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A recent study has shown that it is possible to have enhancement, in contrast to an expected suppression, in
tunneling density of states (TDOS) in a Luttinger liquid (LL) which is solely driven by the nonlocal density-
density interactions. Also, it is well known that a LL in proximity to a superconductor (SC) shows enhancement
in TDOS in the vicinity of the junction in the zero-energy limit. In this paper, we study the interplay of nonlocal
density-density interaction and superconducting correlations in the TDOS in the vicinity of the SC-LL junction,
where the LL may be realized on the edge of an integer or a fractional quantum Hall state. We show that the
interplay of superconducting proximity effect and nonlocal interactions can give rise to enhancement in TDOS in
the weak interaction limit, beyond what was previously observed. We also show that, in the full parameter regime
comprising both the local and the nonlocal interactions, the region of enhanced TDOS for LL junction with
“superconducting” boundary condition and that of “nonsuperconducting charge-conserving” boundary condition
[discussed in A. Ratnakar and S. Das, Phys. Rev. B 104, 045402 (2021)] are mutually exclusive. We show
that this fact can be understood in terms of symmetry relation established between the superconducting and
nonsuperconducting sectors of the theory. We compare the dependence of the proximity-induced pair potential
and TDOS as a function of distance x from the junction. We demonstrate that the dependence of the spatial power-
law exponent for the “TDOS(x)/TDOS(x → 0)” and the “pair potential(x)/pair potential(x → 0)” are distinct
function of the various local and nonlocal interaction parameters, which implies that the TDOS enhancement
can not be directly attributed to the proximity-induced pair potential in the LL.
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I. INTRODUCTION

The low-energy physics of an interacting one-dimensional
(1D) electronic system is described by the universal Lut-
tinger liquid (LL) model which exhibits “non-Fermi-liquid
behavior” due to the absence of electronlike quasiparticles in
the low-energy excitation spectrum [1–15]. Tunneling exper-
iments have played a key role in probing and understanding
the non-Fermi-liquid properties of both the chiral [16–31]
and the nonchiral LLs [32–39]. For nonchiral LLs, such
as 1D quantum wires (QWs), it is difficult to observe LL
behavior in a tunneling experimental setup because any resid-
ual disorder can affect the power-law characteristic of the
tunneling conductance. However, a chiral LL, realized at
the edge of the FQH system, is immune to disorders and
impurities at the boundary and, as such, shows the charac-
teristic power-law behavior for tunneling conductance. To
this end, experiments including local electron tunneling be-
tween the edge states of a fractional quantum Hall (FQH)
system realized on the gated two-dimensional electron gases
(2DEGs) [16–27] or between the Fermi-liquid (FL) lead
and FQH edge realized on a graphene sheet [28–31] have
been performed. The tunneling current is shown to have a
power-law suppression at the zero-bias limit, which provides
evidence of the LL behavior of the chiral edge modes of FQH
system.

An exception to the suppression, leading to enhancement in
tunneling density of states (TDOS), is predicted at the junction
of multiple LLs [40–48]. Due to strong correlation which are
localized at the junction of multiple LLs, fixed-point (FP)
structure has a possibility to host hole current which gets
reflected in the LL in response to an incident electron current,
which in turn was attributed as the reason for enhancement
in TDOS at the junction [40]. Such fixed points showing
enhancement in TDOS were found to be unstable against
perturbation which can be switched on at the junction in the
renormalization group (RG) sense, rendering it hard for such
FPs to be observed in an experimental setup. A recent study
done by current authors showed that for a minimal model of
a junction of two LLs, it is possible to have simultaneous
TDOS enhancement and stability at the junction, even in the
absence of Andreev-like process, if we switch on the nonlocal
density-density interactions between the two LLs [49].

An independent scenario, which naturally supports the hole
current in response to an incident electron current and TDOS
enhancement, is that of a LL in proximity to a superconductor
(SC). Previous studies have shown that for a junction between
half-wire LL and an SC, in the strong coupling limit, TDOS
shows enhancement in the vicinity of the junction [9]. Later,
the study of such junctions was extended to the case of a
junction of two or more LL half-wires, where the junction
itself was considered to be superconducting [50]. Duality
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FIG. 1. (a), (b) Correspond to the physical setting of the LL QWs. Schematic figure shows the junction of superconductor with (a) a single
LL quantum wire (SC-LL junction) and (b) two LL quantum wires (LL-SC-LL junction), such that the distance between the two LL QWs
at the junction is less than the superconducting coherence length, which can facilitate the cross Andreev tunneling at the junction. α is the
interelectron density-density interaction. The dashed line is indicative of the Andreev reflection process at the junction. (a) Shows the SC-LL
junction tuned to A1 fixed point. (b) Shows the two possible fixed points (1) corresponding to the weak coupling limit, in which junction is
tuned to disconnected A2 fixed point (note that A2 fixed point is the copy of two A1 fixed points) and (2) corresponding to the strong coupling
limit, in which junction is tuned to cross Andreev reflection CA2 fixed point.

relations were established between scaling dimension of vari-
ous perturbation belonging to the current-conserving (normal)
and current-nonconserving (superconducting) fixed points of
the theory and junction conductance was calculated, though
the question of TDOS enhancement in the new scenario stayed
unexplored.

Hence, it is pertinent to explore the effect of superconduct-
ing proximity effect on TDOS for a junction of two LL with
a superconductor in the presence of nonlocal density-density
interactions. It is assumed that the distance between the two
LLs at the junction is less than the superconducting coher-
ence length, such that the cross Andreev tunneling across the
junction is facilitated. It may be expected for TDOS in the
vicinity of the junction to show amplified enhancement, upon
introducing the superconducting correlation at the junction, in
the region of parameter space of bulk interaction in which the
TDOS is already enhanced for nonsuperconducting current-
conserving (normal) fixed point [49]. On the contrary, we find
that the superconducting correlation induces suppression in
this parameter regime. The parameter regime in which TDOS
shows enhancement for both normal and superconducting
junctions are mutually exclusive. This can be understood in
terms of symmetry relations between the charge-conserving
and superconducting fixed point, as shown in Secs. IV and V.
We report the possibility of enhancement in TDOS in a LL
QW, beyond what was observed in Ref. [9], in the presence
of appropriate nonlocal density-density interactions, with su-
perconducting boundary condition as the fixed point of theory.
We also study the spatial dependencies of proximity-induced
pair-correlation function and the TDOS. One could naively
think if the enhancement of TDOS at the SC-LL junction is
the consequence of proximity effect, then the decay profile
of both the TDOS and the induced pair-correlation function
to be the same. It was shown in Ref. [9] that in the presence
of local interactions, the induced pair amplitude decays faster
as compared to the enhanced TDOS away from the SC-LL

junction. We present a clear understanding of this mismatch
in the decay profile in terms of the Bogoliubov modes of the
system and show that this behavior remains true even in the
presence of nonlocal interaction.

This paper is organized in the following way: Section II
reviews the results of TDOS, induced pair amplitude function,
and stability of the fixed point for a junction of single and
double LL QWs in proximity to a superconductor (as shown
in Fig. 1). Subsequent sections deal with the more general
case of a junction of edge state of two factional (or integer)
quantum Hall (QH) systems in proximity to a supercon-
ductor with all possible density-density interactions between
them. Section III primarily deals with the diagonalization of
the interacting edge Hamiltonian by finding the appropriate
Bogoliubov modes for the system. A general framework to
calculate the scaling dimension of perturbation operators and
power law of different correlation function is presented. The
results of TDOS enhancement and the stability scenario for
the fixed point at the junction is analyzed in Secs. IV and V
for the case when the filling fraction for both the QH system is
same and different, respectively. We conclude the results and
discuss the experimental relevance of our setup in Sec. VI.

II. REVIEW: SC-LL AND LL-SC-LL JUNCTIONs

A. SC-LL junction

Consider the case of a spinless LL quantum wire (QW)
strongly coupled to a superconductor at x = 0 as shown
in Fig. 1(a). The fermionic field can be decomposed in
terms of right (R) and left (L) moving components. One
can use bosonization to define fermionic fields ψR/L(x) in
terms of bosonic fields φR/L(x) through the relation ψR/L(x) =
(FR/L/

√
2πδ)Exp[iφR/L(x)] [1,3–5], where FR/L is the Klein

factor corresponding to right and left moving chiral fields.
Then the bosonized interacting Hamiltonian for the LL QW
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is given by

H = h̄πvF

∫ ∞

0
dx[ρL(x)2 + ρR(x)2 + 2αρL(x)ρR(x)]. (1)

The electron density operators and electron current op-
erators are given by ρR/L(x, t ) = ±(1/2π )∂xφR/L(x, t ) and
jR/L(x, t ) = ±(vF /2π )∂xφR/L(x, t ), respectively [40,41,50].
α is the local density-density interaction parameter between
the “right” and “left” moving fields. The interacting bosonic
fields φR/L can be expressed in terms of Bogoliubov (Bg)
fields φ̃R/L as

φR/L(x) = 1

2
√

g
[(g + 1)φ̃R/L(x) − (g − 1)φ̃L/R(x)], (2)

where g = √
1 − α/

√
1 + α and g < 1 (g > 1) for repulsive

(attractive) interelectron interaction. In this paper, only the
repulsive interelectron interaction is considered, unless oth-
erwise mentioned. The boundary condition (BC) that a left
moving electronic current is reflected back as a right mov-
ing hole current at the junction jR(0) = − jL(0) [41,50] is
equivalent to φR(0) = −φL(0) + C (where C is an integra-
tion constant). Since the evaluation of scaling dimensions of
operators around any fixed point does not depend on C, we
can ignore it by taking C = 0. The condition φR(0) = −φL(0)
defines Andreev fixed point (A1) at the junction. The BC on
interacting fields gives the BC on the Bg fields as φ̃R(0) =
−φ̃L(0), which, at finite x, translates to φ̃R(x) = −φ̃L(−x).

