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Fabry-Pérot and Aharonov-Bohm interference in ideal graphene nanoribbons
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Quantum-mechanical calculations of electron magnetotransport in ideal graphene nanoribbons are presented.
In noninteracting theory, it is predicted that an ideal ribbon that is attached to wide leads should reveal Fabry-
Pérot conductance oscillations in magnetic field. In the theory with Coulomb interaction taken into account, the
oscillation pattern should rather be determined by the Aharonov-Bohm interference effect. Both of these theories
predict the formation of quasi-bound states, albeit of different structures, inside the ribbon because of strong
electron scattering on the interfaces between the connecting ribbon and the leads. Conductance oscillations are
a result of resonant scattering via these quasibound states.
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I. INTRODUCTION

Interference is a fundamental phenomenon in which two
coherent waves superpose to form a resultant wave of greater
or lower amplitude. Electrons, as particles that share wave
properties, reveal quantum interference, which is a coun-
terpart of classical interference in which the wave function
interferes with itself—a phenomenon that was demonstrated
in the double-slit experiments in the 1960s [1]. Electron
quantum interferometers have been used to explore many
physical phenomenon including, for example, anyon statistics
in fractional quantum Hall effect [2] and the interplay between
charge and wave electron properties [3]. Nearly two decades
ago, graphene emerged as a two-dimensional (2D) material
with unusual electronic properties that were best described
by theories for massless relativistic particles [4]. These
properties have been exploited in graphene-based interferom-
eters [5–12]. Fabry-Pérot and Aharonov-Bohm interference in
a perpendicular magnetic field has recently been demonstrated
in graphene interferometers with high visibility and less ob-
scuration by Coulomb charging effects [5]. The aim of this
study is to provide the quantum-mechanical theory of electron
interference in one of the simplest graphene-based devices—
graphene nanoribbon (GNR)—that realistically represents an
experimental setup in which a ribbon is connected to two wide
graphene electrodes [13], and which might be used further as
a building block for more complex interferometer structures,
like the ones in Ref. [5].

In optics, Fabry-Pérot (FP) interference occurs in a
system of two parallel surfaces when optical waves are

*sergey.ignatenko@liu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

only allowed to pass through if they are in resonance
with the active region of the device. An electron analog
to an optical FP interferometer has been demonstrated in
many experimental realizations [5–9,14–16]. Similarly to
an optical wave, for an electron wave to pass through
the active region, multiple reflections between two trans-
mission barriers are required to be in phase, a condition
referred to as constructive interference. This condition can be
written as

i
λF

2
= l, i = 1, 2, . . ., (1)

where λF is the de Broglie wavelength of an electron at the
Fermi energy EF , and l is the length of the active region. Hav-
ing condition (1) satisfied, the electron is resonantly (nearly
perfectly) transmitted or reflected through a device. In the
system that is studied in this manuscript, a pair of interfaces
between narrow and wide graphene regions serve as electronic
mirrors that confine electron waves in analogy to confinement
of light in an optical Fabry-Pérot cavity. Note that Eq. (1)
is valid only for multiple reflections between two perfectly
smooth barriers. In graphene, such reflections strongly depend
on the geometry of atomic edges, which could have, e.g., a
zigzag or armchair shape. Respectively, Eq. (1) is modified,
but is still used below for a simplified analysis of magneto-
transport in GNRs.

A mesoscopic device, in which electrons can be guided
into spatially separated paths when placed in perpendicu-
lar magnetic fields, reveals another physical phenomenon:
the Aharonov-Bohm (AB) interference [17]. Conductance
through this device shows a peak each time a flux enclosed
by the area separating electron paths S changes by the flux
quantum φ0 = h/e. An associated phase shift of electron wave
function in the paths accumulates a value of 2π . As a function
of magnetic field B, conductance shows periodic oscillations
with period

�B = φ0

S
. (2)
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Graphene AB interferometers have been demonstrated in
Refs. [11,12]. In the literature, an interferometer operating on
AB effect is also referred to as a Mach-Zehnder [10,18] or
FP [5] interferometer, depending on the device configuration
and path counting details. However, for the GNR configu-
ration considered here, the difference between FP and AB
interference is important, leading to different observables, and
so these terms are opposed here. Comment on AB terminol-
ogy will be given later on.

