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Effects of a far-infrared photon cavity field on the magnetization of a square quantum dot array
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The orbital and spin magnetization of a cavity-embedded quantum dot array defined in a GaAs heterostruc-
ture are calculated within quantum-electrodynamical density-functional theory. To this end, a gradient-based
exchange-correlation functional recently employed for atomic systems is adapted to the hosting two-dimensional
electron gas submitted to an external perpendicular homogeneous magnetic field. Numerical results reveal the
polarizing effects of the cavity photon field on the electron charge distribution and nontrivial changes of the
orbital magnetization. We discuss its intertwined dependence on the electron number in each dot, and on the
electron-photon coupling strength. In particular, the calculated dispersion of the photon-dressed electron states
around the Fermi energy as a function of the electron-photon coupling strength indicates the formation of
magnetoplasmon-polaritons in the dots.
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I. INTRODUCTION

Research into the influence of cavity photon modes on
electron transport through nanoscale systems [1], optical
properties of two-dimensional (2D) electron systems [2–4],
quasiparticle excitation in light-matter systems [5–8], or pro-
cesses in chemistry [9–12], has been gaining attention in the
last three decades, just to cite the work of few groups involved.
The diverse systems and their phenomena have been theo-
retically described by a multitude of methods ranging from
simple toy models [13,14], nonequilibrium Green’s functions
[15], and master equations of various types. In the more com-
plex models with few to many charged entities, traditional
approaches to many-body theory, or configuration interactions
(exact diagonalization in many-body Fock space), have been
used [16], but relatively recently, density functional theory
approaches have been appearing [17–20].

The foundation of the approach lies in combining the po-
larization of a Dirac or a Schrödinger field and the vector
potential for a photon field by solving two coupled nonlin-
ear differential equations for the evolution without explicitly
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referring to many-body wave functions of the coupled system
[17]. The procedure has been illustrated excellently by Flick
et al. in a more recent publication [19].

Only very recently, an explicit analytical gradient-based
functional exchange-correlation energy functional derived
from the adiabatic-connection fluctuation-dissipation theorem
[21] has been published [22]. Interestingly, the development
of this functional is closely related to earlier work on the
van der Waals and Casimir interactions in complex molecular
systems and macroscopic bodies [23,24].

Experiments have shown that a two-dimensional electron
gas (2DEG) in a GaAs heterostructure is an ideal experi-
mental system to achieve strong electron-photon coupling in
a far-infrared (FIR) cavity [3]. Motivated by this fact, we
suitably modify the exchange and correlation energy func-
tional and extend it to a square periodic lattice of quantum
dots formed in a 2DEG and subjected to perpendicular ho-
mogeneous magnetic field. We apply it to investigate the
influences of the coupling to a cavity photon mode on the
orbital magnetization of the system. This choice of appli-
cations has two intertwined reasons: First, the orbital and
spin components of the magnetization are equilibrium quan-
tities that do not invoke any need of calculations of the
dynamical properties of the system [25,26]. Second, the mag-
netization is thus an appropriate experimental equilibrium
quantity that could be used to control and assist in the de-
velopment of quantum-electrodynamical density functional
theory (QEDFT) approaches, that are needed for wide areas
of applications in physics and chemistry.
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In addition, it is clear that the polarization of the electron
density by the cavity-photon field must change the orbital
magnetization of the electron system, and as GaAs systems
are ideal to enable tuning of the electron-photon coupling
strength, we do the calculations for GaAs parameters [3].

In the Sec. II, we introduce the computational model for the
2DEG, collecting all technical, but important, details on the
local spin density field theoretical (LSDA) approach for the
electron-electron Coulomb interaction in Appendix A. Also,
details about the construction of the gradient-based nonlocal
exchange and correlation functional for the electron-photon
interaction are given in Appendix B. The results are presented
in Sec. III, and conclusions are summarized in Sec. IV.

II. MODEL

We model electrons in a 2D square periodic lattice of
quantum dots defined by the potential

Vper (r) = −V0

[
sin

(g1x

2

)
sin

(g2y

2

)]2
, (1)

with V0 = 16.0 meV. The dot square array is defined by the
lattice vectors R = nl1 + ml2, where n, m ∈ Z. Its unit vectors
are l1 = Lex and l2 = Ley. The reciprocal lattice is spanned
by G = G1g1 + G2g2 with G1, G2 ∈ Z with the unit vectors

g1 = 2πex

L
and g2 = 2πey

L
, (2)

where L = 100 nm. A local spin-density functional theory
(LSDFT) approach is used to describe the mutual Coulomb
interactions of the electrons in the presence of a homogeneous
external magnetic field B = Bêz perpendicular to the plane of
the 2DEG. To fulfill the commensurability conditions of the
lattice length of the dot lattice and the characteristic length
scale associated with the magnetic field l = (h̄c/(eB))1/2

