Büttiker probes. We have
found in this work that simple replacement with a Fermi-Dirac
distribution (or sum thereof), though able to reproduce effects
with the correct order of magnitude, was insufficient to fully
describe the physics related to magnetization, and led to an ad-
ditional resistance term for collinear spins, in contradiction to
the full in-scattering function. Therefore, we use the analytic
in-scattering function throughout.

III. DEPENDENCE ON IMPURITY POLARIZATION

To understand how a magnetic impurity disrupts a HES,
we isolate the contribution of electron Green’s function corre-
sponding to the impurity in-scattering function

Gn
sf = G�in

sf G† (45)

and compute its observables using Eq. (14). The partial den-
sity obtained can be thought of as a fictitious lead that absorbs
a charge and reinjects it with or without a spin flip. This
reinjected current mimics the expected behavior of spin-
dependent scattering on the edge-state conduction with spins
of opposite sign propagating in the opposite direction.

For all the data presented we discuss the decrease in con-
ductance as δσ , which we define as

δσ = σpristine − σactual, (46)

in units of the quantum conductance G0 = e2/h, where pris-
tine is the conductance without the defect present. Note that
for a pristine QSH TI, the conductance is exactly 2G0 orig-
inating from the two helical edge states, each carrying one
conductance. In this work, we place defects only in one of the
two edge states at a given time.

Similarly for the change in current, we define δI ,

δI = Ipristine − Iactual, (47)

which we present in units of I0, the current of a single channel
at 1 volt (I0 = e2V/h). For example, at a bias of V = 250 mV
the pristine current would be Ipristine = 0.50I0.

In Fig. 2 we demonstrate the scattered spin current as a
function of the defect magnetization. As the defect polariza-
tion is smoothly transitioned from one orientation to the other,
so too is the scattered current contribution. Note that even
at maximal polarization in one direction (〈m〉 = ±1) some
charge is scattered with spin of the opposite polarization,
originating from the spin-dephasing term. This current does
not negatively affect transport, and the conductance change
due to a collinear magnetic impurity is nil (see Fig. 3). As
such, previous comments about its ability to be removed are
seemingly well founded [43].

In Fig. 3 we demonstrate the conductance change as a
function of magnetic impurity position in the channel. Moti-
vated by the derivation in Eq. (36) we normalize our result by
the dimensionless factor (wy/Ly)(wxJ/h̄v0)2, where wx (wy)
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FIG. 3. The defect scattering contribution to conduction as a
function of position depends directly on the spatial distribution of
the edge state. Dots are obtained by scaling the conductance de-
crease obtained by NEGF result by the factors presented in Eq. (36),
showing the spatial dependence for M0 = 2E0. This can be compared
directly to the probability density of carriers (solid lines), with a
trivial scale factor to match the conductance change. The ratios
of each magnetization (〈m〉 = 0.0, 0.5, 1.0) are 2:2, 3:1, and 4:0,
respectively, demonstrating the linear relationship between polariza-
tion and strength; collinear spins do not negatively affect transport.
Note that negative magnetizations would be the same figure, but with
the lateral defect position axis reversed.

is the width of the defect in the transport (lateral) direction
relative to the region of interest Ly, J is the coupling strength,
and h̄v0 is the Fermi velocity. The conductance change is
therefore directly proportional to the underlying probability
density of the current carrying states.

As can be seen in Fig. 3, the change in conductance is
highly dependent on the underlying carrier spin density. When
a defect is placed in higher-density regions, the decrease in
conductance is stronger. The region of high electron density
can be determined by considering the transverse wave func-
tion f (y), which has a localization peak at ypeak, as discussed
in Sec. II C 3. Using the corresponding Hamiltonian parame-
ters, we obtain ypeak ≈ 2.34 r0, which is consistent with the
spatially resolved NEGF method depicted in Fig. 3 whose
maximum density is y = 2.375r0 ± 0.125r0.

For a fixed density, the effect is linearly dependent on the
underlying polarization between the defect and HES, being
maximized when they are antiparallel and minimized when
they are parallel. This is best observed by noting that the
total average conductance decrease across the left and right
edge states is constant with polarization, being given by the
ratios 2:2, 3:1, and 4:0 for 〈m〉 = 0.0, 0.5, and 1.0, respec-
tively. This is consistent with the spin-flip probability being
proportional to both the charge density at the impurity site and
the impurity’s polarization. Lastly, we note that the negative
magnetizations (〈m〉 = −0.5,−1.0) would be the same as
Fig. 3, but with the lateral defect position axis reversed.

