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We present a multiscale density functional theory (DFT) informed molecular dynamics and tight-binding
approach to capture the interdependent atomic and electronic structures of twisted bilayer graphene. We calibrate
the flat band magic angle to be at θM = 1.08◦ by rescaling the interlayer tunneling for different atomic structure
relaxation models as a way to resolve the indeterminacy of existing atomic and electronic structure models whose
predicted magic angles vary widely between 0.9◦ and 1.3◦. The interatomic force fields are built using input from
various stacking and interlayer distance-dependent DFT total energies including the exact exchange and random
phase approximation (EXX+RPA). We use a Fermi velocity of υF � 106 m/s for graphene that is enhanced
by ∼15% over the local density approximation (LDA) values. Based on this atomic and electronic structure
model we obtain high-resolution spectral functions comparable with experimental angle-resolved photoemission
spectroscopy. Our analysis of the interdependence between the atomic and electronic structures indicates that
the intralayer elastic parameters compatible with the DFT-LDA, which are stiffer by ∼30% than widely used
reactive empirical bond order force fields, can combine with EXX+RPA interlayer potentials to yield the magic
angle at ∼1.08◦ without further rescaling of the interlayer tunneling.
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I. INTRODUCTION

The discovery of correlated insulating phases and super-
conductivity [1] in twisted bilayer graphene (tBG) has boosted
the field of twistronics [2,3], where strong electron-electron
interactions [4–6] play a dominant role in the physics at
specific magic angles where the bands become nearly flat.
Experimental magic angle values are reported within varying
ranges due to their sensitivity to the cleanliness of the sample
affecting the Fermi velocity and the strength of electron-
electron interaction effects [5,6]. Existing electronic structure
models [7–10] have been refined [11,12] to understand the
peculiarities of the physics at play at these specific magic
angles. Theoretically, the magic angles depend on the cho-
sen model Hamiltonian. Of particular importance are the
relaxation effects in van der Waals heterostructures [13,14]
that have already been reported using a variety of meth-
ods including (i) fully atomic lattice relaxation approaches
[9,15–17], (ii) nonlinear finite element plate models [18],
(iii) a generalized-stacking fault energy (GSFE) analysis [19],
possibly combined with (iv) a configuration-space represen-
tation [20], and finally, very commonly, (v) computationally
nonprohibitive continuum models [12,21,22]. The common
denominator in these analyses is the observation of (i) a reduc-
tion in the size of the AA stacking region, an increase of the
AB/BA regions, and the appearance of sharper stacking do-
main walls with decreasing twist angle, and (ii) the tendency
to lock the rotational alignment between the layers at the
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AA stacked regions for small twist angles. These mechanical
effects contribute to the formation of secondary isolation gaps
of the flat bands from higher energy bands [9,20,23], enhance
the value of the first magic angle, and broaden the bands of the
magic angles below 1◦ [21]. Quantitative conclusions inferred
from electronic band structure (EBS) and spectral function
plots depend on the approximations used.

Here, we propose an approach to capture the interdepen-
dent atomic and electronic structures of tBG by calibrating
the predicted magic angle to the experimental value of θM =
1.08◦ and resolving the indeterminacy of the models in the lit-
erature for different atomic/electronic structure model combi-
nations [7,24–29] whose predicted magic angles vary widely
between 0.9◦ and 1.3◦. For this purpose we attempt a progres-
sive refinement in the accuracy of our models. For the relaxed
atomic structure we use interatomic force fields based on
dihedral registry-dependent interlayer potentials (DRIPs) [28]
using parameter sets that reproduce the stacking registry and
interlayer-distance-dependent total energies obtained within
density functional theory. Among the proposed parametriza-
tions we have the systematically improved exact exchange
and random phase approximation (EXX+RPA) [30], which
predicts structural reconstructions that are slightly weaker
for the out-of-plane corrugation amplitudes than in com-
monly reported force field calculations [9,20,21,25,26,28].
Comparison of in-plane relaxations against local density ap-
proximation (LDA)-parametrized force fields give results that
are similar to EXX-RPA-parametrized results due to simi-
lar energy differences [30] thus yielding a similarly strong
driving force for unfavorable AA to favorable AB stacking
rearrangement.
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The electronic structure model relies on rescaled inter-
layer hopping terms for each atomic relaxation scheme to
calibrate the flat band magic angle to be at ∼1.08◦. The
interlayer hopping terms are modeled through widely used
isotropic two-center (TC) distance-dependent functions. We
then propose an improvement of this model by replacing
the intralayer terms using a strain-dependent version of the
F3G2 model [31], by rescaling of the TC parameters through
interlayer tunneling values fitting at the Dirac point for all
possible stacking configurations obtained within LDA density
functional theory (DFT) calculations [32], and by a relaxation-
scheme-dependent rescaling of the coupling strength to match
the magic angle at a set value, coined as the scaled hybrid
exponential (SHE) model. The specific magic angle value
depends not only on the atomic structure but also on the
intralayer Fermi velocity of graphene for which we use a
value υF � 106 m/s that is enhanced by ∼15% with respect to
the local density approximation estimate υF � 0.84×106 m/s.
We find that the interlayer tunneling does not require rescal-
ing when LDA elastic properties are used in combination
with EXX-RPA interlayer potentials. We further compare the
freestanding tBG against the hexagonal boron nitride (hBN)-
supported electronic structure to confirm that the EBS and,
therefore, the magic angles values are relatively insensitive to
the substrate when the hBN has a large twist with respect to
the contacting graphene layer.

The paper is structured as follows. In Sec. II we present
details of the atomic structure calculations through molecu-
lar dynamics simulations. In Sec. III we discuss the details
of the electronic-band-structure calculations using our SHE
tight-binding (TB) model while in Sec. IV we provide results
using this model. In Sec. V, we focus on the spectral function
methods to illustrate possible signatures for three relevant tBG
systems. In Sec. VI we summarize our main findings.

II. ATOMIC STRUCTURE CALCULATIONS

We begin by introducing our approach to obtain the re-
laxed atomic structure of twisted van der Waals systems.
The structural relaxations rely on the LAMMPS molecular dy-
namics (MD) simulation package [33,34] for which we use
pairwise interlayer interaction force fields modeled to repro-
duce interlayer stacking-dependent DFT total energies. In the
following we outline the method to obtain the commensurate
supercell for different twist angles, then we explain how to
parametrize the pairwise potentials that reproduce different
stacking-dependent interlayer interaction energies including
EXX+RPA, and we finally discuss the important role the
choice in intralayer potential plays in correctly reproducing
the elastic properties that govern the strength of the lattice
reconstruction effects.

A. Commensuration angles

Commensurate supercells of twisted bilayer graphene can
be formed for a discrete set of twist angles θ . We use the
procedure in Ref. [35] to relate a given twist angle between
two rotated layers on top of each other using four integers i,
j, i′, and j′ through the relation

cos(θ ) = 1

2αg
[2i′i + 2 j′ j + i′ j + j′i], (1)

where the scaling factor α is the ratio between the lattice
constants a and a′ of the bottom and top layers, respectively,

α = a′

a
=

√
(i′2 + j′2 + i′ j′)
(i2 + j2 + i j)

, (2)

and

g = i2 + j2 + i j. (3)

The two lattice vectors of the commensurate supercell r1, r2

can be related with the lattice vectors of the bottom reference
layer a1, a2 and the top twisted layer a′

1, a′
2 through(

r1

r2

)
= M ′ ·

(
a1

a2

)
= M ·

(
a′

1

a′
2

)
, (4)

where we use the transformation matrices

M =
(

i j
− j i + j

)
, M ′ =

(
i′ j′

− j′ i′ + j′

)
. (5)

In tBG we have an α = 1 scaling factor because the lattice
constants of both top and bottom layers are equal. For illus-
tration purposes we comment on the subset of commensurate
superlattices that are obtained by imposing i = j′ and j = i′
or alternatively i = − j′ and j = −i′ that automatically satis-
fies the equal lattice constant condition. Note that the use of
identical indices i = i′ and j = j′ leaves the layers unrotated
without introducing any change and corresponds to a trivial
case, and switching signs i = −i′ and j = − j′ rotates the
layers by 60◦.

The areas of the commensurate supercell A and the moiré
cell AM are related by an integer multiple m through

m = A/AM = det(M − M ′), (6)

where m = (i − j)2 takes a simple form when i = j′ and j =
i′. The smallest supercells corresponding to area multiples
of m = 1, 2, 3 between the supercell and the moiré cell are
represented as red, orange, and green in Fig. 1. These three
area ratios can be obtained using the nontrivial i �= i′ condition
when

|i − j| = 1 and |i′ − j′| = 1, for m = 1, (7)

|i + j| = 1 and |i′ + j′| = 1, for m = 2, (8)

|i − j| = 2 and |i′ + j′| = 2, for m = 3. (9)

Minimum area commensurate cells for m = 1 imply that
the commensurate supercell period is the same as the moiré
period, whose small-angle approximation is given by �M �
a/θ . Because the supercell size grows as the layers are
brought to closer alignment, these minimum area supercells
will normally be our preferred twist angle choices for our
band-structure calculations. Using the current scheme, we
can obtain all the smallest commensurate supercells from
Ref. [36], as well as additional larger supercells with the same
angles in Fig. 1. The expanded set of points can be useful,
for instance, when we want to find doubly commensurate real
space moiré supercells [37]. We have illustrated with solid
and open symbols the even- and odd-parity points [38] whose
bands are different for large twist angles [39]. For the typical
flat band angles near 1◦ these even-odd signature differences
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FIG. 1. Number of atoms, N , in the supercell as a function of twist angle obtained by allowing different combinations of integers i = j′,
j = i′ in Eq. (1) and satisfying α = 1 in Eq. (2). We note that in the small-angle approximation the minimum of atoms in the supercell
increases for small twist angles following the relation N � (i − j)2/θ2. The open circles and solid circles point out the different parity for each
dots.

are negligibly small in the limit where the continuum ap-
proximation becomes accurate because both even and odd
structures become increasingly similar to each other, having
similar distribution of AA, AB, and BA stacking regions. As a
rule of thumb we have even parities when i, j > 0 or i, j < 0
and mod (i − j, 3) = 0 and we obtain odd parities for the
remaining cases. We note that the parity of the superlattice is
reversed for twist angles that are equidistant around 30◦ since
(i) the sixfold symmetry of the triangular sublattice leads to
mirror symmetry around 30◦ and (ii) the 60◦ rotation defining
the new zero-angle reference inverts the role of even and odd
configurations where odd configurations possess coincident
lattice positions only for the corner A-A′ sublattices while the
even configurations also possess an additional coincident site
for the B-B′ sublattice combination. In Table I, we provide a
selection of angles corresponding to the red dots in Fig. 1.