The local TDOS [2,40] at energy E and at finite distance x
away from the junction is given by

ρ(x, E ) =
∫ ∞

−∞
〈0|ψ (x, t )ψ†(x, 0)|0〉e−iEt dt . (3)

The TDOS is studied in the zero-temperature limit
(T → 0). The Green function in Eq. (3) is given
by G(x, t ) = 〈ψ (x, t )ψ†(x, 0)〉 = 〈ψR(x, t )ψ†

R(x, 0)〉 +
〈ψL(x, t )ψ†

L (x, 0)〉 + e2ikF x〈ψR(x, t )ψ†
L (x, 0)〉 +

e−2ikF x〈ψL(x, t )ψ†
R(x, 0)〉. In general, the oscillatory part

goes to zero in the limit L → ∞ and hence we focus on the
nonoscillatory part which, in the limit T → 0, is given by

〈ψR(x, t )ψ†
R(x, 0)〉 = 〈ψL(x, t )ψ†

L (x, 0)〉

= 1

2πδ

(
iδ

iδ − vt

) 1
2 (g+ 1

g )

×
(

(iδ)2 − 4x2

(iδ − vt )2 − 4x2

) ā
4 ( 1

g −g)
, (4)

where v is the renormalized velocity and is given by v =
vF

√
1 − α2. δ is the short cutoff length such that x > δ.

In general, a fixed point is denoted by a current split-
ting matrix at the junction connecting multiple left moving
bosonic fields to the multiple right moving bosonic fields
at the junction. ā, then, is the diagonal element of the cur-
rent splitting matrix, which in the case of a single LL in
contact with a superconductor, is given by ā = −1. While
calculating the Green’s function 〈ψR/L (x, t )ψ†

R/L (x, 0)〉 =
〈eiφR/L (x,t )e−iφR/L (x,0)〉, we must note that the contribution to the
term (iδ/iδ − vt )(1+g2 )/2g comes from the bosonic correlation
function 〈φ̃R/L(x, t )φ̃R/L (x, 0)〉 and is insensitive to the BC

at the junction. While, on the other hand, the contribution
to the term [(iδ)2 − 4x2]/[(iδ − vt )2 − 4x2]ā(1−g2 )/4g in the
Green’s function comes from the correlation function between
〈φ̃R/L(x, t )φ̃L/R(x, 0)〉 and depends on the BC at the junction
because at finite x the φ̃R(x) and φ̃L(−x) are related through
appropriate BC on the Bg fields. In the limit x → ∞, only
the contribution from 〈φ̃R/L(x, t )φ̃R/L (x, 0)〉 in the Green’s
function remains. As a result of which, the TDOS becomes
insensitive to the BC and results in the usual power-law sup-
pression of the TDOS in the zero-energy limit. On the other
hand, in the proximity to the junction, that is, in the limit x →
0, TDOS gets contribution from both 〈φR/L(x, t )φR/L(x, 0)〉
and 〈φ̃R/L(x, t )φ̃L/R(x, 0)〉 in the Green’s function and hence
deviates from the TDOS power law corresponding to the bulk
of the LL, i.e., (1/2)(g + 1/g). For a LL in contact with an SC
(ā = −1), TDOS at the junction is given by ρ(x → 0, E ) ∝
Eg−1 and shows enhancement in the zero-energy limit in the
repulsive interaction regime (g < 1). In contrast to the SC-LL
junction, a LL half-wire, with perfect backscattering normal
fixed point (NB) at the junction (ā = 1), the TDOS is given by
ρ(x → 0, E ) ∝ E1/g−1 and is more suppressed at the junction
as compared to the bulk in the E → 0 limit. Note that as far as
the TDOS is concerned, there is a symmetry relation between
the A1 and the NB fixed point in the α → −α exchange and is
given by

	0
A1

(α) = 	0
NB

(−α). (5)

From Eq. (5) it is clear that as far as enhancement in TDOS
for A1 fixed point in the presence of repulsive (α > 0 or
g < 1) interaction is concerned, the identical enhancement
can be achieved for NB point but in the presence of attractive
interaction of the same strength (α < 0 or g > 1).

The stability of the A1 fixed point is determined against
the electron backscattering operator ψ

†
R(0)ψL(0), which has a

scaling dimension of 2g [50]. The A1 fixed point is stable if the
scaling dimension of the ψ

†
R(0)ψL(0) is greater than 1, that is,

if g > 1
2 .

At finite distance x from the junction, the TDOS varies as
a power law of x in the limit x � v/E and is given by

ρ(x, E ) ∝ (δ2 + 4x2)
ā
4 ( 1

g −g)ω
1
2 [g+ 1

g +ā( 1
g −g)]. (6)

Note that for the A1 fixed point, the enhanced TDOS at the
junction decreases as x(1/2)(g−1/g). For the half-wire LL tuned
to NB fixed point, TDOS increases with x as x−(1/2)(g−1/g).

As far as the enhancement of TDOS in the vicinity of a
superconducting junction is concerned, one might be tempted
to interpret it as the sole consequence of proximity effect
and expect the decay profile of both the enhanced TDOS and
the induced pair amplitude to be the same. In order to un-
derstand the supposed interdependence of TDOS on induced
pair amplitude (if it exists) in LL, we must have a look at
the spatial dependence of the two. The spatial dependence of
the induced pair amplitude is given by the pair-correlation
function F (x) = 〈ψR(x, t+)ψL(x, t )〉 [51–54], which in the
limit L → ∞ is given by

F (x) = 〈ψR(x, t+)ψL(x, t )〉 = 1

2πδ
〈eiφR (x,t+ )eiφL (x,t )〉

= 1

2πδ
(iδ)

1
g (2x + iδ)

−(1+g)
2g (−2x + iδ)

−(1−g)
2g . (7)
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In the limit x 	 δ, the pair-correlation function varies as
F (x) ∝ (1/x)1/g. Here, we introduce a term, “relative TDOS”
(“relative pair amplitude”), which is defined as the ratio of
TDOS (pair amplitude) at finite distance x from the junc-
tion to the TDOS (pair amplitude) at the junction, that is,
ρ(x, E → 0)/ρ(x → 0, E → 0) [F (x)/F (x → 0)]. Note that
ρ(x, E → 0)/ρ(x → 0, E → 0) decays at a slower rate with
x as compared to F (x)/F (x → 0) function. As a result of
which, the enhancement in TDOS persists over larger dis-
tances as compared to the decay length of the pair-correlation
function. Hence, the TDOS enhancement in the vicinity of a
superconductor cannot be simply explained in terms of finite
Cooper-pair density in the LL.

B. LL-SC-LL junction

Here we consider two LL QWs, namely, wire 1 and wire
2, in proximity to a superconductor as shown in Fig. 1(b).
Similar to Eq. (1), the bosonized Hamiltonian for the two LL
QWs is given by

H = h̄vF

4π

2∑
i=1

∫ ∞

0
dx[[∂xφiL(x)]2 + [∂xφiR(x)]2

− 2α[∂xφiL(x)][∂xφiR(x)]],

φiR/L (x) = 1

2
√

g
[(g + 1)φ̃iR/L (x) − (g − 1)φ̃iL/R(x)]. (8)

There are four possible fixed points for such a junction:
(1) Disconnected normal (DN2) fixed point, where the

QWs are disconnected from each other and also with the SC.
The incident incoming electron at the junction reflects back as
the outgoing electron in the same LL QW.

(2) Fully transmitting charge-conserving fixed point,
where the QWs are strongly coupled to each other at the
junction but disconnected from the superconductor, such that
an incoming electron along the wire 1 is perfectly transmitted
in the wire 2 and vice versa.

(3) Disconnected Andreev (A2) fixed point, where the
QWs are disconnected with each other but are strongly cou-
pled to the superconductor, such that the incident incoming
electron current at the junction reflects as the outgoing hole
current in the same LL wire.

(4) Cross Andreev reflection (CA2) fixed point, where the
QWs are connected to the superconductor and strongly cou-
pled to each other also. The incoming electron current along
wire 1 is perfectly transmitted as a hole current in wire 2 and
vice versa [55–60].

Here, we primarily focus on the Andreev fixed point A2

and the cross Andreev reflection CA2 fixed points, which are
given by

A2 =
(−1 0

0 −1

)
; CA2 =

(
0 −1

−1 0

)
. (9)

We first consider the case where the junction is tuned to
CA2 fixed point. Since, in this case ā = 0, from Eq. (6), we

note that the TDOS becomes independent of x and behaves
as a translation-invariant single QW even when we have a
superconducting junction at x = 0. TDOS shows power-law
suppression ρ(x, E ) ∝ E (1/2)(g+1/g) in the zero-energy limit.
This is counterintuitive in the light of previous studies, where
we expect the TDOS to show enhancement in the vicinity
of a superconductor. As it turns out, the fraction of incident
electron current which reflects back as a hole solely decides
the criteria of TDOS enhancement, and not just the mere
presence of hole current at the junction.

