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The recent demonstrations of viscous hydrodynamic electron flow in two-dimensional electron systems poses
serious questions to the validity of existing transport theories, including the ballistic model, the collision-induced
and collisionless hydrodynamics. While the theories of transport at hydrodynamic-to-ballistic crossover for
free 2D electrons are well established, the same is not true for electrons in magnetic fields. In this paper, we
develop an analytically solvable model describing the transition from ballistic to hydrodynamic transport with
changing the strength of electron-electron collisions in magnetic fields. Within this model, we find an expression
for the high-frequency nonlocal conductivity tensor of 2D electrons. It is valid at arbitrary relation between
frequency of external field w, the cyclotron frequency w,, and the frequency of e-e collisions 7,;'. We use
the obtained expression to study the transformation of 2d magnetoplasmon modes at hydrodynamic-to-ballistic
crossover. In the true hydrodynamic regime, wt,, < 1, the 2DES supports a single magnetoplasmon mode that
is not split at cyclotron harmonics. In the true ballistic regime, wt,, >> 1, the plasmon dispersion develops
splittings at cyclotron harmonics, forming the Bernstein modes. A formal long-wavelength expansion of kinetic
equations (“collisionless hydrodynamics™) predicts the first splitting of plasmon dispersion at w ~ 2w,. Still,
such expansion fails to predict the zero and negative group velocity sections of true magnetoplasmon dispersion,

for which the full kinetic model is required.
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I. INTRODUCTION

In common semiconductor materials, scattering of elec-
trons by phonons and impurities leads to the diffusive Ohmic
transport. At the same time, in pure materials, the charac-
teristic momentum relaxation length [, for scattering by
phonons and impurities can exceed the size of the device W.
This leads to ballistic dc transport with predominant scat-
tering of electrons at the sample boundaries [1,2]. A very
interesting situation appears when momentum-conserving
electron-electron collisions are intense, so that the respective
free path [, < [, and l,, < W. In this case, electrons form
a viscous fluid with its dynamics described by the Navier-
Stokes equations. This corresponds to the hydrodynamic
dc transport, where current whirlpools and negative nonlo-
cal resistance [3-7] can be observed. This hydrodynamic
regime in electronic systems has attracted significant inter-
est and has been experimentally demonstrated in graphene
[8-12], (Al,Ga)As heterostructures [13], GaAs quantum wells
[14,15], and Weyl semimetals [16—18].

The parameter space for diffusive, ballistic, and hydrody-
namic regimes changes at finite frequency of external field w.
A number of interesting effects in ac transport was predicted
theoretically for ideal electron fluid [19-22] where e-e colli-
sions are so intense that wt,, < 1. The ballistic regime in this
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case refers to a model of a collisionless electron plasma that is
valid for describing processes that occur in times shorter than
the free path of electrons (wt,, > 1 and w1, > 1) or for pro-
cesses whose characteristic spatial scales are smaller than the
free path lengths (gl.. > 1, gl,,, > 1, where g -characteristic
wave vector of wave processes) [23]. In many experimentally
relevant situations, particularly, at THz or GHz frequencies,
o and 7! are comparable in magnitude. This leads to the
need to construct models of the transport intermediate be-
tween hydrodynamic and ballistic regimes [1,2,7,24-33]. It
is important to mention that ideal electron fluid is formed
at very strong e-e collisions, contrary to ideal electron gas
where electrons do not interact at all. Indeed, the dc kinematic
viscosity Vi, = v%ree /4 (v is the Fermi velocity) tends to
zero for very short free path time 7,. On the other hand,
the ballistic transport can be equivalently termed as “highly
viscous”. The true Navier-Stokes hydrodynamics is inappli-
cable in this regime. Yet it is possible to expand the transport
equations in the long-wavelength limit, generating the nearly
local “collisionless hydrodynamics” or “hydrodynamics of
highly viscous fluid” in which the equations of motion can
be interpreted as the Navier-Stokes equations [22,23].

Such equations predict the existence of a novel collective
mode, the transverse zero sound, in the absence of a mag-
netic field [34,35]. In finite magnetic field B, the dynamic
viscosity v(w, B) was predicted to have the viscoelastic reso-
nance [22,36,37]. The latter should occur at double cyclotron
frequency w = 2w,.. Interaction between 2D plasmons and
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viscoelastic resonance was predicted to lead to emergence
of novel collective mode, dubbed as “transverse zero magne-
tosound” [36].

