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Density matrix theory of the charge and current wave formation at fast pulsed
photoemission through a double quantum well
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Within the framework of the density matrix method, general formulas are obtained that are convenient for
describing fast pulsed photoemission that occurs in a time less than or on the order of the times of relaxation
processes inside the photocathode. Expressions for the elements of the density matrix are found by solving
the kinetic equation that takes into account the alternating electromagnetic field of light pumping and inelastic
scattering of electrons. The derived formulas are applied for the numerical-analytical study of a one-dimensional
model of wavelike spatiotemporal modulation of a photoelectron pulse of suitable duration during its passage
through a double-well quantum-well heterostructure deposited on a volumetric planar photocathode. This
modulation is a quantum beat that occurs as a result of excitation and subsequent slow oscillatory decay of the
superposition of the doublet of quasistationary states of the heterostructure. It is possible to provide prolongation
of generation and even amplification of waves of charge density and current density of photoelectrons when the
photocathode is exposed to a periodic sequence of light pulses.
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I. INTRODUCTION

The creation of laser light sources capable of generat-
ing ultrashort pulses of picosecond, femtosecond and even
attosecond duration has led to the intensive development
of spectroscopy and high technologies in the corresponding
frequency ranges [1–10]. Most often, the purpose of using
this high-frequency technique is to obtain spectroscopic in-
formation on rapidly proceeding processes in rarefied and
condensed media: on the dynamics of the motion of electrons
in atoms and molecules, in metallic and semiconductor solids,
on the processes of photoexcitation and relaxation of various
vibrations in these systems, on the kinetics chemical reac-
tions, etc. This includes, in particular, pulsed photoemission
techniques such as two-photon time-resolved photoemission
spectroscopy [9–12], quantum beat spectroscopy [13–15], and
other methods of linear and nonlinear photoemission probing
of matter [16,17]. Pulsed photoemission techniques are also
used to obtain the maximum quantum yield of semiconductor
photocathodes when creating highly efficient electron pho-
toinjectors and photomultipliers [18–21].

The analysis of the corresponding experimental data at
present [8,9] is carried out mainly on the basis of the achieve-
ments of the theory of stationary photoemission, which was
intensively developed in the late 50s - early 70s of the last
century. The most widely used are the semiphenomenological
three-step model of Spicer’s photoemission [22,23] (includ-
ing different versions of the application of the Fermi golden
rule for estimating the probabilities of light absorption [8,9])
and the formally more rigorous, but much more difficult to
interpret microscopic theory based on the application of the
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diagram technique for nonequilibrium Green’s functions (one-
step model) [24–29]. The microscopic theory of stationary
photoemission from crystals includes the calculation of the
photocurrent in the second order of the perturbation theory
in the electromagnetic field. In this case, the field is usually
considered monochromatic with a certain frequency ω, and it
is in the second order that a constant component appears in the
current (the goal of calculations and the most frequent exper-
imental measurements), therefore, complete averaging over
time is performed from the very beginning. The magnitude
of this averaged stationary current and its frequency-energy
distribution are determined, first of all, by the energy spectrum
of electrons, as well as by the processes of elastic and inelas-
tic scattering in the near-surface region of the photocathode.
If the mean free path of photoelectrons is small compared
to the depth of photoexcitation, then taking inelastic pro-
cesses into account becomes especially important, although
it is described by difficult-to-estimate higher-order scattering
diagrams, which can sometimes be estimated by series and
sums expressed in terms of phenomenological lengths and
times of electron free path [24]. From the phenomenologi-
cal considerations of the three-step model, it follows that at
excitation energies of the order of several electron volts, the
main mechanisms of photoelectron scattering and the charac-
teristics of the photocurrent in metals and semiconductors are
very different. In bulk metal photocathodes, where electron-
electron scattering predominates the response time of the
photocurrent to photoexcitation and the relaxation time after
switching off the illumination τ ∼ 10−15–10−14 s is much
shorter than in semiconductor photocathodes, where the main
thing is electron-phonon scattering and τ ∼ 10−13–10−12

s; it is especially much less than in photocathodes with
negative electron affinity, where a large photo yield is deter-
mined by slow processes of thermalization accumulation of
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photoexcited electrons at the bottom of the conduction band
and their diffusion to the surface, which leads to τ ∼
10−10–10−9 s [19,20,23]. In the presence of quantum-size
films, superlattices, surface levels of the image potential on
the surface of metals and semiconductors, some peaks and
thresholds are observed in the photoemission energy and
angular distributions, indicating the formation of resonant
quasistationary states with energies below and above the vac-
uum level [30–32]. In Ref. [21], it was demonstrated that the
use of strained semiconductor superlattices as elements of
photoemitter with negative electron affinity leads to such a
rearrangement of the spectrum and a change in the dynamics
of electrons in the active region, which increase the quantum
yield and the degree of polarization of photoelectrons, signif-
icantly changing the relaxation times.

For a productive theoretical description of nonstation-
ary pulsed photoemission, three main approaches are used:
(1) to calculate the time-dependent probabilities of fast fem-
tosecond pumping-probing processes in two-photon photoe-
mission with time resolution, the technique of the Keldysh’s
nonequilibrium Green’s functions is used [28,29] in line with
the development of the one-step model [26,27]; (2) to interpret
the same probabilities, as well as to describe quantum beats
in such systems, the density matrix method with the solution
of the Bloch equations for the two-level [33] and three-level
[34,35] models is currently most often used; (3) to describe
slower picosecond and nanosecond relaxation processes in
semiconductor photocathodes with negative electron affinity,
the diffusion equation is solved [19,20] within the framework
of a three-step model, and the density matrix method is some-
times used [21].

It should be noted that due to the complexity of both
the physical processes themselves and their mathematical de-
scription, in all these approaches, at one stage or another,
some strictly unprovable simplifications based on various
physical assumptions are introduced. As a result of such sim-
plifications, it is possible to implement model calculations
that provide a relatively satisfactory qualitative and semi-
quantitative explanation of the corresponding experimental
data.

In addition to pulsed spectroscopic sensing of matter, of
interest is the problem of generating high-frequency oscilla-
tions and waves of electron density and current by converting
in them ultrashort laser excitation pulses acting on the system.
Thin-film nanoscale heterostructures in the form of a double
quantum well with tunnel-transparent walls for electrons are
suitable for this; such a system has doublets of relatively close
stationary or resonance quasistationary levels in the energy
spectrum of the transverse motion of electrons. The energies
of the doublets and the lifetimes of quasistationary states are
determined by the poles of the amplitudes of stationary elec-
tron scattering by the heterostructure, as well as by the shift
and smearing of levels due to inelastic electron scattering.
Pulsed excitation and slow decay of a quasiresonant nonsta-
tionary state formed by the superposition and interference of
quantum states from a narrow band of the electronic spectrum
that includes a doublet can be accompanied by beats of the
space-time distributions of the charge and current densities
of electrons whose energies belong to such a narrow band.
This kind of beating often accompany a quantum transient

[36–41] after a single pulse excitation and last for the lifetime
of quasistationary states, which can be much longer than the
time period of these beats if the transparency of the barriers
is sufficiently low and the inelastic processes for electrons are
weak.

This effect was first observed indirectly in experiments
on differential transmission and four-wave mixing for fem-
tosecond light pulses in an asymmetric double quantum well
[37,38]. In such a well, the quantum beats of the superposition
of the wave functions of the doublet of stationary states of the
discrete spectrum of transverse motion cause the appearance
of resonant damped oscillations of the electron-hole dipole
moment and a certain number of registered oscillations of
the dipole electromagnetic radiation at the terahertz difference
frequency of the doublet.

A similar effect should also exist in the case when the
doublet of quasistationary states of the transverse scattering
problem is located in the continuous spectrum of the conduc-
tion bands above or below the vacuum level [39–42].

