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Real-complex quantum phase transition in non-Hermitian disorder-free systems
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Localization phenomena and the quantum phase transition are two core concepts of low-dimensional
condensed-matter physics. The localization transition problem related to vortex line pinning in superconductors
can be studied by mapping it to a real-complex non-Hermitian problem. Its relation to the quantum phase
transition has to be discerned. We explore these two phase transitions induced by interactions rather than by the
disorder in non-Hermitian systems. It is shown that the phase diagram is divided into the classical and quantum
regimes by a characteristic temperature. The classical regime contains topological localization transitions and
a tricritical point which connects the first-order phase transition line to the second-order transition line. The
quantum regime is a nonchaotic and first-order phase transition. In such a quantum regime, the relaxation time
does not always satisfy the bound on chaos. We show that the oscillation phase transition line due to quantized
Matsubara frequencies can give an index similar in structure to the quantum oscillation in an imaginary magnetic
field, which makes the first-order quantum phase diagram behave as a quantum critical phase diagram.
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I. INTRODUCTION

Since the problem of localization on vortex line pinning in
superconductors was studied by mapping to a non-Hermitian
system [1], the real-complex transition [2], distinguished as
a localization-delocalization transition, has been investigated
in various disordered non-Hermitian systems [3–7]. So far the
disorder has been considered to play a pivotal role in such
transitions [8,9]. Whether the disorder is a precondition [10]
for the real-complex transition and what kind of characteristic
behavior will emerge at T → 0 are core issues worth in-depth
exploration. Especially for the zero-temperature limitation,
the phase transition [11] is dominated by quantum fluctuations
rather than driven by temperature. The second-order quantum
phase transition (QPT), which is also known as a quantum
critical phenomenon (QCP) [12], has received extensive at-
tention. Because it can influence the properties of materials
in a wide range of temperatures, not just at the theoretical
zero temperature, which is impossible, it provides a different
perspective for exploring the fascinating properties of heavy-
fermion compounds [13], cuprates [14], and graphene with
interaction [15]. Interestingly, studies have found that some
QCPs might be destroyed by genetic soft modes, so then
the phase transition would change from second order to first
order, which is known as the Coleman-Weinberg mechanism
[16]. It has been used to explain [17] why the paramagnetic-
ferromagnetic transition, which was suggested theoretically
to be second order, becomes a first-order phase transition in
actual clean materials [18–20]. A transition converted from
first order to second order has been discovered in long-range
interaction systems [21]. These two kinds of transition lines
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in the conversion process are usually linked by a tricritical
point (TCP) [22,23]. Such topics, up to now, have been dis-
cussed abundantly for Hermitian systems, but to the best of
our knowledge, there is a lack of research on non-Hermitian
systems [24,25].

The non-Hermitian Hamiltonian, which breaks the con-
servation law, is usually used to describe open systems [26].
Correlative studies can be dated back to Gamow [27] and Fes-
hbach [28]. Although the non-Hermitian Hamiltonian usually
has complex eigenvalues, it can present real eigenvalues due to
the PT symmetry [24] or pseudo-Hermiticity [25]. In common
non-Hermitian systems, the quasiparticles in the usual sense
are ill defined because of the lack of a Fermi surface and
creation-annihilation operators. A similar situation may oc-
cur in Hermitian strongly correlated systems whose spectrum
function width is comparable to kBT [29], such as overdoped
cuprates [30], quantum critical regimes [12], and so on. But
for real eigenstates whose lifetimes are infinite, we can even
map them to Hermitian systems with the same eigenvalues as
quasi-Hermitian systems [31]. The concept of quasiparticles is
then revived to some extent. Here the real-complex transition
is not merely a localization-delocalization transition but also
a transition from quasiparticles to nonquaisparticles. A good
understanding of the latter phase transition may help us to
understand the transition from the non-Fermi to Fermi liquid
in strongly correlated systems. Therefore, it is crucial to unveil
the intriguing relation between the real-complex transition
and the quantum phase transition, especially in disorder-free
systems.

In this paper, we study the localization phenomena and
quantum phase transition in non-Hermitian quantum systems.
The real-complex transition in disorder-free systems is re-
vealed for different temperatures, including the theoretical
zero-temperature limit, i.e., the quantum phase transition.
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TABLE I. Types of real-complex transitions at different energy scales.

Phase diagram Classical regime Quantum regime

Transition
temperature Tt

a Tt > Tc Tt = Tc Tt < Tc lim Tt → 0

Relaxation time τs τs � h̄
2πkBTt

τs � h̄
2πkBTc

τs?b h̄
2πkBTt

h̄
2πkBTt

→ ∞
nontopological topological first-orderc quantum phase

transition
Types of phase
transitions

real-complex (point gapped phase ⇔
normal phase)

real-complex real-reald no phase
transition

real-complex real-complex

Tt > TTCP,
second-order

Tt = TTCP
e,

tricritical
point

Tt < TTCP,
first-order

(point gapped
phase ⇔ gapless

phase)

(line gapped
phase ⇔ gapless

phase)

(line gapped
phase ⇔ normal

phase)

(line gapped
phase ⇔ normal
phase), transition

point Uc
f

aThe transition temperature Tt corresponds to the temperature on the transition lines.
bThe question mark(?) means no defined inequality relation.
cBoundaries of oscillation line satisfy the scaling law.
dIt is also a continuous metal-insulator transition.
eTTCP is the temperature at the TCP.
fAt this point the order parameter has no defined value.