B. From ab initio calculations to pairwise potentials
for molecular dynamics simulations

Our multiscale approach feeds from DFT total energy
calculations for various interlayer stacking and separation
distances to obtain the pairwise potential needed in the MD
structural optimization that we discuss later in Sec. III. The
reference input data are the total energies of graphene and
hexagonal boron nitride homo- and heterostructures based on
the LDA and EXX-RPA calculations [30].1 We used the KLIFF

tool [40] to fit these data to the DRIP function [28] which

1We notice that the bilayer LDA parametrization from Phys. Rev.
B 96, 195431 (2017) used an 12×12×6 grid rather than the claimed
16×16×1 resulting in a mismatch of about 20% for the total energy
differences between stackings. A corrected parametrization will be
submitted as an erratum for that paper and future work will leverage
this improved parametrization.

improves upon the Kolmogorov-Crespi (KC) [25,41,42] po-
tential by including a dihedral angle correction accounting for
the local curvature due to local corrugations of the layers and
allows for an improved description of both the total energies
and forces especially for capturing the interlayer stacking-
dependent total energies. This DRIP parametrization is shared
online [43], along with several other scripts used in this work.
The MD interlayer binding energies are expressed as a sum
of pairwise interaction potentials φi j between sites i and j
between layers,

Einter = 1

2

∑
i

∑
j /∈layer i

φi j, (10)

TABLE I. Selection of twist angles, indices, and number of
atoms in the smallest commensurate supercells corresponding to the
red dots in Fig. 1.

θ ◦ i = j ′, j = i′ No. atoms θ◦ i = j ′, j = i′ No. atoms

0.100 331, 330 1310764 1.696 20, 19 4564
0.200 166, 165 328684 2.005 17, 16 3268
0.300 111, 110 146524 2.134 16, 15 2884
0.400 83, 82 81676 2.281 15, 14 2524
0.497 67, 66 53068 2.450 14, 13 2188
0.596 56, 55 36964 2.646 13, 12 1876
0.797 42, 41 20668 2.876 12, 11 1588
0.987 34, 33 13468 3.150 11, 10 1324
1.018 33, 32 12676 3.481 10, 9 1084
1.050 32, 31 11908 3.890 9, 8 868
1.085 31, 30 11164 4.408 8, 7 676
1.121 30, 29 10444 5.086 7, 6 508
1.539 22, 21 5548 6.009 6, 5 364
1.614 21, 20 5044 7.341 5, 4 244
1.696 20, 19 4564 9.430 4, 3 148
1.788 19, 18 4108 13.174 3, 2 76
1.890 18, 17 3676 21.787 2, 1 28
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TABLE II. Fitting parameters for the DRIP functional given in Eq. (11) to reproduce either the EXX-RPA or the LDA behavior of G-G,
G-BN, BN-BN, and BN-NB interlayer interactions. The fitting parameters for B-N interactions accurately fit the BN-BN and BN-NB (where
one of the hBN layers is rotated by 180◦) layered materials thus illustrating a certain level of transferability. We use the same values for all
pairs for normalcutoff = 3.7 (LAMMPS-specific value to find the first three nearest neighbors of an atom in order to calculate the normal to the
surface they form), ρcut = 1.562, and rcut = 12.0. The latter two are potential-specific values that are defined in the Appendix after Eqs. (B1)
and (B5). Atomic charges in the MD relaxation are set to −0.82275e and 0.82275e for N and B respectively, where e is the elementary charge
of the electron.

DRIP C0 C2 C4 C δ λ̃ A z0 B η

EXX-RPA CC 8.568×10−3 1.781×10−3 −3.277×10−8 −4.616×10−2 0.465 1.259 −4.049×10−2 3.305 1.552×10−2 −1.026
CB 2.650×10−2 5.326×10−2 7.749×10−2 4.037×10−8 0.881 3.055 1.544×10−8 3.133 8.052×10−3 1.277
CN 3.585×10−2 1.710×10−4 2.061×10−2 7.224×10−3 0.773 3.115 5.188×10−2 3.084 4.222×10−3 1.083
BB 0.211 9.106×10−2 3.252×10−2 0.232 0.939 2.834 4.292×10−8 2.735 3.324×10−12 1.141
BN 1.446×10−6 0.108 0.186 1.085×10−2 1.076 5.112 4.071×10−8 2.871 7.748×10−3 2.748
NN 1.176×10−2 4.701×10−3 8.515×10−3 4.293×10−2 0.779 1.310 0.197 2.958 1.787×10−3 2.073

LDA CC 5.889×10−2 2.150×10−2 5.265×10−2 1.601×10−11 0.760 3.987 1.550×10−2 2.988 1.181×10−4 1.791
CB 3.811×10−2 3.606×10−2 0.105 2.903×10−6 0.875 5.291 3.243×10−2 2.931 2.691×10−3 1.147
CN 6.882×10−2 2.227×10−2 3.967×10−2 1.589×10−7 0.743 3.007 7.131×10−7 2.941 1.093×10−2 1.268
BB 0.274 0.142 3.252×10−2 8.587×10−7 0.696 3.121 9.474×10−7 2.677 3.662×10−10 1.120
BN 8.727×10−8 0.245 0.302 7.015×10−2 1.225 5.929 5.785×10−8 2.834 6.142×10−3 2.950
NN 2.002×10−2 1.658×10−2 1.182×10−2 2.889×10−3 0.774 1.323 0.159 2.535 1.111×10−3 1.522

where the 1/2 prefactor accounts for the double counting. The
DRIP pairwise potential is given by

φi j = fc

(
ri j

rcut

)(
e−λ̃(ri j−z0 )

[
C + f (ρi j ) + f ′(ρi j, α

(m)
i j

)]

− A

(
z0

ri j

)6)
, (11)

where fc(ri j/rcut ) is a cutoff function [44] recalled in Eq. (B1)
of Appendix B where ri j = |ri j |, the cutoff distance is rcut =
12 Å, ρi j is the transverse projected distance, and α

(m)
i j is a

parameter related with the three dihedral angles around a
given atom. The first term within parentheses f (ρi j ) that
depends on the transverse distance captures the stacking de-
pendence between layers and is similar to the KC potential
[25]. The additional dihedral angle function f ′(ρi j, α

(m)
i j ) ac-

counts for the local curvatures of the graphene ripples. The
second term is a common attractive r−6 London dispersion
contribution. The interatomic position-dependent variables
ri j , ρi j , αm

i j , the optimization parameters λ̃, z0, C, A, and
those listed in Table II, and the functions used in Eq. (11) are
defined in Ref. [28] and can also be found in Appendix B.
For completeness we have also obtained the respective inter-
actions between (C)arbon, (B)oron, and (N)itrogen to describe
the G/BN and BN/BN interlayer interaction potentials [30].
All our drip potential parameters will be made available as
CBN_RPA.drip and CBN_LDA.drip files in the LAMMPS po-
tential directory and these can be used with the input file
from the drip example folder in LAMMPS. We illustrate in the
left panel of Fig. 2 the RPA and LDA parametrization for
different layering combinations of graphene and hBN where
we illustrate in the right panel how the different stacking
configurations are defined for both systems. The solid lines
correspond to the EXX-RPA data and the dashed lines give
the LDA-inferred data. The corresponding parameters are in-
cluded in Table II. Comparison of our parameters for hBN

with other existing force fields such as the registry-dependent
hBN interlayer potential (hBN-ILP) [45,46] will be presented
elsewhere.

C. Molecular dynamics simulations for the atomic
relaxations in twisted bilayer graphene

We perform molecular dynamics simulations using the
LAMMPS software package [34] using different fitted pairwise
potentials and compare existing implementations against our
EXX-RPA and LDA parametrizations for the interlayer inter-
action energies. The impact of the MD force field choices in
the atomic structure is summarized in Fig. 3 that shows the
interlayer distance relaxed stacking-dependent total energies
together with the equilibrium interlayer distances as a function
of stacking. Whereas the stacking-dependent total energies
remain similar between different interlayer potential choices,
we observe that the interlayer distance differences are reduced
in the EXX-RPA by ∼0.2 Å for AA stacking when compared
to the LDA.

For the interlayer stacking-dependent total energies both
the KC-type [25–27,47] and DRIP [28] potentials are con-
sidered to illustrate their impact on the structural relaxation
and changes in the electronic band structure. The RDP1
parameters are taken from the original KC paper with param-
eters fitted to simulation and experimental data for graphite
[25], while VV10 uses the same functional form but with
parameters fitted to match the VV10 van der Waals (vdW)
scheme [29]. The first work on the DRIP [28] was fitted
to the many-body dispersion (MBD) scheme [48], labeled
here as MBD. As mentioned above, in our work we have
fitted the DRIP potential using KLIFF [40] to accurately re-
produce EXX-RPA level long-range interactions in bilayer
graphene [30], hereafter referred to as RPA. Our LDA data
are simply referred to as LDA. Intralayer C-C interactions
are described by the REBO2 Brenner potential [49] and,
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FIG. 2. (a) Comparison of DFT and MD total energies for different fixed interlayer distances and varying stacking configuration, as defined
in (c), and (b) fixed stacking for varying interlayer distance. We focus on the zero twist angle and use lattice-matched a = 2.48 Å commensurate
geometries of graphene on hexagonal boron nitride as a midpoint between the value of a = 2.46 Å used for G/G systems and 2.5 Å for BN/BN
systems. The solid lines fit to the EXX-RPA and the dashed lines reproduce the LDA data. The reference datasets are from the parametrization
given in Ref. [30]. The circles are the MD total energy data points. (c) Illustration of the definition of the stacking configurations used in (a) and
(b) following the conventions in the titles of each panel.

when hBN is present in the system, intralayer B-N inter-
actions are modeled by EXTEP [50], the extended version
of the TERSOFF potential [51]. We will discuss the impact
of the graphene intralayer pairwise potential by compar-
ing against the machine-learning-informed GAP20 potential
[52] as well as against the REBO-LB [53] obtained through
reparametrization of REBO2. The atomic charges on hBN
which can be calculated using a Bader analysis based on
DFT are −0.82275e and 0.82275e for N and B, respectively.
We have neglected the electrostatic interactions between the
ionized atoms in our calculations but these can be included
as done for example in hBN-ILP potentials [45,46]. We will
show that the choice of the intralayer MD potentials like
TERSOFF, EXTEP, and REBO2 has a sizable impact on the
MD relaxed geometries and consequently on the associated
electronic band structures.