The predicted mode structure of highly nonideal electron
fluid contradicts to that of ballistic electrons, although both
regimes should be equivalent and appear at wt,, > 1. The
ballistic theory states that plasmon dispersion interacts with
multiple cyclotron resonances forming the so called Bern-
stein modes [38—46]. The fundamental Bernstein mode, like
conventional magnetoplasmon, starts from w, at ¢ = 0. As
it approaches 2w, it reaches a plateau, and then falls down-
ward with negative group velocity. The group velocity on the
plateau is zero, and density of states is singular. The plateau
frequency is shifted from 2w, by minigap. The next branch
of the Bernstein modes starts from 2w, at ¢ = 0 and forms a
plateau near the triple cyclotron frequency. Similar branches
occur at each multiple of the cyclotron frequency.

In this article, we are aiming to resolve the above men-
tioned contradictions between “ballistic” and “highly-viscous
hydrodynamic” models for 2DES in magnetic field. To this
end, we develop a generalized classical kinetic model that
describes magnetotransport in ballistic and hydrodynamic
transport regimes as limiting cases (with & > T). The
model is based on Boltzmann kinetic equation with model
momentum and particle conserving e-e collision integral.
We calculate the nonlocal high-frequency conductivity with
nonzero magnetic field, which is a necessary block for cal-
culating many light-matter interaction characteristics [47-49]
(Sec. 1D).

Using the expression for conductivity, we study the evo-
lution of the dispersion of magnetoplasmons during the
transition from the hydrodynamic regime to the ballistic
regime (Sec. III). At a high frequency of electron-electron
collisions corresponding to the hydrodynamic regime, an con-
ventional magnetoplasmon with a single cyclotron gap is
observed. As the collision frequency decreases, more and
more pronounced dispersion splittings at multiple cyclotron
frequencies appear, which in the ballistic regime take on the
explicit form of Bernstein modes. We inspect the approxi-
mation of “collisionless” hydrodynamics (Sec. IV) and find
that is applicable only for wave vectors smaller than the
anticrossing point g* of the two lowest Bernstein modes, co-
inciding with them in the region of applicability. This means
that transverse zero magnetosound is an artifact of long-wave
expansion of transport equations beyond the region of appli-
cability.

II. NONLOCAL HIGH-FREQUENCY CONDUCTIVITY
TENSOR

We start with evaluation of the nonlocal conductivity tensor
of 2DES 6(q, w) in a classically strong perpendicular mag-
netic field B || e,. To this end, we find the current response
in a weak electric field SE = §Eoe/ @~ withr, q L e,. Itis
found from the solution of linearized kinetic equation

a 1 aé
—(iw — iqvp)d f — eSEovpa—J;O + ;Vp X BB_[{ = Ste.{6f},

ey

where distribution function f = fy + 8fe' @), v, is the
electron velocity, ¢ the speed of light, and St.{5f} the
electron-electron collision integral. In a practically important
limit ¢z > T in which the electron-phonon scattering can
be neglected [50], only electrons with velocities close to the
Fermi velocity v participate in high-frequency kinetic pro-
cesses, which makes this model applicable for describing both
classical 2DES and graphene. Contrary to electron-impurity
and electron-phonon collisions, e-e collisions conserve the net
momentum of colliding particles. To account for this fact, we
adopt the e-e collision integral in generalized relaxation-time
approximation [30,51-57]. The collision integral pushes the
distribution function é f towards local equilibrium

8f =6 d
Stee{d f} = M, 8 fha = _8_]2)(8M +pév), (2

where §u and dv are found from the conservation of particle
number and momentum,

Y Gf=8fi)=0, Y pOf—8fi)=0. (3)
P P

Such a e-e collision integral model corresponds to zero re-
laxation rate of density and momentum modes of distribution
function, and identical relaxation rates for all higher angular
harmonics. While the first property is valid for real e-e colli-
sion integrals, the second may be violated in 2D systems in
highly degenerate regime [58]. Microscopic calculations per-
formed in Ref. [58] show that at T « 0.1EF the odd angular
harmonics decay very slowly, while the decay rates of even
harmonics are almost identical and scale as 2. Our model of
collisions is thus definitely valid quantitatively at not very low
temperatures, 7 > 0.1Er. At lower temperatures, it describes
the transition to hydrodynamics qualitatively. Nevertheless, it
may become valid also at very low temperatures if the weight
of anomalous odd harmonics in the total distribution function
is low for some reason.