The stability of the CA2 fixed point is determined
against Andreev backscattering (AR) operator [ψiR(0)ψiL(0)],
electron tunneling operator [ψ†

2R(0)ψ1L(0)], and electron
backscattering operator [ψ†

iR(0)ψiL(0)] at the junction. The
scaling dimensions of these operators are 1/g [50], (g + 1/g),
and g, respectively. Hence, the CA2 fixed point is unstable
against electron backscattering operator in the repulsive in-
teraction regime (g < 1).

Now, we study the spatial dependence of induced pair-
correlation function. For a superconducting junction of two
LL QWs tunes to CA2 fixed point, the induced pair-correlation
function is calculated between the right (R) and left (L) mov-
ing fields of the different LL QWs and is termed as nonlocal
pair-correlation function F12(x). The nonlocal induced pair
correlations in the limit L → ∞ are given by

F12(x) = 〈ψ1R(x, t+)ψ2L(x, t )〉 = 1

2πδ
〈eiφ1R (x,t+ )φ2L (x,t )〉

= 1

2πδ
(iδ)

1
2 (g+ 1

g )(2x + iδ)−
(1+g)2

4g (−2x + iδ)−
(1−g)2

4g .

(10)

The induced pair amplitude is given by the real part of
the F12(x), which, in the limit x 	 δ, decays as F12(x) ∝
(1/x)(1/2)(g+1/g) with distance x from the junction. The power-
law decay of F12 is independent of the type of the interaction
present in the system (be it repulsive or attractive). The spatial
dependence of both F12(x) and TDOS are different, as the
latter is independent of x.

For the disconnected A2 fixed point, the TDOS spatial
and energy dependence remains the same as that of given in
Eq. (6). The TDOS is enhanced at the junction and decays
as x(1/2)(g−1/g) away from the junction in both the wires. The
local induced pair-correlation function 〈ψ†

iR(x)ψ†
iL(x)〉 is also

the same as in Eq. (7) and decays as a power law of distance
x from the junction.

The stability of the Andreev fixed point A2 is deter-
mined against cross Andreev reflection (CAR) operator
ψ1R(0)ψ2L(0), electron backscattering operator ψ

†
iR(0)ψiL(0),

and electron tunneling operator ψ
†
1R(0)ψ2L(0) at the junction.

The scaling dimensions of these operators are given by g,
2g, and g, respectively. Hence, the A2 fixed point is unstable
against CAR and electron backscattering operator for g < 1
and is stable against the electron backscattering operator for
g > 1

2 .
The results for the TDOS and the stability of the fixed

point, as discussed in this section, are summarized in Table I.
In this section, we reaffirmed that the enhancement in TDOS
at the junction can not be solely attributed as the consequence
of the induced pair amplitude as the spatial power-law de-
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TABLE I. The table provides results of TDOS enhancement and stability of the junction fixed point in absence of nonlocal interaction for
current-conserving boundary condition and their counterparts in the superconducting sector.

Current-conserving normal junction Superconducting junction

(a) N = 1 Perfectly backscattering NB fixed point with
ā = 1, TDOS is suppressed for g < 1. Note that the
fixed point is stable against the Andreev reflection
operator for g < 1 [50].

(a) N = 1 (LL-SC junction) Disconnected Andreev
fixed point A1, with ā = −1. TDOS is enhanced for
g < 1 and the A1 fixed point is stable against electron
backscattering operator for g > 1

2 .

(b) N = 2 Disconnected fixed point DN2 = I2×2. TDOS
is suppressed, and the fixed point is stable against
electron tunneling operator for g < 1. Connected fixed
point. TDOS is suppressed, and the junction is unstable
against electron backscattering operator for g < 1.

(b) N = 2 (LL-SC-LL junction) Disconnected Andreev
fixed point A2. TDOS is enhanced, but the junction is
unstable against CAR and electron backscattering
operator for g < 1. Cross Andreev fixed point CA2.
TDOS is suppressed, and the fixed point is unstable
against electron backscattering operator for g < 1.

pendence of both are different, as pointed out in Ref. [9].
The pair-correlation functions decay faster as compared to the
enhanced TDOS at distance x away from the junction, as a
result of which TDOS remains enhanced up to distances larger
than that of the decay length of induced pair amplitude.

In subsequent sections, we introduce a more general sys-
tem of a junction of QH edge states corresponding to two QH
layers in proximity to a superconductor. We allow for nonlocal
interaction between the two QH layers to exist and study the
effect of both the nonlocal interactions and superconducting
boundary condition on the TDOS and the stability of the
junction fixed point. It would also be interesting to study the
spatial dependence of TDOS and pair-correlation function in
this setting, which we may expect to be different as a corollary
to this section.

III. INTERACTING QH EDGE HAMILTONIAN
AND SUPERCONDUCTING PROXIMITY EFFECT

The model which is considered here is a similar to the
one mentioned in Ref. [49] but with boundary condition cor-
responding to a junction of edge states of two QH systems
strongly coupled to a superconductor as shown in Fig. 2.
We allow for repulsive density-density interaction to exist
between all the QH edge states corresponding to the two QH
layers. The chiral fermionic fields ψiR/L can be expressed in
terms of chiral bosonic fields φiR/L as ψiR/L ∼ FiR/Le(ιφiR/L/νi )

[1–5,61–65], where the subscript R (L) describes right (left)
moving fields and νi is the filling fraction of the ith QH layer.
FiR/L is the Klein factor for right and left moving fields. The
bosonized interacting QH edge Hamiltonian is given by

H = h̄vF

4π

4∑
i j=1

∫ ∞

0
dx

Ki j√
νiν j

∂xφi(x)∂xφ j (x), (11)

where vF is the Fermi velocity and (φ1, φ2, φ3, φ4) =
(φ1R, φ2R, φ1L, φ2L ). The matrix K is given by

K =

⎛
⎜⎝

1 β −α −γ

β 1 −γ −α

−α −γ 1 β

−γ −α β 1

⎞
⎟⎠, (12)

where (1) α is the interaction between the counterpropagating
edge states in the same QH layer (intralayer interaction), (2)
β is the interaction between the copropagating edge states of

the different QH systems (interlayer interaction), and (3) γ is
the interaction between the counterpropagating edge states of
the different QH systems (interlayer interaction).

The commutation relation between the bosonic fields
is given by [φiR/L(x), φ jR/L (y)] = ±iπνiδi jSgn(x − y). The
electronic charge density operator is given by ρiR/L =
±(1/2π )∂xφiR/L. The interacting Hamiltonian can be diago-
nalized as done in Refs. [49,66], by expressing interacting
bosonic fields in terms of Bg fields as(

φ̄R

φ̄L

)
(x,t )

=
(

X1 X2

X3 X4

)(
φ̃R

φ̃L

)
(x,t )

, (13)

where φ̄R/L = (φ1R/L/
√

ν1, φ2R/L/
√

ν2)T . The commutation
relation for Bg fields is then given by [φ̃iR/L(x), φ̃ jR/L (y)] =
±iπδi jSgn(x − y). Superconducting boundary condition at
the junction is expressed as the current splitting matrix S and
corresponds to the different fixed points of the theory. Taking
into account the fact that all the fields are defined from x = 0
to ∞, the interacting bosonic fields φiR/L can be expressed in
terms of left moving Bg field φ̃iL as

φR(x, t ) = M[T1φ̃L(−x, t ) + T2φ̃L(x, t )],

φL(x, t ) = M[T3φ̃L(−x, t ) + T4φ̃L(x, t )], (14)

where φ̃R/L(x, t ) = (φ1R/L, φ2R/L )T
(x,t ), [M]i j = √

νiδi j , and

T1 = X1(X1 − S̄X3)−1(S̄X4 − X2), T2 = X2,

T3 = X3(X1 − S̄X3)−1(S̄X4 − X2), T4 = X4, (15)

where matrix S̄ = M−1SM. For a junction of edge states
corresponding to two QH layers in the vicinity of a super-
conductor, it should be noted that there are only two fixed
points corresponding to the superconducting boundary condi-
tion other than the conventional charge-conserving fixed point
discussed in Refs. [49,61–71]. The two superconducting fixed
points are given by the current splitting matrices as

A2 =
(−1 0

0 −1

)
, (16)

CA2 = −1

ν1 + ν2

(
ν1 − ν2 2ν1

2ν2 ν2 − ν1

)
. (17)

The disconnected Andreev fixed point A2 corresponds
to the case when an incident electron current along a left
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FIG. 2. The schematic figure (a) shows two QH states, with fill-
ing fraction ν1 and ν2 in a bilayer stacking induced by a uniform
magnetic field B, strongly coupled to a superconductor (SC) at the
apex. ViR/L and IiR/L are the voltages and the corresponding electronic
current (satisfying the Hall relation) belonging to the right and left
moving edges of the ith QH state. The distance between the two
QH layers at the superconducting junction is denoted by “L” and
is assumed to be less than the superconducting coherence length in
order to facilitate the cross Andreev tunneling (denoted by dashed
red line) between the edges of the two QH systems at the junction. In
(b), φiR/L denotes the chiral bosonic field corresponding to the right
and left moving fields of the ith QH system. α, β, γ indicates the
density-density interaction, where (1) α is the interaction between
ρiR/L and ρiL/R, (2) β is the interaction between ρ1R/L and ρ2R/L , and
(3) γ is the interaction between ρ1R/L and ρ2L/R. The parameters,
α, β, γ will symbolize the interaction strength in this paper unless
otherwise mentioned. The dashed black line at the junction denotes
the direct Andreev reflection. The dashed red line at the junction
denotes the cross Andreev tunneling. Here, the subscripts L and R
stand for the left moving fields flowing into the junction and the right
moving fields flowing out of the junction.

moving edge of a QH layer perfectly reflects back as a hole
current in the right moving edge of the same QH layer.
The cross Andreev CA2 fixed point corresponds to the case
when an incident electronic current along a left moving edge
of a first QH layer with ν1 > ν2 gets partially transmit-
ted and partially reflected as a hole current at the junction.
Also, an incident electronic current along the left moving
edge of the second QH layer, with ν2 < ν1, gets transmitted
as hole current with larger amplitude than that of incident
electron current and partially reflects back as an electronic
current. For both the fixed points, the total current conserva-
tion at the junction is violated by the factor of 2, such that,∑2

i=1 ji,L(0) − ji,R(0) = 2
∑2

i=1 ji,L(0) [41,50]. Taking into
account the boundary condition, one can find the structure of
the CA2 fixed point using the bosonic commutation relations
as shown in Refs. [61–65,67–69].