D. Intralayer MD potentials and continuum elastic parameters

The relaxed atomic positions result from an interplay be-
tween the interlayer coupling potentials and the intralayer
elastic parameters that resist the deformation of the atoms.
Here we report the elastic constants of graphene and hexag-
onal boron nitride that result from the chosen molecular
dynamics interatomic potentials that were obtained using the
formulas in Ref. [54] for the Young’s modulus,

Y = C2
11 − C2

12

C11
, (12)

and the Poisson ratio,

ν = C12

C11
, (13)

where Ci j are the elements of the second-order elastic constant
matrix typically defined as [54]

Ci j = 1

A0c0

(
∂2Einter

∂εi∂ε j

)
, (14)

where Einter is the energy obtained by summing the pairwise
interactions of monolayer graphene (or hBN) as given in
Eq. (10), A0 is the equilibrium area of the unit cell of graphene,
and c0 is the out-of-plane interlayer distance or equivalently
the thickness. We denote by εi the dimensionless strain in
direction i that indicates the overall length change ratio. In
practice, we have used the built-in LAMMPS routines to ob-
tain the elastic coefficients by implementing the definitions in
Eq. (12) and (13), and these coefficients were obtained by de-
riving the pressure tensor components calculated by LAMMPS

with respect to the strain components [55]. We have confirmed
the mechanical stability of all these potentials by verifying the
following conditions [56]:

C44 > 0, C11 > |C12|, (C11 + 2C12)C33 > 2C2
13. (15)

We summarize in Table III the continuum elastic parameters
such as the two-dimensional (2D) version of the Young’s mod-
ulus (Y = Y2D/c0), the Poisson ratio, and Lamé parameters
associated to the C-C and B-N interatomic potentials and how
they compare with DFT.
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FIG. 3. (a) Stacking-dependent equilibrium energies (AB stack-
ing set at zero) for the different force fields (see symbols). The color
map illustrates the corresponding equilibrium interlayer distance.
We note a mismatch of a factor of about 2 for KCVV10 with the
corresponding curve reported in Ref. [29]. (b) Same information as
in (a), but the roles of the y-axis data and the color map are reversed.
Panel (a) illustrates that all force fields predict rather similar inter-
layer interaction energies, thus explaining the quite similar lattice
reconstruction effects. Panel (b) in contrast shows a large variation
in interlayer distances thus explaining the radically different EBSs
where the tight-binding models depend strongly on the interlayer
distance.

The choice of the interatomic potentials makes a signif-
icant impact on the final atomic positions. Even though the
empirical REBO2 and hBN TERSOFF potentials are com-
putationally efficient they tend to overestimate the strains.
We illustrate this behavior in Fig. 4(a) through the in-plane
strain profiles in tBG for increasing Young’s moduli where
we have compared the lattice reconstructions obtained using
the GAP20 potential [52], and the REBO-LB potential [53].
The advantage of GAP20 is that it yields a Young’s modulus
(317 N/m) and a Poisson ratio (0.193) that approach the
DFT estimates slightly better than REBO2, while EXTEP
matches the experimental G-BN lattice mismatch better than
TERSOFF [51]. REBO-LB is computationally less expensive
than GAP20 and reproduces certain DFT elastic predictions
[57–59] quite well [64]. However, this potential becomes
unstable for quite small deformations that we could see, for
example, in the resulting elastic coefficients and therefore we
have avoided its use. The in-plane displacements are gradually
decreased when switching the C-C interactions from the orig-
inal REBO2, to the reparametrized REBO-LB and the GAP20

machine learning (ML) potential. We note that GAP20 reduces
the maximum displacements from ∼0.4 to ∼0.3 Å by about
25%.

Therelative area distribution of different local stacking
configurations is also an indicator of the strain effects. We

TABLE III. Elastic parameters of different intralayer potentials
including the 2D Young’s modulus (Y2D = Y c0), the Poisson ratio
(ν), and the Lamé parameters (λ and μ). MC stands for Monte
Carlo calculations that allow to go beyond the quasiharmonic ap-
proximation. The MD force-field values might differ slightly from
published values as we report here the ones calculated directly from
a LAMMPS calculation using the script we provide to obtain the
different elastic constants for hexagonal systems where the elastic
constants are calculated from the coefficients as given in Ref. [54]
using the zigzag chirality. Experimental values for hBN have been
reported in Ref. [63] with E ≈ 220–510 N/m.

Y2D λ μ

(N/m) ν (eV/Å2) (eV/Å2)

C-C MC (LCBOPII) [57] 346 0.127 3.25 9.57
DFT (GGA) [58] 345 0.149 3.97 9.37
DFT (GGA) [59] 348 0.169 4.74 9.29
DFT (LDA) [60] 350 0.186 5.45 9.21
REBO2 [49] 243 0.397 20.96 5.42
REBO-LB [53] 364 0.098 2.51 10.34
GAP20 [52] 317 0.193 5.22 8.31

B-N DFT (LDA) [61] 290 0.160 3.7 7.8
DFT (GGA) [61] 284 0.153 3.4 7.7
DFT (GGA) [62] 278 0.225 5.79 7.08
TERSOFF [51] 250 0.31 9.81 5.96
EXTEP [50] 269 0.179 3.98 7.12

break down the moiré superlattice area:

Asupercell = Astacking + ADW

= AAA + AAB + ABA + 3(ADW1 + ADW2 + ADW3)

(16)

can be divided into AA, AB, and BA local stacking geometries
and the areas of the squashed hexagons in the domain wall
are multiplied by three to account for the three interfaces.
For rigid systems without strains all three local stacking re-
gions and domain wall areas are the same. This procedure
is reminiscent of building the Wigner-Seitz cells but here we
additionally introduce the domain walls in between the sym-
metric stacking configurations. We use the local stacking d(r)
vector at each unit cell position r that we define as the in-plane
distance between closest same sublattice atoms in neighboring
layers. We mark the symmetric AA, AB, and BA stacking
regions through hexagon tessellation where we choose equal
domain wall widths of ωi = aCC/6 as we schematically illus-
trate in Fig. 4(c). With this choice of domain wall width the
ratio of relative area of the domain wall to the total super-
cell area is ADW/Asupercell, equal to the defined local stacking
surface ratio of 30.5%. This definition is used to obtain the
evolution of domain wall widths between the AB and BA
regions, defined here as DDW3 , and we obtain values of 1.3,
1.6, 1.4, and 1.0 nm for 0.1◦, 0.3◦, 0.5◦, and 1.1◦, respectively,
for both GAP20 and REBO, suggesting the choice in potential
does not matter too much for this specific observable. The
trends are similar to the results reported in Ref. [65], which
uses different conventions to define the local stacking regions
where the experiments predict decreasing domain wall widths
with increasing angle where our range of simulation also
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FIG. 4. (a) Color maps of in-plane displacement magnitudes for
a tBG with θ = 0.53◦ for different choices of intralayer potential
and the same interlayer EXX-RPA potential. The GAP20 model
gives the largest Young’s modulus of the three and is closest to
DFT predictions (see Table III). (b) Comparison of local stacking
configuration maps obtained using REBO2 and GAP20 for tBG with
θ = 1.1◦ that shows larger strains, with reduced AA stacking regions
and expanded AB and BA regions, in the former due to the reduced
stiffness. (c) Graphical representation of the conventions used to
classify the local stacking configurations in panel (b). We distinguish
the hexagonal regions around the symmetric stacking AA, AB, BA,
and the three domain wall regions. We have set the three domain
wall widths to be ωi = aCC/6, a choice that leads to a domain
wall versus well-defined local stacking surface ratio in Eq. (16),
ADW/Asupercell � 30%.

allows to locate an initial increase between 0.1◦ and 0.3◦ twist
angles. The diagonals of the hexagonal AA regions are given
here by DAA and they are equal to 3.4, 4.4, and 4.5 nm for
GAP20 and 3.3, 3.5, and 3.9 nm for REBO2, for 0.3◦, 0.5◦,
and 1.1◦, respectively. The REBO2 potential gives smaller

DAA values, confirming its tendency to overestimate the actual
lattice reconstruction with respect to the GAP20 potential.

