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Topological quantum phase transitions in metallic Shiba lattices
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Shiba bands formed by overlapping Yu-Shiba-Rusinov subgap states in magnetic impurities on a supercon-
ductor play an important role for realizing topological superconductors. Here, we theoretically demonstrate the
existence of topological gapless Shiba bands on a magnetically doped s-wave superconducting surface with
Rashba spin-orbit coupling in the presence of a weak in-plane magnetic field. Such bands develop from gapped
Shiba bands through Lifshitz phase transitions accompanied by second-order quantum phase transitions for
the intrinsic thermal Hall conductance. We also find a mechanism in Shiba lattices that protects the first-order
quantum phase transitions for the intrinsic thermal Hall conductance. Due to the long-range hopping in Shiba
lattices, the topological Shiba metal exhibits intrinsic thermal Hall conductance with large nonquantized values.
As a consequence, there emerges a large number of second-order quantum phase transitions.
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I. INTRODUCTION

Topological superconductors have attracted a great amount
of attention during the last decade due to their potential ap-
plications in topological quantum computation [1–10]. In that
context, Shiba lattices play an important role since they pro-
vide a versatile tool to realize highly controllable topological
superconducting phases [11–18]. Shiba lattices are formed by
overlapping Yu-Shiba-Rusinov (YSR) subgap states, bound
states occurring in magnetic impurities when placed on a
superconducting surface [19–28]. Such lattices can be utilized
to realize topological superconductivity with high Chern num-
bers due to the long-range hopping between two YSR subgap
states [14]. Remarkably, a very recent experiment reports
on an observation of topological Shiba bands in a magnet-
superconductor hybrid system [29]. Topological phases can
not only exist in gapped systems but also in gapless systems
[30,31]. However, for Shiba lattices, previous studies either
focused on gapped superconductors in regular Shiba lattices
[14,15] or gapless superconductors (but Anderson localized)
in Shiba glasses [18]. Although it has been theoretically
predicted that topological metals can emerge in fermionic su-
perfluids in cold-atom systems [32–36], it is unclear whether
topological metals can arise from the subgap band formed by
the YSR states.

Motivated by the experimental progress in topological
Shiba bands, here we study the topological phases in a two-
dimensional (2D) lattice formed by ferromagnetic impurities
on a 2D s-wave superconducting surface with Rashba spin-
orbit coupling. We theoretically predict the emergence of
topological metallic phases in Shiba bands in the presence
of a weak in-plane magnetic field, which drives the direction
of the magnetic moment away from a surface normal vector.

*yongxuphy@tsinghua.edu.cn

Starting from a gapped topological superconducting phase,
one can obtain the metallic phase through a Lifshitz phase
transition by varying a system parameter, such as the Fermi
wave vector or the spin-orbit coupling strength. The transition
also manifests in a second-order quantum phase transition for
the intrinsic thermal Hall conductance. In addition, it has been
shown that due to particle-hole symmetry, the intrinsic ther-
mal Hall conductance always exhibits a first-order quantum
phase transition if an energy gap closes at a high-symmetry
momentum [36]. When the energy gap closing points deviate
from high-symmetry momenta, the first-order quantum phase
transition is not protected in a metallic phase since these
points are usually not pinned at zero energy. Remarkably,
we find abundant first-order quantum phase transitions in
Shiba metals arising from the energy gap closing at non-high-
symmetry momenta. We demonstrate a mechanism (called
reciprocal-lattice reflection symmetry) in Shiba lattices that
fixes the band touching point at zero energy and thus protects
the first-order phase transition. Moreover, we illustrate that the
topological metals exhibit intrinsic thermal Hall conductance
with large nonquantized values due to the long-range hopping
supported by the YSR states, leading to many continuous
quantum phase transitions.

II. MODEL

The proposed Shiba metal is hosted on a magnetic impurity
lattice deposited on a superconducting surface (see Fig. 1).
Each impurity binds a YSR subgap state, which couples with
other YSR states and forms a Shiba lattice. The coupling be-
tween two YSR subgap states depends on the direction of the
corresponding magnetic impurities. Previous studies focus on
the case in which impurities constitute a ferromagnetic phase
with the direction of the magnetization being perpendicular
to the superconducting surface. However, such a Shiba lattice
respects both a twofold rotational symmetry and particle-hole
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FIG. 1. Ferromagnetic impurities are arranged into a square lat-
tice on an s-wave superconducting surface with Rashba spin-orbit
coupling, resulting in topological metallic phases in Shiba bands.
The direction of the magnetization (specified by the polar angle θ

and azimuthal angle ϕ) deviates from the surface normal direction (z
direction) due to the presence of an in-plane magnetic field B.

symmetry, which rule out the metallic phase [14,15]. For
this reason, topological Shiba metals can only be found in
Shiba lattices with tilted magnetization, where the magnetic
moments of impurities deviate from the normal vector of the
surface.

To see whether the impurities are able to support tilted
magnetization, we consider the following classical Hamil-
tonian of the magnetic impurities under a weak in-plane
magnetic field [37]:

HS =
∑

i

(
−D

2
S2

i,z + M‖Si,‖

)
+ HRKKY. (1)

Here D represents the strength of the crystal-field anisotropy,
M‖ denotes the coupling strength between the classical spin Si

and an external in-plane magnetic field B = Beϕ‖, Si,‖ = Si ·
eϕ‖ denotes the in-plane component of the spin, and HRKKY

is the Ruderman-Kittel-Kasuya-Yosida (RKKY) Hamiltonian
of the impurities under Rashba spin-orbit coupling [37] (see
Appendix A for details). In the absence of RKKY interactions,
the magnetic moment of each impurity atom prefers the sur-
face normal z-axis when D > 0; an in-plane magnetic field
would change its direction. When the RKKY interaction is
included, we use the Monte Carlo method to investigate the
ground-state properties of HS in Eq. (A5). Remarkably, we
find the existence of a ferromagnetic phase with tilted magne-
tization, as shown in Fig. 2(a) by a white regime. The tilted an-
gle θ in the ferromagnetic regime can be enlarged by increas-
ing the Zeeman field M‖S [see Fig. 2(b)]. All these parameters
are in reasonable scales, implying an experimentally accessi-
ble ferromagnetic Shiba lattice with tilted magnetization. We
note that the impurities can be arranged on the superconduct-
ing surface by a scanning tunneling microscope (STM) [38].