A. Power-law dependence of TDOS

The electronic tunneling density of states [2,40,49]
(TDOS ) at energy E and distance x from the junction is

given by

ρ(x, E ) =
∫ ∞

−∞
〈0|ψ (x, t )ψ†(x, 0)|0〉e−iEt dt . (18)

TDOS is calculated in the right moving edge, as they carry the
information about the fixed point that the junction is tuned to.
Using the bosonization formula, one can express Eq. (18) in
terms of bosonic fields as

ρi(x, E ) ∼
∫ ∞

−∞
dt〈0|ei φiR (x,t )

νi e−i φiR (x,0)
νi |0〉e−iEt ,

where i is the index of the QH layer. The energy power law of
the TDOS at the junction is denoted by 	0. In the zero-energy
limit, TDOS is enhanced when 	0 − 1 < 0, is marginal when
	0 = 1 and is suppressed when 	0 − 1 > 0. Here, we mainly
focused on TDOS at the junction and its relative evolution at
finite distance x away from the junction. Before we go further,
we first discuss the TDOS in the limit x → ∞. The energy
power law of the TDOS in this limit is denoted by 	∞, such
that

	∞
i = 1

2νi

(
1 − β√

(1 − β )2 − (α − γ )2

+ 1 + β√
(1 + β )2 − (α + γ )2

)
. (19)

	∞
i does not depend on the type of fixed point

(superconducting or normal), as in the limit x → ∞,
〈ψ†

iR(x, t )ψiR(x, 0)〉 becomes insensitive to the boundary con-
dition. Although, the bulk power law gets modified in
presence of nonlocal interaction, it is still always greater than
1, i.e., 	∞ > 1, as a result of which TDOS in the limit x → ∞
is always suppressed. We get the standard 1/ν power-law
suppression in TDOS for an edge of a fractional quantum
Hall state in the limit α = β = γ = 0 [17] and also in the
case when α = γ = 0 while β �= 0. The latter is due to the
fact that the β interaction corresponds to a forward scattering
interaction and hence can result only in the renormalization
of Fermi velocity but can not influence the power law of
correlation functions.

The TDOS at finite distance x from the junction has a
power-law dependence on x in the limit x � max{ṽ1, ṽ2}/E ,
where ṽi is the renormalized velocity. We define a term,
the “relative TDOS,” as the ratio of the TDOS at finite dis-
tance x and the TDOS at the junction in the zero-energy
limit, i.e., [ρ(x, E → 0)/ρ(x → 0, E → 0)]. The relative
TDOS has a pure spatial power-law dependence in the x �
max{ṽ1, ṽ2}/E limit and is given by

ρi(x, E → 0)

ρi(x = 0, E → 0)
∝

(
δ2 + 4x2

δ2

)ςi

, (20)

where ςi = ∑2
j=1

[T 1]i j [T2]i j

νi
(see Appendix A). If the spatial

power law of relative TDOS, ςi, is negative, then the relative
TDOS decays as a power law of x and is indicative of the
fact that TDOS at the junction is less suppressed as compared
to the TDOS in the x → ∞ limit. On the other hand, if ςi is
positive, then the relative TDOS increases as a power law of x
and implies that the TDOS at the junction is more suppressed
as compared to the TDOS in the x → ∞ limit.
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B. Scaling dimensions of perturbation operators at the junction

The stability of the superconducting junction fixed points,
in the presence of nonlocal interaction, is determined by an-
alyzing the scaling dimensions of all the physically relevant
perturbations which can be switched on at the junction. In
general, the stability at the junction is determined against
the direct Andreev reflection (AR) operator, cross Andreev
reflection (CAR) operator, intralayer quasiparticle backscat-
tering operator, and interlayer electron tunneling operator. The
scaling dimensions of the operators can be calculated using
Eq. (14) as follows:

(1) The direct Andreev reflection (AR) operator
ψe,iR(0)ψe,iL(0) has a scaling dimension given by
( 1

2 )
∑2

k=1(�k
AR,i )

2, where

�k
AR,i = 1√

νi
(T1 + T2 + T3 + T4)ik . (21)

(2) The cross Andreev reflection (CAR) operator
ψe,iR(0)ψe, jL(0) has a scaling dimension given by
( 1

2 )
∑2

k=1(�k
CAR,i j )

2, where

�k
CAR,i j = 1√

νi
(T1 + T2)ik + 1√

ν j
(T3 + T4) jk . (22)

(3) The intralayer quasiparticle backscattering opera-
tor ψ

qp†
iR (0)ψqp

iL (0) has a scaling dimension given by
( 1

2 )
∑2

k=1(�k
B,i )

2, where

�k
B,i = √

νi(T3 + T4 − T1 − T2)ik . (23)

(4) The interlayer electron tunneling operator
ψ

†
e,iR(0)ψe, jL(0) has a scaling dimension given by

( 1
2 )

∑2
k=1(�k

T, ji )
2, where

�k
T,i j = 1√

νi
(T3 + T4)ik − 1√

ν j
(T1 + T2) jk . (24)

The junction fixed point is stable when the perturbation
operators in the vicinity of the junction become irrelevant, that
is, the corresponding scaling dimension of the all the phys-
ically relevant operators at the junction becomes more than
unity simultaneously. In the vicinity of the junction x = 0,
for disconnected Andreev fixed point A2, physically relevant
perturbation operators are the CAR, electron tunneling, and
quasiparticle backscattering operators. For the cross Andreev
fixed point CA2, physically relevant perturbation operators
are the AR, electron tunneling, quasiparticle backscattering
operators.

C. Power-law dependence of induced pair amplitude

In this section, we will evaluate the induced pair amplitude
when the junction of chiral edge states corresponding to the
two QH systems are in proximity to a superconductor. In the
subsequent sections, the aim is to study the effect of nonlocal
interactions on the pair-correlation function. We will compare
the evolution of TDOS and the pair-correlation function at
finite distance x from the junction. As a corollary to Sec. II,
we expect the spatial dependence of both the TDOS and pair-
correlation function to be different. It would be interesting
to see if the presence of nonlocal interaction can reverse the

order of the decay of TDOS and pair-correlation function, as
opposed to what was observed in Sec. II. The pair amplitude
is given by the anomalous pair-correlation function, defined
as Fi j (x, t ) = 〈ψiR(x, t+)ψ jL(x, t )〉.1 There are two types of
pair-correlation functions, which are given by the following:

(1) Local pair-correlation function given by Fii(x) =
〈ψiR(x, t+)ψiL(x, t )〉 ∼ 〈ei φiR (x,t+ )

νi ei φiL (x,t )
νi 〉 for i ∈ {1, 2}. Fii(x)

is calculated for the case when we have disconnected Andreev
A2 fixed point as the boundary condition at the junction.

(2) Nonlocal pair-correlation function given by

F12(x) = 〈ψiR(x, t+)ψ jL(x, t )〉 ∼ 〈ei φiO (x,t+ )
νi e

i
φ jI (x,t )

ν j 〉 for i �= j
and {i, j} ∈ {1, 2}. F12(x) is calculated when we have cross
Andreev fixed point as the boundary condition at the junction.

The pair-correlation function is calculated between the
right moving edge of the ith QH system and the left moving
edge of the jth QH system, in the limits T → 0 and L → ∞
and is given by

Fi j (x) =
(

1

2πδ

)
�2

k=1

(
− i2π

L

)�0
i jk

(iδ)�
1
i jk

× (2x + iδ)�
2
i jk (−2x + iδ)�

3
i jk , (25)

where

�0
i jk = 1

2

[
[T1]ik + [T2]ik√

νi
+ [T3] jk + [T4] jk√

ν j

]2

,

�1
i jk = 1

2

[(
[T1]ik√

νi
+ [T3] jk√

ν j

)2

+
(

[T2]ik√
νi

+ [T4] jk√
ν j

)2]
,

�2
i jk = 1

2

[
[T1]ik[T2]ik

νi
+ [T3] jk[T4] jk

ν j
+ 2[T1]ik[T4] jk√

νiν j

]
,

�3
i jk = 1

2

[
[T1]ik[T2]ik

νi
+ [T3] jk[T4] jk

ν j
+ 2[T2]ik[T3] jk√

νiν j

]
.