III. TIGHT-BINDING ELECTRONIC
STRUCTURE CALCULATIONS

Our implementation of the tight-binding electronic struc-
ture model for twisted bilayer graphene separates the in-
tralayer and interlayer contributions in an effort to improve its
accuracy in a controlled manner. A commonly used TC model
[7,9] is based on the interatomic distance vector ri j between
atoms i and j under the Slater-Koster [66] approximation, and
which captures both intralayer and interlayer contributions
simultaneously through

tTC, i j = Vppπ (ri j )

[
1 −

(
ci j

ri j

)2]
+ Vppσ (ri j )

(
ci j

ri j

)2

, (17)

where

Vppπ (ri j ) = V 0
ppπ exp

(
− ri j − aCC

r0

)
(18)

and

Vppσ (ri j ) = V 0
ppσ exp

(
− ri j − c0

r0

)
, (19)

where ri j = |ri j | is the magnitude of the interatomic distance
and ci j = ri j · ez is the vertical axis projection along the z
axis normal to the graphene plane. For simplicity, here we
have defined a fixed normal vector ez along the z axis rather
than allowing it to tilt with the local curvature following
the surface corrugation. The parameter c0 = 3.35 Å is the
interlayer distance, aCC = 1.42 Å is the rigid graphene’s inter-
atomic carbon distance, V 0

ppπ = −2.7 eV the transfer integral
between nearest-neighbor atoms, and V 0

ppσ = 0.48 eV the
transfer integral between two vertically aligned atoms that
were fitted to generalized gradient approximation (GGA) data
for fixed interlayer distances [7]. The decay length of the
transfer integral is chosen as r0 = 0.184a such that the next-
nearest intralayer coupling becomes 0.1 V 0

ppσ . The cutoff for
this distance-dependent model is finally set to 4.9 Å, beyond
which additional contributions do not affect the observables
anymore [7]. This form is widely used in the literature [67,68]
and we will show that is good at reproducing the largest magic
angle in tBG around ∼1.1◦, even though the corresponding
nearest-neighbor effective hopping term obtained by adding
all intralayer intrasublattice terms [31] gives an estimate of
−2.45 eV and thus its associated Fermi velocity of graphene
is much smaller than experiments or even the LDA.

The improved hybrid tight-binding Hamiltonian that we
propose treats intralayer and interlayer hopping terms sepa-
rately as

ti j =
{

t intra
i j if i ∈ layer j

t inter
i j if i /∈ layer j.

(20)

Different tight-binding Hamiltonians can be proposed de-
pending on how we define the intralayer and interlayer
hopping terms. We consider three models. The first one is the
scaled two-center (STC) model that uses the same intralayer
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Hamiltonian t intra
i j = t intra

TC, i j as in Eq. (17) but uses a scaling fac-
tor S for the interlayer hopping terms t inter

i j = S t inter
TC, i j , where

the S parameter is fitted to calibrate the magic angle value
for each choice of force field, or equivalently relaxed atomic
structure. The S value can also be modified to obtain the band
structures for arbitrary effective twist angles as we will discuss
later. The scaled hybrid (SH) model uses the so-called F3G2
model [31] for the intralayer Hamiltonian t intra

i j = t intra
F3G2, i j to

improve the accuracy when describing a single graphene layer
and maintains the same interlayer coupling as the STC model.
Our main proposal for this work is the scaled hybrid expo-
nential (SHE) model, where the interlayer hopping terms are
improved to match the interlayer tunneling data from ab initio
calculations resulting in

tSHE, i j =
{

t intra
F3G2, i j if i ∈ layer j

S exp [(ci j − p)/q] t inter
TC, i j if i /∈ layer j,

(21)

where p = 3.25 Å and q = 1.34 Å. This SHE model will be
used hereafter to present our results and we will generally
omit its explicit labeling. In the following we discuss the
improvements made for the intralayer and interlayer tight-
binding Hamiltonian terms to better match the ab initio
calculations.

A. Intralayer ab initio tight-binding models

The intralayer hopping terms can be improved by using ab
initio calculation fitted tight-binding models as presented in
Ref. [69] where we can systematically control the range of
finite hopping terms. Here we use the so-called F3G2 model
that includes up to two nearest-neighbor inter- and intrasublat-
tice hopping terms in single-layer graphene that enhance the
accuracy of the Hamiltonian in the entire Brillouin zone (BZ)
while retaining relative simplicity. We adopt a Fermi velocity
of υF = √

3a|teff |/2h̄ = 106 m/s that amounts to an enhance-
ment of the nearest-neighbor hopping term of teff = −3.1 eV
instead of using the LDA value of teff = −2.6 eV in a nearest-
neighbor-only model. In our F3G2 model this implies using an
enhanced physical nearest-neighbor intersublattice hopping
term of t0 = −3.5 eV together with four other additional
nearest-neighbor hopping terms. We note that this effective
Fermi velocity is closer but somewhat smaller than the typical
value of υF = 1.05 m/s, or equivalently teff = −3.24 eV, for
graphene on SiO2 substrates whose electron mobilities are
comparable to those of tBG. Additional corrections to the
F3G2 intralayer hopping terms in the presence of bond dis-
tortions can be added through exponentially decaying terms
[70] resulting in

t intra
F3G2,i j = tF3G2, i j exp

[
−3.37

(
ri j − r0, i j

r0, i j

)]
, (22)

where tF3G2,i j are the intralayer interatomic hopping terms of
the rigid F3G2 model, and r0, i j are the rigid lattice’s in-plane
interatomic distances between i and j atoms.

B. Interlayer scaled tight-binding model

We propose a new interlayer tight-binding Hamiltonian
model that allows to better reproduce the ab initio tunneling at
the K point [32] for different interlayer distances and gives a

FIG. 5. (a) Comparison of the HBA′ tunneling data at 3.5 Å inter-
layer distance for different commensurate cell sliding configurations
obtained from LDA DFT calculations and the corresponding TB
model estimates using the expressions from Eq. (24) in Eq. (23).
(b) Differences between the first two panels are in the meV range
and the TB fit can thus be considered accurate for all sliding
configurations.

better account of surface corrugations or the influence of pres-
sures. The DFT-LDA interlayer tunneling data at the K point
were obtained through the Quantum ESPRESSO code package
using a 30×30×1 Monkhorst-Pack k-point grid and making
minimal modifications to the WANNIER90 code to extract the
tunneling [32]. The equivalent TB tunneling at the K point
between interlayer sites of an aligned system with four atoms
per unit cell is calculated using

Hss′ (K : d ) =
∑

js′

t inter
is js′

exp [iK · (d + ris js′ )], (23)

where the s and s′ label the two different sublattices A, B
and A′, B′ of bottom and top layers. Once we fix a given is
site in the bottom layer sublattice s we carry out a sum over
all possible js′ sites of sublattice s′ in the top layer until the
sum is converged. Because K is a 2D vector, only the in-plane
components of the three-dimensional (3D) distance vector ri j

contributes in the scalar product. The vector d = (dx, dy) is
the sliding of the top layer unit cell dimer with respect to
the bottom layer unit cell [14,32]. For strained systems that
include both in-plane (u) and out-of-plane (h) stacking defor-
mation, d(r) = d0(r) + u(r) + h(r)ẑ, where d0(r) is the rigid
relative stacking information [14]. We will mainly use the
SHE model in Eq. (21) that contains a local interlayer-distance
ci j-dependent exponential function

t inter
model, i j = Smodel exp

[
ci j − p

q

]
t inter
TC,i j, (24)

where Smodel depends on the relaxation model used. The pa-
rameters in the exponential term were fitted with p = 3.25
Å and q = 1.34 Å for the rigid twisted bilayer assuming
that Smodel = 1. This exponential rescaling term alone allows
to give improved agreement data where the differences are
of the order of 2% at most. See Fig. 5 for the agreement
of HAB′ maps. A similar agreement is found for HAA′ tun-
neling although it is not shown. A benchmark comparison
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FIG. 6. (a) Definition of the high-symmetry points used to define
the paths of the EBS and the spectral function plots. The EBSs are
given along the path highlighted in the moiré BZ, while the spectral
function is centered around the K point which lies simultaneously
in the moiré BZ and at the corner of the BZ of the bottom layer
of graphene. The branches of the spectral function are calculated
towards the �′ and M ′ points of this same layer of graphene (dark
green path) as well as using a straight line through K and K ′ (light
green path) to allow for discussion of bottom and top layer contri-
butions. (b) LDA DFT vs TB EBS comparisons using the prefactors
given in the inset for different interlayer distances into Eq. (24). The
agreement is satisfying well beyond the ±0.5 eV range. (c) The pref-
actors can easily be fit by an exponential dependence; see exponent
in Eq. (24).

of DFT vs our tight-binding implementation for a twist an-
gle of θ = 5.09◦ is shown in Fig. 6 for different interlayer
distances where we can observe a close agreement between
both models especially at low energies. The DFT-LDA bands
were obtained through Quantum ESPRESSO using a cutoff of
60 Ry (800 eV) with ultrasoft pseudopotentials on a 6×6×1
Monkhorst k-point grid. The inset of Fig. 6 shows how this ex-
ponential term enhances the interlayer tunneling with growing
c and allows the TB calculations to give bands that agree more
closely with the LDA-DFT results.

The Smodel prefactor in Eq. (24) is a relaxation-model-
dependent parameter that can be varied to calibrate the magic
angle to a value of our choice. For brevity of notation we
will drop the explicit model label from here onwards. For
convenience we further decompose this fitting constant into

TABLE IV. Different S values that we need to multiply in the
interlayer tunneling term in the TB Hamiltonian to bring the magic
angle to the experimental value of θ1 = 1.08◦ for different relaxed
geometries. The rows are the relaxation models for the atomic
structures and the columns are the tight-binding models for the
electronic structures. The STC model uses the TC intralayer hopping
terms of Eq. (17) and S t inter

TC,i j for the interlayer tunneling. The SH
model uses the more accurate intralayer F3G2 graphene model with
υF = 106 m/s corresponding to teff = −3.1 eV and the same inter-
layer tunneling as the TC. The SHE model uses the same F3G2
intralayer hopping terms of SH and a modified interlayer tunneling
with a rescaling parameter Smodel in Eq. (24) that depends on the re-
laxation model. Similar factors are provided in Appendix E (Table V)
for use when we remove the strain corrections in the F3G2 model of
Eq. (22).