[27–29], we use a state basis constructed by Ferrari [30] in the
symmetric gauge, and used previously by Silberbauer [31] and
Gudmundsson and Gerhardts [32]. The QEDFT Hamiltonian
of the Coulomb interacting electrons in a photon cavity is

H = H0 + HZee + VH + Vper + Vxc + V EM
xc , (3)

where the last term describing the coupling of the electrons to
the cavity photon field will be described in detail later. H0 is
the Hamiltonian of free 2D electrons in the external magnetic
field:

H0 = 1

2m∗ π2, with π =
(

p + e

c
A

)
. (4)

In the symmetric gauge, the vector potential is A =
(B/2)(−y, x). The wave functions of the Ferrari basis [30]
are the Kohn-Sham eigenfunctions of H0 denoted by φμν

nl
(r)

with nl = 0, 1, 2, · · · a Landau band index and μ = (θ1 +
2πn1)/p, ν = (θ2 + 2πn2)/q, with n1 ∈ I1 = {0, . . . , p − 1},
n2 ∈ I2 = {0, . . . , q − 1}, and θi ∈ [−π, π ]. pq is the number
of magnetic flux quanta �0 = hc/e flowing through a unit
cell of the lattice. We denote the eigenfunctions of the total
Hamiltonian with ψβθσ (r), where σ = {↑↓} indicates the z
component of the spin, θ = (θ1, θ2) is the location in the unit
cell of the reciprocal lattice, and β stands for all remaining
quantum numbers. In each point of the reciprocal lattice, θ,

the eigenfunctions φμν
nl

and ψβθσ form complete orthonormal
bases if (μ, ν) �= (π, π ) for all (n1, n2) ∈ I1 × I2.

The Hartree part of the Coulomb interaction is

VH(r) = e2

κ

∫
R2

dr′ �n(r′)
|r − r′| , (5)

with �n(r) = n(r) − nb, where +enb is the homogeneous
positive background charge density needed to maintain the
total system charge neutral. We consider the positive back-
ground charge to be located in the plane of the 2DEG. The
electron density is

ne(r) = n↑(r) + n↓(r)

= 1

(2π )2

∑
βσ

∫ π

−π

dθ |ψβθσ (r)|2 f (Eβθσ − μ), (6)

where the θ -integration is over the two-dimensional unit cell
in reciprocal space, f is the Fermi equilibrium distribution
with the chemical potential μ, and Eβθσ the energy spectrum
of the QEDFT Hamiltonian H Eq. (3), where σ =↑ or ↓ is
the spin label. We choose the temperature T = 1.0 K. The
Zeeman Hamiltonian is HZee = ±g∗μ∗

BB/2, and we use GaAs
parameters m∗ = 0.067me, κ = 12.4, and g∗ = 0.44.

The potential describing the exchange and correlation ef-
fects of the Coulomb interaction of the electrons,

Vxc,σ (r, B) = ∂

∂nσ

(neεxc[n↑, n↓, B])|nσ =nσ (r), (7)

is derived from the Coulomb exchange and correlation func-
tionals listed in Appendix A. The exchange and correlation
contribution to the Coulomb interaction and the positive
background charge make the localization of several electrons
possible in a quantum dot.

In Appendix B, we detail how we adopt the exchange and
correlation functional for a 2DEG in a perpendicular magnetic
field and slightly modify the gradient-based exchange and
correlation functional presented recently by Flick [22] for
the interaction of electrons with the photon field in a cavity.
We assume the reflective plates of the cavity to be parallel
to the 2DEG and use the dipole approximation assuming the
wavelength of the FIR field to be much larger than the lattice
length L. We furthermore assume the cavity plates to be disks
in order not to promote a preferred polarization of the electric
component of the cavity photon field. We emphasize that
even though we do select one photon mode here, nothing is
specified about the number of photons present in the cavity in
different situations. The functional can be expressed as

EGA
xc [n,∇n] = 1

16π

Np∑
α=1

|λα|2

×
∫

dr
h̄ωp(r)√

(h̄ωp(r))2/3 + (h̄ωg(r))2 + h̄ωα

,

(8)

where h̄ωα and λα are the energy and coupling strength of
cavity-photon mode α, respectively. Np is the number of cavity
modes. The coupling strength is expressed here in units of
meV1/2/nm as is explained in Appendix B. The gap-energy
[21,22,24] stemming from considerations of dynamic dipole
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polarizability leading to the van der Waals interaction is given
by