(26)

In general, the short-wavelength cutoff δ is taken to be the
order of superconducting coherence length ξSC = h̄vF /	SC

[52], where 	SC is the superconducting gap. In the limit
	SC → ∞, δ → 0, and can be considered as the lowest length
scale available in the system. The induced pair amplitude is
given by the real part of Fi j (x), which, in the limit x 	 δ, has a
spatial power-law dependence (see Appendix B). Here, we de-
fine a term, the “relative pair amplitude,” as the ratio of the real
part of the pair-correlation function at finite distance x to the
real part of the pair-correlation function at the junction x = 0,
i.e., Re[Fi j (x)]/Re[Fi j (x → 0)]. The relative pair-correlation
function has a pure power-law dependence in the x 	 δ limit
and is given by

Re[Fi j (x)]

Re[Fi j (x → 0)]
∝

(
δ2 + 4x2

δ2

)�i j

, (27)

where �i j = ∑2
k=1(�2

i jk + �3
i jk )/2. It can be seen from

Eqs. (20), (26), and (27) that the spatial power law of relative

1Such pairing-correlation functions have already been studied, both
experimentally and theoretically, in Refs. [53,54].
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TDOS and relative pair-correlation function are very different
in their composition owing to the fact that the Green’s function
for both the TDOS and Fi j (x) are different. Hence, the evolu-
tion of both the TDOS and Fi j (x) is distinct at finite distance
x away from the junction. The power laws are fixed-point
specific and hence will be analyzed in detail in the subsequent
section for different scenarios.

IV. SUPERCONDUCTING JUNCTION OF QH EDGE
STATES WITH EQUAL FILLING FRACTION ν1 = ν2

We will first present a brief review of Ref. [49] for the case
when ν1 = ν2 ∈ {1, 1

3 } in the presence of nonlocal interaction
with current-conserving boundary condition as the fixed point
and contrast this with the case when we have superconducting
boundary condition as the fixed point. To summarize, for a
fixed point corresponding to the current-conserving boundary
condition in the presence of nonlocal interactions, we can have
simultaneous TDOS enhancement at the junction and stability
of the fixed point, provided the symmetry between the two
QH layers about the junction is broken. In the case when ν1 =
ν2, this is achieved by having asymmetry in the interaction
between the counterpropagating edges of the same QH layer.
Then, the entanglement due to nonlocal interaction between
the two QH layers can stabilize the junction in the interaction
parameter regime, where we have enhancement in TDOS at
the junction in the zero-energy limit.

Coming back to the case when the edge states of the two
QH systems are strongly coupled to a superconductor, there
are two possible current-nonconserving fixed points, which in
the case of ν1 = ν2 are given by

A2 =
(−1 0

0 −1

)
; CA2 =

(
0 −1

−1 0

)
. (28)

For the A2 fixed point, the TDOS energy power-law exponent
at the junction is denoted by 	0

A2
and is the same for both the

right moving edges corresponding to the two QH layers. 	0
A2

is given by

	0
A2

= 1

2ν

(√
1 − α − β + γ

1 + α − β − γ
+

√
1 − α + β − γ

1 + α + β + γ

)
. .(29)

In the absence of nonlocal interactions, i.e., β = γ = 0,
	0

A2
= g/ν and the TDOS shows enhancement at the junction

for g < ν in the zero-energy limit.
Comparing 	0

A2
with the TDOS power-law exponent for

the current-conserving disconnected fixed point S1 (where
S1 = I2×2), denoted by 	0

S1
, we get the symmetry relation

between the two fixed-point counterparts in α ↔ −α and
γ ↔ −γ exchange, such that

	0
A2

(α, β, γ ) = 	0
S1

(−α, β,−γ ). (30)

Equation (30) can be thought of as an extension of the symme-
try relation as given in Eq. (5), to the case when we have the
superconducting junction of fractional QH edge states with
nonlocal interactions between them. This equation implies
that the TDOS enhancement, which we get in the case of
repulsive α, γ interaction (α, γ > 0) for A2 fixed point, is the

same as that of the one we get for S1 fixed point in pres-
ence of attractive α, γ interaction (α, γ < 0). Note that the
α, γ denotes the interaction between the counterpropagating
edge modes of the system. Naively, it is expected that the β

interaction (interaction between the copropagating modes) is
not of relevance for Eq. (30), as the interaction between the
copropagating modes belongs to the pure forward scattering
and should not directly influence the superconducting correla-
tions.

As a result of the symmetry relation, the interaction pa-
rameter regime, in which TDOS shows enhancement for A2

and S1 fixed points, is mutually exclusive and separated by a
set of intermediate interaction parameters for which TDOS is
suppressed for both the fixed points [see Fig. 3(a)]. This sepa-
ration in parameter space is a direct consequence of nonlocal
interaction present in the system. In the absence of nonlocal
interactions, the TDOS enhanced region in parameter space
for A2 and S1 fixed points are adjacent to each other and are
identified by g < 1 and g > 1, respectively.

In order to understand the interplay of various interaction
parameters which may lead to the enhancement of TDOS,
we study the 	0

A2
in the weak α, γ limit by carrying out an

expansion of 	0
A2

(α, β, γ ) around (α = 0, β, γ = 0) to the
leading orders in α and γ , such that 	0

A2
in the weak α, γ

limit is given by

	0
A2

� 1

νi

(
1 + βγ − α

1 − β2

)
. (31)

It is interesting to note that the nonlocal interaction in this
limit adversely affects the TDOS enhancement at the junction,
while it had a favorable effect on the corresponding charge-
conserving S1 fixed point, studied in Ref. [49]. This can be
understood as the direct consequence of the symmetry relation
between the A2 and S1 fixed points.

Consider the case of ν1 = ν2 = 1 in the weak α, γ limit.
In this limit, TDOS shows enhancement when α > βγ . The
minimal requirement for TDOS to show enhancement is the
presence of only α interaction with β, γ = 0, as was re-
ported in Ref. [9]. In the presence of finite α, β interaction
with γ = 0, TDOS enhancement is further amplified (stronger
power-law divergence), beyond what was observed for local
α interaction. Note that from Eq. (31), an increase in β,
starting from β = 0 with γ �= 0, can lead to a crossover from
enhancement to suppression in TDOS in the weak α, γ limit.

In the nonperturbative limit (for arbitrary values of α, γ ),
TDOS shows enhancement in large α, β limit [see Figs. 3(a)
and 3(b)]. Even for the case of ν1 = ν2 = 1

3 , TDOS shows
enhancement at the junction, although in the strong α, β

limit [see Fig. 3(b)], which was impossible irrespective of the
strength of α, β, γ in the case when we have a normal S1 fixed
point as the BC at the junction as shown in Ref. [49].

Next, we study the evolution of relative TDOS and the
relative local pair-correlation function for A2 fixed point as
a function of distance x from the junction. This can be done
by comparing the spatial power laws as given in Eqs. (20) and
(27). The spatial power laws for the relative TDOS and the
relative pair-correlation function is denoted by ςA2 and �

A2
ii ,
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FIG. 3. The schematic picture on the top shows the unfolded version of the direct Andreev reflection A2 fixed point for a junction of two
QH systems in bilayer stacking. (a) Shows a junction of ν1 = ν2 = 1 QH system in presence of interactions symmetric in the layer. The four
density plots correspond to 	0

A2
, 	0

S1
, dA2

12 and the plot for the interaction parameter region for which the TDOS is enhanced in right moving
ν = 1 edge when the junction is tuned to A2 and S1 fixed points. Density plots are plotted for γ = 0.4. (b) Shows the junction of ν1 = ν2 = 1

3

QH system in presence of interactions symmetric in the layer. The three density plots correspond to 	0
A2

, dA2
ii , and the interaction parameter

region for which TDOS is enhanced, and the junction fixed point is stable against quasiparticle backscattering operator for γ = 0.4.

respectively, and are as follows:

ςA2 = 1

4ν

[
γ − α√

(1 − β )2 − (α − γ )2

− α + γ√
(1 + β )2 − (α + γ )2

]
,

�
A2
ii = − 1

4ν

[√
1 + α − β − γ

1 − α − β + γ
+

√
1 + α + β + γ

1 − α + β − γ

]
.

(32)

As can be seen from Eq. (32), the algebraic dependencies
of the two power laws on the interaction parameters are very
different from each other. The relative local pair-correlation
function decreases as a power law at finite distance x from
the junction, as �

A2
ii is always negative irrespective of the type

of the interaction (repulsive or attractive). On the other hand,
the relative TDOS can show a transition from an increasing
function to a decreasing function of x about ςA2 (α, β, γ ) = 0
in the interaction parameter space. In the interaction parameter
regime where TDOS is less suppressed at the junction with
respect to the bulk, the induced pair amplitude function Fii(x)
decays more rapidly as compared to TDOS at finite x (see
Fig. 4).

The stability of the A2 fixed point is determined against
the cross Andreev reflection (CAR) operator ψ1R(0)ψ2L(0),
quasiparticle backscattering operator ψ

qp†
iR (0)ψqp

iL (0), and
electron tunneling ψ

†
1R(0)ψ2L(0) operator at the junction. The

scaling dimension corresponding to these perturbation op-
erators is given by dA2

CAR, dA2
ii , and dA2

12 , respectively, and is
given by

dA2
CAR = 1

ν

√
1 − α − β + γ

1 + α − β − γ
,

dA2
ii = ν

(√
1 − α − β + γ

1 + α − β − γ
+

√
1 − α + β − γ

1 + α + β + γ

)
,

dA2
12 = 1

ν

√
1 − α + β − γ

1 + α + β + γ
. (33)

For A2 fixed point, with ν1 = ν2 = 1, the stability at the junc-
tion gets compromised due to electron tunneling operator [see
Fig. 3(a)]. On the other hand, for ν1 = ν2 = 1

3 , the A2 fixed
point becomes unstable against quasiparticle backscattering
operators in the interaction parameter regime where TDOS is
enhanced at the junction [see Fig. 3(b)].