Theoretical studies of electron quantum interference in
graphene have focused on p-n junctions [7–10,19,20], quan-
tum rings [21,22], quantum antidots [12], and GNRs [16,23–
25]. For p-n-p junctions, Shytov et al. [19] showed that FP
interference depends on the electron’s incident angle and,
in a small perpendicular magnetic field, scattering amplitude
changes the sign, which are both signatures of Klein tunneling
through a graphene p-n junction. This was later confirmed
experimentally [6]. In Ref. [7], Klein tunneling was shown to
yield a strong collimation in transmission and FP resonances
to occur in bipolar and unipolar regimes due to reflection at
internal n-p (p-n) interfaces and at the outer contacts. At high
magnetic fields, when currents carrying one-dimensional edge
channels form [17], the graphene p-n junction starts hosting
these edge channels along its interface and acts as an AB
interferometer. The edge channels propagate, separated from
each other by a distance, and couple at end points, where
the p-n junction meets the physical graphene boundary, thus
forming an encircled area [10]. For quantum rings made of
graphene, numerical calculations show conventional AB mag-
netoconductance oscillations (similarly to 2D GaAs-based
electron gases) when magnetic fields are not high enough
to bring the system into the quantum Hall regime [22]. In
the quantum Hall regime, a graphene antidot reveals AB in-
terference that is dominated by either electron interaction or
single-particle resonant tunneling, depending on the coupling
to the antidot bound edge channels [12]. AB conductance
oscillations were also predicted to occur in GNR placed on
a stepped substrate, such that B spatially varies, and oppo-
sitely propagating edge states are obtained in terrace and
facet zones of the step, resulting in interedge scattering [23].
At zero B, Darancet et al. [24] demonstrated the existence
of FP interference oscillations in GNRs in analogy with
optics.

The object of this theoretical study is a GNR that is similar
to GNRs that are typically fabricated in experiments based
on nanolithography [13]. In these experiments, 2D graphene
is first covered by a protective resist layer. The desired GNR
geometry is then patterned by electron-beam lithography, fol-
lowed by plasma etching. The resulting structure exposes the
hexagonal graphene lattice (usually very defective) along its
physical boundaries. It should be noted that a long narrow
ribbon, wide semi-infinite leads, and the interfaces between
them are all integrated parts of the system that contribute to
the measured signal and, for accurate analysis, need to be
treated as a whole. This is conceptually similar to an extended
molecule in molecular electronics [26] and is in line with
ideas about the role of contacts in ballistic conduction [17,27].
Accounting for ribbon-to-lead interfaces has shown, for ex-
ample, to result in transport gaps that are very different from
predictions based on simple theories that approximate the

system only by its narrowest part (i.e., GNR to have straight
geometry with ribbon and leads of the same width) [28]. Con-
sequently, this study considers electronic and transport prop-
erties of an “extended” GNR that is otherwise ideal, free of
defects.

In this manuscript, energy and transport properties of
ideal GNRs in perpendicular magnetic fields are studied by
quantum-mechanical calculations in noninteracting and in-
teracting approaches. The latter accounts for the long-range
repulsive Coulomb interaction between charged particles
within the Hartree approximation. The noninteracting ap-
proach shows that an ideal ribbon attached to two wide leads
shows Fabry-Pérot conductance oscillations in the magnetic
field. This is a result of resonant backscattering on quasi-
bound states that are formed inside the ribbon. Conductance
oscillations in the noninteracting approach follow the inter-
ference condition (1). The inclusion of Coulomb interaction
into theory brings qualitatively new physics with conductance
oscillations determined rather by the Aharonov-Bohm effect,
where the magnetic field period is determined by the ribbon
area, Eq. (2). The effects of FP and AB interference are
unexpected (from a naive viewpoint) for this kind of structure
because it is inherently open, atomically ideal, and contains no
potential barriers. Observing either of these effects allows one
to discriminate between whether or not Coulomb interaction
dominates electron transport in GNR.

This manuscript is organized as follows. In the first part,
electron magnetotransport is studied in a simpler noninter-
acting approach, and electronic wave interference in ideal
GNR is discussed. In the second part, the effects due to in-
clusion of Coulomb interaction into the theory are presented
for the same device geometry. Differences in the results of the
noninteracting model are then analyzed. Finally, the implica-
tions of a possible experiment are discussed, followed by the
conclusion. The theoretical model is presented briefly here;
for detailed formulation of the model and the computational
method, the reader is referred to the earlier publications in
Refs. [28,29].