In the previous work [42], we investigated the case when
the population of the doublet was provided by scattering of
the electron Gaussian wave packet whose spectral width is
of the order of the distance between the levels of the dou-
blet of quasistationary states. Such a problem is rigorously
formulated and solved numerically analytically in terms of
pure quantum-mechanical states of the scattering problem,
making it possible to estimate the contributions of the main
features and to understand many details of the process that
are important in more complex cases. Using the developed by
G.F. Drukarev in 1951 [43,44] a variant of the saddle-point
method, we have obtained analytical formulas expressing the
oscillating contributions of the pole singularities of the scat-
tering amplitudes to the wave function of the scattered wave
packet and have shown that, as a result of the scattering of
such a packet, the transmitted and reflected pulses outside
the double well acquire spatiotemporal modulation, which
exhibits all the features of slowly damping waves of electron
charge and current densities, running in both directions from
the heterostructure. The characteristics of these waves are
determined by the structure of the initial wave packet and the
poles of the scattering amplitudes. Their frequency is equal to
the difference frequency of the doublet, the wave number is
the difference between the wave numbers of free motion of
electrons with resonant energies, and the speed of their prop-
agation is the ratio of these quantities, while the temporal and
spatial damping decrements are determined by the lifetimes of
the quasistationary states, which can be large compared to the
wave periods.

It is natural to assume that such a generation of electron
waves can also arise as a result of pulsed photoemission when
an electron wave packet is formed upon photoexcitation either
in the bulk of the photocathode, followed by incidence on a
three-barrier heterostructure, or inside the potential wells of
the heterostructure itself. We will show later in this paper that
the spectral structure of photoemission wave packets of charge
and current densities is more complex than the structure of
a standard quantum Gaussian packet the spectral double in-
tegrals over the energy of photoexcited electrons cannot be
simply expressed in terms of the square of the wave function
modulus.
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In this paper, our first goal is to obtain some general
formulas that are convenient for describing fast pulsed pho-
toemission that occurs in a time less than or on the order of
the times of relaxation processes inside the photocathode. For
this, it is advisable to apply a variant of the density matrix
method, which was developed to describe dynamic processes
in metals and semiconductors [7,45–49]. In the apparatus
of the density matrix, mixed states are operated taking into
account the influence of an external high-frequency electro-
magnetic pumping field and the interaction of electrons with
surrounding particles.

Breaking off the chain of equations for the density ma-
trix in the second order in the light electric field, one can
obtain approximate expressions for the space-time distribu-
tions of the electronic probability and current densities for
weak inelastic incoherent processes, which correspond to
the approximate formulas of the perturbation theory for the
steady-state photoemission current [24]. On the basis of this
method, earlier in the joint work of V. M. Nabutovsky and
one of the authors [49], a theory of threshold features of
the frequency-energy distributions of photoelectrons was de-
veloped, in this case, only the stationary photocurrent was
calculated within the framework of the three-step model, and
only the time-independent diagonal elements of the density
matrix determined in the second order of the perturbation
theory in the electric field were taken into account. In the
nonstationary case, it is required to calculate both the diagonal
and off-diagonal elements of the density matrix, which depend
on time in accordance with the quantum kinetic equation de-
scribing the effect of the alternating electromagnetic field of
the pump pulse, as well as various inelastic processes partially
responsible for relaxation.

The products of the density matrix elements and the
coordinate-dependent elements of the probability density or
current “matrices” summed over the states of the registered
dedicated energy band give measurable pulsed distributions
of the electronic densities or currents, which can be inter-
preted as a kind of “generalized wave packets.” As a natural
basis for unperturbed states of the zero approximation in the
interaction of an electron with an electromagnetic field and
with other particles in the density matrix method for the open
system under consideration, we take the complete system of
one-electron stationary wave functions. These wave functions
below the vacuum level describe electronic states limited by
the volume inside the photocathode, and above the vacuum
level they are solutions to the problem of electron scattering
by the volume and surface potential and describe delocalized
states propagating inside and outside the photocathode. In the
presence of a thin quantum size heterostructure, the last wave
functions contain preexponential coefficients proportional to
the scattering amplitudes, which can have pole singularities,
providing a resonant oscillatory contributions of quasistation-
ary states to the probability and current densities, both directly
and through the spectrum of the density matrix elements.

It turns out that the effect of the modulation formation of
charge and current density waves as a result of photoemission
excitation of a doublet of quasistationary states of a double
quantum well can take place not only after the trailing edge of
a photoemission pulse of a suitable shape has passed through
the heterostructure, but also after the leading edge has passed.

The effect is the result of the combination of two transient
processes: (1) turning on or off the photoemission excitation
during the action of the leading or trailing edge of the light
pump pulse (determines the appropriate time dependence of
the density matrix) and (2) tunneling population or decay of
the doublet of quasistationary states in a double quantum well
(whose lifetimes τ ≈ h̄/E ′′ are determined by imaginary parts
E ′′ of the energies of the poles of the scattering amplitudes).
The duration of the fronts of light pumping �t determines
the scale of the temporal smearing of the studied oscillation
effects with a period T , for the manifestation of which the
conditions must be satisfied

�t � T � h̄/E ′′. (1)

The duration of the electron pulse incident on the heterostruc-
ture, and, accordingly, the duration of the photoexciting laser
pulse, can be large, it is important that their trailing and/or
leading edges be sufficiently short or comparable in time
compared to the period of the generated waves, otherwise the
studied wave oscillations may be smeared. Therefore, in order
to simplify the mathematical analysis of the problem and to
demonstrate the main effect, here we consider a model in
which the photoexcitation of electrons is caused by a laser
pulse with almost rectangular fronts in the limit �t → 0.
The creation of almost rectangular laser pulses with fronts of
femtosecond and picosecond duration is not a simple techni-
cal problem, which is now of great interest and is solved in
various ways [50–54].

The second purpose of this paper is numerical-analytical
study of a one-dimensional model of the mechanism of
wavelike modulation of a photoelectron pulse during its
passage through a double-well quantum-well heterostructure
deposited on a volumetric planar photocathode. The wavelike
spatiotemporal modulation of the pulse of the charge density
and the current density of photoelectrons arises as a result
of excitation by this pulse and the subsequent slow oscil-
latory decay of the doublet of quasistationary states of the
heterostructure. We will show that it is possible to provide
prolongation of generation and even amplification of waves
of charge density and current density of photoelectrons when
the photocathode is exposed to a periodic sequence of light
pulses, such that their durations and intervals between them
are multiples of the difference period of the doublet.

The paper is organized as follows. Section I is devoted
to Introduction. In Sec. II, the problem of calculating the
spatiotemporal dependence of the current and charge densities
in fast pulsed photoemission is formulated and a model of
a photocathode with a surface heterostructure of the double
quantum well type is described. Section III presents the solu-
tion of the dynamic equation for the electron density matrix
in the second order in the alternating electromagnetic field. In
Sec. IV, the main contributions in terms of the frequency of
light are singled out and the correspondence to the expressions
for stationary photoemission is discussed. Section V contains
simplified formulas for numerical calculations, the results of
which are presented in Sec. VI. Section VII demonstrates the
possibility of prolonging and amplifying the generation of
charge and current density waves by the action of a series
of quasirectangular pulses. Appendix describes the derivation
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of approximate formulas that are convenient for simplifying
numerical calculations.

II. THE EMISSION CHARGE AND CURRENT DENSITIES.
STATEMENT OF THE PROBLEM AND

THE CHOICE OF MODEL

The charge n(r, t ) and current j(r, t ) densities at a point r
at a time t are given [55] by universal expressions

n(r, t ) = −ieG(t, r0; t + 0, r)r0=r,

j(r, t ) = eh̄

m
(∇rG(t, r0; t + 0, r) − ∇rG(t, r; t + 0, r0))r0=r,

where G(t1, r1; t2, r2) = i〈�̂+(t2, r2)�̂(t1, r1)〉 is two-time
causal Green′s function, �̂(r, t ) = ∑

p âp(t )ψp(r), âp(t ) is the
Heisenberg field operator, ψp(r) is Schrodinger wave function
of an electron in a stationary state p, 〈. . .〉 is the statistical
average over the equilibrium state of an unperturbed system.
Let us denote by ρ̂p1,p2,(t ) = â+

p1
(t ) âp2

(t + 0) the operator
of the two-time density matrix at coinciding times t , and
by ρp1,p2 (t ) ≡ 〈ρ̂p1,p2,(t )〉 the matrix elements of the density
matrix. We introduce the time-independent “matrix elements”
np,p′ (r) and j p,p′ (r) [56] of the charge n̂(r) and current ĵ(r)
densities at the point r

np,p′ (r) = eψ∗
p′ (r)ψp(r), (2)

j p,p′ (r) = i
eh̄

2m
[(∇ψ∗

p′ (r))ψp(r) − ψ∗
p′ (r)(∇ψp(r))]. (3)