(h̄ωg(r))2 = C

∣∣∣∣∇ne

ne

∣∣∣∣
4 h̄2

m∗2 = C(h̄ωc)2l4

∣∣∣∣∇ne

ne

∣∣∣∣
4

, (9)

with C = 0.0089 and the cyclotron frequency ωc =
eB/(m∗c). We remind the reader here that even though
the electron gas is considered 2D, the electrodynamics remain
3D. The dispersion of a magnetoplasmon confined to two
dimensions is [33,34]

(h̄ωp(q))2 = (h̄ωc)2 + 2πn2
e

m∗κ
q + 3

4
v2

Fq2, (10)

where vF is the Fermi velocity, and q is a general wave vec-
tor. Importantly, the plasmon at low magnetic field is almost
gapless, indicating that the 2DEG is softer, regarding external
perturbation, than a 3D electron gas. To construct a local
plasmon dispersion, we use the commonly used relation in
this context that q ≈ kF/6 ≈ |∇ne|/ne [35,36] and obtain

(h̄ωp(r))2 = (h̄ωc)(2π l2ne(r))

(
e2

κl

)(
l
|∇ne|

ne

)

+ (h̄ωc)2

{
1

36

( |l∇ne|
ne

)4

+ 1

}
, (11)

where the dimensional information is made explicit by col-
lecting terms into bracket pairs. Here, it becomes clear that
for the 2D case we need all the terms specified for the mag-
netoplasmon to keep the treatment of the gap energy and
the magnetoplasmon on equal footing. The exchange and
correlation potentials for the electron-photon interaction are
generated using the variation

V EM
xc = δEGA

xc

δne
=

{
∂

∂ne
− ∇ · ∂

∂∇ne

}
EGA

xc , (12)

together with the general extension to spin densities [35]:

Exc[n↑, n↓] = 1
2 Exc[2n↑] + 1

2 Exc[2n↓] (13)

and

δExc[n↑, n↓]

δnσ

= δExc[ne]

δne(r)

∣∣∣∣
ne(r)=2nσ (r)

. (14)

The electron-photon exchange-correlation potentials (12) are
added to the DFT self-consistency iterations.

As the equilibrium electron spin densities are periodic, all
matrix elements can be related to analytical matrix elements
of phase factors exp (−iG · r) in the original Ferrari basis
[30,32]. Thus it is convenient to construct the various gradient
terms of the electron spin densities using their Fourier trans-
forms to minimize the computational errors.

In constructing the exchange and correlation functional
Eq. (8), Flick combines contributions due to the para- and dia-
magnetic electron-photon interactions Eq. (B6) up to second
order in the coupling strength, noting that “physically such an
approximation corresponds to including one-photon exchange
processes explicitly, while neglecting higher order processes,”
to use his words [22]. Importantly, the self-consistency re-
quirement in our calculations thus bring into play higher order
effects of repeated single photon processes.

The orbital and the spin components of the magnetization
of the system are

Mo + Ms = 1

2cA

∫
A

dr (r × j(r)) · êz

− g∗μ∗
B

A

∫
A

dr σz(r), (15)

where A = L2 is the area of a unit cell in the system, and the
current density is given by Eq. (B2) in Appendix B. The mag-
netization is an equilibrium quantity well suited to investigate
the effects of the coupling of the FIR photon modes of the
cavity to the 2DEG.

III. RESULTS

For all calculations, unless use of other values is indicated,
we use ten Landau bands (each split into pq subbands) and
a 16×16 (θ1, θ2)-mesh for a repeated four-point Gaussian
quadrature in the primitive zone of the reciprocal lattice. For
the spatial coordinates, we use a 40×40 (x, y) mesh for a
repeated four-point Gaussian quadrature. For all the calcu-
lations, we consider only one FIR photon cavity mode with
energy h̄ωα = 1.0 meV. For clarity, we keep the notation for
the energy of the mode as h̄ωα and the coupling as λα , even
though the index α could have been dropped.

In the upper panel of Fig. 1, the periodic dot potential is
displayed for four unit cells of the square lattice. In the lower
panel of the figure is the corresponding electron density for
two electrons, Ne = 2, in each unit cell or dot for one quantum
of magnetic flux, pq = 1, through a unit cell corresponding to
the magnetic field B = 0.414 T. The electron-photon coupling
strength is λαl = 0.050 meV1/2. Clearly, even at this low mag-
netic field, the overlap of the electron density between the dots
is very low, i.e., the electrons are well localized in the dots.
This is facilitated by the homogeneous positive background
charge density in the plane of the 2DEG and the effects of the
exchange and correlation functional for the electron-electron
Coulomb interaction.