The model is based on the tight-binding Hamiltonian in the
Hartree approximation [28–31],

H = −
∑
〈i, j〉

ti ja
†
i a j +

∑
i

V H
i a†

i ai (3)

V H
i = e2

4πε0ε

∑
j �=i

n j

(
1

|ri − r j | − 1√|ri − r j |2 + 4b2

)
, (4)

where a†
i (ai) is the creation (destruction) operator of the

electron on the site i and the angle brackets denote the nearest
neighbor indices. The magnetic field is included via Peierls
substitution ti j = −t exp(i 2π

φ0

∫ r j

ri
A · dr), where t = 2.7 eV.

The Hartree potential V H
i describes the long-range Coulomb

interaction of electron at the ith atom with uncompensated
charge density −en in the system [28–32]; −en j is the elec-
tron charge at the lattice site j and r j is the position vector
of that site; ε (=3.9 of SiO2 for results below) is the di-
electric permittivity; and b (=10 nm) is the distance to the
screening gate electrode. If V H

i = 0, then the resulting Hamil-
tonian becomes the standard noninteracting approximation
for electrons on a graphene lattice [4,33]. In order to solve
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FIG. 1. (c), (d) Conductance and (e), (f) density of states (DOS) in GNR as a function of magnetic field calculated in the noninteracting
approach. (d) and (f) show the magnified areas where the resonances due to Fabry-Pérot interference are designated by matching conductance
dips with enhanced DOS. The integers in (d) mark resonances, of which the fifth and fourth are further detailed in local DOS plots (a) and
(b). Local DOS (ρ) is gray-scale and dot-size coded in (a) and (b). The gray dashed and dash-dotted lines in (c) and (d) show conductance in
the ribbon (the long narrow part sandwiched between the interfaces) and leads, respectively. The triangles in (d) mark B corresponding to the
resonant condition (1) counted from the magnetosubband edge at B = 132.5 T. The arrow in (c) marks B, for which the cyclotron diameter
equals the ribbon width, dc = w. EF = 0.3 t . Temperature T = 0 K.

the transport problem within this tight-binding model, the
recursive Green’s function method is used, together with
the self-consistent solution for the electrostatic potential and
charge density [17,28,29].

The system studied is armchair GNR with armchair edges
along straight segments of ribbon and semi-infinite leads. It is
assumed that there are no defects in the bulk or at the edges.
The central part of the GNR has a width w = 10 nm and is
connected to twice wider leads via mesoscopically smooth
junctions [28]; see the outlines in the top panels in Figs. 1
and 2.

II. FABRY-PÉROT INTERFERENCE
IN THE NONINTERACTING MODEL

The noninteracting model predicts that in a perpendicular
magnetic field B, both two-terminal conductance and den-
sity of states (DOS) in GNR oscillate with features being
recognizable as a result of Fabry-Pérot interference, Fig. 1.
At B = 0 T, conductance G in GNR is determined by the
electron scattering at the interfaces connecting the ribbon
to the leads, which is very similar to strong scattering in

graphene constrictions, where poor conductance quantization
was found [29,34]. These wide-to-narrow interfaces serve as
transmission barriers and intrinsic scattering sources, even
though they are mesoscopically smooth, because of the broken
graphene sublattice symmetry [4] along interface edges and
multiple alternating zigzag and armchair terminations [35].
At B = 0 T, the inequality G < Gribbon < Gleads holds, where
the ribbon superscript denotes the central part of GNR; see
Fig. 1(c).

From low to moderate B, the Landau levels start to de-
velop, which affects the electron quantization subbands that
are gradually pushed up in energy and depopulate [17]. This
can be observed as a staircase decrease of Gribbon and Gleads in
Fig. 1(c). As an electron subband moves up, the longitudinal
part of the electron energy and associated wave vector k‖ grad-
ually decreases. This gradual decrease brings the GNR system
through a series of sharp resonances, which are pronounced as
coupled G dips and DOS peaks in Figs. 1(c)–1(f). Enhanced
DOS implies constructive interference of the single-particle
state inside the ribbon, while G dip strongly suggests resonant
backscattering of the incident electron in the Bloch state of
the semi-infinite lead on that state. G oscillates with nearly
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FIG. 2. (a)–(f) Same as Fig. 1 but calculated using the Hartree approach. The device geometries used for both calculations are exactly the
same; the geometry can be traced in the top plots (a) and (b). The inset between (d) and (f) shows power spectrum estimation for conductances
using Fourier transform (FT), where a peak corresponding to �B = 9.5 T is marked [42]. The voltage on the gate electrode [28,29] is 30 V.
T = 20 K.