With a ferromagnetic phase for impurities, we now turn to
study the properties of the YSR states. Since any spin flip of
an individual impurity atom is suppressed by its ferromagnetic
neighbors via RKKY interactions, we assume that the classi-
cal spin model is valid in such a ferromagnetic regime [14,39].
In this condition, the electronic Hamiltonian can be written as

He = ζ τz + αR(σ × k)zτz + �τx + m‖σ‖

− J
∑

i

(Si · σ )δ(r − ri ), (2)

where ζ = k2/(2m) − EF denotes the kinetic energy of free
electrons measured relative to the Fermi energy EF , with m
being the effective mass, and � denotes the superconducting
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FIG. 2. Magnetic phase diagram with respect to the Shiba lat-
tice constant a and the Zeeman field M‖S mapped out based on
(a) the renormalized magnetization amplitude 〈S〉2/S2 and (b) the
magnetization direction characterized by the polar angle θ/π . The
ferromagnetic phase is identified as 〈S〉2/S2 = 1, where the magnetic
polar angle is able to reach 0.06π within M‖S < 0.3 meV. Here, we
take DS2/2 = 1 meV, the Fermi wave vector kF = 1.57 × 108 m−1,
the Fermi energy EF = 94 meV, the renormalized Rashba coefficient
αR/vF = 0.07 (vF is the Fermi velocity), and the azimuthal angle
ϕ = 0 for a 20 × 20 impurity lattice.

order parameter. The Pauli matrices σ and τ are defined on
the spin and particle-hole subspaces, respectively. An impu-
rity i is treated as a classical spin Si localized at ri, coupled
to the bulk electrons with the exchange coupling strength
J . Such a spin binds a YSR subgap state with eigenenergy
�(1 − α2)/(1 + α2) determined by a dimensionless coeffi-
cient α = mJS/2. A deep-in-gap YSR state occurs when
α ≈ 1. In the presence of multiple impurities, the correspond-
ing YSR states couple with each other and constitute a Shiba
lattice. The second term in Eq. (2) describes the Rashba spin-
orbit coupling, an essential term to create nontrivial topology
in Shiba lattices. The in-plane magnetic field leads to a Zee-
man splitting term m‖σ‖ for electrons, which seems to disturb
the YSR state. To suppress such an effect, the magnetic field
is limited to a relatively weak scale. For instance, consider the
Zeeman splitting M‖S of a magnetic atom below 0.3 meV (see
Fig. 2). If a magnetic moment of an impurity atom is five times
larger than that of a free electron, then the Zeeman splitting m‖
can be limited to 0–0.06 meV, which is much smaller than the
superconducting gap � ∼ 1 meV. In Appendix B, we show
that such a weak Zeeman term is negligible.

For an isolated impurity, the YSR state is described by
|+↑〉 and |−↓〉 in the Nambu representation [11,22], where
|τ 〉 (τ = ±) and |σ 〉 (σ =↑,↓) are the eigenstates of τx and
σi = (Si/S) · σ, respectively. We derive a 2 × 2 tight-binding
Hamiltonian to describe the low-energy behavior of Shiba
lattices by projecting He on these YSR states (see Appendix B
for details),

H (r) = d0(r) + d(r) · σ. (3)

Here H (r) represents the hopping matrix between two im-
purities with a displacement vector r = (r, ψr) in polar
coordinates, and for r 	= 0,

d0(r) = i� ImA(r) sin θ sin(ϕ − ψr)/2, (4)

dx(r) = i� ReA(r) cos θ sin(ϕ − ψr)/2, (5)

dy(r) = i� ReA(r) cos(ψr − ϕ)/2, (6)

dz(r) = −� ReS(r)/2, (7)
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where S(r) and A(r) are special functions composed of Bessel
functions, which decay as e−r/ξ /r1/2, indicating that each
YSR state couples to a number of other YSR states when
a < ξ . Here ξ = vF /� is the superconducting coherence
length, and vF = kF /m is the Fermi velocity. According to
the values of other relevant parameters such as kF , EF , and
�, here we set ξ = 1200 nm. This long-range hopping na-
ture lays the foundation for the unique topological property
in Shiba lattices. At r = 0, dz(0) = �(1 − α2)/(1 + α2) and
d0,x,y(0) = 0. In the case with the magnetization aligning
along z (i.e., θ = 0), Eq. (3) reduces to the traditional case,
which has been widely explored [14,15,18]. This effective
tight-binding Hamiltonian is valid in the low-energy regime
E/� 
 1. When the YSR state is deep in the gap as α ≈ 1,
the majority of the Shiba band is in the low-energy regime. For
this reason, the effective Hamiltonian is appropriate to inves-
tigate the Shiba metal. In momentum space, the Hamiltonian
reads

H (k) = d0(k) + d(k) · σ, (8)

where d0,x,y(k) and dz(k) are odd and even functions with
respect to k, respectively, due to the particle-hole symmetry,
i.e., P−1H (k)P = −H (−k), with P = σxκ , and κ being the
complex conjugate operator. One can clearly see that a metal-
lic phase cannot appear due to the vanishing of d0 when θ = 0.

One may ask whether the quasiparticle excitation spec-
trum can exhibit a metallic phase. The answer is affirmative.
For simplicity, we first consider the nearest-neighbor hop-
ping terms, which dominate, and we neglect other long-range
hopping ones. In this case, considering that an energy
gap closes at k = 0, one can easily find that the eigenen-
ergies of H (k) near the band touching point can be
approximated by E (k) ≈ ka�[ImA(a) sin(θ ) sin(ψk − ϕ) ±
|ReA(a)|

√
1 − sin2(θ ) sin2(ψk − ϕ)] if kxa 
 1 and kya 
 1

with k = (k, ψk) in polar coordinates. If the absolute value of
the first term is larger than that of the second term, then the
energies of both bands can become negative at some k [33].
For example, when θ = π/2, it requires that tan |ψk − ϕ| >

|ReA(a)/ImA(a)|, which can always be satisfied if ImA(a) 	=
0. In a realistic case, a very small θ is able to render the energy
spectrum gapless (see Fig. 3).

The topological features of the metallic phase can be char-
acterized by the intrinsic thermal Hall conductance,

σH = g0

2π

∑
n

∫
BZ

d2k f [En(k)]�n(k), (9)

where �n denotes the Berry curvature of the nth band (n =
1, 2 refer to the valence and conduction bands, respectively),
BZ stands for the first Brillouin zone, f (E ) is the Fermi-Dirac
distribution function, and g0 = π2k2

BT /(6h) is the thermal
conductance quantum, with T being the temperature and kB

being the Boltzmann constant [40]. For a gapped system with
temperatures much lower than the band gap, this thermal
Hall conductance is equal to the Chern number multiplied by
g0 due to the fully occupied valence band. However, in the
metallic regime, the intrinsic thermal Hall conductance is no
longer quantized to an integer multiple of g0 since both bands
are partially occupied [see Fig. 4(c3)].
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FIG. 3. The energy spectrum of a 1000-atom-wide Shiba lattice
ribbon. The blue bands represent the bulk states, and the red lines
describe the topologically protected edge states. Since the bulk states
cross the Fermi surface (the black dashed line), this Shiba lattice is
in a metallic phase. Here kF = 1.524 × 108 m−1, a = 80 nm, and
θ = 0.04π corresponding to M‖S ∼ 0.2 meV and ϕ = 0.25π . Other
parameters are the same as those in Fig. 2. The ferromagnetism has
been verified with these parameters.