These quantities are not statistical but microscopic. For fast
processes that occur in a time much shorter than the time
required to establish thermodynamic equilibrium, they can be
removed from the sign of statistical averaging, and the charge
and current densities can be represented as

n(r, t ) = 2 Sp(ρ̂(t )n̂(r)) = 2
∑
p,p′

ρp′,p(t )np,p′ (r), (4)

j(r, t ) = 2 Sp
(
ρ̂(t ) ĵ(r)

) = 2
∑
p,p′

ρp′,p(t ) j p,p′ (r). (5)

The latter expressions obviously generalize to an open system
of rigorous expressions for the charge nc(r, t ) and current
jc(r, t ) densities in the “pure” quantum-mechanical state of
the wave packet type

�c ≡ �c(r, t ) =
∑

p

cpe−iEtψp(r), (6)

where E = E (p) energy of an electron in a stationary state p,
cp the spectral function:

nc(r, t ) ≡ |�c|2 =
∑
p,p′

ρc
p′,pnp,p′ (r),

jc(r, t ) ≡ i
eh̄

2m
[(∇�∗

c )�c − �∗
c (∇�c)]

= 2
∑
p,p′

ρc
p′,p(t ) j p,p′ (r),

ρc
p′,p(t ) = ρc∗

p′,p(t ) = cpc∗
p′e−i(E−E ′ )t . (7)

FIG. 1. Coordinate-energy diagram of a photoemitter with a sur-
face heterostructure.

With the main goal of extracting the discussed resonance
contributions to the photocurrent normal to the surface, in
this paper, we will consider the quasi-one-dimensional model
depicted in the coordinate-energy diagram (Fig. 1), when a
heterostructure in the form of a double quantum well formed
by three identical tunnel-transparent potential barriers � at a
distance d from each other is deposited on the flat surface of
a bulk photocathode, the heterostructure plays the role of an
energy filter for photoelectrons.

When photoexcited by light of frequency ω, electrons un-
dergo transitions between states p1 below the vacuum level,
localized inside the photocathode and delocalized above vac-
uum states p and p′ (Fig. 1). The detector of the photocurrent
normal to the surface must be located outside the system
and must be configured to register the discussed alternating
current of photoemission of electrons with energies εp and
ε′

p from a narrow band Emin � εp, εp′ � Emax of states p and
p′, covering one doublet of resonant quasistationary states
with energies ER1 and ER2 above the vacuum level of the
photocathode. Because of the law of conservation of energy,
by light of a given frequency ω electrons will effectively be
excited into the states of such a band Emin � εp, εp′ � Emax,
the initial states of which belong to some also narrow energy
band E1 min ≈ Emin − h̄ω � εp1 � Emax − h̄ω ≈ E1 max below
the vacuum level Evac and the boundary level E0 (for a metal
photocathode, this is the Fermi energy of a partly filled con-
duction band, and for a semiconductor photocathode this is
the energy of the valence band ceiling).

Here we are interested in the pulses of the charge and
current densities of photoexcited electrons, which are equal to
the sums (4) and (5) over the states p and p′ in the continuous
spectrum of the scattering problem, belonging to a narrow
registered energy band of photoelectrons. The wave functions
of electrons ψp(r) are the basic solutions of the stationary
Schrodinger equation, which takes into account the spatial
profile of the potential energy of the electron. The elements
of the density matrix ρp′,p(t ) obey the kinetic equation and
carry information about the photoexcitation of electrons from
deep-lying stationary states, as well as about inelastic scat-
tering processes. Comparison of expressions (2)–(5) and (7)
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shows that the nonstationary pulses of the charge and current
densities arising as a result of photoexcitation and scattering
of electrons, retain and generalize the most important prop-
erties of the wave packet (6) formed by the superposition of
the wave functions of excited stationary states of electrons.
In the previous paper [42], we studied in detail the case when
relations (6) and (7) describe the scattering of a Gaussian wave
packet by a double-well heterostructure of the Fig. 1 type and
showed that outside the heterostructure nc(r, t ) and jc(r, t )
undergo wavelike space-time modulation. When a short pho-
toemission pulse is scattered by such a heterostructure, similar
effects should also appear.

III. SOLUTION OF THE KINETIC EQUATION
FOR THE DENSITY MATRIX

The density matrix operator obeys the equation of motion
[7,45–49]

ih̄
∂

∂t
ρ̂p1,p2 = [

Ĥ , ρ̂p1,p2

]
, (8)

the Hamiltonian of the system has the form [49]

Ĥ =
∑

p

ξpâ+
p âp −

∑
p1,p2

Ed p1,p2 â+
p1

âp2
+ Ĥ1, (9)

where ξp = εp − μ is the energy of the electron in the state p,
μ is the chemical potential, E = E (t ) is the field strength of
an electromagnetic wave,

d p1,p2 =
∫

ψ∗
p1

(r) erψp2 (r)d3r (10)

are matrix elements of the electron electric dipole moment, Ĥ1

is the part of the Hamiltonian describing the electron-electron
and electron-phonon interaction, it leads to a renormalization
of energy levels, that is, to their shift �εp and smearing γp.

Opening the commutator and averaging in the mass opera-
tor Mp = �εp + iγp (or relaxation time h̄γ −1

p ) approximation,
we obtain a system of kinetic equations for the elements of the
density matrix

h̄
∂

∂t
ρp′,p − iξp,p′ρp′,p = h̄FE{ρ} − γp,p′ (ρp′,p − ρ̄p′,p), (11)

where

FE{ρ} = i

h̄

∑
p1

{(
Ed p1,p

)
ρp′,p1 − (

Ed p′,p1

)
ρp1,p

}
and ξp,p′ = ξp − ξp′ is the difference between the renormal-
ized energies, γp,p′ = γp′ + γp > 0 is the total width of the
combined levels. The Hermiticity of the density matrix ρp′,p =
ρ∗

p,p′ is ensured by the fact that ξp,p′ = −ξp′,p and γp,p′ = γp′,p.
In equilibrium, only the diagonal elements of the density
matrix on the initially occupied states with Fermi average
occupation numbers np are not equal to zero [48]

ρ
(0)
p′,p = ρ̄p′,p = npδp′,p =

{
np, p′ = p

0 , p′ �= p
. (12)

Further developing the theory of perturbation in the electric
field E = E (t )

ρ =ρ (0)+ρ (1)+ρ (2) + · · · , ρ (n) ∼En, �R =Ed/h̄ � |ωp′ p|,

we have a system of recurrent differential equations

∂

∂t
ρ

(n)
p′,p − iωp′,pρ

(n)
p′,p = F (n)

p′,p(t ), n = 0, 1, 2, . . . , (13)

where

F (0)
p′,p(t ) = 1

h̄
γp,pnpδp′,p,

and for n � 1,

F (n)
p′,p(t ) = i

h̄

∑
p1

{
(Ed p1,p)ρ (n−1)

p′,p1
− (Ed p′,p1 )ρ (n−1)

p1,p

}
,

and ωp′,p = (ξp,p′ + iγp′,p)/h̄, moreover ωp,p′ = −ω∗
p′,p. The

general solution to each of equations (13) has the form

ρ
(n)
p′,p(t ) = eiωp′ ,pt

{∫ t

0
F (n)

p′,p(τ )e−iωp′ ,pτ dτ + ρ
(n)
p′,p(0)

}
. (14)

These formulas are valid for any shape of the light pulse
E (t ) and make it possible to calculate first ρn

p′,p(t ), and then
using (2)–(5) the space-time dependencies of the photoemis-
sion charge and current densities. Here, we are interested in
transient processes over times of the order of the relaxation
times of the electronic subsystem with a sufficiently sharp
switching on and/or switching off of a light pulse.

If the exciting light pulse E (t ) acts for some finite time
interval t0, so that E (t ) = 0 at t > t0, then, in accordance with
(14) at t > t0, the solution of Eq. (13) has the form

ρ
(n)
p′,p(t ) = eiωp′ ,p(t−t0 )ρ

(n)
p′,p(t0), (15)

that is, ρn
p′,p(t ) oscillate and decay exponentially with time.