For a higher magnetic field, the two electrons are even
better confined within the dot potential as the magnetic length
l is then smaller compared to the lattice length L. In the upper
panel of Fig. 2, the exchange and correlation potential Vex,↓(r)
Eq. (A5) is shown for pq = 4 and λαl = 0.050 meV1/2.
Note the depth of the potential compared to the maximum
depth of the confinement potential, V0 = −16 meV. In the
lower panel of Fig. 2 is the exchange and correlation poten-
tial V EM

xc,↓(r) Eq. (12). The interaction with the photon field
with an isotropic distribution of a polarization vector tends
to spread the electron charge density as has been seen in
calculations, where exact diagonalization (or configuration
interaction) methods have been used to describe the electron
cavity-photon interactions [37,38]. This action of V EM

xc,↓(r) to
polarize or spread the charge explains the attractive part seen
in the lower panel of Fig. 2 forming a ring structure where
the ratio of the gradients of the electron density versus the
density itself are high. This behavior is expected as such terms
are numerous in the potentials. The relative sharpness of the
structures in V EM

xc,↓(r) makes a strong requirement of includ-
ing a high number of Fourier coefficients in the numerical
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FIG. 1. For four unit cells of the square lattice, the dot con-
finement potential (upper panel) and the electron density for two
electrons (lower panel), Ne = 2, in each dot for pq = 1 correspond-
ing to B = 0.414 T. λαl = 0.050 meV1/2, h̄ωα = 1.0 meV, L = 100
nm, κ = 12.4, T = 1.0 K, V0 = −16.0 meV, g∗ = 0.44, and m∗ =
0.067me.

calculations, much higher than is needed for Vex,↓(r). When
the number of electrons in the unit cell, Ne, is increased, the
potentials start to acquire square-symmetry aspects from the
lattice with their characteristics deviating from the circular
symmetry that has the upper hand in Fig. 2.

In Fig. 3, the polarization of the charge distribution de-
fined as [ne(λ) − ne(0)]l2 is displayed for both Ne = 2 (upper
panel) and Ne = 4 (lower panel), with λαl = 0 to 0.050
meV1/2 and pq = 4. Clearly, for Ne = 2, the polarization
of the charge is isotropic like the distribution of the polar-
ization vector of the photon field. Moreover, we see clearly
how charge is moved away from the center of the dot to
its outskirts. The lower panel of Fig. 3 shows that for the
higher number of electrons Ne = 4 in the dots, the charge
polarized by the cavity photon field is not anymore isotropic,
but has assumed to a large extent the square symmetry of the
underlying square dot lattice. This is understandable as it is
energetically favorable to relocate some of the charge to the
corner regions of the unit cell due to the strong direct Coulomb
repulsion, but still charge is polarized away from the center
region of the dots.

We are investigating a periodic 2DEG here, so especially
at high magnetic fields, we expect the energy bands formed
by the lattice periodicity to be narrow for the states of elec-
trons that are well localized in the dots, and higher up in the
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FIG. 2. The exchange and correlation potentials for the mutual
electron Coulomb interaction Vxc (upper panel) and the electron-
photon interaction V EM

xc (lower panel) for Ne = 2, pq = 4, λαl =
0.050 meV1/2 and h̄ωα = 1.0 meV. The potentials are shown for the
lower energy spin direction.

energy spectra they can be expected to broaden. Exactly, this
behavior can help us to get insight into what is happening in
the system as the electron photon coupling is changed. To
prepare for this analysis, we show the eight lowest energy
bands for Ne = 2 at pq = 1 and λαl = 0.050 meV1/2 in Fig. 4.
Notice that for pq = 1 B = 0.414 T and for g∗ = 0.44, the
spin splitting of the bands is not clearly resolved in Fig. 4, but
we see a large energy gap from the two lowest occupied bands
showing holelike dispersion to the higher unoccupied bands
with electronlike dispersion. The two lowest bands have only
a small dispersion, indicating the localization of the electrons
in the quantum dots, but the higher ones have a large one.
The chemical potential μ = −8.954 meV located in the gap
between the occupied and the unoccupied bands. We remind
the reader that even when using terms like holelike character,
we are only modeling electrons in the conduction band of a
GaAs heterstructure.