constant amplitude of half of the conductance quanta 2e2/h
and with period scaling inversely with B. This large amplitude
points to a nearly perfect resonant reflection for the highest oc-
cupied quantization subband. To get further physical insight,
let us use the relationship between the wave vector of Dirac
electrons and B,

k =
√

2eB

h̄
, (5)

and then relate it to the de Broglie wavelength in Eq. (1) by
k = k‖ = 2π/λF . Counting from the magnetosubband edge
at B = 132.5 T, the resonance condition (1) is satisfied for
magnetic fields marked by the triangle pointers in Fig. 1(d), if
l = 67 nm is used as a fit parameter. This l value matches well
the effective geometrical length of the ribbon, sandwiched
between two interfaces, as indicated in Fig. 1(a), and it clearly
points out that the resonances in the noninteracting theory
are due to Fabry-Pérot interference. The integers i in Eq. (1),
which are referred to as FP modes, are numbered in Fig. 1(c).
Meanwhile, i = 4 and i = 5 modes are selected as examples
and their local DOS ρ is shown in Figs. 1(a) and 1(b), where
the node structure of the longitudinal electron wave is clearly
discernible. Thus, the open-ended ideal GNR supports lon-
gitudinal resonant electron states in a magnetic field. This is
similar to the effects found for carbon nanotubes [14] and

ballistic constrictions in conventional 2D electron gas [36] and
GNRs [24] at zero B.

The resonance i = 1 at B = 131.5 T in Fig. 1(d) reveals
a zigzaglike feature that is similar to a Fano-type reso-
nance [37]. For i = 1, the electron wave is nodeless, half
of the de Broglie wavelength, and the single-particle state
has the strongest localization in comparison to other (i > 1)
states, defined by the width of the DOS peak, see Fig. 1(f).
This is a realization of the Fano model in the sense that it
includes the quasi-bound state, localized inside the ribbon,
that interacts with the continuum of extended states in the
leads. When the energy of incident electron coincides exactly
with resonance energy, the FP phase flips by π [37]. Note
that similar antiresonance has been found in many mesoscopic
devices, for example, a quantum antidot-based interferometer
in conventional 2D electron gas [38] and short GNR at zero
B [16].

The conductance curves in Figs. 1(c) and 1(d) show addi-
tional, superimposed oscillatory dependence. This is a result
of interference from other magnetosubbands, which all pro-
vide propagating single-particle states at EF in the ribbon.

At high B, the Landau levels dominate the energy spec-
trum, and the edge channels are well defined and propagate
along the physical boundaries of GNR without, or with little,
backscattering [17]. This denotes the quantum Hall regime
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and G ≈ Gribbon ≈ Gleads with little deviation at the transition
regions between quantization plateaux. This can be loosely
characterized by B for which the cyclotron diameter dc =
2EF /vF eB is less than the ribbon width w, see the mark in
Fig. 1(c); vF = 106 m/s. Because the scattering efficiency of
the wide-narrow interfaces is reduced, the Fabry-Pérot inter-
ference is hardly observable at high magnetic fields.

III. AHARONOV-BOHM INTERFERENCE
IN THE HARTREE MODEL

The long-range Coulomb interaction has several pro-
nounced effects on the energy structure and transport proper-
ties of GNRs. First, it is known to cause charge accumulation
at graphene boundaries [29,30,32,39]. This charge accumula-
tion is related to formation of the triangular potential wells,
which, in the magnetic field, accommodate extra forward and
backward moving edge channels. These edge channels, ac-
cording to the Landauer formula [27], contribute to ballistic
conduction [32] and thus cause G to deviate from stairlike
dependence predicted by the noninteracting theory, compare
Figs. 1(c) and 2(c) for the leads and ribbon [39,40]. (Note
that the self-consistent calculations in the Hartree theory are
performed at finite temperature T = 20 K, which in itself
contributes as an averaging factor on the observable qualities,
so that G appears smoothed in Fig. 2(c). In contrast, the
noninteracting calculations are performed at T = 0 K.) In
the quantum Hall regime, the part of the structures that is
away from the boundaries is filled out by the compressible
strip [41], which is an area with a magnetosubband pinned
to the Fermi energy [39]. The pinning effect reflects the
screening ability of the system, in which free electrons can
redistribute to minimize electrostatic energy, a property that
is peculiar to a metallic system as opposed to an insulator.
Another effect of Coulomb interaction is the strong electron
localization along the interface physical boundaries (while
expelling an electric current toward the interior) [28], compare
local DOS in Figs. 1(a) and 1(b) and 2(a) and 2(b).