S STC SH SHE

RPA 0.752 0.951 0.895
LDA 0.804 1.018 0.945
MBD 1.069 1.353 1.144
KC-VV10 0.970 1.247 1.091
KC-RDP1 0.884 1.136 1.018
Rigid 0.856 1.083 1.008

two parts as

S = θ1|teff|
ω

s = C1s, (25)

where we have distinguished the dimensionless C1 =
θ1|teff |/ω term and the s is a relaxation-model-dependent
parameter and accounts for the changes in the electronic struc-
ture due to relaxation strains. The C1 parameter is the inverse
of the dimensionless constant α1 = kD/C1 corresponding to
the first magic angle of tBG defined in Ref. [2]. This parameter
captures the interdependence between the intralayer Fermi ve-
locity, the interlayer tunneling strength, and the magic angle.
The constant C1 = 30.4 corresponding to the first magic angle
results from our choice of θ1 = 1.08◦, teff = −3.1 eV, and
ω = 0.11 eV of rigid bilayer graphene [71] and is slightly
larger than the value of C1 = 27.8 found numerically in
Ref. [71] because here we are using different parameters for
the Fermi velocity and interlayer tunneling. The updated scal-
ing parameter S′ that we obtain when we allow for δθ , δυF,
and δω parameters to change can be obtained by using the
updated C′

1 value:

S′ = C′
1s = C1

(
1 + δθ

θ1

)(
1 + δυF

υF

)(
ω

ω + δω

)
s. (26)

This type of correction in the scaling parameter S′ will lead
to changes in the magic angle value following S′/θ ′ = S/θ .
It will also be convenient, for example, when we need to
calculate the moiré band structures of a system with effective
twist angle θeff with respect to a reference physical twist angle
θref through the relation

θeff = θref − δθ = S

S′ θref (27)

using the reference angle θref = θ1 of the commensurate su-
perlattice. Different reference twist angles θref can be used
together with a rescaled S′ parameter to describe an arbitrary
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FIG. 7. Bandwidths W = max(Econd ) − min(Eval ) measured as
the difference between the maximum and minimum of low-energy
conduction and valence nearly flat bands for different twist an-
gles and relaxation schemes using REBO2 intralayer potentials.
(a) Different relaxation schemes either increase or reduce the magic
angle values around the rigid system’s angle of ∼1◦. We have used
the two-center approximation from Eq. (17) for the tight-binding
Hamiltonian for which the effective nearest-neighbor hopping term
is equal to −2.45 eV. We note that the RPA relaxation increases
the magic angle whereas the MBD reduces it. The rigid structure
with an interlayer distance of 3.35 Å leads to a quite large magic
angle when we use this model or around 1.25◦ due to its small
Fermi velocity. (b) Bandwidths with identical magic angle value of
θ1 = 1.08◦ obtained with our scaled two-center (STC) approximation
in Eq. (21) using the calibration parameters of Table IV, using an
effective nearest-neighbor hopping term of −3.1 eV. We refer to
Fig. 14 for an illustration of the explicit band structures from which
some of these bandwidths are extracted.

θeff that varies continuously. Once C1 is fixed for a given
rigid model we can change the strain-profile-dependent pa-
rameter s to calibrate the magic angle of the system. The S
parameters listed in Table IV for each type of relaxation strain
corresponding to different force fields are chosen to bring the
different magic angles to the same θ1 = 1.08◦ value as will
be illustrated in Fig. 7 of Sec. IV. The expression for the
interlayer tunneling in our SHE model for the EXX-RPA force
fields is

t inter
RPA, i j = 0.895 exp

[
ci j − 1.34

3.25

]
tTC, i j, (28)

where the coefficient S = 0.895 for the RPA relaxed geome-
tries reduces the overall interlayer tunneling strength with
respect to the S � 1 value of the rigid model to compensate for

the enhancement of the magic angle due to lattice relaxation.
In Table IV we list the model-dependent scaling parameter S
needed to bring the magic angle to θ1 = 1.08◦ for different
relaxation models and intralayer hopping model choices.

IV. ELECTRONIC STRUCTURE OF LATTICE
RELAXED TWISTED BILAYER GRAPHENE

In this section we obtain the electronic band structure of the
tBG models from real-space tight-binding calculations when
the atomic structure is relaxed. In particular, we show how the
lattice relaxations can impact the magic angle value and the
shape of the low-energy nearly flat bands in twisted bilayer
graphene. The density of states (DOS) as a function of twist
angle shows two peaks associated each with maxima point
stemming either from the valence or conduction bands. We
also show that the hexagonal boron nitride substrate with a
large twist angle with respect to graphene makes a negligibly
small impact, of the order of a few meV in the band structure.

A. Magic angles of lattice relaxed tBG systems

Originally the magic angles in tBG continuum models
were defined based on the vanishing band dispersion slope
at the K point which coincided with the development of
almost perfectly flat low-energy bands [2]. This definition
becomes less rigorous in a tight-binding model because the
bands are not perfectly flat anymore at different regions of
the moiré Brillouin zone and the electron-hole asymmetry be-
comes more pronounced. For this reason we define the magic
angles as those twist angles that give rise to the narrowest
bandwidths of the low-energy nearly flat bands defined as
W = max(Econd ) − min(Eval ) including both conduction and
valence low-energy bands. We will also analyze in the next
section the properties of the low-energy bands from the view-
point of maxima peaks in the density of states.

In Fig. 7 we show the evolution of the bandwidth W
as a function of twist angle for different lattice relaxed
atomic structures. Within the same TC approximation given
in Eq. (17) we notice how the minima positions of W for
different relaxation models vary in a wide range of θ values
between 0.9◦ and 1.3◦ being the rigid model’s magic angle
around 1◦. The rigid model’s W does not change much within
a twist angle range of 0.04◦ as it gives rise to a double min-
ima shape (see Fig. 11). As a general observation, the magic
angles are underestimated or overestimated depending on the
interlayer and intralayer relaxation schemes while differences
in the electronic structure due to intralayer strains as described
in Eq. (22) can modify the magic angle typically by about
0.1◦. The pseudomagnetic fields generated by hopping term
asymmetries between the nearest neighbors are also depen-
dent on the associated cutoff of the hopping range, i.e., if
only the first nearest-neighbor hopping terms are modified the
behavior is very similar to the case where one does not include
such renormalization at all.

The minima in W as a function of θ becomes better defined
when we account for the lattice relaxations. By using the STC
approximation in Eq. (21) with the calibration parameters in
Table IV we notice that all magic angles can be brought to
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the same 1.08◦ although they have different W values depend-
ing on the relaxation model. The quantitative details in the
resulting band structures for the magic angles are shown in
Fig. 7. We further illustrate in Fig. 8 the quantitative impact
that different relaxation schemes like the RPA and LDA make
in the band structures at the magic angle. When comparing the
RPA and LDA band structures the shapes of the flattest bands
are qualitatively quite similar; i.e., the valence flat bands push
into the conduction band at the � point. In terms of the
corresponding κ values that one can derive for the continuum
model, we observe that these values which encode the band
flatness and the size of the moiré band gaps are relatively
insensitive to the choice of force field; i.e., κ = 0.4 for RPA
and LDA at 1.1◦. Additional values are given in Appendix D.
We also illustrate the changes introduced to the atomic struc-
ture by an hBN substrate that is rotated by a large twist angle
of 13.37◦ to avoid the strong double moiré effects expected
when G and BN are nearly aligned [37]. We have used up to
four hBN substrate layers keeping the bottom layer rigid and
verified that in practice the result is similar to allowing one
hBN layer contacting graphene to relax freely. Hence, we can
conclude that small differences in the relaxation profile due
to the substrate interaction are responsible for the small meV
scale differences in the band structures. In Fig. 8(a) we show
that the substrate weakly changes the bandwidth and gaps on
the order of ∼1 meV at the K point in the RPA-relaxed system.
Because its impact is at the limits of experimental resolution,
we argue that the free-standing tBG is a good approximation
to tBG deposited on a bulk hBN substrate at a large twist an-
gle. We use this figure to confirm the trend that flat bands tend
to be slightly bent at the � point [21], confirming that already
within the noninteracting electron picture we can observe a
minimum of the valence band away from the � point [72].

When we calculate the electronic band structure using the
GAP20 potential during the relaxation step in Fig. 8(c), we
notice that our EXX-RPA interlayer and GAP20 intralayer
force field combination with the TC model without magic
angle calibration already leads to an extremely flat band at
1.08◦; this might still be coincidental as our TB model is based
on an LDA parametrization where we modified the effective
hopping to match the experimental Fermi velocity. Because
REBO2 is still much faster from a computational perspective,
this empirical potential is a viable alternative when used in
combination with the magic angle scaling factor introduced in
Sec. III B when our focus is mainly on the electronic struc-
ture. For a quantitative analysis of the lattice reconstruction
REBO2 falls short according to observations discussed in
Sec. II D.

B. Multiple DOS peaks structures near the magic angle

In the following we discuss in more detail the band struc-
tures of tBG calculated near the magic angle and show how the
DOS maxima for the valence and conduction bands happen at
angles slightly separated from each other when they are cal-
culated with enough energy resolution. The band structure is
represented along high-symmetry points K-�-M-K at selected
angles where the supercell BZ is coincident with the moiré
BZ as discussed earlier. The band structures for twist angles

FIG. 8. Electronic structures at 1.08◦ for different tight-binding
and MD relaxation models calculated with the SHE tight-binding
model, unless specified otherwise. (a) SHE bands for RPA and
LDA relaxation schemes with REBO2 intralayer potentials for free-
standing tBG in blue solid lines, and hBN supported and rotated
by a large twist angle of 13.37◦. We notice that the hBN substrate
leads to meV-scale modifications in the band structures including
a small degeneracy lifting at the K point of 1 meV for the RPA
relaxation scheme. (b) Comparison of the flat bands for different
relaxation schemes and tight-binding models. The RPA and LDA
relaxation with REBO2 intralayer potentials shows similar trends,
with the LDA leading to slightly larger band isolation. The im-
pact of the different magic-angle-renormalized TB models is also
small with the STC and SHE yielding similar band structures.
(c) Hybrid exponential (HE) bands without prefactor scaling, i.e.,
the SHE model with S = 1 in Eq. (21), obtained for REBO2 vs
GAP20 intralayer potentials combined with the EXX-RPA interlayer
potentials. The GAP20/EXX-RPA relaxation predicts a very flat band
when combined with the HE model without further need of prefactor
scaling.
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FIG. 9. (a) DOS vs θ that shows three peaks at 1.05◦, 1.08◦, and
1.10◦ when calculated with sufficiently small η = 0.2 meV (blue
circles) in Eq. (29) to resolve the details in the flat bands and a single
peak around 1.08◦ when it is increased to η = 3.5 meV (purple tri-
angles). The magic angle associated to the minimum W corresponds
to the single peak value. (b) The band structures associated to the
DOS peak maxima away from the magic angle reveal the inherent
electron-hole asymmetry and flattening of the valence band over the
conduction band. At the magic angle value we find that both electron
and hole bands become narrow simultaneously. The associated DOS
profiles obtained with η = 0.2 meV reveal the separation in energy
of the valence and conduction bands giving rise to the flat bands away
from the magic angle. We note that to resolve the 1.1◦ twist angle,
we use a supercell that is twice as large as the moiré cell leading to a
doubling of the visible bands due to band folding.