In this self-consistent QEDFT model of a 2DEG interact-
ing with the modes of a photon cavity, the chemical potential
μ shifts nontrivially with the interaction strength. This is
not unexpected for DFT calculation, but in Fig. 5 we plot
(Eβθσ − μ) for the eight lowest energy bands (shown in Fig. 4)
as a function of the electron-photon coupling strength λαl . We
remember that for pq = 1 the band dispersion is much larger
than the Zeeman spin splitting, so in each panel of Fig. 5 there
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FIG. 3. The change in the electron density [ne(λα ) − ne(0)]l2 for
the electron-photon coupling λαl = 0.050 meV1/2 compared to the
density without the coupling (λαl = 0) for Ne = 2 (upper panel), and
Ne = 4 (lower panel). pq = 4, and h̄ωα = 1.0 meV.

are two bands. The lower left panel shows the two bands with
highest occupation, and the other panels show higher lying
bands that are almost unoccupied, as here, T = 1.0 K, giving
the thermal energy kBT ≈ 0.086 meV.

In a many-body calculation of interacting electrons and
photons, one utilizes a Fock-basis of states that include both
states from the original electron and photon bases [37,38]. The
resulting states are referred to as photon dressed states, and
commonly the term photon replicas is used. Here, the DFT
orbitals or states are derived in a different way, but it may
still be appropriate to talk about photon-dressed electrons, that
are fermions, but no photon replicas are identifiable. But a
look at the left panels of Fig. 5 should remind us of another
phenomena, a FIR magnetoplasmon polariton. The reduction
of the gap between the energy bands seen in the left panels of
Fig. 5 is reminiscent of the formation of a bosonic magneto-
plasmon polariton composed of a cavity photon mode and the
polarization of charge across a gap in the energy spectrum.
We emphasize that our DFT results cannot be taken as a
proof of the emergence of a magnetoplasmon polariton, but
we take them as an indication. Additionally, we point out that
concurrently to the narrowing of the band gap or gaps, the

-� 0 ��1
-�

0
�

�2 

-10

-8

-6

E (meV)

FIG. 4. The four lowest in energy bands for pq = 1 and λαl =
0.050 meV1/2. Each band is composed of two spin subbands sep-
arated by the Zeeman energy 1.053 × 10−2 meV. As Ne = 2, the
chemical potential μ = −8.954 meV is located in the gap between
the filled bands showing holelike character below, and the empty
bands showing electronlike character above. T = 1.0 K. h̄ωα =
1.0 meV.

mixing of the states of the original basis functions increases
beyond what is caused by the Coulomb interaction alone. The
electron-photon interaction is leading to a mixing of energy
bands as seen in the formation of a magnetoplasmon polariton.
A corresponding structure is found in the energy spectrum of
the 2DEG for higher values of the magnetic flux pq.

The electron-photon coupling is expected to increase the
total energy for the electronic system, but in a dot-modulated
charge neutral 2DEG this can be hidden by other details. In
Fig. 6, we display in the top panel the total energy as a func-
tion of the number of electrons in a unit cell Ne, but also for the
electron-photon coupling in the range λαl = 0 − 0.1 meV1/2.
Clearly, it is difficult to discern the effects of the coupling
here. They become clearer in the center panel for pq = 1
and the bottom panel for pq = 4, where we display Etotal(λ) −
Etotal(0) as a function of λαl for several values of Ne. As
expected, the electron-photon coupling leads to an increase
in the total energy of the system. The largest effects for the
increase of the total energy is for Ne = 1 or 2 for pq = 1
(center panel). The increase for Ne = 3 or 4 is much smaller,
which can be referred back to the decreased polarizability of
the electron charge for the higher number of electrons. Here,
the shell structure of the quantum dots, and the availability of
un- or partially occupied states close to the chemical potential
is important to facilitate the polarization. For pq = 4 (bottom
panel) similar behavior is found, but there the increase in the
total energy is still rather high for Ne = 3, which reflects the
change in the shell structure with a higher magnetic field.

The magnetization for a dot-modulated 2DEG without the
coupling to cavity modes is presented in Fig. 7. Note the
difference in scales for the orbital component and the spin
component due to the GaAs parameters used. In Fig. 7, we
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FIG. 5. The dispersion of the four lowest energy bands as a function of the electron-photon coupling. The two overlapping spin components
for the lowest band (bottom left), the second band (top left), the third band (bottom right), and the fourth one (top right) are displayed with two
different colors. pq = 1, and μ is the chemical potential at T = 1.0 K. h̄ωα = 1.0 meV.

show that in the absence of the electron-photon interaction,
relatively few Fourier coefficients are need for the calculation.
The notation Gmax

i = 5 indicates that the integers G1 and G2

specifying the reciprocal lattice vectors, G = G1g1 + G2g2,
are in the interval −5, . . . , 0, . . . , 5. For the calculations with
λαl �= 0, we use max |Gi| = 12 for pq = 1, and 15 for higher
values of the flux pq.