Importantly, for the case of ν1 = ν2, we note that there
exists a symmetry relation between the A2 fixed point and
the CA2 fixed point in the α ↔ γ exchange. This implies that
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FIG. 4. The schematic picture on the left shows the unfolded version of the direct Andreev reflection A2 fixed point for a junction of two
QH systems in bilayer stacking. (a), (b) Show a junction of ν1 = ν2 = 1 and ν1 = ν2 = 1

3 QH system, respectively, in presence of interactions
symmetric in layer. Density plots correspond to the spatial power law of relative TDOS for α = 0.4. The dashed line corresponds to ςA2 = 0
and the interaction parameter region for which ςA2 < 0 is shown. The rightmost plots show the decay profile of relative TDOS, ρ(x, E →
0)/ρ(x → 0, E → 0) (shown in red), and relative pair-correlation function Fii(x)/Fii(x → 0) (shown in black). The solid line shows relative
TDOS (red line) and relative pair-correlation function (black line) decay for α = 0.2, β = γ = 0. The dashed line shows relative TDOS (red)
and relative pair-correlation function (black) decay for α = 0.5, β = γ = 0.4.

as we change from disconnected A2 to strongly coupled CA2

fixed point, the roles of α and γ interactions get interchanged
(see Fig. 5). As a result, the energy power-law exponent of
TDOS, 	0

CA2
, the spatial power law of the relative TDOS ςCA2

and relative induced pair amplitude �
CA2
12 , are given by

	0
CA2

(α, β, γ ) = 	0
A2

(γ , β, α),

ςCA2 (α, β, γ ) = ςA2 (γ , β, α),

�
CA2
12 (α, β, γ ) = �

A2
11 (γ , β, α). (34)

Note that the symmetry exists between the local induced
pair amplitude for A2 fixed point and the nonlocal induced pair
amplitude for CA2 fixed point. As can be seen from Figs. 4
and 6, the relative TDOS and relative induced pair amplitude
follow the same behavior if the interaction parameters are
changed from α = 0.5, β = 0.4, γ = 0.4 for A2 fixed point
to α = 0.4, β = 0.4, γ = 0.5 for CA2 fixed point. Also,
from Eqs. (29) and (34), we note that in the weak α, γ interac-
tion limit, for ν = 1, TDOS shows enhancement for γ > βα.
In general, the TDOS enhancement for CA2 fixed point is
supported in the large γ and small α limits (see Fig. 7).

The stability of the CA2 fixed point is determined against
direct Andreev reflection (AR) operator ψiRψiL, electron
tunneling operator ψ

†
1Rψ2L, and quasiparticle backscattering

operator ψ
qp†
iR ψ

qp
iL at the junction. The scaling dimension

of these perturbation operators at the junction is given by
dCA2

AR , dCA2
12 , and dCA2

ii , respectively. We note that the scaling
dimension of the backscattering (quasiparticle and Andreev
reflection) operator and the tunneling (electron and cross

Andreev reflection) operator for the two fixed points, CA2

and A2, are also related through a symmetry relation and are

FIG. 5. (a), (b) Show the unfolded version of the junction of
SC with the edge states of two FQH systems with equal filling
fraction ν, tuned to A2 and CA2 fixed points, respectively. α, β, γ

interactions are shown between the edge states about the junction.
The A2 fixed point is given by the BC, φi,R(0) = −φi,L (0) at the
junction for i ∈ {1, 2}. The CA2 fixed point is given by the BC,
φ1/2,R(0) = −φ2/1,L (0) at the junction. (c) Shows a version of CA2

fixed point (b) where the edge φ2R is folded on the side of φ1L and
φ1R is folded on the side of φ2L to create an equivalent setup as shown
in (a). Comparison between (a) and (c) shows the symmetry between
A2 and CA2 fixed points in the α ↔ γ exchange.
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FIG. 6. The schematic picture on the left shows the unfolded version of the cross Andreev reflection CA2 fixed point for a junction
of two QH systems in bilayer stacking. (a), (b) Show a junction of ν1 = ν2 = 1 and ν1 = ν2 = 1

3 QH system, respectively, in presence of
interactions symmetric in layers. Density plots correspond to the spatial power law of relative TDOS for α = 0.4. The dashed line corresponds
to ςCA2 = 0 and the interaction parameter region for which ςCA2 < 0 is shown. The rightmost plots show the decay profile of relative TDOS,
ρ(x, E → 0)/ρ(x → 0, E → 0) (shown in red), and relative pair-correlation function F12(x)/F12(x → 0) (shown in black). The solid line
shows decay of relative TDOS (red line) and relative pair-correlation function (black line) for α = 0.2, β = γ = 0. The dashed line shows
decay of relative TDOS (red) and relative pair-correlation function (black) for α = β = 0.4, γ = 0.5.

FIG. 7. The schematic picture on the top shows the unfolded version of the cross Andreev reflection CA2 fixed point for a junction of
two QH systems in bilayer stacking. (a) Shows a junction of ν1 = ν2 = 1 QH system in presence of interactions symmetric in layer. The four
density plots correspond to 	0

CA2
, 	0

S2
, dCA2

ii , and the plot for the interaction parameter region for which the TDOS is enhanced in ν = 1 edge
when the junction is tuned to CA2 and S2 fixed points. Density plots are plotted for α = 0.4. (b) Shows the junction of ν1 = ν2 = 1

3 QH system

in presence of interactions symmetric in layer. The two density plots correspond to 	0
CA2

, dCA2
ii for α = 0.4.

115412-11



AMULYA RATNAKAR AND SOURIN DAS PHYSICAL REVIEW B 106, 115412 (2022)

FIG. 8. The schematic picture on the top shows the unfolded version of the junction of ν1 = 1, ν2 = 1
3 QH system in a bilayer stacking

tuned to A2 and CA2 fixed points. (a) Shows the junction tuned to A2 fixed point. The four density plots corresponding to 	0
1,A2

, 	0
2,A2

,

dA2
22 , and the plot showing the interaction parameter region for which TDOS is enhanced and junction is stable with respect to quasiparticle

backscattering operator in the ν2 = 1
3 QH layer for γ = 0.4. In the fourth plot, region A corresponds to (	0

1A2
< 1, 	0

2,A2
< 1), region B

corresponds to (	0
1A2

< 1, 	0
2,A2

> 1), and region C corresponds to dA2
22 > 1. (b) Shows a junction of ν1 = 1 and ν2 = 1

3 QH systems tuned to

the CA2 fixed point. The three density plots correspond to 	0
1,CA2

, 	0
2,CA2

, and dCA2
22 for α = 0.4.

given by

dCA2
AR (α, β, γ ) = dA2

CAR(γ , β, α),

dCA2
12 (α, β, γ ) = 1

ν2
dA2

ii (γ , β, α),

dCA2
ii (α, β, γ ) = ν2dA2

12 (γ , β, α). (35)

Note that the CA2 fixed point is unstable against quasiparticle
backscattering operator for both ν1 = ν2 = 1 and 1

3 [see
Figs. 7(a) and 7(b)].

In the next section, we add further twist to the system
by having different filling fractions in the two QH layers
such that ν1 �= ν2 with ν1,2 ∈ {1, 1

3 } and analyze the effect of
unequal filling fraction on TDOS enhancement and stability
of the superconducting junction fixed point in the presence of
nonlocal interaction.

V. SUPERCONDUCTING JUNCTION OF QH EDGE STATES
WITH UNEQUAL FILLING FRACTION ν1 �= ν2

It was noted in Ref. [49] that for the fixed points corre-
sponding to the current-conserving junction of edge states of
two QH systems with unequal filling fractions, ν1 �= ν2, one
can have simultaneous TDOS enhancement and stability of
the junction fixed point in presence of symmetric nonlocal
interaction. In this section, we will analyze how the current-
nonconserving superconducting junction changes the scenario

for TDOS and stability in the presence of nonlocal interaction
for ν1 �= ν2.

To be specific, we will focus on the junction of ν1 = 1
and ν2 = 1

3 . The two Andreev fixed points corresponding to
Eqs. (16) and (17) are given by

A2 =
(−1 0

0 −1

)
; CA2 = −1

2

(
1 3
1 −1

)
. (36)

Note that for A2 fixed point, the power law of any
correlation function calculated between the modes of
the same QH layer [for example, 〈ψ†

iR(x, t )ψiR(x, 0)〉 or
〈ψiR(x, t+)ψiL(x, t )〉 for the ith QH layer] does not depend
on the filling fraction of the other QH layer even though they
coupled through nonlocal interactions. The energy power law
for TDOS, that is 	0

A2
, the spatial power law of relative TDOS,

and the relative local pair-correlation function, remain the
same as given in Eqs. (29) and (32), respectively. Simulta-
neous TDOS enhancement can be observed in both the right
moving edges of ν1 = 1 and ν2 = 1

3 QH layers, in the strong
α limit [see Fig. 8(a)]. The symmetry relation as given in
Eq. (30) remains valid here, between the disconnected normal
S1 fixed point and the A2 fixed point, even when ν1 �= ν2.