Consequently, the photocurrent does not stop instantly
even after the abrupt switching off of the light pulse, and
in the presence of a suitable multilayer heterostructure, this
photocurrent (4) and (5) can acquire quasiwave spatiotempo-
ral modulation due to the pole features of the wave functions
ψp(r) and ψp′ (r). The appearance of electron probability den-
sity and current waves after scattering of an electron Gaussian
wave packet with a suitable spectral function by a double
quantum well is described in our work [42].

It turns out that a similar effect of the excitation of quasis-
tationary states and the modulation formation of charge and
current density waves can take place not only after the passage
of the trailing edge of a photoemission pulse of a suitable
shape through the heterostructure, but also after the passage
of the leading edge, as a kind of relaxation process.

The electric field strength of the light pump pulse can be
represented as the Fourier expansion E (t ) = ∑

ω Eω(t )eiωt ,
where ω = ±|ω| are high light frequencies (|ω| 
 t−1

0 ), and
the envelopes Eω(t ) are functions of time with a scale of
change in the order of the characteristic duration t0 of the
pump pulse. Time integrals in (14) are easily taken if the
fronts of the envelopes Eω(t ) are approximately modeled by
rectangular functions (Fig. 2). Then, at each recurrent step,
integration over time gives∫ t

0
E (τ )e−iωp1 ,p2 τ dτ ≈ i

∑
ω

Eω

ωp1,p2 − ω
(ei(ω−ωp1 ,p2 )t − 1),

(16)
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FIG. 2. The response of the photocurrent (solid line) as a func-
tion of time against the background of a rectangular pump pulse
(dashed line) for a system like Fig. 1.

where in brackets the exponent oscillating with time is the
contribution of the upper limit of integration, and the sub-
tracted unit is the contribution of the lower limit, that is,
the moment of switching on. When describing stationary
photoemission, the light is usually considered to be strictly
monochromatic from a certain moment in time, but its
switching-on adiabatically moves away from t = 0 to t =
−∞ (for example, by introducing an infinitely slowly increas-
ing time exponent until the moment of stabilization), in this
case, in integrals like (14), the contribution of the lower limit
becomes zero, that is, formally in brackets (16), one should
be replaced by zero. In the case of short light pulses under
consideration, the contribution of the moment when the light
is switched on is significant, and the contribution of the upper
limit of integration is given by terms proportional exp(iωt ).

If at the initial moment t = 0, the off-diagonal elements of
the density matrix are equal to zero ρ

(n)
p′,p(0) = 0, then at t > 0

the first order solution in the electric field has the form

ρ
(1)
p′,p(t ) = 1

h̄
(np′ − np)

∑
ω

(d p′,pEω )
eiωt − eiωp′ ,pt

ω − ωp′,p
, (17)

and the second order solution is given by the expression

ρ
(2)
p′,p(t ) = 1

h̄2

∑
p1,ω,ω1

{
(np′ − np1 )(d p′,p1Eω )(d p1,pEω1 )

ω − ωp′,p1

×
[

ei(ω+ω1 )t − eiωp′ ,pt

ω + ω1 − ωp′,p
+ ei(ωp′,p1

+ω1 )t − eiωp′ ,pt

ωp′,p − ωp′,p1 − ω1

]

+ (np − np1 )(d p′,p1Eω1 )(d p1,pEω )

ω − ωp1,p

×
[

ei(ω+ω1 )t − eiωp′ ,pt

ω + ω1 − ωp′,p
+ ei(ωp1,p+ω1 )t − eiωp′ ,pt

ωp′,p − ωp1,p − ω1

]}
,

(18)

and here the formal frequency parameters ω and ω1 take
positive and negative values. The last sums make it possible
to investigate not only the relaxation process in the case of a
sharp switching on of a light pulse, but also the asymptotic
transition to the stationary photoemission regime at t → ∞.

The study of the model of photoexcitation of electrons by
a laser pulse with almost rectangular fronts is useful not only
for simplifying the mathematical analysis of the problem. In
recent years, has attracted quite a lot of applied interest [50],
and it has become possible to create short laser pulses of
a given, including almost rectangular, shape with fronts of
femtosecond and subpicosecond durations. Various linear and
nonlinear methods can be used to form them [50–54].

For the manifestation of the effects we are considering, the
duration t0 of the photoexciting laser pulse, and, accordingly,
the duration of the photoelectron pulse incident on the het-
erostructure, can be small or large. It is important that the
laser pulse provides a sufficiently high population of excited
electronic states with energies in the vicinity of the doublet of
quasistationary states of the heterostructure and that the pho-
toelectron pulses formed from these states contain significant
energy spectral components of the doublet, and that the char-
acteristic durations �t of the leading and/or trailing edges of
all these pulses were rather short or comparable in comparison
with the period T of the generated electron density waves,
satisfying inequality (1). Otherwise, the studied wave oscilla-
tions are smeared out and do not manifest themselves. Indeed,
the degree of non-rectangularity of light fronts can be roughly
described by introducing exponential factors of the type e−t/�t

in subintegral expressions (14) [in particular, in (16)], which
smear the contribution of the oscillating exponents e−iωp1 ,p2 τ .

IV. ANALYSIS OF THE MAIN CONTRIBUTIONS

When calculating the photoelectron charge and current
densities, substituting (15) or (18) into (4) and (5), one should
neglect small terms. The states p and p′ that determine the
current are initially not occupied, but excited by light, and
have equilibrium values of the Fermi occupation numbers,
which are practically zero np′ ≈ np ≈ 0, while the unexcited
initially occupied states p1 have occupation numbers almost
equal to unity np1 ≈ 1. Under excitation by almost monochro-
matic light with a frequency |ω|, the denominators in (18)
have such a structure that the terms with ω1 = −ω are large
compared to other terms that can be neglected, moreover, for
the large terms in the first square bracket ω < 0, ω1 > 0, and
in the second square bracket ω > 0, ω1 < 0, therefore we
leave only them and further, denoting ω = |ω| = |ω1| > 0, we
have

ρ
(2)
p′,p(t ) =

∑
p1

Dp1

[
eiωp′ ,pt − 1

ωp′,p
(
ω + ωp′,p1

)

+ eiωp′ ,pt − ei(ωp′,p1
+ω)t(

ω + ωp′,p1

)(
ω + ωp′,p1 − ωp′,p

)
+ 1 − eiωp′ ,pt

ωp′,p
(
ω − ωp1,p

)
+ eiωp′ ,pt − ei(ωp1,p−ω)t(

ω − ωp1,p
)(

ω − ωp1,p + ωp′,p
)
]
, (19)

here and below, Dp1 denote the coefficients

Dp1 = np1

h̄2

(
d p′,p1E−ω

)(
d p1,pEω

)
, (20)

they are proportional to the product of the moduli of the matrix
elements of the electron dipole moments |d p′,p1 ||d p1,p| and the
light intensity |Eω|2; therefore, they essentially determine the
magnitude of the photoelectron charge and current densities.

Let us express the difference frequencies in terms of the
energies and damping decrements of the stationary states
combined by them h̄ωp1,p2 = ξp2,p1 + iγp1,p2 = ξp2 − ξp1 +
iγp1,p2 . We also take into account that the smearing of
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high-energy excited states usually exceeds the smearing of
unexcited states γp ∼ γp′ 
 γp1 , then (19) takes the form

ρ
(2)
p′,p(t ) = h̄2

(ξp − ξp′ ) + iγp′ p
{[1 + ei(ξp−ξp′ )t/h̄−γp′ pt/h̄]

×
∑

p1

Dp1 f (ω, p, p′, p1) −
∑

p1

Dp1 f (ω, p, p′, p1)

×[ei(h̄ω−(ξp′−ξp1 ))t/h̄−γp′ t/h̄ + e−i(h̄ω−(ξp−ξp1 ))t/h̄−γpt/h̄]},
(21)

where

f (ω, p, p′, p1) = 1

h̄ω − (
ξp − ξp1

) − iγp

− 1

h̄ω − (
ξp′ − ξp1

) + iγp′
. (22)

All time-dependent terms are related to the contributions
of the lower limits of integration over time; they reflect the
influence of the moment of switching on the light pulse and
oscillate with frequencies close to (ξp − ξp′ )/h̄, decaying ex-
ponentially in times of the order of relaxation times γ −1

p′,p ∼
γ −1

p′ ∼ γ −1
p . At t → ∞, each of the quantities ρ

(2)
p′,p(t ) tends

to a constant value determined by the contributions of the
upper limits of integration over time (the unit inside the square
bracket of the first term):

ρ
(2)
p′,p(0) = h̄2

(ξp − ξp′ ) + iγp′ p

∑
p1

Dp1 f (ω, p, p′, p1). (23)

Substitution ρ
(2)
p′,p(0) instead of ρ

(2)
p′,p(t ) in (4) and (5) gives

expressions for the charge and current density of stationary
photoemission in the energy band recorded by the detector.