The spin component of the magnetization, Ms, in Fig. 7 for
pq = 4 vanishes for Ne = 2, 4, 8, corresponding to the filling
factors ν = 1/2, 1, and 2, respectively. For a system with no
Coulomb interaction between the electrons, Ms also vanishes
for Ne = 6, but here all parts of the Coulomb interaction, the
direct one and the exchange and correlation contributions,
cause a rearrangement of the spin structure around Ne = 6,
corresponding to the filling factor ν = 3/2. This happens in
the same region as the orbital magnetization, Mo changes
signs. Mo assumes local extrema values for the filling factors
ν = 1 and 2.

As the spin contribution to the magnetization is small for
the GaAs parameters, we shall in what follows concentrate
on the effects of the electron-photon coupling on the orbital
magnetization. In Fig. 8, we display, for an overview, Mo as
a function of Ne for values of the electron-photon coupling
strength λαl in the range of 0–0.1 meV1/2 for four different

values of the magnetic flux pq. The filling factor ν is indicated
on the upper abscissa of the subfigures.

Clearly, Mo is in certain cases influenced by the coupling
λαl to a considerable amount, as could be expected from the
structure of the integrand for the orbital term in Eq. (15). To
make these changes more visible we plot �Mo = Mo(λα ) −
Mo(0) as functions of λαl for four different values of the
magnetic flux pq and the several values of Ne in Fig. 9. Like
for the total energy displayed in Fig. 6, we notice that the
largest changes in the orbital magnetization occur for one,
two, or three electrons in each quantum dot, but here the
largest change is always found for Ne = 2 with increasing
coupling λαl . The sign of �Mo(λα ) can be understood with
a comparison with the information in Fig. 8.

We note that the shape of the curves for �Mo(λα ) is non-
trivial. It depends on the filling factor, the magnetic flux pq,
and the structures of the energy bands. A noteworthy feature
of the orbital magnetization for a QD array characterized by
small values of Ne is the sensitivity to the increase of λαl , even
in the weakly interacting regime. Indeed, for all four values
of pq, one notices visible changes in the magnetization when
the electron-photon coupling slightly increases to λαl = 0.02.
One also notices that for Ne = 1, .., 3 the deviations from the
values corresponding to the noninteracting regime λαl = 0 are
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FIG. 6. The total energy Etotal as function of the number of
electrons in each unit cell Ne for four different values of magnetic
flux quanta pq and the electron-photon coupling strength λαl in the
range from 0–0.1 meV1/2 (top panel). The difference in the total
energy Etotal (λα ) − Etotal (0) as a function of λαl for pq = 1 (center
panel), and pq = 4 (bottom panel). The spectrum in the top panel
contains points for all values of the coupling strength λαl used for the
construction of the lower panels. T = 1.0 K, and h̄ωα = 1.0 meV.

considerably enhanced as pq increases. On the other hand,
the number of magnetic flux quanta pq also influences the
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FIG. 7. The orbital Mo and the spin component of the magneti-
zation Ms as functions of the number of electrons in a unit cell Ne.
λαl = 0, T = 1.0 K, g∗ = 0.44, and M0 = μ∗

B/L2.

response of the magnetization to the electron-photon cou-
pling. For example, as pq increases, the magnetization of the
three-electron QD array shows a stronger dependence on λαl .
This behavior suggests that in such a complex system the
contribution of the coupling strength to equilibrium properties
depends also on the configuration of the system, that is, charge
distribution, energy bands, gaps, and magnetic field.

Even though only single-photon exchange processes were
taken into account with terms up to second order in λαl in
the construction of the exchange and correlation functional for
the electron-photon interaction Eq. (13), the self-consistency
required in the DFT calculation forms higher order processes
built from the the single-photon exchange processes. On top
of this, the underlying square dot lattice and the Coulomb
interaction between the electrons have a strong influence.

IV. CONCLUSIONS

A self-consistent quantum-electrodynamical density-
functional approach was developed and implemented
for a square periodic quantum dot lattice placed in
between the parallel plates of a far-infrared photon
microcavity and subjected to an external perpendicular
homogeneous magnetic field. The Coulomb interaction and
the electron-photon coupling are treated self-consistently,
while the exchange-correlation functionals are adapted for the
GaAs 2DEG hosting the array. We explore how the interplay
between the Coulomb interaction and the electron-photon
coupling affects some equilibrium properties of the system.