that deviate from this value can be represented in the same
moiré Brillouin zone by using the updated scaling factor S′
given in Eq. (27) where an angle difference δθ is added with
respect to a reference twist. For the electronic band-structure
calculations, we use exact diagonalization, while the density
of states is obtained using Lanczos recursion as

DOSη(E ) = − 1

π
Im〈ϕRP| 1

E + iη − ˜̂H
|ϕRP〉, (29)

where RP refers to a random phase being used to approximate
the trace of large matrices [73], and ˜̂H is the tridiagonal
Hamiltonian approximating the full Hamiltonian Ĥ that is
useful for continued fraction methods. The η parameter is the
broadening that limits the energy resolution of the DOS. The
resulting DOS of tBG as a function of twist angle shown in
Fig. 9(a) reveals a high DOS region within an interval between
1.05◦ and 1.11◦; in other words, θ = 1.08◦ ± 0.03◦ for a span
of twist angles within ∼0.06◦ around the minimum W magic
angle.

A closer look at the band structures associated to the twist
angles in this region shows that the DOS weights are trans-
ferred between the valence and conduction bands depending
on small twist angle changes around the magic angle. In
Fig. 9(b) we show that the DOS weights distribute in both
valence and conduction bands at the magic angle of 1.08◦ but

they are mainly shifted to the valence bands when the twist
angle is departed by ±0.03◦ for 1.05◦ and 1.10◦.

V. SPECTRAL FUNCTION CALCULATION

The band structure of a superlattice has multiple bands
proportional to the atom number in the cell and it is of-
ten preferable to obtain the spectral function [72,74–79]
that allows a more intuitive interpretation of the quasipar-
ticles as well as a direct comparison against experimental
angle-resolved photoemission spectroscopy (ARPES) mea-
surements. In our calculations we use the implementation
approach in Ref. [74] to obtain the spectral function of large
supercell systems to account for the moiré pattern effects.
Enlarged period supercells are commonly used to account
for impurities, vacancies, lattice distortions, or spontaneous
long-range orders. The electronic structure of the zone-folded
large supercells can be represented using spectral functions in
the Brillouin zone of a smaller periodic unit cell through

Ak,n(E ) =
∑
KJ

|〈kn|KJ〉|2AKJ,KJ (E ), (30)

where the |KJ〉 eigenbands of the supercell are labeled with
capital letters. The n labels the Bloch function basis |kn〉 with
the localized orbital n in the reference small unit cell and can
be used to distinguish the layer and sublattice. Without loss of
generality we chose to represent the n = 1 orbital content in
our spectral functions. The AKJ,KJ (E ) reduces to a δ(E − εKJ )
function at the eigenvalue of the superlattice system and

〈kn|KJ〉 =
√

L/l
∑

N

wN eik·R(N )δn,n′(N )δ[k],K〈KN |KJ〉 (31)

is a structure factor which is modulated by a position-
dependent phase term where R(N ) is the position of the atom
N in the supercell. Each term is multiplied by the coefficients
of the supercell eigenstate |KJ〉 projected in the tight-binding
basis |KN〉, and the L and l are the number of k points in
the supercell and reference small cell BZ, respectively. The
[k] denotes the k point folded into the supercell BZ, and here
N and n are the orbital indices in the supercell and normal
reference cell, respectively. The weight coefficient wN � 1
allows to tune the relative contribution of certain atoms to
the spectral function and allows to improve comparison with
experiments since the contribution of the photoelectrons can
depend on which layer is closest to the beam. We neglect
photon polarization effects that can alter the momentum distri-
bution anisotropy [80,81]. From a computational perspective,
the implementation follows closely the scheme of the exact
diagonalization band-structure calculation. In a first step, one
defines the k-point grid k in the reference graphene system to
be used for the projection. We then use this grid to obtain the
corresponding k points K in the moiré BZ. We then calculate
Eq. (31) where the parallelization is performed over the k-K
pairs. In our implementation, we can rather easily calculate
the spectral function of systems containing tens of thousands
of atoms within a couple of hours on a node containing 20
cores and 128 GB in memory.

In Fig. 10(a), we illustrate the resulting spectral functions
in Eq. (31) by projecting in a bottom layer sublattice for a
large (3.48◦, right panel), an intermediate (1.54◦, right panel),
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FIG. 10. (a) Spectral functions through band unfolding in the bottom layer for selected angles for the M ′-K-�′ path in the superlattice BZ
where K is also the corner of the bottom graphene BZ. The flat band is clearly resolved in the left panel at 1.08◦ twist angle. The middle
panel still shows band isolation of the flat bands while the right panel recovers the Dirac cone. The right panel has small secondary Dirac cone
signatures around ±0.3 eV which agrees with the corresponding electronic band structures. (b)–(d) Layer-resolved spectral functions through
the K and K ′ points associated to the corners of the bottom and top layers of pristine graphene BZs for 1.08◦, 1.54◦, and 3.48◦ twist angles. The
small horizontal lines refer to the energies picked for the 2D mappings in Fig. 15. Features from the bottom and top layers are most strongly
associated to the K and K ′ points, respectively.

and the magic angle flat band (1.08◦, left panel) using the
SHE model. This type of representation illustrates how the
cone from pristine graphene is perturbed by the presence of
another graphene layer on top of it. Near the magic angle,
we observe the appearance of flat band states that are isolated
from the rest of the spectrum while for larger twist angles,
the spectral functions become progressively similar to those
of two decoupled graphene layers as suggested by the results
in the literature. The features for 3.48◦ twist angle calculation
are qualitatively similar to the features reported for 3.89◦
in Ref. [75]. For the chosen path here centered around the
K point (points on the left and the right are at equivalent
distance away from K), we notice a clear asymmetry. Such
dark corridor anisotropies in graphene have been linked to the
interference between two honeycomb sublattices [78,80,82–
87]. Additionally, the presence of interlayer coupling distorts
the circular shape that would appear for decoupled graphene
layers [72]. Because strain relaxation is present in our
simulations, the interlayer tunneling amplitude between
orbitals on the same sublattice becomes smaller than the one
between orbitals on different sublattices. This in turn has
been shown to strongly affect the spectral signatures, even for
states that are far away from the flat band [72].

In order to understand the contributions that come from the
top and bottom layers, we provide, for each of the three angles,
a line cut through the K and K ′ points in Figs. 10(b)–10(d)
as well as constant energy cuts corresponding to the short
horizontal blue lines in Fig. 15 in Appendix F. The tBG
signatures in the left panel are the combination of the bottom
and top layer contributions which reside preferentially on the
K and K ′ cones, respectively. Depending on the experimen-
tal conditions, one can expect the top layer contributions to
appear more clearly in the measurements [88].

VI. CONCLUSION

We have investigated the interplay between atomic re-
laxation and electronic structure in twisted bilayer graphene
(tBG) by combining different molecular dynamics (MD) force
fields and tight-binding (TB) models. Because different tight-
binding and force-field model combinations predict a wide
range for simulated first magic angles, we provide a table with
coupling strength renormalization prefactors that match the
magic angle at a chosen experimental value of 1.08◦ for a
tight-binding model with a Fermi velocity of υF = 106 m/s
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that is almost 30% larger than the commonly used two-center
tight-binding models in the literature.

For the atomic structure modeling part we have pro-
vided parametrizations of well-established registry-dependent
molecular dynamics force fields using the highest level of
DFT data available (EXX-RPA) and compared it with existing
force fields and associated parameter sets. We also provide
an LDA-parametrized force field for reference purposes. We
proposed a way to identify the different local stacking regions
through hexagon tessellation of AA, AB, and BA stacking
regions separated by domain wall regions whose width we set
to ωi = acc/6.

The EXX-RPA gives similar energy differences between
high-symmetry stacking configurations but predicts a smaller
overall interlayer difference. This smaller distance leads to
a stronger coupling through the distance-dependent tight-
binding models, including our improved distance-dependent
model parametrization which accurately reproduces LDA
commensurate band structures at different interlayer dis-
tances. We notice that the LDA-inferred force fields in
combination with our LDA-fitted tight-binding model also
match quite well the experimental flat bands at ∼1.1◦. Com-
putationally efficient reactive bond order (REBO)-type of
force fields tend to underestimate the elastic stiffness of
graphene layers overestimating the moiré strain profiles. Al-
beit being computationally more expensive than most existing
readily available empirical potentials, the machine learning
potential turns out to provide a good compromise on accuracy
and speed when compared to the ab initio molecular dynamics
potentials, while the semiempirical long-range carbon bond-
order potential II (LCBOPII) potential [89] that matches well
the DFT elastic properties might be a good way to simulate
very large marginally twisted tBG systems.

For the electronic structure part we have used an intralayer
graphene model with up to five nearest-neighbor hopping
parameters for an improved description of the single-layer
Hamiltonian using an enhanced Fermi velocity of υF = 3 ×
106 m/s. The interlayer tunneling was based on a two-center
approximation to match the ab initio DFT calculation data at
the Dirac points. We then used a global prefactor S to modify
the interlayer tunneling in what we call the scaled two-center
(STC) approximation. Additionally, we refined the tunneling
term with an exponential interlayer distance-dependent rescal-
ing term that we named the scaled hybrid exponential (SHE)
approximation aimed at capturing better the layer corruga-
tion effects. This type of prefactor S calibration is useful for
compensating the mismatches of the atomic and electronic
structure models. In fact, the interlayer tunneling of the elec-
tronic structure barely required the prefactor calibration when
we used stiffer intralayer force fields in combination with
exact exchange and random phase approximation (EXX-RPA)
interlayer potentials to obtain a magic angle value close to
experiments. Adjusting the scaling prefactor is also a useful
procedure for obtaining the electronic structure of an effective
tBG twist angle based on a geometry whose actual simulation
angle is different. It is convenient, for example, when we need
to represent the superlattice bands in the moiré Brillouin zone
containing a smaller number of atoms. We have also shown
that a hexagonal boron nitride (hBN) substrate that makes

a large twist angle ∼13◦ with the contacting graphene layer
introduces small lattice distortions in tBG that introduces
changes on the order of a few meV in the band structure.