The general expressions of Secs. III and IV derived in the
relaxation time approximation are applicable to a photocath-
ode in which the processes of inelastic scattering of electrons
are weak, that is, the thickness of the region of photoexcitation
of electrons is less than the mean free path of high-energy
electrons emitted into vacuum immediately after photoexcita-
tion in a pulsed fast one-step quantum coherent process. This
can be a bulk photocathode located at x < x0, within which
unexcited states p1 are localized, and the heterostructure is ab-
sent or located on the surface (Fig. 1). Even better, our general
formulas are applicable to the description of photoemission
from a separate double quantum well, which is a thin-film
photocathode whose thickness is less than the mean free path
of electrons.

If the photocurrent is formed by pulsed photoexcitation of
electrons directly in thin conducting layers from the inside of a
quantum double-well heterostructure, then the pole features of
the scattering amplitudes of excited states of electrons ψp and
ψp′ should manifest themselves not only explicitly through ex-
pressions (2) and (3), but also through the matrix elements of
the dipole moments (10). Our preliminary calculations show
that in this case the effect of quasiwave beats and modulation
of the charge and current densities going in both directions
from such a photocathode can be stronger. This issue requires
additional research.

Formula (23) does not contradict the formulas of the
one-step model of photoemission [24], which express the

almost coherent quasielastic part of the photocurrent, which
is proportional to the sum of the products of three dressed
Keldysh′s Green′s functions; in our case, they correspond
to the factors GR ∼ (ξp − ξp′ + iγp′ p)−1, GA ∼ (h̄ω − ξp′ +
ξp1 ∓ iγp)−1, G+ ∼ np1 .

General microscopic [24] and phenomenological three-
step [22,23] theories of photoemission indicate that in bulk
photocathodes, the thickness of which is much greater than the
mean free path of excited electrons, the quasielastic approxi-
mation is insufficient, and the magnitude of the photocurrent
is strongly influenced by the processes of multiple inelastic
scattering of electrons mainly by phonons. This slow stage of
the process, which contributes to the accumulation of excited
electrons at the bottom of the conduction band before they
escape into vacuum (which provides a large photocurrent), is
often described by the equations of diffusion theory [19,20]
(in thick photocathodes, especially in photocathodes with neg-
ative electron affinity). Our consideration is not applicable to
such cases.

Our formulas are convenient in that they contain easily in-
terpretable characteristics of the energy spectrum of electrons
and light; they are valid for the fast stage of the process, as
long as the light field is not too strong and the scattering by
phonons and electrons is rather weak.

It can be seen from them that at γ → 0 and p′ ≈ p, the
main contribution to stationary photoemission is associated
with the products of two blurry δ − functions describing the
approximate conservation of energy upon photoexcitation of
an electron: the optical (interband) Joint density of states per
unit phase volume

δ
(
ξp1 + h̄ω − ξp′

) ≈ 1

π

γp′ p1(
ξp1 + h̄ω − ξp′

)2 + γ 2
p′ p1

,

and the intraband density of excited states per unit phase
volume

δ(ξp − ξp′ ) ≈ γp′ p

(ξp − ξp′ )2 + γ 2
p′ p

.

In this approximation, the expression for the steady-state
current corresponds to a phenomenological three-step model
of photoemission with allowance for weak blur of states [49].
The distribution of photoelectrons over states with energies ξp

is given by the sub-sum (5) over states p′. Sometimes, for an
estimate, it is assumed that the main contribution to the total
photocurrent comes from terms (5) with p′ = p, however, the
terms of sum (5) with off-diagonal terms p′ �= p and real parts
of the Lorentzian fractions from (21)–(23) can also make a
noticeable contribution to the photocurrent, especially in its
variable part.

V. SIMPLIFIED CALCULATION FORMULAS

When calculating the resonant photocurrent of interest to
us through the double quantum well (or from the well) using
formulas (4) and (5), we must sum over the excited states
p and p′, which belong to a narrow band Emin � εp, εp′ �
Emax of energies recorded by the detector and which cov-
ers above-vacuum doublet of mutually close quasistationary
levels with energies ER1 and ER2, the distance between these
levels is small in comparison with the width of the allowed
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energy bands of the photocathode participating in the optical
transition, and both Emin and Emax are also far from other
quasistationary levels.

In this case, the calculation ρ
(2)
p′,p(t ) by formulas (21) and

(23) requires summation over the initial unexcited states p1

that belong to a certain energy strip E1 min � εp1 � E1 max

(where E1 min < Emin − h̄ω, E1 max > Emax − h̄ω) in the par-
tially filled conduction band or in the valence band of the
photocathode, for which the resonance denominators in ex-
pression (22) are sufficiently small.

The absolute values of the photocurrent and the quantum
yield of photoemission can vary over a very wide range de-
pending on the fundamental frequency and intensity |Eω|2
of light, as well as on the physico-chemical nature of the
photocathode material and the structure of potential barriers.
In the theory of photoemission from bulk photocathodes (as
in the theory of light absorption and reflection spectra), the
intensity of the light electric field Eω, as well as the matrix
elements of the dipole moment d p′,p1 , d p1,p (i.e., parameters
Dp1 ≈ D), can be considered almost constant factors in the
corresponding ranges.

It is convenient to replace the summation over the states
in formulas (4), (5) and (21), (23) by numerical integration
over energies, introducing factors equal to the energy densities
of states gp = dN/dεp in a certain volume. Stationary wave
functions should also be normalized in the same volume. If L
is the normalization length along the axis x, then ψ (E , x) ∼
1/

√
L, gp ∼ L, and in (4) and (5) the dependence on L is

canceled.
In this paper, we are not interested in the threshold and

saddle singularities of the densities of states; and for points
of general position in narrow bands of width �E within
the allowed energy bands of the photocathode, the quantities
gp, gp′ and gp1 can be considered as constants of the order
gp ∼ �N/�E , where �N is the number of electronic states in
the band �E ; for the same reason, we can neglect the energy
dependence of the damping parameters γp. In any case, we
perform photoemission calculations of the space-time depen-
dences of the charge and current densities up to an unknown
constant factor associated with normalization, light intensity,
and values of the matrix elements of the optical transition. For
simplicity, you can take Eω, gp, gp′ , gp1 , and Dp1 ≈ D equal
to units (if necessary, these factors can be estimated numeri-
cally). Specifically, we calculated the dimensionless ratios of
the photoemission charge n(x, t ) and current j(x, t ) densities
to their maximum values in the absence of a heterostructure
for such a narrow energy band that these almost constant
factors were reduced.

Obviously, the spectral width, duration, and length of
the photocurrent pulse increase with increasing width of the
summation energy interval [Emin, Emax]. We performed calcu-
lations using formulas (4) and (5), substituting in them the
results of summation over p1 in expressions (21) and (23).
Such calculations show that if the widths of the energy bands
[Emin, Emax], [E1 min, E1 max] are large enough compared to
the distance between the resonance levels and of the doublet
of quasistationary states, then the difference spatiotemporal
component of the modulated photoemission pulse of interest
to us is qualitatively and quantitatively not very sensitive to the
choice of boundaries [Emin, Emax] and [E1 min, E1 max] within

wide limits. Therefore, under these conditions, it is possible
with acceptable accuracy to calculate the main resonance con-
tribution to the integrals, which express the sums over p1 in
expressions (21) and (23) as shown in Appendix.

This makes it possible to write down rather simple expres-
sions for the elements of the density matrix instead of (21) for
the pumping process:

ρ
(2)
p′,p(t ) = 2π ih̄2D

(ξp − ξp′ ) + iγp′ p
[1 − ei(ξp−ξp′ )t / h̄−γp′ pt / h̄] (24)

instead of (23) after entering the stationary saturation mode:

ρ
(2)
p′,p(0) = 2π ih̄2D

(ξp − ξp′ ) + iγp′ p
(25)

and instead of (15) at t > t0 after switching off the pumping:

ρ
(2)
p′,p(t ) = ρ

(2)
p′,p(t0)ei(ξp−ξp′ )(t−t0 ) / h̄−γp′ p(t−t0 ) / h̄, (26)

where ρ
(2)
p′,p(t0) is the initial value arbitrarily set at the moment

t0, which can be estimated by expressions (24) or (25). Note
that these expressions did not include the frequency of light ω

due to the rapid convergence of integrals (A2), which approx-
imate the sums (21) and (23).