The kinetic equation with e-e collision integral (2) and
conservation laws (3) are sufficient to describe the behavior
of electron liquid at large wave vectors ¢ ~ /vy, and across
the whole hydrodynamic-to-ballistic crossover. The scheme
of solution is described in Appendix A. First, one passes to
the polar coordinates in momentum space and expands the
distribution function in Fourier series. Physically, the coef-
ficients of these series are cyclotron harmonics. The kinetic
equation in cyclotron harmonic representation is purely al-
gebraic. Its symbolic solution at the first stage contains two
unknown variables, §u and év. On the second stage, these
“hydrodynamic quantities” are found from the conservation
laws (3). In a practically important limit ez > T, this leads
us to a system of linear equations describing both ballistic and
hydrodynamic behavior of 2DES,
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where y = (wt..)”! is the dimensionless collision frequency,
vo the Fermi velocity, ny equilibrium carrier density, and q ||
e,. The dimensionless factors

Yo 3 (_)M )
4 £ gR.) 1 —sw.Jo+iy’

§=—00
where Js(i) [x] is the ith order derivative of the Bessel function,
R. = vp/w, a cyclotron radius and w, a cyclotron frequency.

These equations can be interpreted as generalized hy-
drodynamics; the term “generalized” implies applicability at
arbitrarily large wave vectors. When expanded to terms o
¢* (with gR. <« 1), we obtain “collisionless” hydrodynamics
(wTee > 1) or “true” hydrodynamics (w1, < 1)

—iwdén + i(qév)ny = 0, 6)

2
—iwdvV = w [0V X e;] — iq%Sn — vxx(a))q28v

> €8E0
- ny(a))q 8[V X ez] + m ) (7)

where the ac shear viscosity coefficients vy (@) and vy, (@)
depend on magnetic field and frequency as

) 1 —iwt,. @)
Vxx =V N s
@ O = iwTe)? + 40?
20)6“[@6
ny(a)) =V (9)

Y0 = i0Tee)? + 42’

where vy = vgtee /4 is the viscosity in the absence of mag-
netic field. Whereas “true” hydrodynamics, due to the small
relaxation time, is also valid for large wave vectors, colli-
sionless hydrodynamics has a limited range of applicability
(quo < w.) which requires special care when applying this
approximation for large wave vectors.

Finally, the components of the conductivity tensor & (w, q)
can be found from

j = enydv = 6(q, w)SEy, (10)

where the relation between §v and JE, is found from
Eq. (4).

It is instructive to track the changes in longitudinal conduc-
tivity o,,(q, @) while varying the strength of e-e collisions.
Figure 1 illustrates this evolution and shows the frequency de-
pendence of Reoy, at fixed g = 1 um~! and w./27 = 1 THz.
In the ballistic regime (7., = 10 ps, blue curve), the conduc-
tivity has resonances at multiple cyclotron frequencies whose
amplitude decreases with increasing the resonance order. As
the frequency of e-e collisions 7,,' becomes comparable to
w., multiple resonances rapidly fade away. Only the main
cyclotron resonance persists in the hydrodynamic regime, and
its width shrinks again at very short values of t,,, i.e., at low
viscosity.

III. MAGNETOPLASMON DISPERSION

We proceed to inspect the evolution of collective excita-
tions in magnetized 2DES across the hydrodynamic-ballistic
crossover. To address this problem, we consider the excita-
tion of collective modes by a point dipole located above the
2DES in the quasistatic regime (w/q < c). We find that total
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FIG. 1. Real part of longitudinal conductivity o, in the hydrody-
namic regime with t,, = 0.1 ps (red line), intermediate regime with
7. = 1 ps (green line), and in the ballistic regime with 7., = 10 ps
(blue line). The conductivity is normalized by collisionless Drude
conductivity o, = ine? /mw. All curves are obtained at carrier den-
sity ng = 2 x 10! cm™2, f. = 1 THz, and wave vector g = 1 um™",
qR. ~ 6.3.