To further examine the functional dependence we place
our defect at y = 2.375 r0, corresponding to the maximum
conductance change observed and plot it as a function of
magnetization and conductance in Fig. 4. Once again we see
that when the defect magnetization axis is aligned with the

FIG. 4. The decrease in current as a function of magnetization
at given biases. I0 is the current of a single channel at 1 volt (I0 =
e2V/h). Lines are given by a single bilinear fit in 〈m〉 and V to the en-
tire data set, demonstrating the linear sensitivity to both parameters.
Bias increases upwards with the minimum and maximum biases be-
ing 50 and 250 mV, respectively. Shown inset is the bias dependence
when the defect is maximally polarized. To generalize our result we
have normalized by the dimensionless factor (wxJ/h̄v0 )2 discussed
in the text.

dominant carrier, no response is observed, and when they are
opposite, the effect is maximized. Furthermore, the effect is
linear in applied current, where the total response was found to
be very well described by a bilinear fit over magnetization and
bias suggesting that, again, the conductance decrease linearly
depends on the polarization of the defect, as is expected given
the linear dependence of Eq. (44) on Fu and Fd .

A. Scattering-induced defect magnetization

The correlation between conductance and defect magneti-
zation is consistent with spin-charge conversion induced by
the helical edge state [3]. The underlying physics can be
understood in an intuitive way using the spin-flip scattering as
discussed in the previous section. In this process, both electron
and defect acquire nonequilibrium polarization pertaining to
the conservation of the total spin. In the case of a single defect,
the polarization of the defect is determined by m = Tr[Szρtot],
where ρtot = |ψc〉〈ψc| is the density matrix, with ψc given in
Eq. (24) (see Appendix C for full details). Explicitly,

m = cos2 θ

sin2 θ cos 2 qwx − 1
, (48)

which is exactly the expression of the transmission coefficient
in Eq. (28) with an opposite sign, i.e., m = −T . Notice the
relation between the conductance and the transmission coeffi-
cient: we can derive the linear relation between conductance
change to the defect magnetization as δσ ∝ G0(1 + 〈m〉).

B. Steady-state magnetization

So far, we consider the polarization induced by an elec-
tron. If there are ne noninteracting electrons in the spin-flip
scattering, the total magnetization of the defect will be
M =∑ δm = nem, from which we can then determine the

115420-8



EFFECT OF MAGNETIC IMPURITY SCATTERING ON … PHYSICAL REVIEW B 106, 115420 (2022)

magnetization rate as

dM
dt

= jem − M
τr

, (49)

where je = dne/dt is the charge current, and τr is a phe-
nomenological relaxation term [7]. In steady state, the
magnetization is therefore obtained as

Mst = jeτrm, (50)

which is consistent with previous work [7]. The above
equation represents the current-induced polarization in the
topological edge states. Conversely, a spin-polarized defect
can generate a charge current I ∝ dM/dt via the magneti-
zation relaxation. In general, a fully self-consistent solution
of both electron and impurity spins is required [8]; however,
here we focus on the effect of steady-state spin impurities on
the edge-state conduction.

In the following section we discuss the material parameter
M0 and the signatures of impurity-impurity interactions.

IV. IMPURITY PROXIMITY EFFECTS

All the results so far can be understood in terms of
the standard Boltzmann transport picture [6,7]. However,
an interesting effect seen in Figs. 1, and 2 5 is that al-
though the impurity is modeled as pointlike, the redistributed
spin-current density exhibits finite extent before reaching its
steady-state behavior, typically on the length scale of 1–3
r0. To examine these effects we computed the spin-resolved
current density as a function of distance from the defect in the
direction of transport, a subset of which are shown in Fig. 5(a).
Using principal component analysis on nine samples spaced
across M0 = 0.5E0 to M0 = 2.5E0 we observe two primary
contributions, one corresponding to the underlying current
redistribution independent of M0 [Fig. 5(b)] and another undu-
lating factor which depends of the value of M0 [Fig. 5(c)]. We
note that all biases studied are well within the bulk gap and
as such are unaffected by any band modifications about the
band-gap edges; the effect depends solely on the states inside
the gap.

Now we use the same formalism to consider two defects
positioned within a HES to examine how the finite extent of
the HES response modifies the device response of high-defect
densities. We show the purely additive effect of two defects
placed 4r0 apart in Fig. 6.