Substitution of (24)–(26) into (4) and (5) gives practically
the same oscillation-relaxation dependence of the photoelec-
tron charge density and current density on time [of the type
(Fig. 2)] and coordinates as substitution of (21)–(23).

VI. NUMERICAL SIMULATION OF PULSE
PHOTOCURRENT

We wish to demonstrate the manifestation of the resonance
contributions of the poles of the scattering amplitudes of pho-
toelectrons by a double quantum well to the sums describing
the nonstationary photoemission current normal to the surface
of a planar photocathode. For this, when constructing the wave
functions of emitted electrons, we restrict ourselves to the
simplest quasi-one-dimensional model (Fig. 1) of the Som-
merfeld model type, replacing the lattice potential acting on
these electrons with the potential of a rectangular barrier with
a height Evac at x = x3 (the axis x is directed across the surface
of the photocathode and heterostructure). The bottom of such
a potential is determined by the electron affinity χ in the pho-
tocathode crystal; for simplicity, in the calculations, we will
assume it to be the same in the conducting layers of the het-
erostructure, the potential barriers of which will be modeled
by three delta functions U (x) = (h̄2/2m)

∑3
n=1 �δ(x − xn) of

the same power � at a distance d from each other at x1 =
0, x2 = d, and x3 = 2d . Delta barriers can be used to model
real, fairly narrow and high potential barriers, in this case, the
estimate � ≈ 2mUbdb/h̄2 is valid, where Ub is the height of
the barrier, db is its width. The energy of electrons will be
measured from the vacuum level.

Thus, we assume that the required wave functions of ex-
cited electrons to the left and right of the heterostructure have
approximately the form

ψp(r) = 1√
L

{
eikp0 x + rpe−ikp0 x, x � x1

tpeikp3 (x−x3 ), x � x3
, (27)
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FIG. 3. The studied doublet of (a) the transmission coefficient
Tp and (b) the poles of the transmission amplitude tp through the
heterostructure.

where kp0 = h̄−1√2m(E + χ ) is the quasiwave number trans-
verse to the boundary in the volume of the photocathode,
kp3 = h̄−1

√
2mE is the wave number in vacuum to the right

of the system, rp and tp are the amplitudes of reflection and
transmission of the surface barrier with a heterostructure, L is
the normalization length. Substituting the second row of (27)
into (2) and (3), we have expressions for the matrix elements
of the charge and current densities at points x � x3 outside the
heterostructure

np′ p(x) = e

L
tp′t∗

p e
i(kp′3

−kp3 )(x−x3 )
,

jp′ p(x) = eh̄

2mL
tp′t∗

p

(
kp′

3
+ kp3

)
e

i(kp′3
−kp3 )(x−x3 )

,

(28)

where kp′
3
= h̄−1

√
2mE ′. The transmission amplitude tp can

be found analytically or numerically using its expression
through the elements of the effective transfer matrix Me f

[39,40,42] by the formulas

tp = det Me f

(Me f )22

, Me f = L−1
3 M�MM�MM�L0,

M =
(

cos kd sin kd
k

−k sin kd cos kd

)
, M� =

(
1 0

� 1

)
,

Lj =
(

1 1

ikp j −ikp j

)
,

(29)

where k = kp0 = h̄−1√2m(E + χ ) is the quasiwave number
in the heterostructure, j = 0 or j = 3. The quantities tp, np′ p,
and jp′ p have pole singularities in the lower half-plane of the
complex energy of the electron at the values of the complex
energy ER = Re ER + i Im ER determined by the equality to
zero of the matrix element (Me f )22, these poles are associated
with the position of the narrow peaks of the transmission coef-
ficient through the heterostructure Tp = (kp3/kp0 )|tp|2 (Fig. 3).
The quantities Re ER give the energies of quasistationary
states in the heterostructure, which are approximately equal to
the energies of the peaks Tp, and the quantities − Im ER ≡ �R

give the widths of the peaks Tp, as well as the energy widths
of the quasistationary states and their lifetimes τR = h̄/�R

[39,40,42].

Below we present the results of numerical simulation for
a photocathode with a surface heterostructure, a simplified
energy diagram of which is shown in Fig. 1, for the follow-
ing specified parameters: d = 125 Å, � = 10 a.u.= 18.9 Å−1,
and χ = 4 eV. By solving numerically the equation (Me f )22 =
0, we establish that the doublets lower above the vacuum level
are located near energies (0.035 eV, 0.042 eV), (0.234 eV,
0.242 eV), (0.439 eV, 0.446 eV), (0.647 eV-0.655 eV),
(0.861 eV, 0.869 eV), etc. Difference oscillations of the
densities of the photoemission charge and current can be
manifested by a “wave packet” formed by a superposition
of photoelectrons with energies from a certain band Emin �
E � Emax, which is wide enough to cover one doublet of
resonant quasistationary states, but narrow compared to the
distances to neighboring doublets. Such a pulse can be created
by separating photoelectrons with energies Emin � E � Emax

through the use of magnetic and electric fields of the appro-
priate configuration.

We have calculated the densities of the photoemission
charge and current generated by excited electrons, the en-
ergies of which belong to the band enclosing the fourth
supra-vacuum doublet, which corresponds to two mutu-
ally close poles of the transmission amplitude tp (i.e., the
roots of the equation (Me f )22 = 0: ER1 = (0.647 − i1.567 ×
10−4) eV and ER2 = (0.655 − i1.576 × 10−4) eV. Figure 3(b)
shows the position of this doublet on the complex energy
plane, and Fig. 3(a) shows the spectrum of the transmission
coefficient through the heterostructure.

It is seen that the heterostructure is practically impene-
trable outside resonances, and the narrow resonance peaks
of the transparency coefficient Tp have a width of the or-
der of the imaginary part of the poles. For the lifetimes of
quasistationary states associated with this doublet, we have
values τR1 ≈ h̄/| Im ER1| = 4.18 × 10−12 s = 1.73 × 105 a.u.,
τR2 ≈ h̄/| Im ER2| = 4.16 × 10−12 s = 1.72 × 105 a.u., that is
τR1 ≈ τR2. The difference between the energies of these states
�ER12 = Re ER2 − Re ER1 = 0.0078 eV determines the fre-
quency ν12 = �ER12/2π h̄ = 1.89 × 1013 Hz and the period
T12 = 1/ν12 = 5.29 × 10−13 s = 2.2 × 104 a.u. oscillations of
the photocurrent.

Oscillations of the current will be effectively observed
when the inequalities τR1, τR2, τp 
 T12 are satisfied, where
τp = h̄/γp is the electron relaxation time determined by in-
elastic scattering. In numerical calculations, we used the
value γp = 2.72 × 10−5 eV, i.e., τp = 2.4 × 10−11 s = 1 ×
106 a.e., which is typical for bulk semiconductors.