Depending on the specific choice of lattice relaxation and
electronic structure models we observe quantitative differ-
ences in the electronic structure near the magic angle like the
electron-hole asymmetry of the DOS peaks and the way the
low-energy bandwidths evolve. We noted that peaked density
of states associated with the low-energy nearly flat bands can
be maintained within a twist angle range of 0.05◦ around the
calibrated 1.08◦ magic angle.

In summary, we have taken one step forward towards a
systematical improvement in the description of the atomic
and electronic structure of twisted bilayer graphene. We
expect that a similar approach can be applied to other lay-
ered materials by simultaneously controlling the precision
of the molecular dynamics force fields and tailoring the
tight-binding electronic structure model to reproduce certain
well-established experimental results or reliable calculation
data.
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APPENDIX A: RIGID LATTICE tBG
W-SHAPED BANDWIDTHS

As mentioned in the main text, the rigid geometry ex-
hibits a W shape, instead of a clear V shape for the
relaxed geometries, when studying the flat-band width with
respect to the twist angle. This can be more easily illus-
trated by obtaining this same width, but varying it with
respect to the renormalization constant S. Within a range
�S of about 0.03, the width is similarly small. We can
then use Eq. (27) to estimate that this range corresponds
to a δθ range of about 0.04◦, thus showing in Fig. 11
a relatively large uncertainty on the magic angle value
calibration for this rigid system. This W-shapes uncertainty
in the band width disappears mostly for relaxed systems;
however, in those cases the fine features in the DOS calculated
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FIG. 11. Evolution of the bandwidth with the magic angle renor-
malization prefactor S for the SHE model from Eq. (21) applied on
the rigid system. The minimum for each magic angle curve shows a
characteristic W shape which leads to a small uncertainty of about
0.02 on the reported prefactors as the minimization algorithm picks
either one of the minima at random. The flat band value is thus
unresolved in a range of about 0.04◦.

with small broadening lead to a wider range of possible magic
angles as discussed in Sec. IV B.

APPENDIX B: DRIP-POTENTIAL PARAMETRIZATION
FOR G-G, G-BN, AND BN-BN LAYERED MATERIALS

The cutoff function preceding the DRIP pairwise potential
expression, Eq. (11) from the main text, is defined as

fc(x) = 20x7 − 70x6 + 84x5 − 35x4 + 1, (B1)

where the cutoff function from Eq. (B1) with the scaled pair
distance xr = ri j/rcut leads to smooth behavior at the rcut =
12 Å cutoff value. We remind here also the expressions of the

FIG. 12. Overlay of the predictions using the commensuration approach outlined in this paper and based on Ref. [35] with the commen-
surate angles from Ref. [36]. We observe that both schemes agree in the angles that can be resolved whereas the current scheme provides
additional commensurate cells for each angle containing a larger number of atoms.

transverse distance function f (ρi j ) [25] and the dihe-
dral angle function g(ρi j, α

(m)
i j ) [28] used in Eq. (11) for

which the new fitting parameters are given in Table II:

f (ρi j ) = e−y2
[C0 + C2y2 + C4y4] (B2)

with

y = ρi j

δ
(B3)

and

ρ2
i j = r2

i j − (ni · ri j )
2, (B4)

where the vector connecting atoms i and j is given by ri j and
the normals to the surface at atom i are calculated at each
molecular dynamics step (an early implementation of the KC
potential simplified this normal parallel to z but our prelimi-
nary tests showed this to lead to some unphysical corrugation
at zero temperature). The dihedral function in turn is given by

f ′(ρi j, α
(m)
i j

) = B fc
(
xρi j

) 3∑
m=1

e−ηα
(m)
i j , (B5)

where the cutoff xρi j = ρi j/ρcut is set with ρcut = 1.562
Å as these four-body dihedral angle interactions are
computationally expensive to calculate. α

(m)
i j is given by

α
(m)
i j = cos �kmi jl1 cos �kmi jl2 cos �kmi jl3 , (B6)

a product of the three cosines of the dihedral angles formed
by atom i (in one layer), its mth nearest neighbor km, atom
j (in the other layer), and its three nearest neighbors l1, l2,
and l3.

APPENDIX C: COMMENSURATE CELLS

In the main text, we mention that with the current scheme
using the four integers from Eq. (1), we can obtain all the
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FIG. 13. (a) Comparison between RPA and LDA continuum
model κ = ω′/ω values as well as the respective numerators and
denominators in (b).

commensurate cells predicted by Ref. [36] using two integers
only as well as larger additional cells for the same twist angles.
We illustrate this in Fig. 12 where the yellow dots correspond
to the predictions from Ref. [36] while the red dots correspond
to our commensurate cells. We see a number of additional red
points with larger number of atoms above each of the yellow
dots.

APPENDIX D: CONTINUUM MODEL PARAMETERS

In continuum model calculations, the ratio between in-
terlayer to intralayer coupling is often characterized by κ =
ω′/ω where ω′ refers to the AA-stacking tunneling amplitude
and ω refers to the AB-stacking tunneling amplitude [32]. We
illustrate in Fig. 13 the similar values obtained using either
the RPA or LDA relaxation scheme in the MD calculations,
although the individual values of ω′ and ω are slightly dif-
ferent between the two schemes. Follow-up work will go into
more detail on this topic.

APPENDIX E: ELECTRONIC BAND STRUCTURES

In Fig. 14, we compare the band structures using the hybrid
exponential (HE) TB model without prefactor scaling, i.e., the
SHE model with S = 1 in Eq. (21) with the band structures
using our SHE model where S �= 1 with its values given in
Table IV. Figures 14(a) and 14(b) show that the flattest band is
different using the RPA or LDA relaxation schemes, for angles
at 1.16◦ and 1.12◦, respectively. This shows that the LDA
almost does not need to renormalize the S prefactor to match
the magic angle to the experimental value. When we calibrate
S in Figs. 14(c) and 14(d) to give the experimental magic
angle 1.08◦, we observe very similar band structures using

TABLE V. Similar scaling prefactors S to calibrate the magic
angle to 1.08◦ as in Table IV when the intralayer F3G2 model in
Eq. (22) does not include the strain effects.

S SH SHE

RPA 0.867 0.809
LDA 0.920 0.857
MBD 1.227 1.035
KC-VV10 1.107 0.972
KC-RDP1 1.018 0.917
Rigid 1.083 1.008

either of the relaxation schemes. These figures also illustrate
how the band isolation disappears for smaller angles. Well-
resolved higher-order magic angles will thus be more difficult
to define clearly, in agreement with the results reported in
the literature [20]. For reference, in Table V we provide the
alternative version of the scaling factors from Table IV in the
main text for a tight-binding Hamiltonian where we neglect
the strain corrections in Eq. (22) for the intralayer F3G2
terms.

APPENDIX F: SPECTRAL FUNCTIONS ENERGY CUTS

Here we provide additional ARPES simulations to facili-
tate comparison with experimental energy cuts of the spectral
functions reported in Sec. V. We chose select energy values
for the cuts that are different for each angle as indicated by
small blue lines in Fig. 10. The first two rows correspond to
the magic angle system at 1.08◦, while the middle two rows
and last two rows represent 1.54◦ and 3.48◦, respectively. We
separate the plots into three main columns, namely, the sum
of top and bottom layers, and separate the top and bottom
layer contributions. Two small dots indicate the K (lower
dot) and K ′ (upper dot) high-symmetry points as well as
the corresponding graphene BZ of the bottom (green) and
top (blue) layers. As a general observation, we clearly see
that for a same energy, the top+bottom maps are simply the
combination of the top and bottom maps. One can fine-tune
their respective weight using layer-dependent wN parameters
in Eq. (31) to capture the likely fact that experimental features
from the top layer are more easily picked up than the features
coming from the bottom layer. Here, we can see that most of
the weight of the features coming from the bottom layer is
centered around the K point, and the features coming from
the top layer are centered around the K ′ point, as can be
expected. For the largest twist angle considered, the K and K ′
signatures are almost decoupled from each other. We further
observe the typical dark corridor anisotropies mentioned in
the main text [78,80,82–87]. For higher energies, we also
observe concentric features that have been observed in nano-
ARPES experiments [88].
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FIG. 14. Band structures for (a) EXX-RPA-informed and (b) LDA-informed force fields using our hybrid exponential (HE) TB model
without prefactor scaling, i.e., the SHE model with S = 1 in Eq. (21), using teff = −3.1 eV for the F3G2 model, while (c) and (d) are the
respective counterparts of (a) and (b) using the SHE model to renormalize the magic angle to 1.08◦.
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FIG. 15. Spectral function energy cuts for (a) 1.08◦, (b) 1.54◦, and (c) 3.48◦. The first two columns show the total system contributions, the
middle two columns are the top layer contributions, and the rightmost two columns show the bottom layer contributions for selected energies
indicated by the small horizontal lines in Fig. 10.

115410-18



RELAXATION EFFECTS IN TWISTED BILAYER … PHYSICAL REVIEW B 106, 115410 (2022)

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[2] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci. USA
108, 12233 (2011).

[3] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. Lett. 99, 256802 (2007).

[4] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T.
Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363,
1059 (2019).

[5] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C.
Dean, A. Rubio, and A. N. Pasupathy, Nature (London) 572, 95
(2019).

[6] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R. Polski,
Y. Zhang, H. Ren, J. Alicea, G. Refael, F. von Oppen, K.
Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174
(2019).