At higher densities we find that the effects are not purely
additive. In order to determine the contributions of two-defect
effects we note that different polarizations, M0 values, and
spatial positions all cause differing conductance changes, and
as such we introduce the following ratio describing the relative
difference between two isolated and nonisolated defects:

Conductance decrease ratio = δσ2 − 2δσ1

2δσ1
, (51)

where δσ2 is the total conductance decrease from two im-
purities, and δσ1 is the conductance decrease from a single
impurity. If there are no higher-order effects, then this contri-
bution would be exactly zero, and if the contribution doubled
due to higher-order effects, this value would be exactly unity.

FIG. 5. Contributions to the spin-density redistribution from an
unpolarized magnetic defect for M0 = 1.50, 1.75, 2.00E0 in blue
solid, green dashed, and red dotted, respectively. The primary effect
is to redistribute equal proportions of spin in either direction; how-
ever, a secondary ringing effect is observed based on the value of M0.
At M0 < A2

0/B0, the secondary effect is negative, causing a smoother
redistribution. However, at M0 > A2

0/B0 it becomes additive, causing
a sharp ringing feature to appear, three examples of which are illus-
trated here. The extrema of primary and secondary features are at
approximately ±1.5r0 and ±0.75r0, respectively. This ringing effect
is examined in Fig. 7.

These results are presented in Fig. 7 where defects are
linearly separated in units of 0.25r0 (the lattice spacing). We
see that the influence on conduction possesses both negative
and positive contributions, that is, more and less conductive
regions and that its minimum depends on the choice of M0, but
not the polarization 〈m〉, as demonstrated by the overlapping
curves with fixed M0 = 2, but 〈m〉 = 0.0, 0.5. It appears that
the M0-dependent effects are maximized for impurity sepa-
rations close to the edge-state length scale r0 and that the
relative conductance change is negligible for separations �4r0,
implying a maximum density of scatterers beyond which the
effects due to multiple scatterers are not simply additive.

The nonadditive effect of multiple defects on conductance
can be understood in terms of spin-flip scattering discussed
in Sec. II C. For a single defect NI = 1, the conductance is
obtained δσ1/G0 = kfδT following Eqs. (27) and (29), where
kf = Ef/(h̄v0). Similarly, for double defects NI = 2, we have

δσ2/G0 = 2kfδT + 2kfsinc(2kfl )δT, (52)

where sinc(x) = sin(x)/x. In this case, the conductance de-
crease oscillates with kf and decays with the defect separation
l . At large l , it reduces to δσ2 = 2kfδT = 2δσ1, implying an
additive effect of the decoupled defects. Now, the ratio in

115420-9



VAITKUS, HO, AND COLE PHYSICAL REVIEW B 106, 115420 (2022)

FIG. 6. (a) Spatially resolved spin-projected charge density for
combined impurities both with 〈m〉 = 0.5. (b) One-dimensionally
integrated spin-projected charge density, normalized by the differ-
ence between the maximum and minimum spin contributions. Dotted
line cuts through zero (i.e. no change of the HES due to impurity
scattering) and dashed lines cut through the defect locations.

FIG. 7. Relative change in conductance of two unpolarized
(〈m〉 = 0) spin impurities, for (red circles) M0 = 1.0E0, (gray pen-
tagons) M0 = 2.0E0, and (blue squares) M0 = 3.0E0; also the effect
of two partially polarized impurities (〈m〉 = 0.5) is shown in (green
diamonds) for M0 = 2.0E0 denoted by asterisk. Positive indicates
that the device is less conductive than two isolated defects, whereas
negative indicates it is more conductive. Here we can see that tran-
sitioning across differing values of M0, the device transitions from
being less to more conductive. The results also appear to be some-
what insensitive to the polarization of the defects. We qualitatively
observe the sinc-like behavior in the relative conductance change but
at a much smaller scale.