In the presence of the cavity, the charge density of the
system is polarized and its total energy increases with in-
creasing electron-photon coupling. The orbital magnetization
of the electron system changes in nontrivial ways, depend-
ing on the magnetic flux, the number of electrons in each
dot, and their band structure. The dispersion of the energy
bands closest to the chemical potential separating empty and
filled states shows an indication for the emerging structure
of magnetoplasmon-polaritons in the dots. The magnetization
of the system is especially adequate to explore in future ex-
periments as it is an equilibrium measurable quantity, only
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depending on its static properties. The orbital magnetization
could thus be a good quantity to test the quality of the ex-
change and correlation functionals for the electron-photon
interaction.

For a low number of electrons in each dot, the effects of the
cavity photons can be seen in the polarizability of their charge
distribution around their edges—this immediately brings for-
ward the question about the interplay of the polarizability with
the very well known compressible and incompressible stripes
in the quantum Hall effect (QHE) regime [39–41]. We are not
in the QHE regime as is best seen by comparison to the model
calculation for the edge states in a QHE system within the
Thomas-Fermi approximation (TFA) done by Lier and Ger-
hardts [42]. The characteristic length of our wave functions
is the magnetic length l , that for pq = 4 is approximately
20 nm, much larger than the TFA screening length a∗

B/2 ≈ 5
nm, half an effective Bohr radius, for GaAs. We would thus

need a much higher magnetic field, electron density, or lattice
length for our array to enter the QHE regime. We are not
sure our model could handle calculations well in this strict
semiclassical QHE regime, which is well described within the
TFA, without resorting to wave functions.

The exchange and correlation functional describing the
effects of the cavity photons is constructed from the polariz-
ability of the electron system and is thus related to its density
response function as can be seen from the presence of the
magnetoplasmon dispersion in the functional. But, again, we
remind the reader that the induced density for five Hartree-
interacting electrons in a quantum dot with similar parameters
presented in Fig. 5 in Ref. [43] shows no stripes. Furthermore,
the pinning of the Landau bands to the chemical potential, or
the Fermi level, that accompanies the emergence of compress-
ible and incompressible stripes [39–41,44] is not seen in the
present calculations.
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APPENDIX A: ELECTRON-ELECTRON COULOMB
EXCHANGE AND CORRELATION FUNCTIONALS

The LSDA functional is a functional of the spin compo-
nents of the electron density ne = n↑ + n↓, and the electron
spin polarization expressed as ζ = (n↑ − n↓)/ne. The func-
tional has been interpolated between the nonpolarized and the
ferromagnetic limit by Tanatar and Ceperley [45] for 2DEG.
The form of the interpolation in 2D relies on work of Barth
and Hedin [46] and Perdew and Zunger [47]:

f i(ζ ) = (1 + ζ )3/2 + (1 − ζ )3/2 − 2

23/2 − 2
. (A1)

In an external magnetic field, it is more natural to replace the
electron density with the local filling factor ν(r) = 2π l2ne(r)
and the spin components thereof [48,49]. The exchange and
correlation functional is then [50]

εB
xc(ν, ζ ) = ε∞

xc (ν)e− f (ν) + ε0
xc(ν, ζ )(1 − e− f (ν) ), (A2)

where the interpolation between vanishing magnetic field and
an infinite one depends on f (ν) = (3ν/2) + 7ν4 and the high
field limit is ε∞

xc (ν) = −0.782
√

νe2/(κl ). The low magnetic
field limit of the functional is

ε0
xc(ν, ζ ) = εxc(ν, 0) + f i(ζ )[εxc(ν, 1) − εxc(ν, 0)]. (A3)

The exchange and correlation parts of the functional are
separated, εxc(ν, ζ ) = εx(ν, ζ ) + εc(ν, ζ ), with εx(ν, 0) =
−[4/(3π )]

√
νe2/(κl ) and εx(ν, 1) = −[4/(3π )]

√
2νe2/(κl ).