If we only focus on the lowest band, which is separated
from the higher band in momentum space, then such a band
can have a quantized nonzero Chern number, which leads

FIG. 4. (a) Intrinsic thermal Hall conductance σH with respect to
the Fermi wave vector kF . The reciprocal-lattice reflection symmetry
protected first-order topological quantum phase transitions happen at
kF = kF1 when ϕ = π/4 or kF = kF2 when ϕ = 0. The first-order
topological phase transition at kF1 develops into two second-order
topological phase transitions (highlighted by dashed lines) when ϕ

changes from π/4 to 0. (b) Energy spectra around zero energy at
kF = kF1 when ϕ = π/4. The reciprocal-lattice reflection symmetry
guarantees that the valence and conduction bands on a symmetry line
k = keϕ‖ (green dashed line) can only close its energy gap at zero
energy, as visualized by two touching points on this line. (c1)–(c4)
Evolution of energy spectra along kx = ky as kF changes from the
left yellow circle to the right one in (a), illustrating the development
of a metallic phase through a Lifshitz phase transition. Here, we set
a = 80 nm, θ = 0.04π corresponding to M‖S ∼ 0.2 meV, and other
parameters are the same as those in Fig. 2 so that the ferromagnetism
is guaranteed throughout the variation of kF .
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to edge states (see the red lines in Fig. 3), illustrating the
topological properties of the metallic phase.

III. TOPOLOGICAL QUANTUM PHASE TRANSITIONS

A topological phase transition occurs when the energy
gap between the valence and conduction bands closes. In
the traditional gapped case without external magnetic fields,
d0 vanishes so that the energy gap can only close at zero
energy, leading to a quantized jump in σH across the phase
transition point. However, with nonzero d0, the energy gap
can close at nonzero energy, in which case such a first-order
quantum phase transition does not happen. Fortunately, the
particle-hole symmetry guarantees that d0 is an odd function
with respect to k so that d0 has to vanish at high-symmetry
momenta such as (kxa, kya) = (0, 0), (0, π ), (π, 0), (π, π ).
As a result, the first-order phase transition will take place if
there is an energy gap closing at these high-symmetry points
[36].

In Fig. 4(a), we indeed observe the appearance of sharp
changes in the thermal Hall conductance σH as we vary kF , re-
vealing the first-order topological quantum phase transitions.
For example, when ϕ = π/4, σH experiences a quantized
decline at kF1, indicating a phase transition between two
topologically distinct metallic phases. However, the energy
spectra at kF1 do not exhibit a gap closing at high-symmetry
momenta [see Fig. 4(b)]. Instead, two gap closings occur at
momenta along kx = ky at zero energy. We show that the gap
closings are protected by a reflection symmetry of the recip-
rocal lattices about the direction of the magnetic field. Such a
symmetry ensures that MK = K, where K is a set consisting
of all reciprocal-lattice vectors. M is a reflection operator that
acts on a reciprocal-lattice vector K = Kϕ‖eϕ‖ + Kϕ⊥eϕ⊥ re-
sulting in MK = Kϕ‖eϕ‖ − Kϕ⊥eϕ⊥, with eϕ‖ = B/B and eϕ⊥
being vertical to eϕ‖. With this symmetry, d0(k) has to vanish
at momenta on a symmetry line k = keϕ‖ so that if the band
touching happens at these momenta, then the first-order topo-
logical phase transition arises (see the proof in Appendix C).

Specifically, for a square lattice geometry such as the one
we consider, there exists a reciprocal-lattice reflection symme-
try when ϕ = nπ/4, with n being an integer. At kF = kF1, the
jump in σH is associated with gap closings at momenta on the
symmetry line, as shown in Fig. 4. Because of the symmetry,
the energy at the crossing points must vanish, giving rise
to the first-order topological phase transition. Although the
energy gap remains closed when we vary ϕ [see Fig. 4(c4)],
for other ϕ, such as ϕ = 0, d0 is not enforced to vanish at
momenta along kx = ky so that the first-order phase transition
does not occur [see the blue line in Fig. 4(a)]. However, for
ϕ = 0, we see the occurrence of a first-order phase transition
at kF = kF2. There, the band touching occurs at the outer four
valleys on the kx and ky axes; the band touching on the kx

axis is protected to occur at zero energy, resulting in the first-
order topological quantum phase transition. In Appendix C,
we have also demonstrated the universality of the reciprocal-
lattice reflection symmetry protected topological phase tran-
sitions in Shiba metals, which still works in the multiband
scenario.

We also want to note that the reciprocal-lattice reflec-
tion symmetry in topological Shiba metals is composed of
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FIG. 5. Intrinsic thermal Hall conductance vs the Fermi wave
vector kF , showing many second-order topological quantum phase
transitions (highlighted by dashed gray lines) revealed by the discon-
tinuous change in dσH/dkF . Since the phase transitions correspond
to the Lifshitz phase transitions, we determine the transition points
by numerically identifying the appearance or disappearance of the
electron (or hole) pockets in the Fermi surface. Here, all the parame-
ters are the same as those in Fig. 4(a) except that ϕ = π/8.

two geometric factors, i.e., the configuration of the impurity
lattice and the polarization of the magnetic moments. Any
disturbance on these two factors, such as structural disorder
and polarization disorder, would break the protection of the
topological quantum phase transition.

When ϕ = 0, at kF = kF1, the first-order phase transition
disappears because the gap closing points are not pinned at
zero energy [see Fig. 4(c4)]. Interestingly, there appear two
second-order quantum phase transitions around this point re-
vealed by discontinuous changes in ∂σH/∂kF . Such a phase
transition arises from the Lifshitz transition where the topol-
ogy of the Fermi surface changes. Specifically, as we increase
kF , the conduction band declines and the valence band rises,
so that these bands approach and then cross zero energy,
generating an electron pocket in the conduction band and a
hole pocket in the valence band [see Fig. 4(c3)] corresponding
to a sharp change in the Fermi surface. Once the pockets
appear, the integral of the Berry curvature around the electron
(hole) pocket is approximated by �2(k0)δS [�1(−k0)δS =
−�2(k0)δS], where k0 and δS denote the momentum and
the area of the electron pocket, respectively. The derivative
of the intrinsic thermal Hall conductance contributed by the
two pockets is proportional to 2�2(k0)dS/dkF . Clearly, this
derivative develops a discontinuous change from zero to a
nonzero value as the pockets appear, leading to a second-order
quantum phase transition manifesting in the singularity of the
intrinsic thermal Hall conductance. In fact, such second-order
topological quantum phase transitions are widespread in a
Shiba metal (see Fig. 5) due to the ubiquitous existence of
pocket structures in the energy bands, which is attributed to
the long-range hopping. Another manifestation of the long-
range hopping is the high thermal Hall conductance. In fact,
it can be much higher, but it is harder to identify the phase
transitions numerically.