The stability of the A2 fixed point is determined against
CAR operator, quasiparticle backscattering operator, and
electron tunneling operator. The notations of the scaling di-
mension remain the same as used in Sec. IV. dA2

CAR, dA2
ii , and
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FIG. 9. The schematic picture on the left shows the unfolded version of the cross Andreev reflection CA2 fixed point for a junction of
ν1 = 1 and ν2 = 1

3 QH systems in bilayer stacking. Density plots correspond to the spatial power law of relative TDOS calculated for α = 0.4.

The dashed line corresponds to ς
CA2
2 = 0 and the interaction parameter region for which ς

CA2
i < 0 (i ∈ {1, 2}) is shown. The two plots in the

bottom show the spatial profile of relative TDOS, ρ(x, E → 0)/ρ(x → 0, E → 0) (shown in solid red for ν1 = 1 edge and in solid black for
ν2 = 1

3 edge), and the relative pair-correlation function F12(x)/F12(x → 0) (shown in dashed red). The spatial profile plots for relative TDOS
and relative pair-correlation function are plotted for α = 0.2, β = γ = 0 and also for α = β = 0.4, γ = 0.5.

dA2
12 , in the case when ν1 �= ν2, are given by

dA2
CAR = 1

4

[(√
1 − α − β + γ

1 + α − β − γ

)(
1√
ν1

+ 1√
ν2

)2

+
√

1 − α + β − γ

1 + α + β + γ

(
1√
ν1

− 1√
ν2

)2
]
,

dA2
ii = νi

[√
1 − α − β + γ

1 + α − β − γ
+

√
1 − α + β − γ

1 + α + β + γ

]
,

dA2
12 = 1

4

[√
1 − α − β + γ

1 + α − β − γ

(
1√
ν1

− 1√
ν2

)2

+
√

1 − α + β − γ

1 + α + β + γ

(
1√
ν1

+ 1√
ν2

)2
]
. (37)

The A2 fixed point is unstable against the quasiparticle
backscattering operator which can be switched on between the
edge states of ν2 = 1

3 QH layer at the junction, in the region
where TDOS is enhanced at the junction in either of the two
right moving edges [see Fig. 8(a)]. Hence, we do not have
simultaneous TDOS enhancement at the junction and stability
of the A2 fixed point. On the other hand, as was reported in
Ref. [49], for disconnected normal fixed point, we can have
simultaneous TDOS enhancement in ν1 = 1 QH edge and
the stable fixed point against electron tunneling operator (the
only physically relevant operator) for some set of interaction
parameters.

Now, we focus on the junction of edge states corresponding
to ν1 = 1 and ν2 = 1

3 QH system, tuned to CA2 fixed point.
The TDOS energy power law at the junction corresponding to
the ith QH layer is given by 	0

i,CA2
. The algebraic expression

of 	0
i,CA2

is long and hence is not shown here. But, we can
analyze 	0

i,CA2
in the weak α, γ limit by expanding 	0

i,CA2

about (α = 0, β, γ = 0). 	0
i,CA2

in the weak α, γ limit is
given by

	0
i,CA2

� 1

νi

[
1 + āi

(
α − βγ

1 − β2

)
− d̄

(
γ − βα

1 − β2

)]
, (38)

where “āi” is the diagonal element of the current splitting ma-
trix corresponding to CA2 fixed point [see Eq. (17)], such that
ā1 = −(ν1 − ν2)/(ν1 + ν2) and ā2 = −(ν2 − ν1)/(ν1 + ν2)
and contributes antisymmetrically to 	0

i,CA2
in the ν1 ↔ ν2

exchange. d̄ is given by 2
√

ν1ν2/(ν1 + ν2) and contributes
symmetrically to the 	0

i,CA2
in the ν1 ↔ ν2 exchange. In

the absence of nonlocal interaction, that is, β = γ = 0,
	0

i,CA2
is given by 	0

i,CA2
= 1

2νi
[g + 1

g − āi(g − 1
g )], which

in the case of ν1 = ν2 gives the usual bulk TDOS power
law 	0

i,CA2
= 1

2νi
(g + 1

g ) as expected from the discussion in
Sec. II. In the presence of nonlocal interaction, TDOS shows
enhancement in the strong γ and weak α limits in both the
ν1 = 1 and ν2 = 1

3 edges [see Fig. 8(b)].
The stability of the CA2 fixed point is determined

against direct Andreev reflection (AR) operator ψiR(0)ψiL(0),
electron tunneling operator ψ

†
1R(0)ψ2L(0), and quasiparticle

backscattering ψ
†
qp,iR(0)ψqp,iL (0) operator at the junction. The

scaling dimensions of the above-mentioned perturbation op-
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FIG. 10. The schematic figure on the top shows the unfolded version of the junction of bilayer QH edge states with unequal filling fraction,
ν1 = 1 and ν2 = 1

3 , tuned to A2 and CA2 fixed points. In (a), the junction is tuned to A2 fixed point. The four plots correspond to 	0
1,A2

, 	0
2,A2

,

dA2
CAR, and “	0

A2
− dA2

CAR overlap” plot showing the interaction parameter region for which TDOS is enhanced and junction is stable against

CAR operator for γ = 0.4. Region A in 	0
A2

− dA2
CAR overlap plot denotes the interaction parameters for which 	0

1,A2
< 1, 	0

2,A2
< 1, dA2

CAR > 1

simultaneously. In (b), the junction is tuned to CA2 fixed point. The five plots correspond to 	0
1,CA2

, 	0
2,CA2

, dCA2
1,AR, dCA2

2,AR, and “	0
CA2

− dCA2
AR

overlap” plot showing the interaction parameter region for which TDOS is enhanced and junction is stable against AR operator for α = 0.4.

erators are given by dCA2
i,AR, dCA2

12 , and dCA2
ii , respectively. Here,

the scaling dimensions and consequently the stability of the
CA2 fixed point are studied numerically, as the exact expres-
sion for the scaling dimensions of the perturbation operator is
too lengthy to report. We note that the CA2 fixed point for the
junction of edge states belonging to ν1 = 1 and ν2 = 1

3 QH
systems is unstable against the quasiparticle backscattering
operator which can be switched on at the junction between
the edge states of ν2 = 1

3 QH layer irrespective of the strength
of the interaction parameters [see Fig. 8(b)].

The evolution of relative TDOS and the relative nonlocal
pair-correlation function, for the junction of ν1 �= ν2 QH
system tuned to CA2 fixed point, is studied numerically. The
spatial power law for the relative TDOS for the ith QH layer
and the relative nonlocal pair-correlation function is denoted
by ς

CA2
i and �

CA2
12 , respectively. We note that the relative

TDOS for the right moving edge of ν1 = 1 QH layer always
decreases as a power law at finite distance x from the junction

for all possible (α, β, γ ) in repulsive regime (see Fig. 9). The
relative TDOS in the edge of ν2 = 1

3 can show a transition
from increasing function to decreasing function of distance x
about ς

CA2
2 = 0 in the interaction parameter space (see Fig. 9).

As observed previously, in the parameter regime where TDOS
at the junction is less suppressed in one of the edges than the
TDOS in the bulk of the same QH system, the relative nonlo-
cal pair-correlation function decays rapidly as compared to the
relative TDOS at finite distance x away from the junction (see
Fig. 9).

VI. DISCUSSION AND CONCLUSION

It is well known that, for a LL QW strongly coupled to su-
perconductor, TDOS shows enhancement in the zero-energy
limit in the vicinity of the junction [9]. Recently, it has been
established that the presence of nonlocal interactions between
the LLs can also give rise to enhancement in TDOS for fixed
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FIG. 11. The schematic figure on the left shows the unfolded version of the junction of bilayer QH edge states with equal filling fraction,
ν1 = ν2 ∈ {1, 1

3 }, tuned to A2 fixed point. (a) Shows the junction of edge states with ν1 = ν2 = 1. The three plots correspond to 	0
A2

, dA2
CAR, and

“	0
A2

− dA2
CAR overlap” plot showing the interaction parameter region for which TDOS is enhanced and junction is stable against CAR operator

for γ = 0.4. (b) Shows the junction of edge states with ν1 = ν2 = 1
3 . The three plots correspond to 	0

A2
, dA2

CAR, and 	0
A2

− dA2
CAR overlap plot

showing the interaction parameter region for which TDOS is enhanced and junction is stable against AR operator for γ = 0.4. Region A
in 	0

A2
− dA2

CAR overlap plot, in both (a) and (b), denotes the interaction parameters for which 	0
A2

< 1 and dA2
CAR > 1 simultaneously. When

the junction is tuned to CA2 fixed point, we can speculate the TDOS enhancement and stability (against AR operator) scenarios through the
symmetry relations between the A2 and CA2 fixed points in the α ↔ γ exchange.

points corresponding to the current-conserving boundary con-
dition at the junction [49]. In this paper, we assumed a general
scenario of a junction of edge states corresponding to two
fractional QH systems strongly coupled to a superconductor.
Additionally, we have allowed for nonlocal density-density
interactions to exist between the edge states of the two frac-
tional QH systems. Here, we have done a comprehensive
study of the possible scenarios for enhancement in TDOS and
stability of the fixed point in the parameter space of the local
and nonlocal (bulk) interactions.