In expressions (4) and (5), we pass from the summation
over the numbers of states p and p′ to the integration over the
energies of these states E and E ′:

n(x, t ) = 2
∫∫

S
ρp′,p(t )np,p′ (x)gpgp′dEdE ′, (30)

j(x, t ) = 2
∫∫

S
ρp′,p(t ) jp′ p(x)gpgp′dEdE ′, (31)

here ρp′,p(t ) is given (24) [in a more general case, one can use
(21)] or (26) with ξp − ξp′ = E − E ′ and γp′ p = 2γp = const;
np,p′ (x) and jp,p′ (x) are given (28) with kp3 = h̄−1

√
2mE , and

kp′
3
= h̄−1

√
2mE ′.
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Integrals (30) and (31) can be estimated fairly strictly
analytically in the case when the wave packet (7) formed by
the superposition of pure states (27) with a Gaussian function
cp of suitable spectral composition falls on the heterostructure
under consideration from the left. This was done in our work

[42], where the main asymptotic contributions of the poles of
the scattering amplitudes were singled out using the saddle
point method and it was proved that in the region to the right
of the double well, at x > 2d , the charge and current densities
acquire the character of weakly damped waves traveling to
the right:

nc(x, t ) =
2∑

j=1

|ÃR j |2e−2|k′′
R j|(x−2d )−2|E ′′

R j|t + 2|ÃR1ÃR2| cos (ω12t − k12(x − 2d ) + �α12)e−(|k′′
R1|+|k′′

R2|)(x−2d )−(|E ′′
R1|+|E ′′

R2|)t , (32)

jc(x, t )

= h̄

m

[
2∑

j=1

k′
R j |ÃR j |2e−2|k′′

R j |(x−2d )−2|E ′′
R j |t + (k′

R1 + k′
R2) |ÃR1ÃR2| cos(ω12t − k12(x − 2d ) + �α12)e−(|k′′

R1|+|k′′
R2|)x−(|E ′′

R1|+|E ′′
R2|)t

]
,

(33)

where ω12 = 2πν12, k12 = k′
R2 − k′

R1, �α12 = αR1 − αR2;
|ÃR j | = |Ã(ER j )| and αR j = α(ER j ) are amplitudes and phases
of complex pre-exponential coefficients, determined by the
residues of the corresponding (6) integrand in the poles
ER j = E ′

R j + iE ′′
R j (E ′

R j ≡ Re ER j, E ′′
R j ≡ Im ER j ; j = 1, 2)

of the transmission amplitude tp, these poles correspond to
the complex wave numbers kR j ≡ k(ER j ) = h̄−1√2mER j =
k′

R j + ik′′
R j (we choose the root branches so as to satisfy

the physical conditions of damping waves in space). We are
interested in systems that provide a sufficiently slow damping,
for which |E ′

R j | 
 |E ′′
R j | and |k′

R j | 
 |k′′
R j |.

Here in the calculations, we took the boundaries of the
detected energy band to be equal to Emin = 0.63 eV and
Emax = 0.67 eV and perform integration over the square S
in which Emin � E , E ′ � Emax. Due to the rapid convergence
of integrals (30) and (31), the oscillatory contribution of the
poles to the calculated charge n(x, t ) and current j(x, t ) den-
sities is almost independent of the choice of these boundaries
in a wide enough range between neighboring doublets, al-
though the absolute values of n(x, t ) and j(x, t ) increase with
increasing of integration bandwidth. As mentioned above, we
calculated the dimensionless ratios of the photoemission den-
sities of charge n(x, t ) and current j(x, t ) to their maximum
values for the same photocathode without a heterostructure
n0 and j0. This reduces the dependences on specific values
Iω, gp, gp′ , gp1 , and Dp1 ≈ D because they are almost constant
values in narrow bands of integration Emin � E , E ′ � Emax.In
contrast to analogous integrals corresponding to sums (7)
for charge nc(x, t ) and current jc(x, t ) densities in a “pure”
quantum mechanical state of the wave packet type (6), the
double integrals (30) and (31) cannot be expressed in terms of
the product of two single integrals of the type of the integral
corresponding to the sum (6) due to the energy denominator
(ξp − ξp′ ) + iγp′ p = (E − E ′) + i2γp. Therefore, asymptotic
estimates of these integrals by the fastest descent method [42]
are more difficult.

We have obtained the sought space-time dependences of
the photoelectron charge densities n(x, t ) and current densities
j(x, t ) by direct numerical integration of expressions (30) and
(31). Subsequent figures Figs. 4–6. demonstrate these depen-
dences for a pulse of the photocurrent density at the duration

of a rectangular pumping light pulse t0 = 1.21 × 10−12 s =
5 × 104 a.u. Similar figures for these dependences of the pulse
of the charge density n(x, t ) look qualitatively almost the
same, this is obvious from a comparison of two expressions
(28): in contrast to np′ p(x), the quantity jp′ p(x) contains a
factor h̄(kp′

3
+ kp3 )/2m that hardly changes within a narrow

integration band Emin � E � Emax.
In the absence of a heterostructure, i.e., at � = 0, d = 0

the amplitude of the transmission of a rectangular step is

tp = 2kp0

kp0 + kp3

,

in this case, the time dependence of the current density pulse
at the point of exit from the heterostructure x3 = 2d has the
form [Fig. 4(a)], as j0 we took the maximum value of the
current density at this point.

In the presence of a heterostructure in the form of a double
quantum well on the photocathode surface, the time depen-
dence of the photocurrent density pulse at the exit point from
the heterostructure x3 = 2d varies greatly and has the form
[Fig. 4(b)]. After switching off the light pulse, it is strongly
extended in time, demonstrating a slow exponential decay
over a time interval ∼ τR1 ≈ τR2 = ×10−11±1 s = 106±1 a.u.

FIG. 4. Time dependence of the current density pulse at the
exit point x3 = 2d for cases (a) the absence of a heterostructure,
(b) the presence of a heterostructure. Time in atomic units 1 a.u.
(t) = 2.419 × 10−17 s.
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FIG. 5. Coordinate dependence of the current density pulse from
a photocathode without a surface heterostructure for different in-
stants of time tn: (a) t1 = 2.5 × 104 a.u., (b) t2 = 5 × 104 a.u.,
(c) t3 = 7.5 × 104 a.u., (d) t4 = 10 × 104 a.u., (e) t5 = 12.5 × 104

a.u., (f) t6 = 15.0 × 104 a.u., and (g) t7 = 17.5 × 104 a.u. Coordinate
x in angstroms.

and temporal oscillations with a period ≈ T = 5.3 × 10−13 s
= 2.2 × 104 a.u. close to the period T12 of the difference
frequency of the selected doublet. Oscillations of this kind
occur both during light pumping up to the instant t0 and after
the instant t0 of switching off the light pulse in the process of
slow relaxation decay of quasistationary states.

A rough estimate of the points of stationarity of the phases
of the integrands (30) and (31) in two variables E and E ′
indicates that the pulses n(x, t ) and j(x, t ) should move along
x with a velocity close to the group velocity of the wave packet
vg = h̄−1∂E/∂k =h̄k/m, where h̄k = √

2mEc approximately
corresponds to the spectral center Ec of the packet, which
gives vg ≈ 4.8 × 105 m/s for Ec = 0.65 eV.

The coordinate dependence of the current density pulse
from a photocathode without a surface heterostructure for
different instants of time is shown in (Fig. 5). After forma-
tion, over a period of time t0, a pulse with a length of about
�x ≈ vgt0 ≈ 0.58 × 104 Å moves with a speed of about vg,
experiencing weak damping and smearing.

If there is a heterostructure in the form of a double quantum
well on the photocathode surface, the coordinate dependence
of the photocurrent density pulse for different instants of time
is shown in (Fig. 6). One can see spatial oscillations with a
period length λ = 2π/|kR2 − kR1| ≈ 2544 Å corresponding to
the difference in wave numbers kR2 = Re(h̄−1√2mER2) and

FIG. 6. Coordinate dependence of the current density pulse from
a photocathode with a surface heterostructure for different instants
of time tn: (a) t1 = 2.5 × 104 a.u., (b) t2 = 5 × 104 a.u., (c) t3 =
7.5 × 104 a.u., (d) t4 = 10 × 104 a.u., (e) t5 = 12.5 × 104 a.u.,
(f) t6 = 15.0 × 104 a.u., and (g) t7 = 17.5 × 104 a.u. Coordinate x
in angstroms.

kR1 = Re(h̄−1√2mER1), determined by resonant quasistation-
ary levels ER2 and ER1. Oscillations are present both on the
leading edge formed during pumping and on the long tail
formed during the slow decay of quasistationary states in the
quantum well, which decays exponentially over a length of
�x ∼ −h̄(Im

√
2mER1)−1 ≈ −h̄(Im

√
2mER2)−1 ≈ 105 Å.