IV. CONCLUSION

In summary, we have theoretically predicted the existence
of topological Shiba metals in a magnet-superconductor hy-
brid system subject to a very weak in-plane magnetic field.
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The topological Shiba metallic phase arises due to the for-
mation of tilted magnetization of magnetic impurities. Such
a metallic phase exhibits intrinsic thermal Hall conductance
with large nonquantized values and undergoes many second-
order quantum phase transitions for the intrinsic thermal Hall
conductance. We also find a mechanism (reciprocal-lattice
reflection symmetry) that protects the first-order topologi-
cal quantum phase transitions for the intrinsic thermal Hall
conductance. Our work thus opens the door for studying topo-
logical metallic phases in Shiba lattices.
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APPENDIX A: MAGNETIC ORDER OF
AN IMPURITY LATTICE

In this Appendix, we will fill in the details about the for-
mation of the ferromagnetic order. The full Hamiltonian of the
Shiba metal, including magnetic impurities and the underlying
superconducting substrate, is presented as

H = He0 + Hm + Hs−d

= ζ τz + αR(σ × k)zτz + �τx + m‖σ‖

+
∑

i

[
−D

2
S2

i,z + M‖Si,‖ − J (Si · σ)δ(r − ri )

]
. (A1)

Here the first term,

He0 = ζ τz + αR(σ × k)zτz + �τx + m‖σ‖, (A2)

is the Hamiltonian of electrons in k-space, where ζ = k2

2m −
EF is the kinetic energy of free electrons, with m (EF ) de-
noting the effective mass (Fermi energy), αR is the Rashba
coefficient, � denotes the s-wave superconducting order pa-
rameter, m‖ denotes the Zeeman splitting of electrons, σ‖ =
σ · eϕ‖ with eϕ‖ being the unit vector along the direction of the
magnetic field, and the Pauli matrices σ and τ are defined on
the spin and particle-hole subspaces, respectively. The second
term

Hm =
∑

i

(
−D

2
S2

i,z + M‖Si,‖

)
, (A3)

which is the energy of the magnetic impurities, consists of
the crystal-field anisotropy term −DS2

i,z/2 and the Zeeman
splitting term M‖Si,‖, with Si being the classical spin of the ith
impurity atom. Finally, the magnetic impurities and electrons
are coupled via the s-d exchange interaction, which is given
by

Hs-d = −J
∑

i

(Si · σ )δ(r − ri ). (A4)

When only the impurities are concerned, we neglect the
electron Hamiltonian He0 and arrive at an effective Hamilto-
nian describing the magnetic impurities,

HS =
∑

i

(
−D

2
S2

i,z + M‖Si,‖

)
+ HRKKY, (A5)

FIG. 6. (a) The renormalized magnetization amplitude 〈S〉2/S2

and (b) the polar angle θ/π as a function of the lattice constant a
and the Zeeman field M‖S for a 20 × 20 lattice. Here we change the
azimuthal angle to ϕ = π/4, while other parameters are the same
as those in Fig. 2 in the main text. The results indicate that the
ferromagnetic regime still exists when ϕ is varied.

where the RKKY interaction HRKKY can be obtained by
second-order perturbation theory [37]. In the presence of
Rashba spin-orbit coupling (SOC), the RKKY interaction
takes the form of [37,39]

HRKKY = −m

(
JkF

π

)2 ∑
i j

sin(2kF ri j )

(2kF ri j )2

×{cos(2mαRri j )Si · S j

+ [1 − cos(2mαRri j )](Si · e⊥
i j )(S j · e⊥

i j )

+ sin(2mαRri j )(Si × S j ) · e⊥
i j}, (A6)

where J denotes the strength of the s-d exchange coupling,
e⊥

i j = ez × ei j , and ei j represents the unit vector from site i

to j. Using EF = k2
F

2m and α = mJS
2 =

√
1−ε
1+ε

, Eq. (A6) can be

rewritten as

HRKKY = −8EF

π2

1 − ε

1 + ε

∑
i j

sin(2kF ri j )

(2kF ri j )2

×
{

cos(2mαRri j )
Si

S
· S j

S

+ [1 − cos(2mαRri j )]

(
Si

S
· e⊥

i j

)(
S j

S
· e⊥

i j

)

+ sin(2mαRri j )

(
Si

S
× S j

S

)
· e⊥

i j

}
. (A7)

Here ε = (1 − α2)/(1 + α2) represents the position of a YSR
state in the superconducting gap (detailed in the next Ap-
pendix), and in this work we set ε = 0.2. Although the
derivation in Ref. [37] does not consider the superconducting
term �τx and the Zeeman term m‖σ‖, we note that when
two adjacent impurities are not too distant from each other,
i.e., kF r < ξ/r, the effect of superconducting pairing � is
negligible [21], and the electronic Zeeman term m‖ can also
be omitted since it is much smaller than �, thus Eqs. (A6)
and (A7) are still valid. Here ξ = vF /� is the superconduct-
ing coherence length, and vF = kF /m is the Fermi velocity.
In this paper, we set ξ = 1200 nm. In the context, we use
Eqs. (A5) and (A7) to calculate the phase diagram of the
impurities (Fig. 2 for ϕ = 0 and Fig. 6 for ϕ = π/4), where
the constraint kF r < ξ/r is obeyed.
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Based on Eq. (A7), we see that without Rashba SOC
and superconductivity, the RKKY interaction between two
nearest-neighboring impurities is proportional to the inner
product of their spins with the coefficient proportional to
− sin(2kF a)/(2kF a)2 [see Eq. (A7)]. As a result, ferromag-
netism occurs when this coefficient is negative between two
adjacent impurities. The RKKY interaction changes sign upon
a change of the Shiba lattice constant by π/(2kF ), which is
about 10 nm if we take kF = 1.57 × 108 m−1. This is why the
ferromagnetic phase is sensitive to the Shiba lattice constant
a. With the SOC, other two terms arise [see Eq. (A7)]. These
extra terms mitigate the ferromagnetic interaction effects and
may thus reduce the ferromagnetic regime to about 3 nm (see
Fig. 2).