The parametrization of Ceperley and Tanatar for the correla-
tion contribution part is expressed as [45]

εc(ν, ζ ) = a0
1 + a1x

1 + a1x + a2x2 + a3x3
Ry∗, (A4)

where x = √
rs = (2/ν)1/4(l/a∗

B)1/2 and a∗
B is the effective

Bohr radius. Optimized values for the correlation parameters
ai have been derived by Ceperley and Tanatar from a Monte
Carlo calculation for the 2DEG [45]. In the new variables,
ν and ζ , the exchange and correlation potentials are conve-
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niently expressed as [48]

Vxc,↑ = ∂

∂ν
(νεxc) + (1 − ζ )

∂

∂ζ
εxc,

Vxc,↓ = ∂

∂ν
(νεxc) − (1 + ζ )

∂

∂ζ
εxc. (A5)

APPENDIX B: THE EXCHANGE AND CORRELATION
FUNCTIONALS FOR THE

ELECTRON-PHOTON INTERACTION

The electron-photon interaction with one photon mode la-
beled with α is described by

He−EM = − 1

c

∫
dr j(r) · Aα (r)

+ e2

2m∗c2

∫
dr ne(r)A2

α (r), (B1)

with the current density

jiσ (r) = − e

m∗(2π )2

∑
β

∫ π

−π

dθ �{ψ∗
βθσ (r)πiψβθσ (r)}

× f (Eβθσ − μ), (B2)

where i = x, y indicates its component along the cartesian
spatial directions. We consider a parallel plates microcavity
with the 2DEG plane in its center. As the wavelength of
the FIR cavity photons is much larger than the lattice length
L, we assume the the cavity vector potential in the dipole
approximation to be described by

Aα = eαAα (a†
α + aα ), (B3)

where eα is the polarization vector of the photon mode α with
energy h̄ωa. We will here assume the polarization uniform,
as might be accomplished by a cylindrical cavity or in a
rectangular cavity with equal horizontal lengths. Within these
approximations, the electron-photon interaction can thus be
expressed as

He−EM = h̄ωc

[
lI · eα

{(
eAα

c

)
l

h̄

}
(a†

α + aα )

+ Ne

{(
eAα

c

)
l

h̄

}2

(a†
α + aα )2

]
, (B4)

with the dimensionless spatial integral over the current density

lIi = 1

(2π )2

∑
βσ

∫
dr

∫ π

−π

dθ

× Re

{
ψ∗

βθσ (r)

(
lπi

h̄

)
ψβθσ (r)

}
f (Eβθσ − μ), (B5)

where i = x, y. The ratio e/m∗ characterizing the electromag-
netic coupling is hidden in the cyclotron energy h̄ωc, and the
dimensionless quantity (eAα/c)(l/h̄) appears in Eq. (B4) for
both the para- and diamagnetic terms.

In the QEDFT literature, the electron-photon interaction
within the dipole approximation is usually written as [22,51]
for each photon mode,

Hint = −ωαqα (λα · R) + 1
2 (λα · R)2, (B6)

with

qα =
√

h̄

2ωα

(a†
α + aα ). (B7)

The coupling constant of the photon mode α for the electrons
and the photons λα includes the polarization of the vector
potential and has the dimension of a square root of energy over
length. A more common approach to the dipole approximation
would have led us to replace I with the mean value of the
spatial coordinate R,

l2I → R, (B8)

together with the identification

|λα| = h̄ωc√
h̄ωα

√
2

l

{(
eAα

c

)
l

h̄

}
(B9)

to make a connection to our presentation of the electron-
photon interaction (B4). Here, we will thus determine the
coupling λαl in units of

√
meV.

For the derivation of the exchange-correlation functional
including single-photon exchange processes and terms up
to ∼λ2

α , we point out the discussion of Flick [22], but af-
ter inspection of the dynamic electron polarizability αμν (iω)
introduced in Eq. (8) of Ref. [22], we select a dynamic polar-
izability for the isotropic 2DEG as

α(iu) = h̄

4π

∫
dr

h̄ωp(
ω2

p/3 + ω2
g + u2

)
h̄2 (B10)

to obtain the needed dimensionality. The frequency integra-
tion for the exchange and correlation functionals expressed
by Eqs. (7) and (9) in Ref. [22] then leads to the functional
EGA

xc [n,∇n] displayed in Eq. (8).
One may question the use of the dipole approximation

for the electron-photon interaction for an extended 2DEG in
an external magnetic field. The feature lengths of the 2DEG
system, the lattice length L of the quantum array, and the
cyclotron radius l are much smaller than the wavelength of the
photons in the FIR cavity, which is in the range of several
tenths of micrometers. Second, one has to have in mind how
the FIR-absorption of single dots or wires [52] or arrays
of quantum dots [53–55] was successfully calculated earlier
using the dipole interaction and compared to experiments.
There, the external exciting field had no spatial variation ra-
dially but an angular pattern exciting dipole or higher order
electrical modes—but the self-consistent local field correction
acquired spatial variations due to the underlying system that
resulted in, for example, the excitation of Bernstein and higher
order modes.
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