Eq. (51) is explicitly derived as

δσ2 − 2δσ1

2δσ1
= sinc(2kfl ) (53)

in this limit, if we plot this ratio we observe sinc-like behavior,
which is consistent with our numerical results depicted in
Fig. 7. The characteristic length scale of the sinc oscillation
is given by kf,

kf �
E0

h̄v0
= |A0|2/2|B0|√

B2
0 − D2

0|A0|/|B0|
D0→0= |A0|

2|B0| ≡ 1

r0
, (54)

which is consistent with 1/r0 observed in the numerical re-
sults. Although the function form matches well, the magnitude
of the effect is not comparable between the effective and
NEGF models. However, this is not surprising as this deriva-
tion is for a single electron and one-dimensional scattering,
and the results in Fig. 7 are for an ensemble of electrons in 2D.
Interestingly, the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
coupling between two defect spins mediated by 1D edge state
is also expressed as JRKKY ∝ sin(2kfl )/l [46,56,57]; however,
the relationship between such a coupling and the model in-
troduced here is not clear as we consider the spin-scattering
process as independent for each impurity.

For a general number of defects NI , we can obtain an
approximation of the conductance decrease as

δσNI /G0 ≈NI kfδT + 2(NI − 1)kfsinc(2kfl )δT, (55)

where we discarded the higher-order oscillation terms. The
total conductance decrease scales with the number of defects
as expected. However, it is important to note that for high
densities and low intrinsic (other than spin impurity mediated)
dissipation, phase interference effects such as localization are
also expected. In particular, Anderson localization is predicted
to occur with multiple spin impurities [16], although this is
also an idealized model. The independent (phase-incoherent)
scattering considered in our model reproduces some of the
observed scattering of edge-state conduction and spin polar-
ization seen experimentally [3], but higher-order corrections
are highly likely, due to both phase interference and spin-spin
interactions.

V. CONCLUSION

Using the NEGF formalism we have developed a model
for understanding the role of magnetic impurities in the BHZ
model. We have shown that a fully microscopic model agrees
qualitatively with the semiclassical Boltzmann treatment for
single impurities. However, a secondary effect is observed
between two impurities depending on the material parameter
M0. This effect modifies the response at high-impurity den-
sities, implying a maximum density of magnetic impurities
beyond which a more sophisticated treatment is required.

Using a real-space Green’s function approach allows us
to consider spatially dependent effects and realistic device
geometries. These methods may be applied to studies in dif-
ferent parameter regimes and for different materials, as our
results are quite general. The approach can also be applied
to model the effects of nonpointlike defects such as charge
puddles [14], as well as spin and charge disorder [2,18,23,28],
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by adapting both the in-scattering function and spatial distri-
bution of the local potential within the device. Studying the
influence of spin-dependent scattering on topological edge
states due to magnetic impurities is important to understand
the limitations of spin-momentum locked states for use in
energy storage and spintronics.

ACKNOWLEDGMENTS

We acknowledge useful discussions with S. Wilkinson,
D. Culcer, M. Fuhrer, and B. Muralidharan. This work was
supported in part by the Australian Research Council un-
der the Centre of Excellence funding scheme Grant No.
CE170100039. Computational resources were provided by
the NCI National Facility systems at the Australian National
University through the National Computational Merit Alloca-
tion Scheme supported by the Australian Government. This
research was supported by a Lockheed Martin Corporation
Research Grant.

APPENDIX A: NUMERICAL HILBERT TRANSFORM

Computation of the Hilbert transform is typically consid-
ered a numerically expensive process. Here we show that it
may be reduced to a simple matrix multiplication, following
the work of [58]. However, unlike [58] which was designed
for a different purpose, we do not require our functions to
be symmetric in energy and instead provide a more general
solution. We begin by noting that the real and imaginary
components of causal functions must be Hilbert transforms
of each other:

Re[�(E )] = − 1

π

∫ ∞

−∞

Im[�(E ′)]
E − E ′ dE ′ (A1)

= Im[�(E )] ⊗
(−1

πE

)
. (A2)

Equation (A1) may be transformed to a discrete energy grid
by approximating the kernel with energy-dependent weights
multiplied by some basis function �(E ):

�(E ) ≈
∑

j

�(Ej )� j (E ); (A3)

here E is a continuous variable, whereas Ej are discrete grid
points. Following this, one may compute the Hilbert transform
of the basis functions evaluated at the target energy point Ek:

φk j = φ(Ek, Ej ) =
∫ ∞

−∞
dE ′� j (E

′)
(

1

Ek − E ′ − i0+

)
,

(A4)
where 0+ is a small infinitesimal to provide stability to the
integration. In our work �i(E ′) are a collection of triangular-
shaped functions centered at Ei, which serve analogously to
the delta function on a discrete grid (or, for another interpre-
tation, are linearly interpolating functions):