APPENDIX B: EFFECTIVE HAMILTONIAN
FOR SHIBA STATES

In this Appendix, we will provide a detailed derivation of
the effective tight-binding Hamiltonian for Shiba lattices. The
derivation of YSR states under a weak magnetic field is based
on Ref. [11], and the derivation of the Hamiltonian for Shiba
lattices follows Refs. [14,18].

1. YSR states under a weak magnetic field

In the ferromagnetic regime, the magnetic impurities can
be treated as fixed classical spins. As a result, the Hamiltonian
for electrons He can be decoupled from the impurity Hamilto-
nian Hm, which is given by

He = H (0) + �H +
∑

i

Hi, (B1)

with

H (0) = ζ τz + αR(σ × k)zτz + �τx, (B2)

�H = m‖σ‖, (B3)

Hi = −JSσiδ(r − ri ). (B4)

We first focus on the substrate Hamiltonian H (0), which
is in the Nambu representation with the basis being
{ψ↑(k), ψ↓(k), ψ†

↓(−k),−ψ
†
↑(−k)}. The Green’s function of

the unperturbed Hamiltonian H (0) in k-space is given by

G0(k; E )

= 1

2

∑
ν=±1

E + ζντz + �τx

E2 − ζ 2
ν − �2

[
1 + ν

(
ky

k
σx − kx

k
σy

)]
,

(B5)

where ζν = ζ + ναRk denotes the electron energy in two
spin-polarized branches. The real-space Green’s function is
available by Fourier transforming Eq. (B5):

G0(r; E ) = 1

2

∑
ν=±1

∫
dk

eik·r

(2π )2

E + ζντz + �τx

E2 − ζ 2
ν − �2

×
[

1 + ν

(
ky

k
σx − kx

k
σy

)]
. (B6)

Specifically, the r = 0 case G0(0; E ) in the low-energy regime
E 
 � takes a spin-independent form of

G0(0; E ) ≈ −m

2

E + �τx√
�2 − E2

. (B7)

The Green’s function G0 depicts the propagation of elec-
trons in the substrate when the magnetic field is absent. In
the presence of a weak in-plane magnetic field, the corre-
sponding Green’s function can be written as G = G0 + �G,
where the variation �G = G0�HG0 + G0�HG0�HG0 +
· · · ≈ G0�HG0. In real space, we have

�G(r; E ) ≈
∫

dr′G0(r − r′; E )�HG0(r′; E ). (B8)

In our Shiba metal model, the in-plane magnetic field is suffi-
ciently weak so that m‖ 
 �, thus we have �H 
 H (0)(r).
The Green’s function G0(r; E ) is the inverse of E − H (0),
which gives

G0(r; 0) = −
∫

dr′G0(r − r′; 0)H (0)(r′)G0(r′; 0). (B9)

Comparing Eqs. (B8) and (B9), it is obvious that �G(r; 0) is
negligible compared with G0(r; 0).

Furthermore, let us take a look at the r = 0 case to estimate
the effect of a weak magnetic field on the Green’s function:

�G(0; E ) =
∫

dk
(2π )2

G0(k; E )�HG0(k; E ). (B10)

Denoting Aν and Bν as

Aν = E + ζντz + �τx

E2 − ζ 2
ν − �2

, (B11)

Bν = ν
E + ζντz + �τx

E2 − ζ 2
ν − �2

(sin ψkσx − cos ψkσy), (B12)

where sin ψk = ky/k and cos ψk = kx/k, we have

�G(0; E ) =
∫ 2π

0

dψk

2π

∫ ∞

0

k dk

2π

× A+ + A− + B+ + B−
2

m‖σ‖

× A+ + A− + B+ + B−
2

. (B13)

Crossing terms concerning Bν vanish under the integral∫
dψk · · · , so we arrive at

�G(0; E ) =
∫ 2π

0

dψk

2π

∫ ∞

0

k dk

2π

(A+ + A−)2

4
m‖σ‖. (B14)

Each matrix element of Aν is a function of k, which reaches
its peak at kν

F = kF (
√

1 + λ2 − νλ), with λ = αR/vF being
the dimensionless Rashba coefficient. The width of this peak
depends on �/EF , which is extremely narrow. We have nu-
merically checked that the peaks in A+ and A− are completely
mismatched, which makes the crossing term A+A− negligible.
Moreover, with αRkF 
 EF , we have Aν (k) ≈ A(k + νmαR),
where A is obtained by replacing ζν with ζ in Aν . In this
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context, when E 
 � we have

�G(0; E )

≈
∫ 2π

0

dψk

2π

∫ ∞

0

k dk

2π

A(k + mαR)2 + A(k − mαR)2

4
m‖σ‖

≈
∫ 2π

0

dψk

2π

∫ ∞

0

k dk

4π
A(k)2m‖σ‖

=
∫ ∞

0

k dk

4π

[
E + ζ τz + �τx

E2 − ζ 2 − �2

]2

m‖σ‖

= m

4π

∫ ∞

−EF

dζ

[
E + ζ τz + �τx

E2 − ζ 2 − �2

]2

m‖σ‖

≈ m

4π

∫ ∞

−∞
dζ

[
E + ζ τz + �τx

E2 − ζ 2 − �2

]2

m‖σ‖

= m‖m
�2 + E�τx

4(�2 − E2)
3
2

σ‖. (B15)

It is obvious from Eq. (B15) that near E = 0 we have �G ∼
m‖/�, which is negligible.

Next we consider a single magnetic impurity on the sub-
strate. The impurity Hamiltonian is given by

Hi(r) = −JSσiδ(r − ri ), (B16)

where S is the magnitude of the classical impurity spin, σi =
ni · σ with ni = Si/S, and ri denotes the position of the ith
impurity atom. The single impurity system in the real space is
described by

[H (0)(r) + �H + Hi(r)]�(r) = E�(r). (B17)

In searching for low-energy subgap YSR states, we ap-
ply the Green’s function G0 + �G = (E − H (0) − �H )−1 to
Eq. (B17), and we obtain

[G0(r, r′; E ) + �G(r, r′; E )]Hi(r)�(r) = �(r)δ(r − r′).
(B18)

Integrating over r and letting r′ = ri, we obtain

[G0(ri, ri; E ) + �G(ri, ri; E )](−JSσi )�(ri ) = �(ri ). (B19)

Note that G0(ri, ri; E ) = G(0; E ) and �G(ri, ri; E ) = �G(0; E ), thus by Eqs. (B7) and (B15) we have(
1 − mJS

2

E + �τx√
�2 − E2

σi + mJS

2
m‖

�2 + E�τx

2(�2 − E2)
3
2

σ‖σi

)
�(ri ) = 0. (B20)

Substituting σi = cos θσz + sin θσ‖ and denoting σ⊥ = −iσzσ‖, we arrive at[
2

mJS
− �√

�2 − E2
τxσi + m‖

2�

sin θ − i cos θσ⊥
[1 − (E/�)2]