The conclusions derived from the paper are as follows:
(1) TDOS can show enhancement in the vicinity of the

superconducting junction in the presence of nonlocal in-
teractions. Even the highly suppressed ν = 1

3 edge shows
the TDOS enhancement, although in the strong interaction
regime. This should be contrasted with the current-conserving
BC studied in Ref. [49], where TDOS enhancement was
not possible ν = 1

3 QH edge irrespective of the strength
of the interaction parameters as long as it is in repulsive
regime.

(2) Simultaneous TDOS enhancement and stability of the
junction fixed point is impossible for a superconducting junc-
tion against all physically relevant perturbations that can be
switched on at the junction. If we only consider the Andreev-
type instabilities, then we can have simultaneous TDOS
enhancement and stability of the fixed point at the junction
(see Figs. 10 and 11).

(3) A LL QW in proximity to a superconductor shows
TDOS enhancement at the junction. In the weak α limit
(α � 1), upon introducing nonlocal interaction, specifically,
increasing β while keeping γ at γ = 0, can further boost the
existing enhancement in TDOS for finite α.

(4) There exists a symmetry relation between the fixed
point corresponding to current-conserving boundary condi-
tion and superconducting boundary condition. As a result,
upon the introduction of superconducting correlations at the
junction, the interaction parameter regime, in which TDOS is
enhanced at the junction for the fixed point corresponding to
current-conserving boundary condition, begins to show sup-
pression in TDOS in the zero-energy limit.

(5) In general, the TDOS does not follow spatial power-
law behavior at finite distance away from the junction. Hence,
we can identify a quantity “relative TDOS,” defined as
ρ(x, E )/ρ(x −→ 0, E ), which shows a pure spatial power-
law dependence in the E −→ 0 limit. We observed that, in
the interaction parameter regime in which TDOS is less sup-
pressed at the junction with respect to the bulk, the relative
pair amplitude decays more rapidly as compared to the rel-
ative TDOS even in the presence of nonlocal interactions
irrespective of the fixed point.

The system which can naturally host the interlayer density-
density interaction between the LLs is the quantum Hall
systems in a bilayer stacking [72–77], which, in general, has
the interlayer distance d of the order of d ∼ 30 nm between
the two GaAs quantum wells [76,77]. This, in proximity to
a superconductor, with superconducting coherence length ξSC

of the order of ξSC ∼ 38–230 nm [78,79], can host the model
which supports both the nonlocal interaction and interlayer
Andreev tunneling at the junction. The junction of supercon-
ductor with chiral (quantum Hall edge states) and nonchiral
LL have been of recent interest owing to the possibilities of
hosting Majorana or parafermion zero modes [58,59,80–97].
Large cross Andreev reflection has already been observed
experimentally for a fractional QH edge in proximity to a
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superconductor [53,58,59,90]. Such experimental advance-
ment suggests that the technology required for the proposed
setup is not a far-fetched one.
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APPENDIX A: TDOS SPATIAL
AND ENERGY POWER LAWS

The Green’s function for the TDOS for the right moving
edge of the ith QH system 〈ψ†

iR(x, t )ψiR(x, 0)〉 in the presence
of nonlocal interaction is given by

〈ψ†
iR(x, t )ψiR(x, 0)〉 = 1

2πδ

2∏
j=1

(
iδ

−ṽ jt + iδ

)�i j

×
(

(iδ)2 − 4x2

(iδ − ṽ jt )2 − 4x2

)ζi j

, (A1)

where ṽi are the renormalized velocities in the presence of
symmetric nonlocal interactions. �i j and ζi j are given by
[T1]2

i j+[T2]2
i j

νi
and [T1]i j [T2]i j

νi
, respectively, where the expressions of

T1 and T2 can be found in the main text.
∑2

j=1 �i j does not de-
pend on the type of fixed point (superconducting or normal).
On the other hand,

∑2
j=1 ζi j depends on the specifications of

the boundary fixed point. The fixed-point contribution in the
Green’s function comes from the ( (iδ)2−4x2

(iδ−ṽ j t )2−4x2 )ζi j , which in
the limit x → ∞ reduces to 1, as a result of which TDOS
power law becomes insensitive to the boundary condition at
the junction. In the limit x → 0, the Green’s function picks up
the contribution from the boundary condition and is given by∏2

j=1
1

2πδ
( iδ

iδ−ṽ j t
)�i j+2ζi j . In both the limits x → 0 and x → ∞,

the Green’s function has the form of

〈ψ†
iR(x, t )ψiR(x, 0)〉 ∝

2∏
j=1

1

2πδ

(
iδ

iδ − ṽ jt

)	i j

. (A2)

From Eq. (18), the TDOS, in the limits x → 0 and x → ∞,
has the form of

ρi(x, E ) = 1

2πδ

∫ ∞

−∞

2∏
j=1

(
iδ

iδ − ṽ jt

)	i j

eiEt dt . (A3)

The above equation, in the E → 0 limit, gives the energy
power-law divergence in TDOS of the form of E

∑2
j=1 	i j−1, if∑2

j=1 	i j < 1. The TDOS energy power law at the junction,

hence, is given by 	0 = ∑2
j=1 	i j . The spatial power law of

the TDOS at finite distance x away from the junction can be
calculated from Eqs. (A1) and (18), such that

ρi(x, E ) =
∫ ∞

−∞

1

2πδ

2∏
j=1

(
iδ

−ṽ jt + iδ

)�i j

×
(

(iδ)2 − 4x2

(iδ − ṽ jt )2 − 4x2

)ζi j

eiEt dt . (A4)

By taking constant terms in t , outside the integral, we get the
form of the integral as

ρi(x, E ) = F (x)
∫ ∞

−∞

2∏
j=1

(
1

−ṽ jt + iδ

)�i j

×
(

1

(iδ − ṽ jt )2 − 4x2

)ζi j

eiEt dt, (A5)

where the function F (x) is given by 1
2πδ

(iδ)
∑2

j=1 �i j [(iδ)2 −
4x2]

∑2
j=1 ζi j . Now, the integral in Eq. (A5) can be written as

I =
∫ ∞

−∞

2∏
j=1

(
1

−ṽ jt + iδ

)�i j
(

1

iδ − ṽ jt − 2x

)ζi j

×
(

1

iδ − ṽ jt + 2x

)ζi j

eiEt dt . (A6)

A substitution of Et = T can be made, such that the integral
in Eq. (A6) becomes

I = C(E )
∫ ∞

−∞

2∏
j=1

(
1

T − iδE
ṽ j

)�i j
(

1

T − iδE
ṽ j

+ 2xE
ṽ j

)ζi j

×
(

1

T − iδE
ṽ j

− 2xE
ṽ j

)ζi j

dT eiT , (A7)

where C(E ) is given by

C(E ) = 1

E

2∏
j=1

(−E

ṽ j

)�i j+2ζi j

. (A8)

In the limit x � max{ṽ1, ṽ2}/E , integral I (x, E ) will have
the form of

I (E ) ∼ C(E )
∫ ∞

−∞
dT

2∏
j=1

(
1

T − iδE
ṽ j

)�i j+2ζi j

. (A9)

Hence, in the limit x � max{ṽ1, ṽ2}/E , the relative TDOS
has a pure spatial power-law dependence, given by

ρ(x, E )

ρ(x → 0, E )
∼ F (x)I (E )

F (x → 0)I (E )
=

(
δ2 + 4x2

δ2

)∑2
j=1 ζi j

.

(A10)

APPENDIX B: PAIR AMPLITUDE SPATIAL POWER LAW

In general, a pair-correlation function calculated between
the right moving edge of the ith QH system and the left
moving edge of the jth QH system, in the limits T → 0 and
L → ∞, is given by

Fi j (x) =
(

1

2πδ

) 2∏
k=1

(
2π

L

)�0
i jk

(δ)�
1
i jk

× (−i2x + δ)�
2
i jk (i2x + δ)�

3
i jk , (B1)
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where

�0
i jk = 1

2

[
[T1]ik + [T2]ik√

νi
+ [T3] jk + [T4] jk√

ν j

]2

,

�1
i jk = 1

2

[(
[T1]ik√

νi
+ [T3] jk√

ν j

)2

+
(

[T2]ik√
νi

+ [T4] jk√
ν j

)2]
,

�2
i jk = 1

2

[
[T1]ik[T2]ik

νi
+ [T3] jk[T4] jk

ν j
+ 2[T1]ik[T4] jk√

νiν j

]
,

�3
i jk = 1

2

[
[T1]ik[T2]ik

νi
+ [T3] jk[T4] jk

ν j
+ 2[T2]ik[T3] jk√

νiν j

]
.

(B2)

The induced pair amplitude is given by the real part of the
pair-correlation function as given in Eq. (B1). Equation (B1)

can be rewritten as

Fi j (x) =
(

1

2πδ

) 2∏
k=1

(
2π

L

)�0
i jk

(δ)�
1
i jk

×(
δ2 + 4x2

) �2
i jk +�3

i jk
2 ei(θ−�2

i jk+θ+�3
i jk ), (B3)

where θ+ = −θ− = tan−1( 2x
δ

). In the limit x 	 δ, θ± = ±π
2 .

Hence, the induced pair amplitude Re[Fi j (x)] is given by

Re[Fi j (x)] ∼
(

1

2πδ

) 2∏
k=1

(
2π

L

)�0
i jk

(δ)�
1
i jk

×(
δ2 + 4x2) �2

i jk +�3
i jk

2 cos
π

2

(
�3

i jk − �2
i jk

)
.

(B4)

Then, the relative pair-correlation function is given by

Re[Fi j (x)]

Re[Fi j (x → 0)]
∼

(
δ2 + 4x2

δ2

)∑2
k=1

�2
i jk +�3

i jk
2

. (B5)
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