electric potential in the 2DES plane can be represented as
(Appendix B)

_ po(q, w)

= , 11
e(q, w) (b

v(q, w)

where ¢o(q, @) is the electric potential of the point source
in the absence of 2DES and e(q, w) the 2DES dielectric
function. In the quasistatic regime, it is affected only by the
longitudinal component of the conductivity tensor o,,(q, @)
and is given by

2
f.q)=1+i—2(1 — e 2o (qw).  (12)
XC()

where yx is the effective dielectric constant, d the distance to
the gate electrode located below the 2DES, and the longitudi-
nal conductivity o,, was obtained before in Sec. II.

It is convenient to visualize the dispersion of plas-
mons using the loss function Ime~'. The peaks in loss
function correspond to a resonant enhancement of external
electric field, i.e., to the collective electrostatic waves—
(magneto)plasmons. Using the obtained generalized equa-
tions of hydrodynamics, it is possible to trace the evolution of
collective modes with an increase in the frequency of electron-
electron collisions up to the transition to the hydrodynamic
regime.

The emerging loss functions are displayed in Fig. 2. Our
calculations show that the splittings of plasmon dispersion
at multiple cyclotron frequencies are gradually blurred with
increasing e-e collision frequency 7,!. In the hydrodynamic
regime, the dispersion collapses into an ordinary magneto-
plasmon

o* =} +5(9)°q, (13)

115415-3



KIRILL KAPRALOV AND DMITRY SVINTSOV

PHYSICAL REVIEW B 106, 115415 (2022)

hydrodynamic regime

intermediate regime

ballistic regime

3.5 3.5 10
3.0 3.0
3 §‘,2.5 §‘_,2.5 -
S 20 Soo0 320
(] () ()
5 S g
315 315 $15 ;
8 8 8 10°
10 %10 “ 10
0.5 0.5 0.5 .
Tee = 0.1 ps Tee = 1ps Tee = 10 ps 10
0 1 2 3 4 0 1 2 3 4 0 2 3 4

Wave vector q(um™)

Wave vector q(um™)

Wave vector q (um'1)

FIG. 2. Magnetoplasmon dispersion curve visualized through loss function Ime~'(g, @, @.) in (a) the hydrodynamic transport regime in
graphene, 7., = 0.1 ps, (b) intermediate regime, 7, = 1 ps, (c) in ballistic regime, 7., = 10 ps. All curves are obtained at carrier density

np =2 x 102 em™2, f. = 1 THz with gate distance d = 100 nm, xy =4

2nge? (1 _ ,—2qd
2 (] — =2d),

Now it is important to track the transition from the obtained
results to the zero magnetic field. In the absence of a magnetic
field in the ballistic regime, the phase velocity of plasmons
does not fall below the Fermi velocity in Dirac materials;
thus, the dispersion of plasmons does not fall into the Landau
damping region, and at low values of the carrier density ng
and a low gate distance d, the dispersion asymptotically tends
to the boundary w = gqvg [30,49]. However, in the presence of
a weak magnetic field, this boundary is destroyed due to the
splitting of the Bernstein modes (Fig. 3)

where s(g) =

IV. COLLISIONLESS HYDRODYNAMIC MODEL

In this section, we study the range of applicability of
collisionless hydrodynamics for the description of magneto-
plasmon modes. Using the continuity equation (6) and the
Navier-Stokes equations (7), we find the conductivity of a
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FIG. 3. Magnetoplasmon dispersion curve in graphene visual-
ized through loss function Ime~'(g, ®, w.) with 7., = 20 ps, carrier
density ny = 6.7 x 10° cm™2, f. =0.05 THz with gate distance
d =50 nm, x = 4. Black dashed line shows the boundary of the do-
main of Landau damping, yellow dashed line shows the conventional
magnetoplasmon dispersion curve.

two-dimensional system by definition (10). We plot the loss
function in the collisionless hydrodynamic model [(6) and (7)]
and in the ballistic transport model (4) (Fig. 4). In the first one
[Fig. 4(a)] the zeros of the dielectric function (12) in this case
give two magnetoplasmon modes. The first of them goes from
the cyclotron frequency w,, at small wave vectors it coincides
with the conventional magnetoplasmon (13), and at large wave
vectors (after the anticrossing point g*) it coincides with the
transverse magnetosound