3
2

]
�(ri ) = E√

�2 − E2

[
σi − m‖

2�

sin θ − i cos θσ⊥
1 − (E/�)2

τx

]
�(ri ). (B21)

In the τx = +1 sector, we have[
2

mJS

√
1 − E2

�2
− σi + m‖

2�

sin θ − i cos θσ⊥
1 − (E/�)2

]
�(ri ) = E

�

[
σi − m‖

2�

sin θ − i cos θσ⊥
1 − (E/�)2

]
�(ri ), (B22)

and in the τx = −1 sector, we have[
2

mJS

√
1 − E2

�2
+ σi + m‖

2�

sin θ − i cos θσ⊥
1 − (E/�)2

]
�(ri ) = E

�

[
σi + m‖

2�

sin θ − i cos θσ⊥
1 − (E/�)2

]
�(ri ). (B23)

When m‖ = 0, Eq. (B22) and (B23) suggest that the in-
gap YSR state at the ith impurity is described by |↑+i〉 =
ψi(r)|↑+〉 and |↓−i〉 = ψ∗

i (r)|↓−〉 with energy E± = ±ε�,
where ε = (1 − α2)/(1 + α2) and α = mJS/2. Here ψi(r) de-
scribes the amplitude of the YSR state near the ith impurity in
the real space, |+〉 and |−〉 denote the eigenstates of τx in the
particle-hole subspace, and the spin polarization of the unper-
turbed YSR state is aligned with the magnetic impurities, with
|↑〉 and |↓〉 being exact eigenstates of σi, i.e., σi|↑〉 = |↑〉 and
σi|↓〉 = −|↓〉. In the presence of the Zeeman perturbation, the
spin parts of the YSR states become

|↑′〉 ≈ |↑〉 − m‖ cos θ

4�(1 − ε2)
|↓〉 (B24)

and

|↓′〉 ≈ |↓〉 + m‖ cos θ

4�(1 − ε2)
|↑〉, (B25)

and the energy of the YSR states is given by E ′
± = ±ε′� with

ε′ ≈ ε + m‖ sin θ

2�

1 − ε

1 + ε
. (B26)

In Cartesian coordinates, ni = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
and the YSR state in the eigenbasis of σz is

|↑′〉 =
(

e−i ϕ

2 cos θ ′
2

ei ϕ

2 sin θ ′
2

)
, |↓′〉 =

(
−e−i ϕ

2 sin θ ′
2

ei ϕ

2 cos θ ′
2

)
, (B27)

where θ ′ = θ − �θ with the deviation �θ ≈ m‖ cos θ

2�(1−ε2 ) , which
means that the Zeeman field perturbation slightly modifies the
polar angle of the polarization in the YSR state by �θ . Since
m‖ 
 �, the deviations in ε and θ are both negligible.
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2. Effective Hamiltonian for Shiba lattices

In a Shiba lattice which consists of multiple magnetic
impurities, the YSR states at different sites are coupled with
each other in the superconducting substrate. This coupling
process is governed by G(r 	= 0). For this reason, the first
goal in this section is to obtain a numerically computable

form of Eq. (B6), which can be divided into two branches
ν = ±1. Considering the SOC modified free-electron energy
ζν , the corresponding modified Fermi wave vector is kν

F . In
each branch, the integral is mainly contributed by the regions
where ζν (k) ∼ 0. We can linearize ζν (k) near the Fermi sur-
face ζν (kν

F ) = 0, yielding ζν (k) = vν
F (k − kν

F ), where vν
F =√

1 + λ2vF .

The Green’s function Eq. (B6) can be put as

G0(r; E ) = m

2

∑
ν=±1

(
1 − ν

λ√
1 + λ2

) ∫
dψk dζ

ei(kν
F + ζ

vF
)r cos(ψk−ψr )

(2π )2

E + ζ τz + �τx

E2 − ζ 2 − �2
[1 + ν(sin ψkσx − cos ψkσy)], (B28)

where ψk and ψr are polar angles of k and r, respectively. Substituting φ = ψk − ψr , and neutralizing the odd part with respect
to φ, we have

G0(r; E ) = m

2

∑
ν=±1

(
1 − ν

λ√
1 + λ2

)∫
dφ dζ

ei(kν
F + ζ

vF
)r cos φ

(2π )2

E + ζ τz + �τx

E2 − ζ 2 − �2
[1 + ν cos φ(sin ψrσx − cos ψrσy)]. (B29)

The Green’s function in this form can be expressed via Bessel functions using the following identity relations:∫ ∞

−∞

dζ

π

∫ 2π

0

dφ

2π

ζei(kF + ζ

vF
)r cos φ cos φ

E2 − ζ 2 − �2
= −i Re

[
iJ1

(
kF r + i

r

ξE

)
+ 2

π
− H1

(
kF r + i

r

ξE

)]
, (B30)

∫ ∞

−∞

dζ

π

∫ 2π

0

dφ

2π

ei(kF + ζ

vF
)r cos φ cos φ

E2 − ζ 2 − �2
= −i√

�2 − E2
Im

[
iJ1

(
kF r + i

r

ξE

)
+ 2

π
− H1

(
kF r + i

r

ξE

)]
, (B31)

∫ ∞

−∞

dζ

π

∫ 2π

0

dφ

2π

ζei(kF + ζ

vF
)r cos φ

E2 − ζ 2 − �2
= Im

[
J0

(
kF r + i

r

ξE

)
+ iH0

(
kF r + i

r

ξE

)]
, (B32)

∫ ∞

−∞

dζ

π

∫ 2π

0

dφ

2π

ei(kF + ζ

vF
)r cos φ

E2 − ζ 2 − �2
= −1√

�2 − E2
Re

[
J0

(
kF r + i

r

ξE

)
+ iH0

(
kF r + i

r

ξE

)]
. (B33)

With the help of Eqs. (B30)–(B33), we can rewrite G0(r; E ) into a compact form:

G0(r; E ) = −m

4

[
E + �τx√
�2 − E2

ReS(r) − τzImS(r) + i

(
τzReA(r) + E + �τx√

�2 − E2
ImA(r)

)
(sin ψrσx − cos ψrσy)

]
, (B34)

where

S(r) =
∑
ν=±1

(
1 − ν

λ√
1 + λ2

)[
J0

(
kν

F r + i
r

ξE

)
+ iH0

(
kν

F r + r

ξE

)]
, (B35)

A(r) =
∑
ν=±1

ν

(
1 − ν

λ√
1 + λ2

)[
iJ1

(
kν

F r + i
r

ξE

)
+ 2

π
− H1

(
kν

F r + i
r

ξE

)]
. (B36)

Here Jn and Hn are the nth order Bessel and Struve functions, respectively, and ξE = vF√
�2−E2 corresponds to the superconducting

coherence length. Since we are dealing with low-energy YSR states, we can let E = 0 and replace ξE by ξ .