[7] G. Trambly de Laissardière, D. Mayou, and L. Magaud,
Phys. Rev. B 86, 125413 (2012).

[8] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z.
Barticevic, Phys. Rev. B 82, 121407(R) (2010).

[9] N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311 (2017).
[10] K. Uchida, S. Furuya, J.-I. Iwata, and A. Oshiyama, Phys. Rev.

B 90, 155451 (2014).
[11] M. Angeli, D. Mandelli, A. Valli, A. Amaricci, M. Capone, E.

Tosatti, and M. Fabrizio, Phys. Rev. B 98, 235137 (2018).
[12] F. Guinea and N. R. Walet, Phys. Rev. B 99, 205134 (2019).
[13] C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu,

H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev, A. V.
Kretinin, J. Park, L. A. Ponomarenko, M. I. Katsnelson, Y. N.
Gornostyrev, K. Watanabe, T. Taniguchi, C. Casiraghi, H.-J.
Gao, A. K. Geim, and K. S. Novoselov, Nat. Phys. 10, 451
(2014).

[14] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam,
Nat. Commun. 6, 6308 (2015).

[15] M. M. van Wijk, A. Schuring, M. I. Katsnelson, and A.
Fasolino, 2D Mater. 2, 034010 (2015).

[16] S. K. Jain, J. Vladimir, and G. T. Barkema, 2D Mater. 4, 015018
(2016).

[17] P. Lucignano, D. Alfe, V. Cataudella, D. Ninno, and G. Cantele,
Phys. Rev. B 99, 195419 (2019).

[18] K. Zhang and E. B. Tadmor, J. Mech. Phys. Solids 112, 225
(2018).

[19] S. Dai, Y. Xiang, and D. J. Srolovitz, Nano Lett. 16, 5923
(2016).

[20] S. Carr, D. Massatt, S. B. Torrisi, P. Cazeaux, M. Luskin, and
E. Kaxiras, Phys. Rev. B 98, 224102 (2018).

[21] S. Carr, S. Fang, Z. Zhu, and E. Kaxiras, Phys. Rev. Research
1, 013001 (2019).

[22] N. R. Walet and F. Guinea, 2D Mater. 7, 015023 (2019).
[23] M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki,

and L. Fu, Phys. Rev. X 8, 031087 (2018).
[24] S. Fang and E. Kaxiras, Phys. Rev. B 93, 235153 (2016).
[25] A. N. Kolmogorov and V. H. Crespi, Phys. Rev. B 71, 235415

(2005).
[26] F. Gargiulo and O. V. Yazyev, 2D Mater. 5, 015019 (2017).
[27] M. M. van Wijk, A. Schuring, M. I. Katsnelson, and A.

Fasolino, Phys. Rev. Lett. 113, 135504 (2014).

[28] M. Wen, S. Carr, S. Fang, E. Kaxiras, and E. B. Tadmor,
Phys. Rev. B 98, 235404 (2018).

[29] R. Sabatini, T. Gorni, and S. de Gironcoli, Phys. Rev. B 87,
041108(R) (2013).

[30] N. Leconte, J. Jung, S. Lebègue, and T. Gould, Phys. Rev. B 96,
195431 (2017).

[31] J. Jung and A. H. MacDonald, Phys. Rev. B 87, 195450 (2013).
[32] J. Jung, A. Raoux, Z. Qiao, and A. H. MacDonald, Phys. Rev.

B 89, 205414 (2014).
[33] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,

W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G.
Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C.
Trott, and S. J. Plimpton, Comput. Phys. Commun. 271, 108171
(2022).

[34] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[35] K. Hermann, J. Phys.: Condens. Matter 24, 314210 (2012).
[36] S. Shallcross, S. Sharma, E. Kandelaki, and O. A. Pankratov,

Phys. Rev. B 81, 165105 (2010).
[37] N. Leconte and J. Jung, 2D Mater. 7, 031005 (2020).
[38] J. C. Rode, D. Smirnov, C. Belke, H. Schmidt, and R. J. Haug,

Ann. Phys. 529, 1700025 (2017).
[39] E. J. Mele, Phys. Rev. B 81, 161405(R) (2010).
[40] KIM-based Learning-Integrated Fitting Framework (KLIFF),

https://kliff.readthedocs.io
[41] M. H. Naik, I. Maity, P. K. Maiti, and M. Jain, J. Phys. Chem.

C 123, 9770 (2019).
[42] M. H. Naik, S. Kundu, I. Maity, and M. Jain, Phys. Rev. B 102,

075413 (2020).
[43] https://github.com/gjung-group/real-space_relaxation_

electronic-structure-calculations.
[44] A. C. T. v. Duin, S. Dasgupta, F. Lorant, and W. A. Goddard,

J. Phys. Chem. A 105, 9396 (2001).
[45] T. Maaravi, I. Leven, I. Azuri, L. Kronik, and O. Hod, J. Phys.

Chem. C 121, 22826 (2017).
[46] I. Leven, T. Maaravi, I. Azuri, L. Kronik, and O. Hod, J. Chem.

Theory Comput. 12, 2896 (2016).
[47] In LAMMPS the full implementation without simplifications on

the normals must be used to avoid spurious corrugations. We
further used the local https://github.com/sgsaenger/LAMMPS/
tree/rdip branch to avoid a (now corrected) bug existing in the
KC full implementation existing at the time of writing.

[48] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler,
Phys. Rev. Lett. 108, 236402 (2012).

[49] D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B.
Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

[50] J. H. Los, J. M. H. Kroes, K. Albe, R. M. Gordillo, M. I.
Katsnelson, and A. Fasolino, Phys. Rev. B 96, 184108 (2017).

[51] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[52] P. Rowe, V. L. Deringer, P. Gasparotto, G. Csányi, and A.

Michaelides, J. Chem. Phys. 153, 034702 (2020).
[53] L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010).
[54] S. Thomas, K. Ajith, S. U. Lee, and M. C. Valsakumar,

RSC Adv. 8, 27283 (2018).
[55] https://docs.lammps.org/Howto_elastic.html.
[56] Z.-J. Wu, E.-J. Zhao, H.-P. Xiang, X.-F. Hao, X.-J. Liu, and

J. Meng, Phys. Rev. B 76, 054115 (2007).
[57] K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino,

Phys. Rev. Lett. 102, 046808 (2009).
[58] K. N. Kudin, G. E. Scuseria, and B. I. Yakobson, Phys. Rev. B

64, 235406 (2001).

115410-19

https://doi.org/10.1038/nature26154
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1103/PhysRevB.86.125413
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.90.155451
https://doi.org/10.1103/PhysRevB.98.235137
https://doi.org/10.1103/PhysRevB.99.205134
https://doi.org/10.1038/nphys2954
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1088/2053-1583/2/3/034010
https://doi.org/10.1088/2053-1583/4/1/015018
https://doi.org/10.1103/PhysRevB.99.195419
https://doi.org/10.1016/j.jmps.2017.12.005
https://doi.org/10.1021/acs.nanolett.6b02870
https://doi.org/10.1103/PhysRevB.98.224102
https://doi.org/10.1103/PhysRevResearch.1.013001
https://doi.org/10.1088/2053-1583/ab57f8
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevB.93.235153
https://doi.org/10.1103/PhysRevB.71.235415
https://doi.org/10.1088/2053-1583/aa9640
https://doi.org/10.1103/PhysRevLett.113.135504
https://doi.org/10.1103/PhysRevB.98.235404
https://doi.org/10.1103/PhysRevB.87.041108
https://doi.org/10.1103/PhysRevB.96.195431
https://doi.org/10.1103/PhysRevB.87.195450
https://doi.org/10.1103/PhysRevB.89.205414
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1088/0953-8984/24/31/314210
https://doi.org/10.1103/PhysRevB.81.165105
https://doi.org/10.1088/2053-1583/ab891a
https://doi.org/10.1002/andp.201700025
https://doi.org/10.1103/PhysRevB.81.161405
https://kliff.readthedocs.io
https://doi.org/10.1021/acs.jpcc.8b10392
https://doi.org/10.1103/PhysRevB.102.075413
https://github.com/gjung-group/real-space_relaxation_electronic-structure-calculations
https://doi.org/10.1021/jp004368u
https://doi.org/10.1021/acs.jpcc.7b07091
https://doi.org/10.1021/acs.jctc.6b00147
https://github.com/sgsaenger/LAMMPS/tree/rdip
https://doi.org/10.1103/PhysRevLett.108.236402
https://doi.org/10.1088/0953-8984/14/4/312
https://doi.org/10.1103/PhysRevB.96.184108
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1063/5.0005084
https://doi.org/10.1103/PhysRevB.81.205441
https://doi.org/10.1039/C8RA02967A
https://docs.lammps.org/Howto_elastic.html
https://doi.org/10.1103/PhysRevB.76.054115
https://doi.org/10.1103/PhysRevLett.102.046808
https://doi.org/10.1103/PhysRevB.64.235406


NICOLAS LECONTE et al. PHYSICAL REVIEW B 106, 115410 (2022)

[59] X. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar,
Phys. Rev. B 80, 205407 (2009).

[60] F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).
[61] B. Sachs, T. O. Wehling, M. I. Katsnelson, and A. I.

Lichtenstein, Phys. Rev. B 84, 195414 (2011).
[62] Q. Peng, W. Ji, and S. De, Comput. Mater. Sci. 56, 11 (2012).
[63] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G.

Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M.
Ajayan, Nano Lett. 10, 3209 (2010).

[64] D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R.
Felts, H. Gao, R. Huang, J.-S. Kim, T. Li, Y. Li, K. M. Liechti,
N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang,
Y.-W. Zhang, Y. Zhou, and Y. Zhu, Extreme Mech. Lett. 13, 42
(2017).

[65] N. P. Kazmierczak, M. V. Winkle, C. Ophus, K. C. Bustillo, S.
Carr, H. G. Brown, J. Ciston, T. Taniguchi, K. Watanabe, and
D. K. Bediako, Nat. Mater. 20, 956 (2021).

[66] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[67] M. Koshino, Phys. Rev. B 99, 235406 (2019).
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