� j (E
′) =

⎧⎪⎨
⎪⎩

E ′−Ej−1

Ej−Ej−1
, for Ej−1 � E ′ � Ej

Ej+1−E ′

Ej+1−Ej
, for Ej � E ′ � Ej+1

0, elsewhere

(A5)

due to the definition of our triangle functions, these points
do not need to be placed on an equidistant grid, allowing us
to prioritize sampling depending on our requirements. These
integrals can be formed analytically (and thus the broadening
term may be omitted) to give

φk j = Ek − Ej−1

Ej − Ej−1
log

∣∣∣∣Ej−1 − Ek

Ej − Ek

∣∣∣∣
+ Ek − Ej+1

Ej − Ej+1
log

∣∣∣∣ Ek − Ej

Ek − Ej+1

∣∣∣∣, (A6)

where log |x| is the natural logarithm of the absolute value of
x. With these weights, Hilbert transforms such as this one can
now be performed by simple summation:

Re[Glm(Ek )] = − 1

π

∑
j

φk jIm[Glm(Ej )]. (A7)

As we are on a discrete grid, energies lower and higher than
certain points will not be calculated, as such it is important to
make sure that the functions being evaluated have sufficiently
converged to zero. Evaluation of the Hilbert transform matrix
need only be computed once, and all subsequent transforms
are found solely by matrix multiplication.

Other authors [59] have chosen to compute the Hilbert
transform using the fast Fourier transform (FFT) approach.
The FFT method relies on the definition of the convolution
operator being a product in Fourier space. One first computes
the FFT of the signal and of −1/E and then inverse transforms
them back. This method though computationally inexpensive
has significant drawbacks. First, because it uses FFT, the
function is inherently assumed to be periodic. This forces the
positive and negative solutions to be clamped to zero requiring
needlessly large window sizes to achieve accurate results.
Second, prima facie it does not support nonuniform grids,
though efficient nonuniform alternatives to the FFT have been
proposed [60] based upon band-limited interpolation. A com-
parison of FFT and our method is shown in Fig. 8.

APPENDIX B: ADDITIONAL NUMERICAL METHODS

1. Numerical integration

To compute numerical integration of observables we use a
shape-preserving piecewise cubic Hermite interpolating poly-
nomial using MATLAB’s PCHIP function, then analytically
integrate it using FNINT. We found that this method is com-
putationally efficient, maintaining physicality (non-negative
density of states) with the added flexibility of nonuniform
grids.

2. Self-consistency of impurity self-energies

To aid in the convergence of self-energies we use Eyert’s
modified Broyden method [61]. For a linear mixing of the
input and output of some function f [in this case a linearized
version of our self-energy f = vec(�r )], this iteration may be
written as

f i+1
in = (1 − α) f i

in + α f i
out, (B1)

where f i
inand f i

out were the input and output states for the ith
iteration, α is the linear mixing parameter, and f i+1

in is the
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FIG. 8. Comparison of numerical Hilbert transforms of f (x) =
1/(x2 + 1). (Red, solid) Exact analytic transform H [ f (x)] =
x/(x2 + 1), (black, dashed) our linear basis function method, and
(blue, dotted) FFT method. Linear in this sense refers to the inter-
polation of the measured data and not of the transform. Note because
of the periodic assumption, the FFT method goes to zero at the edges.
A slight deviation at the edges of our method may be observed due
to truncating the original function before it reached zero. This may
be corrected by expanding the window.

new input guess. Defining the difference in output states as
the “function” F i = fout − fin, and X i = fin, and the Jacobian
inverse J−1 = −αI , we arrive at a quasi-Newton iteration
formula

X i+1 = X i − J−1F i (B2)

and therefore may use the techniques of Eyert’s modi-
fied Broyden scheme discussed below. Unlike conventional
schemes which perform a rank-one update from the pre-
vious iteration, Eyert’s method performs a minimal rank-n
update in the least-squares sense for several previous steps,
simultaneously generating a much better approximation to the
underlying Jacobian. Given a starting guess for the inverse
Jacobian J−1 ≈ G0, the new updated inverse Jacobian G is
given by

G = G0 + (dx − G0dF )W, (B3)

where dx is a matrix whose columns are spanned by the differ-
ence in input guesses dxi = X i − X i−1, and dF similarly is a
matrix spanned by the difference in outputs dFi = F i − F i−1,
and W is a projection matrix given by

W =
{

pinv(dF ), “bad”,
(Z†dF )\Z†, “good”

(B4)

where Z = G0dx. In this work we chose α = 0.75, and six
Broyden steps to be included (though typically we achieve
convergence after one to two steps. In Eyert’s work, his
projection matrix was based on the “bad” Broyden rank-one
update, for our work we similarly define what we call the
“good” projection matrix that we based on the “good” Broy-
den rank-one update by inspection.