As we have already acquired the Green’s function G0(r; E ),
now we are able to handle the multi-impurity system, which
is described by

(H (0) + �H +
∑

i

Hi )|�〉 = E |�〉, (B37)

with Hi representing the Hamiltonian for the ith impurity.
Using the Green’s function for H (0) + �H , which is denoted
by G, Eq. (B37) can be derived to

G
∑

i

Hi|�〉 = |�〉. (B38)

Since the perturbation of YSR states by the magnetic field is
insignificant, especially in the small θ case, we can adopt the
unperturbed YSR states as the complete orthogonal basis, and
we write the wave function |�〉 as

|�〉 = 1√
N

∑
i

|�i〉, (B39)

where N is the normalization factor and |�i〉 = ai|↑+i〉 +
bi|↓−i〉 is the wave function on the ith impurity. By
Eqs. (B38) and Eq. (B39), we obtain

(1 − GHi )|�i〉 =
∑
j 	=i

GHj |� j〉. (B40)
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By projecting Eq. (B40) on δ(r − ri )|↑+〉 and δ(r − ri )|↓−〉, respectively, Eq. (B40) can be expressed in a matrix form:[−〈↑+|1 − G(0; E )Himp|↑+〉 −〈↑+|1 − G(0; E )Himp|↓−〉
〈↓−|1 − G(0; E )Himp|↑+〉 〈↓−|1 − G(0; E )Himp|↓−〉

](
ai

bi

)

=
∑
j 	=i

[−〈↑+|G(ri j ; E )Himp|↑+〉 −〈↑ +|G(ri j ; E )Himp|↓−〉
〈↓−|G(ri j ; E )Himp|↑+〉 〈↓ −|G(ri j ; E )Himp|↓−〉

](
a j

b j

)
, (B41)

where Himp = −JSσi. The matrix elements on the left-hand side are related to G(0; E ), given by

〈↑+|1 − G(0; E )Himp|↑+〉 = JSm

2

ε� − E

�
, (B42)

〈↓−|1 − G(0; E )Himp|↓−〉 = JSm

2

ε� + E

�
, (B43)

〈↑+|1 − G(0; E )Himp|↓−〉 = 〈↓−|1 − G(0; E )Himp|↑+〉 = 0. (B44)

Then we can rewrite Eq. (B41) into a time-independent Schrödinger-like equation

E

(
ai

bi

)
= �

[
ε

−ε

](
ai

bi

)
+ 2�

JSm

∑
j 	=i

[−〈↑+|G(ri j ; E )Himp|↑+〉 −〈↑+|G(ri j ; E )Himp|↓−〉
〈↓−|G(ri j ; E )Himp|↑+〉 〈↓−|G(ri j ; E )Himp|↓−〉

](
a j

b j

)
. (B45)

The matrix elements on the right-hand side are related to G(r 	= 0, E ). Since the coupling between YSR states is weak, this
term can be treated perturbatively so that G(r 	= 0; E ) ≈ G(r 	= 0; 0) in the low-energy regime. Using Eq. (B27) and G ≈ G0

(since �G is negligible compared with G0), we have

〈↑+|G(ri j ; 0)Himp|↑+〉 = mJS

4
[ReS(ri j ) + i ImA(ri j ) sin θ sin(ψr − ϕ)], (B46)

〈↓−|G(ri j ; 0)Himp|↓−〉 = mJS

4
[ReS(ri j ) − i ImA(ri j ) sin θ sin(ψr − ϕ)], (B47)

〈↑+|G(ri j ; 0)Himp|↓−〉 = i
mJS

4
ReA(ri j )[cos θ sin(ψr − ϕ) + i cos(ψr − ϕ)], (B48)

〈↓−|G(ri j ; 0)Himp|↑+〉 = −i
mJS

4
ReA(ri j )[cos θ sin(ψr − ϕ) − i cos(ψr − ϕ)]. (B49)

Then the effective Schrödinger equation can be written as

E�i =
∑

j

[d0(ri j ) + d(ri j ) · σ]� j, (B50)

where σ denotes a 2 × 2 Pauli matrix, �i = (ai, bi )T , for
r 	= 0,

d0(r) = −i
�

2
ImA(r) sin θ sin(ψr − ϕ), (B51)

dx(r) = −i
�

2
ReA(r) cos θ sin(ψr − ϕ), (B52)

dy(r) = i
�

2
ReA(r) cos(ψr − ϕ), (B53)

dz(r) = −�

2
ReS(r), (B54)

and for r = 0,

d0(0) = dx(0) = dy(0) = 0, dz(0) = ε�. (B55)

The k-space Hamiltonian for a square Shiba lattice is given by

H (k) = d0(k) + d(k) · σ, (B56)

dn(k) =
∑

R

e−ik·Rdn(R), (B57)

which constitute the foundation for investigation in Shiba
metals.

APPENDIX C: RECIPROCAL-LATTICE
REFLECTION SYMMETRY

In this Appendix, we will demonstrate how a reciprocal-
lattice reflection symmetry protects a first-order topological
phase transition, and we show that such phase transitions are
widespread in Shiba metals.

The first-order topological phase transitions are protected
on a continuous set of points in the Brillouin zone, on which
the deformation term d0(k) is enforced to vanish. Specifically,
the Schrödinger-like Eq. (B45) gives

d0(k) = − �

JSm

∑
R

e−ik·R[〈↑ + |G(R; 0)Himp|↑+〉

−〈↓ − |G(R; 0)Himp|↓−〉], (C1)

where R runs over all the coordinates of impurities. Using

G(R; 0) =
∫

dk
(2π )2

eik·RG(k; 0), (C2)
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we arrive at

d0(k) = − �

JSm

∑
K

[〈↑ + |G(k + K; 0)Himp|↑+〉

− 〈↓ − |G(k + K; 0)Himp|↓−〉], (C3)

where K runs over all reciprocal-lattice vectors. Since eϕ⊥ =
ez × eϕ‖ is perpendicular to the plane spanned by ez and eϕ‖,
and σ⊥ = σ · eϕ⊥, we have

τyσ⊥| + ↑〉 = | − ↓〉. (C4)

At E = 0 we have G(k; 0) = −H (k)−1. So we get

〈↑ + |G(k; 0)σi|↑+〉 = −〈↓ − |τyσ⊥H (k)−1σiτyσ⊥|↓−〉,
(C5)