2.2

o? =4w§+%, (14)

which is related to perturbations of shear stress of a charged

Fermi liquid in a magnetic field [36]. The second mode starts

from the doubled cyclotron frequency and after the anticross-

ing point tends to conventional magnetoplasmon. It is possible

to approximately estimate the anti-crossing point (@*, ¢*) as

the point at which the value of doubled cyclotron frequency

2w, is reached by the dispersion of conventional magnetoplas-
mon (13),

\/gwc
g~ T (15)

w* ~ 2w,,

In this case, up to the anticrossing point g*, there is a
good agreement with the two lowest Bernstein modes ob-
served in the full theory [Fig. 4(b)] (but modes starting at
multiple cyclotron frequencies are not observed). However,
for large wave vectors, serious discrepancies are observed.
In the collisionless hydrodynamics model, the lowest mode
exceeds twice the cyclotron frequency and coincides with
the magnetosonic mode, while in the full theory, the fun-
damental Bernstein mode never exceeds twice the cyclotron
frequency and forms a plateau with a singular density of
states.

V. DISCUSSION AND CONCLUSIONS

In the limit wt,, > 1, the constructed full kinetic theory
describes Bernstein modes. Magnetosound waves predicted
in the framework of collisionless hydrodynamics described by
the equations (7) in Ref. [36] coincide with the full theory only
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FIG. 4. Magnetoplasmon dispersion curve in graphene visualized through loss function Ime~!(g, , w.) in (a) the “collisionless’ hydrody-
namics model, dashed line shows the asymptotics of the lowest mode corresponding to the transverse magnetosound mode w? = 4w? + uq*/4;
(b) in the full theory, dashed lines correspond to modes obtained in the “collisionless” hydrodynamics approximation. All curves are obtained
at carrier density np = 2 x 10> cm~2, f, = 1 THz with gate distance d = 100 nm, x = 4 and 7,, = 10 ps

in a narrow g range. Since the lowest mode in the collisionless
hydrodynamics model tends to magnetosound mode (14) only
after the anticrossing point (15), where this model is inappli-
cable, it can be argued that transverse magnetosound modes
are an artifact of spectrum cutoff in generalized hydrodynamic
equations (4) and are not observed in the full theory.

While the physics behind these differences is clear, it is in-
teresting to see and compare the emerging absorption spectra.
The dielectric function (g, w, w,) corresponds to the screen-
ing by electrons of the two-dimensional system of the external
field (Appendix B). The loss function Im[¢~!] is responsible
for the magnetoplasmon-assisted absorption. It peaks at the
magnetoplasmon modes, and therefore should enhance the
near-field magnetoabsorption of an inhomogeneous field in-
cident on the 2DES [46].

Both transverse magnetosound and Bernstein modes are
predicted in the loss function (Fig. 4). In both cases, for pure
materials, an asymmetric (with respect to the magnetic field)
resonance enhancement of magnetoabsorption in the vicinity
of the doubled cyclotron frequency is predicted. However, in
the case of magnetosound, the sharp side of the resonance is
located in the direction of high magnetic fields, and in the case
of Bernstein modes, on the contrary, in the direction of low
magnetic fields, which makes it possible to distinguish one
from the other in measurements.

Measurements of the photoresistance demonstrate similar
asymmetric resonances at double, triple, and even quadruple
the cyclotron frequency in pure graphene in a magnetic field
[46] that matches the Bernstein modes seen in the full theory
and are not predicted by the model of collisionless hydrody-
namics. In the full theory the sharp side of the resonance is
located in the direction of low magnetic fields. In Ref. [36]
it was shown for a thin strip of a 2DES in the case of colli-
sionless hydrodynamics that the sharp side of the resonance

J

—i(oe +iy.)of +ifcospdf + os ¢ +

asf  dfo eEXc
ap ap

c

E, Vebiu

is located in the direction of high magnetic fields. However,
the shape of the resonance strongly depends on the width
of the strip and becomes almost symmetric in the case of
an infinite 2DES. It can be assumed that in this case the
shape of the resonance should strongly depend on the shape
of the sample. However, measurements of various samples
show an asymmetry consistent with the full theory [46,59],
which is another argument that these resonances are caused
by Bernstein modes.