An important effect introduced by Coulomb interaction
on transport in GNR is periodic conductance oscillations at
moderate B, see Figs. 2(c) and 2(d). Period estimation gives
�B ≈ 9.5 T, which is corroborated by one of the peaks in
the power factor spectrum of the Fourier transform [42].
Substitution �B into Eq. (2) gives S = 440 nm2. If adjusted
by the finite decay length of the wave function, this agrees
reasonably well with geometrical ribbon area 600 nm2. As
in the noninteracting theory, G dips match DOS peaks. This
implies a resonant backscattering process due to the single-
particle state formed between narrow-wide interfaces. This is
supported by local DOS ρ, visualization in Figs. 2(a) and 2(b),
where the ribbon is uniformly filled in by the resonant state at
ρ peak and is “empty” otherwise. The structure of the resonant
states is the same for all peaks. Contrary to the noninteracting
theory, conductance oscillations in the Hartree approxima-
tion are due to the Aharonov-Bohm effect. AB interference
can be understood as a result of electron screening when
energy levels of the resonant states inside the ribbon, which
are poorly coupled to continuum of states in the leads, are
adjusted to minimize the electrostatic energy of GNR. Every
time a magnetic flux enclosed by the ribbon changes by the

flux quantum, one single-particle state sweeps through EF

and G develops one full oscillation. AB oscillations in both
G and DOS are more pronounced at intermediate magnetic
fields, at which the edge channels start to form but the system
is not yet deep in the quantum Hall regime. This condition
might be expressed as dc ≈ w, where the cyclotron diameter
dc in the self-consistent Hartree calculation is convenient to
express via the charge density n: dc = 2h̄

√
πn/eB. In the

ribbon center, n ≈ 5 × 1017 m−2, and for this n, the equality
dc = w is marked by the arrow in Fig. 2(f).

A switch from the FP to AB interference due to the
Coulomb interaction can be understood in the following way.
Let’s begin with a classical viewpoint since Coulomb in-
teraction is the classical effect of repulsive force between
charged particles. Having repulsive interaction on and allow-
ing charges to move freely cause all features in charge density
distribution inside GNR, like the ones seen in local DOS
in Figs. 1(a) and 1(b), to smear out. The charge particles
distribute uniformly inside the interior in the absence of an
external electric field. If the latter is applied to the system,
electrons redistribute further to account for both mutual inter-
action and external electric field. [In the limit case of metal, all
free electrons redistribute toward the surface such that there is
no electric field inside metal [43]. GNR is affected similarly,
though it is far from this limit because of finite ε in Eq. (4).]
This effect is referred to as screening. Charge redistribution is
related to finding the total electrostatic energy that is minimal
of all possible configurations. Adding quantum mechanics
into the speculation causes the resonant energy levels to pin to
EF . As B varies, the levels gradually (de)populate one by one,
causing equidistant features in B for G and DOS, observed as
AB interference.

Regarding the name “Aharonov-Bohm,” it should be men-
tioned that Aharonov and Bohm originally proposed an
experiment to show that observable effects could result from
vector potential A on phases to the probability amplitudes
associated with various electron paths, even though B = 0 in
those paths [44]. Here, no well-defined paths exist because B
is not sufficiently high to bring the system into the quantum
Hall effect regime. However, the name “Aharonov-Bohm” is
still adopted, as is typically done in the solid-state experiments
going under this name, because of similarity to the original
AB effect in the sense of G invariance under changing B
piercing the ribbon by one flux quanta [17].