〈↓ − |G(k; 0)σi|↓−〉 = −〈↓ − |H (k)−1σi|↓−〉, (C6)

based on which we reduce Eq. (C3) to

d0(k) = �

m

∑
K

〈↓ − |τyσ⊥H (k + K )−1σiτyσ⊥

− H (k + K )−1σi|↓−〉. (C7)

In addition, the substrate Hamiltonian H = H (0) + �H in k-
space can be set as

H (k) = ζ (k)τz + αR(kϕ⊥σ‖ − kϕ‖σ⊥)τz + �τx + m‖σ‖,

(C8)

where kϕ‖ = k · eϕ‖ and kϕ⊥ = k · eϕ⊥. With the help of the
following identities:

σ⊥(σiσ⊥)σ⊥ = −σiσ⊥, (C9)

σ⊥(σiσ‖)σ⊥ = σiσ‖, (C10)

we obtain

τyσ⊥σiH (k)τyσ⊥ = ζ (k)σiτz − αRσi(kϕ⊥σ‖ + kϕ‖σ⊥)τz

+�σiτx + m‖σiσ‖, (C11)

σiH (kϕ‖, kϕ⊥) = τyσ⊥σiH (kϕ‖,−kϕ⊥)τyσ⊥, (C12)

H−1(kϕ‖, kϕ⊥)σi = τyσ⊥H−1(kϕ‖,−kϕ⊥)σiτyσ⊥. (C13)

Substituting Eq. (C13) into Eq. (C7), we have

d0(k)

= �

m

∑
K

〈↓ − |[H (M(k + K ))−1 − H (k + K )−1]σi|↓−〉,

(C14)

where M is the reflection operator satisfying M(kϕ‖, kϕ⊥) =
(kϕ‖,−kϕ⊥). Equation (C14) tells us that when reciprocal-
lattice vectors K are symmetrically distributed beside the
magnetic direction eϕ‖, d0(kϕ‖, 0) is protected to be 0, be-
cause in this case we have Mk = k and

∑
K = ∑

MK . For
the square lattice, this confinement yields ϕ = nπ/4 (n =
0, 1, 2, 3). It is worth mentioning that although we have ne-
glected the magnetic field disturbance on our effective Shiba
lattice Hamiltonian [Eq. (B56)], the above derivation is still
valid in the presence of the magnetic field.

Next, we demonstrate that such protected phase transitions
are widespread in Shiba metals. To be specific, the Shiba metal
is characterized by a series of system parameters. Excluding
the controlled variable kF , these parameters can be grouped as
a vector P = {a, λ, ξ , ε, . . . }. At some parameter points PRS,
tuning kF leads to gap closing on the symmetry line k = keϕ‖
in the Brillouin zone, which is parallel to the magnetic field.
In the following, we show that all these points PRS constitute
some continuous regions with the same dimension as the
parameter space.

At the band touching points k = (kx, ky), dx(k) = dy(k) =
dz(k) = 0. For square lattices with the Zeeman perturbation
omitted, the three constraints are expressed as

∑
x,y

[sin(kxx) cos(kyy) cos ψr sin ϕ − cos(kxx) sin(kyy) sin ψr cos ϕ]ReA(r) = 0, (C15)

∑
x,y

[sin(kxx) cos(kyy) cos ψr cos ϕ + cos(kxx) sin(kyy) sin ψr sin ϕ]ReA(r) = 0, (C16)

ε − 1

2

∑
x,y

cos(kxx) cos(kyy)ReS(r) = 0. (C17)

Generally, in pursuit of a band touching point on a par-
ticular trajectory [kx(tk ), ky(tk )] while tuning the controlled
parameter kF , the three constraint Eqs. (C15)–(C17) must
be met simultaneously with only two tunable parameters
(tk, kF ), which is hard to achieve. However, for the tra-
jectory [tk cos nπ/4, tk sin nπ/4] with ϕ = nπ/4, the first
constraint Eq. (C15) is always satisfied, leaving only two
independent constraints, corresponding to two curves in
the (tk, kF ) parameter plane. These two curves are sensi-
tive to P and thus intersect frequently in the parameter

space. Moreover, when the two curves intersect at a cer-
tain PRS, they must keep intersecting at PRS + dP, where
PRS is shifted by a small value. For this reason, there is
a continuous region of parameters in which band touching
happens at some momenta k satisfying ψk = nπ/4 while
tuning kF .

In fact, the elimination of the first constraint Eq. (C15)
is rooted in the reflection symmetry, which is still valid in
the presence of the Zeeman field perturbation. Specifically,
when the energy gap closes at k, the off-diagonal elements in
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Eq. (B45) satisfy the equation∑
R

e−ik·R〈↑ + |G(R; 0)Himp|↓−〉 = 0, (C18)

which is equivalent to∑
K

〈↑ + |G(k + K; 0)Himp|↓−〉 = 0. (C19)

This equation imposes two constraints corresponding to its
real and imaginary parts. However, with the aid of Eq. (C13),
we find that∑

K

〈↑ + |G(k + K; 0)Himp|↓−〉

= −
∑

K

〈↑ + |G(M(k + K ); 0)Himp|↓−〉∗. (C20)

With the reciprocal-lattice reflection symmetry such that
M{K} = {K}, when k lies on the symmetry line, Eq. (C20)
leads to

Re
∑

K

〈↑ + |G(k + K; 0)Himp|↓−〉 = 0, (C21)

which eliminates one constraint.
Previously, we considered the impurity Hamiltonian taking

the form of Himp = Jδ(r)σ. There, each impurity provides

only one scattering channel corresponding to zero angular mo-
mentum and binds only one YSR state. If we put the impurity
scattering term in a more general form J (r)σ, there would be
multiple channels [41], denoted by quantum number l . Each
channel binds one YSR state, which is represented by two
bases |l, s〉 and |l, s̄〉. Here s is one of |↑+〉 and |↓−〉, and s̄ is
the other one. Suppose there are n channels in total, then the
hopping matrix in the tight-binding Hamiltonian is 2n × 2n,
and the matrix elements can be denoted as Hl1s1l2s2 (r).

In this context, Eqs. (C14) and (C20) turn into

Hl1s1l2s2 (k) + Hl1 s̄1l2 s̄2 (k)

∼
∑

K

〈l1s̄1|[H (k + K )−1 − H (M(k + K ))−1]σi|l2s̄2〉.

(C22)

This term vanishes when k is aligned with both the magnetic
field and a symmetry line in the reciprocal lattice. In this case,
the Hamiltonian takes the form

H (k) = H (y)
l (k) ⊗ σy + H (z)

l (k) ⊗ σz. (C23)

Here H (y)/(z)
l is an n × n matrix. Every eigenstate ψ corre-

sponds to another eigenstate σxψ with an opposite eigenvalue.
For this reason, the reciprocal-lattice reflection symmetry still
protects quantum phase transitions in the multiband case.
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