In summary, a model of high-frequency dynamics of a two-
dimensional electronic system has been constructed, which
allows one to study the transition from the ballistic regime to
the hydrodynamic. It is shown that the conventional magneto-
plasmon in the hydrodynamic regime, with a decrease in the
frequency of electron-electron collisions, acquires character-
istic splittings at multiple cyclotron frequencies and becomes
Bernstein modes in the ballistic limit. According to calcu-
lations, the model of “collisionless” hydrodynamics, which
predicts transverse magnetosound, is applicable to the de-
scription of magnetoplasmon modes only for wave vectors
not exceeding the anticrossing point (15) of the two lowest
Bernstein modes, and magnetosound mode are beyond the
range of applicability of this model.
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APPENDIX A: SOLUTION OF THE KINETIC EQUATION

To solve the kinetic equation (1), we pass to polar coordi-
nates (with q || e,) and represent the equation as

prdv .prév
singa + + YeDPFOUy cos + YcPFOVy
c Vo Vo Vo

sin go), (A1)
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2DES

FIG. 5. Schematic representation of a two-dimensional system,
above which an inhomogeneous charge density is located nearby.

where o = w/we, B = qRe, Ve = (wcT.e)”!, and w, is the
cyclotron frequency. Then, we seek for the function §f in
the form 8 f = ge~"#*"¢, and expand g as a series of angular
harmonics ¢,

+00
g= Y ge™. (A2)
§S=—00
The solution for g, reads as
eE; s ) ePFOVx s
o ifo (G I AR
gs = i(B)—— -
op o+iy.—s
(e_Ey YePFOVy 5)
+I(p) e (A3)

o+iy.—s
1 27 (B si .
where J,(8) = . Jo " €Psne=9)dy is the sth order Bessel
T
function and J/(B) its derivative. Using the equations of
conservation of particles and momentum (3), we obtain the
equations of high-frequency dynamics (4).

APPENDIX B: MAGNETOABSORPTION CALCULATION

In this section, we first consider the absorption of an in-
homogeneous wave by an infinite two-dimensional electron
system, then consider the case when an inhomogeneous field
is created by planar charge density p(r) ~ e~ located a
short distance L from the plane of a 2DES (¢L <« 1) (Fig. 5).
The absorption given by the Joule’s law

P=2 / Re [E(q. »)j*1dq. (B1)

where E(q, ®) is the total field in the plane of the two-
dimensional system. Further, we take into account the Ohm’s

law j = 6 E with conductivity tensor

6= ("xx _"xy> (B2)
ny Oxx

and obtain an expression for the absorbed power in the form

dq " .
P=2 / Ty OB, o)) + o), Im [E} (q. ©)Ey(q, ©)]).
(B3)

In the plane of a two-dimensional system, the field is
screened by electrons of 2DES. In the electrostatic approx-
imation (gc > w), suitable for describing a sharp increase
in absorption by a strongly inhomogeneous Bernstein mode
field, the total potential in the plane of the system is given by
the expression

27 p(q)e "

, B4
xqe(q, ) @9

§0|z=0 =
where ¢(q, w) is the dielectric function and x substrate dielec-
tric constant. To find the dielectric function £(q, w) of a planar
symmetric nongated two-dimensional system with a known

conductivity tensor &, we solved the field equation (with
gL <« 1)

9 4
(8_12 _ 2>¢(q, 9= L puala) + 0@, (B9)

where wpind(q) = qj and j = 6 E. Solving the obtained equa-
tions, we obtain an expression for the dielectric function

2mq
e(q, ) =1+i—on(w, q). (B6)
X
Taking into account the screening by a gate located at a dis-

tance d, we obtain the expression (12).
In this case, the expression for absorption takes the form

w 1
Prw =2 [ daz- 2 p@F I . @)
27 x%q e(q, w)

The specific type of charge density p(q) depends on the prob-
lem. Absorption caused by an inhomogeneous field of charges
resulting from the diffraction of an incident plane wave on a
thin contact was considered in detail in Ref. [46].
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