Comparison of figures Figs. 3(a) and 3(b) (as well as
Figs. 5 and 6) shows that in the presence of a surface
heterostructure with the selected parameters � = 10 a.u. =
18.8 Å−1 and d = 125 Å the maximum value of the photocur-
rent pulse is approximately two orders of magnitude lower
than in the absence of the heterostructure, due to the low
transparency of the potential barriers of the heterostructure.
The wavelike space-time oscillations of the photocurrent with
a difference frequency ν12 = (Re ER2 − Re ER1)/2π h̄, period
T12 = 1/ν12, and wavelength λ12 = 2π/|kR2 − kR1| are obvi-
ously associated with the manifestation in integrals (30) and
(31) of two pairs of narrow stripes, on which the energies are
close to the values E = ER1, E = ER2 and E ′ = ER1, E ′ =
ER2 of pole features of the amplitude of transmission through
the surface double well tp. At the same time, a narrow stripe
in which the energies are close to the values satisfying (ξp −
ξp′ ) + iγp′ p = (E − E ′) + i2γp = 0 (for which the energy de-
nominator ρp′,p(t ) is singularly small) together with the full
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FIG. 7. Time profile of the photocurrent density at the point x3 =
2d of exit from the heterostructure as a result of the action of (a) one
and sequences (b) two, (c) three, (d) four identical pump light pulses
with a duration t0 = T12 shifted in time by δt = 4T12. Time in atomic
units (t) a.u. = 2.419 × 10−17 s.

width of the integration region, determine the magnitude of
the charge density and current density pulses components,
which are smooth in coordinate and time. In the absence
of a double quantum well on the photocathode surface, this
smooth component completely describes the photocurrent. In
the presence of a surface double well, it is also not small, but
the oscillatory integral contributions of the poles tp may well
appear on its background and compete with it.

VII. PROLONGATION AND AMPLIFICATION
OF WAVE GENERATION

The process of generating the quasiwave component of
the photoelectronic charge and current densities with the dif-
ference frequency ν12 and wavelength λ12 of the doublet of
quasistationary states of a double quantum well located on
the surface of the photocathode can be continued and even
amplified, if the photocathode is illuminated with a sequence
of identical quasirectangular pulses, the duration of which
t0 = nT12 and the interval between which δt = sT12 are mul-
tiples (i.e., n and s are natural numbers) of the difference
period T12 of the doublet. This corresponds to the second
method considered in Ref. [42] for creating a sequence of
almost identical pulse wave packets prepared in one place,
here in the region of the surface heterostructure sequentially
in time with a time period δt , as a result of this, coherent wave
impulses of n(x, t ) and j(x, t ) of the form Figs. 4(b) and 6
will move to the right one after the other with overlapping.
The sequence of N such pulses can provide prolongation
or even amplification (up to N − fold at s = 0, and to a
lesser extent at s = 1, 2, 3, ...) oscillating pulses. Here there
is a superposition not of electronic wave functions, but of
charge and current wave densities, which are quadratic in
them.

d
j

x
dt

(
(

/
3

0
,
)/
)

t
j

FIG. 8. Time dependence of the derivatives with respect to the
time on the sequences of photocurrent density pulses shown in Fig. 7
at the exit point x3 = 2d from the heterostructure. Time in atomic
units (t) a.u. = 2.419 × 10−17 s.

Figures 7 and 9 demonstrate such a coherent prolongation
of generation with amplification of the photocurrent density
waves by a sequence of four (N = 4) identical pump light
pulses with a duration t0 = T12 shifted in time by δt = 4T12.
Figures 8 and 10 demonstrate the manifestation of the dis-
cussed spatiotemporal oscillations with the difference wave
harmonics of the period T12 and wavelength λ12 through the

FIG. 9. The coordinate dependence of the current density pulses
from a photocathode with a surface heterostructure calculated at
the instant of time t = 15T12, caused by the action of (a) one, and
sequences (b) two, (c) three, (d) four identical light pump pulses
with a duration t0 = T12 shifted in time by δt = 4T12. Coordinate x
in angstroms.
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FIG. 10. Coordinate dependence of the derivatives with respect
to the coordinate on the sequences of current density pulses from the
photocathode with a surface heterostructure, shown in Fig. 9, calcu-
lated at the instant of time t = 15T12. Coordinate x in angstroms.

behavior of the corresponding first derivatives of the photocur-
rent density with respect to time and coordinate.

VIII. CONCLUSION

In our work, we developed the theory of nonstationary
photoemission, based on the method of the density matrix
of one-electron states, applicable for fast photoemission pro-
cesses at times shorter than the times of inelastic relaxation
of electrons, in particular, in thin-film photocathodes. The pa-
rameters of the theory are one-electron wave functions, energy
spectrum and characteristics of smearing of electronic states
due to rather weak inelastic scattering. The theory makes it
possible to calculate the coordinate-time dependence of the
pulses of the charge and current densities taking into account
weak relaxation processes inside the photocathode and the
presence of a surface heterostructure. In the limit of stationary
photoemission under the action of monochromatic light, the
theory occupies an intermediate position between the three-
step Spicer model and the one-step quantum model.

The calculations of the alternating photoemission current
were carried out for a simplified scheme of a planar photo-
cathode with a surface heterostructure in the form of a double
quantum well, which serves as a filter for photoelectrons. For
a photoelectron wave packet with an optimal energy width,
it can provide spatiotemporal wavelike modulation of charge
and current densities with a frequency and wavelength that
correspond to the difference frequency of the transition be-
tween the resonance levels of quasistationary states of the
surface three-barrier heterostructure. A wave packet can be
formed using electric and magnetic fields of the appropriate

configuration, by extracting electrons from the photocurrent,
the energies of which belong to a band wider than the energy
distance between the levels of a certain doublet, but narrower
than the distance to neighboring doublets.

For efficient generation of the difference harmonic com-
ponent of the alternating photocurrent, it is required that
the duration of the pump pulses should be shorter than the
relaxation time, and the intervals between them should be
shorter than the lifetime of quasistationary states, which can
be large in thin quantum-well films. The characteristics of the
photocurrent pulses strongly depend on the parameters of the
heterostructure. For layer thicknesses of the three-barrier het-
erostructure of 1–10 nm and barrier heights of 0.5–2.5 eV, the
lifetimes of quasistationary states of 10−1–102 ps and the gen-
erated difference frequencies for them of 1011–1014 Hz can be
provided. It is possible to change the lifetimes τR1, τR2, and
difference frequencies ν12 of doublet quasistationary states by
varying the parameters of the surface heterostructure, which
changes the shape of the curves of the photocurrent versus
time; the analysis of these curves can also provide infor-
mation on the values of the relaxation times τp = h̄/γp of
excited electrons in the photocathode. With the formation of
a positive feedback between the pulses of the photocurrent
and the light source with the transition of the system to the
self-oscillation mode, based on the described effect, it is pos-
sible to create a current generator in the terahertz frequency
range.

APPENDIX

We replace the sums over p1 in expressions (21) and (23)
by integrals over ξp1 and write f (ω, p, p′, p1) from (22) in the
form

f (z) = 1

z − z1
− 1

z − z2
= z1 − z2

(z − z1)(z − z2)
, (A1)

where z = ξp1 , z1 = ξp − h̄ω + iγp, z2 = ξp′ − h̄ω − iγp′,

z1 − z2 = ξp − ξp′ + iγpp′ . The function f (z) has a pole z1 in
the upper half-plane and a pole z2 in the lower half-plane of
the complex variable z.

It can be assumed that the width �εp1 of the lower band
of unexcited states is large in comparison with the distance
between the levels of the resonance doublet and with the width
of the recorded energy band ER2 − ER1 < Emax − Emin �
�εp1 ; therefore, we extend the rapidly converging integrals
over ξp1 = z to the entire real axis −R < z < +R, R → ∞.
We close the corresponding integral contours in the upper or
in the lower half-plane with semicircles of large radius R, the
contribution of which tends to zero at R → ∞, and we find
the residues at the corresponding poles. As a result, we find
that the first sum in (21) and the sum (23) are approximated
by the integral∑

p1

Dp1 f (ω, p, p′, p1) ≈ D
∫ +∞

−∞
f (z)dz = 2π iD (A2)
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and the second sum in (21) is approximated by the integrals∑
p1

Dp1 f (ω, p, p′, p1)[ei(h̄ω−(ξp′−ξp1 ))t/h̄−γp′ t/h̄ + e−i(h̄ω−(ξp−ξp1 ))t/h̄−γpt/h̄]}

≈ D

[∫ +∞

−∞
f (z)ei(z−z2 )t/h̄dz +

∫ +∞

−∞
f (z)e−i(z−z1 )t/h̄dz

]
= 4π iDei(z1−z2 )t/h̄. (A3)

After substituting the right-hand sides (A2) and (A3) in (21) and (23), we arrive at expressions (24) and (25).
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