3. Active update of Gn

The self-consistent cycle requires both the iteration of Gr

and Gn together. Gn and its Hilbert transform enter into the

self-consistent solution of Gr , but as the Hilbert transform is
nonlocal property, it cannot be updated until all energy points
have been computed; the common practice is then to keep
Gn completely fixed until all Gr are computed. Instead, we
fix only the Hilbert transform of Gn, and actively update the
anti-Hermitian part (typically by linear mixing with the old
solution). The anti-Hermitian part corresponds to the density
of occupied states and allows for a more active feedback.
Although this may slightly increase the computation time, the
additional computation of Gn is cheap compared to Gr , as it
requires only matrix products (N2) rather than inverses (N3),
and all the relevant setup costs are in the initial computation
of Gr ; we find that this method leads to fewer outer (Gn) iter-
ations overall. However, as noted in the following subsection,
for a large collection of points, the conditional computation of
Gn reduces this additional computational cost to zero.

4. Conditional computation of Gn

In our work we apply a conditional computation of Gn

for our self-consistent cycle, and consider the Fermi-Dirac
distribution function

f (E ) =
[
exp

(E − μ

kT

)
+ 1
]−1

. (B5)

We consider that for energies lower than the lowest chemical
potential, all state filling (including those from impurity self-
energies) may be well described by Fermi-Dirac distribution
functions; at energies much lower than the lowest chemical
potential, the Fermi-Dirac distribution function can be safely
approximated by

f (E ) ≈
{

1 − exp
(E−μ

kT

)
, for E � μ

exp
(

μ−E
kT

)
, for E � μ.

(B6)

Then, for energies much lower than the lowest chemical po-
tential, the in-scattering matrix

�in =
N∑
i

fi	i (B7)

may safely be approximated by 	:

	 =
N∑
i

	i (B8)

as fi ≈ 1. Upon this substitution, one notes that

Gn = Gr�inGa ≈ Gr	Ga = A (B9)

and computation of Gn is unnecessary as it is equal to the
anti-Hermitian part of Gr . If the approximation is made at
E = μ − pkT , then the largest error is e−p. If p � 36.84, then
the answer will be indistinguishable from floating point im-
precision. However, we have found that perhaps due to the use
of products to compute Gn, when we examined the differences
between A and Gn numerically, we found that at p = 18.42 the
results became indistinguishable. Note, this does not remove
the necessity of the Hilbert transform in these regions as it is
a nonlocal property.
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APPENDIX C: SPIN-FLIP-INDUCED MAGNETIZATION

For a single spin defect and conduction electron pair, the
eigenstate is given by

|ψc〉 = c↑↓|↑↓〉 + c↓↑|↓↑〉. (C1)

Here, c↑↓ and c↑↓ are

c↑↓ =
(

c1 cos
θ

2
eiqx + c2 sin

θ

2
e−iqx

)
, (C2)

c↓↑ =
(

c1 sin
θ

2
eiqx + c2 cos

θ

2
e−iqx

)
, (C3)

where the coefficients c1,2 are

c1 = sec θ
2

1 − e2iqw tan2 θ
2

, (C4)

c2 = e2iqw sin θ
2

− cos2 θ
2 + e2iqw sin2 θ

2

. (C5)

The full density matrix of electron-defect system is ρtot =
|ψc〉〈ψc|, from which the reduced density matrix of the de-
fect spin is obtained as ρ = Tre(ρtot ), where the trace is over
electron spin space. Explicitly,

ρ =
(

Fu 0
0 Fd

)
, (C6)

with Fu = |c↓↑|2, Fd = |c↑↓|2. The diagonal elements of the
defect density matrix are given by

Fu = sin2(θ ) sin2[q(w − x)]

cos2(θ ) cos2(qw) + sin2(qw)
, (C7)

Fd = 3 − 2 sin2(θ ) cos[2q(w − x)] + cos(2θ )

3 − 2 sin2(θ ) cos(2qw) + cos(2θ )
. (C8)
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