Within the Hartree approximation, an analogous effect
of correlation of the single-particle states at EF , when the
states depopulate sequentially in B, was shown to occur in
an antidot-based Aharonov-Bohm interferometer in a conven-
tional 2D electron gas [38]. Sequential depopulation implies
that the number of charges in the region where quasi-localized
states reside will change nonlinearly, which in turn indicates
the possibility of Coulomb blockade physics. The Hartree
theory, however, is unable to capture Coulomb blockade [38],
and the question of whether an ideal GNR inherently sup-
ports Coulomb blockade remains open, which is in contrast
to disordered GNRs where it was shown to be the dominant
mechanism of charge transport [13,45].

The Aharonov-Bohm conductance oscillations that are pre-
dicted here for GNRs have similarities with an experiment
by Loosdrecht et al. [46] on quantum point contact in the
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GaAs heterostructure, where two-terminal magnetoresistance
revealed periodic B oscillations between the quantum Hall
plateaux. Loosdrecht et al. [46] explained this as quantum
interference due to tunneling between edge states across the
point contact at the potential step at the entrance and exit of
the constriction. However, apart from apparently the structure
(which is a long graphene ribbon here and a short point contact
in GaAs in Ref. [46]), the difference is that in the present work
magnetic fields are low in order for the quantum Hall plateaux
to occur, and GNR is ideal without any imposed potentials.

IV. CONCLUSION

Quantum-mechanical calculations suggest that ideal GNR
in a geometry with wide leads, which is typically real-
ized in experiments based on nanolithography [13], should
exhibit a Fabry-Pérot or Aharonov-Bohm interference pat-
tern in magnetoconductance, depending on whether or not
Coulomb interactions dominate. This is a counterintuitive
finding because GNR is inherently open, atomically ideal,
and contains no potential barriers. Electron quantum interfer-
ence is related to strong electron scattering on the interfaces
that connect the ribbon with electrodes and is a result of
resonant backscattering via the quasi-bound state formed in-
side the ribbon. The structure of the quasi-bound states is
different in noninteracting and Hartree theories; it might be
accessed in local density of states spectroscopy measure-
ments and further used to characterize interference effects in
GNRs.

It is expected that the above results should be valid for
GNRs irrespective of edge terminations because the edge
specifics are of less importance at operational magnetic fields
and device widths. In addition, in GNRs of the same geome-
tries as those considered here, the transport gaps have been
shown to be nearly identical for armchair and zigzag termina-
tions [28]. The results for zigzag GNR in the noninteracting
theory are explicitly given in the Appendix.

It is also expected that the above results should be appli-
cable for GNRs in straight geometry provided by the strong
electron scattering on potential barriers at metal-graphene
contacts [7,9,16].

The defects should destroy the interference effects pre-
dicted in this study. However, these effects should become
experimentally observable as the quality of the GNR samples
improves.

The predicted interference effects hardly validate an ideal
GNR for application as an interferometer (or etalon), mainly
because the conductance oscillations are superimposed on
relatively high background conductance and the visibil-
ity [5,10,18] of such an interferometer would be low. One
route to improve visibility might be to decrease the total
number of electron quantization subbands. Another would
be to design the proper shape and size of the interface re-
gions, which are the sources of strong electron scattering in
graphene.
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APPENDIX: FABRY-PÉROT INTERFERENCE
IN ZIGZAG NANORIBBONS

In the noninteracting approach, GNR with zigzag edge
termination also reveals a Fabry-Pérot type of interference
(Fig. 3) but with conductances being due to resonant trans-
mission instead of the backscattering that was found for
armchair GNR in Sec. II. This difference might be explained
by two factors. First, coupling between the quasi-bound
states, which are still identical for both kinds of GNRs
[compare Figs. 3(a) and 1(a)], and extended states in the
leads is different. Second, the extended electronic states
in zigzag and armchair GNRs [47] are different for mag-
netic field intervals where FP interference occurs. In those
intervals, zigzag GNRs reveal predominant intersubband
scattering.

Interestingly, magnetoconductance in GNRs in general can
reveal resonances due to transmission, reflection, or of Fano
type, which allows (unexpectedly) rich physics for such a
simple system.
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black triangles in (b) mark B obtained from a fit to Eq. (1) for the
effective length l = 62 nm. The plots in this figure are similar to
Figs. 1(a), 1(d), and 1(f). Mesoscopic geometries of GNRs in this
figure and in Fig. 1 are identical. EF = 0.3 t . T = 0 K.
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