Corresponding phase transitions are summarized in Table I.
As a result, a characteristic temperature Tc is emphasized.
By comparing it with the transition temperature Tt (the tem-
perature that corresponds to the transition lines), the phase
diagram can be divided into classical and quantum regimes.
The division is determined by the lower bound of quantum
chaos [32] for the relaxation time h̄/(2πkBTc). One obvious
feature is that the lower bound is not always satisfied in the
quantum regime. We call it nonquantum chaotic [33] for this
reason. What is more, in the classical regime (Tt > Tc), the
real-complex transitions are characterized by two different
phase transitions, topological and nontopological phase tran-
sitions. For the topological phase transition, it could be a
transition either from the real spectrum to the complex spec-
trum or between the pure real spectrums with an energy gap
opened or closed. The latter is exactly the continuous metal-
insulator transition. For the nontopological phase transition, it
contains a nontrivial tricritical point at which the second-order
phase transition line and the first-order phase transition line
converge. Beyond that, in the quantum regime (Tt < Tc), it is
found that the first-order transition line oscillates with a period
proportional to 1/T . Such oscillations can be identified as the
non-Hermitian version of quantum oscillation in an imaginary
magnetic field by replacing the quantized Landau levels with
Matsubara frequencies. The regime is characterized by an os-
cillation crossover region. Its phase diagram manifests as the
quantum critical phenomenon, in which the order parameter
oscillates between zero and finite values, and it has no definite
value at the zero temperature. In the Hermitian limitation,
Tc = 0, the quantum regime discussed no longer exists.

This paper is organized as follows. In Sec. II, we explore
the general Hamiltonian and stress the interaction induced
by the dipole hopping [34] term, which becomes important
due to the non-Hermitian skin effect. Using the path integral
method under the mean-field approximation, the gap equa-
tion and condensed energies are obtained, the negative values
of which ensure the stability of transition. In Sec. III the bi-
layer Nelson-Hatano model is investigated. The spectrum and

thermodynamic properties are calculated. The corresponding
phase characteristic is revealed, and the QPT and quantum
chaotic behavior are discussed. The conclusions are given in
Sec. IV.

II. FUNDAMENTAL FORMALISM

The non-Hermiticity of electrons located near the open
boundary mirrors the non-Hermitian skin effect [35–44]. We
construct a bilayer non-Hermitian system with interaction in-
duced by the dipole hopping, as shown in Fig. 1, in which the
imaginary parts of two layers have opposite signs. The elec-
trons locate on different sides of the upper and lower layers,
while the holes locate on the facing sites vertically. It is shown
that the term is obtained by the subscripts of centrosymmet-
rical sites rather than the normal direct and exchange terms.
The exciton then plays a crucial part in constructed bilayer
systems [45]. The system is described by the Hamiltonian
H = H0 + Hd , where H0 is the free Hamiltonian,

H0 =
BZ∑
k,σ

[hσ,u(k)c†
k,σ,uck,σ,u + hσ,l (k)c†

k,σ,l ck,σ,l ], (1)

t1

t2 t2

t1

(a) (b)

FIG. 1. Sketch of the bilayer Nelson-Hatano model. (a) Bilayer
non-Hermitian systems with opposite imaginary parts in different
layers. Due to the non-Hermitian skin effect, electrons locate on
different sides of the upper and lower layers, while the holes locate
at the facing sites vertically. (b) The interaction produced by exciton
hopping.
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and Hd is the major hopping term for an interlayer exciton
induced by Coulomb interaction [46–48],

Hd = −U

N

BZ∑
k1,k2,σ

c†
k1,σ,uck1,σ,l c

†
k2,σ,l ck2,σ,u. (2)

BZ is the Brillouin zone, ck,σ,u/l and c†
k,σ,u/l are the annihi-

lation and creation operators of the electron in k-momentum
space with spin σ (=↑,↓), u and l denote the upper and
lower layers, and N is the number of lattice sites. hσ,u(k)
and hσ,l (k) in H0 are the energy dispersion relations on two
layers, U in Hd is the interaction strength, and the negative
sign indicates that two antiparallel dipole moments attract
each other. A similar interaction can also be found for mono-
layer non-Hermitian systems. In Appendix A, we show that a
similar term can be derived from the Coulomb interaction in
the Wannier bases.

The partition function is defined as Z = Tre−βH [49–53],
where the trace with fermion coherent states [49] is employed.
The imaginary-time partition function of the system can be
written as

Z =
∫

D[c†
k(τ ), ck(τ )] exp

(
−

∫ β

0
dτL

)
, (3)

where the Lagrangian is given by

L =
BZ∑

k,σ,λ(=l,u)

c†
k,σ,λ

(τ )∂τ ck,σ,λ(τ ) + H0 + Hd , (4)

and the temperature (∼1/β) is well defined as a real scalar,
which is different from the normal non-Hermitian system
[54]. The partition function is real because the eigenenergies
are real or appear in pairs as a conjugate complex with the
same degeneracy [50,55].

By performing a Hubbard-Stratnovich transformation with
auxiliary fields � and �∗, the attractive interactions (U > 0)
in the exciton channels are decoupled as

exp

(∫ β

0
dτ

U

N

∑
σ,k1,k2

c†
k1,σ,uck1,σ,l c

†
k2,σ,l ck2,σ,u

)

=
∫

D[�∗,�] exp

{∫ β

0
dτ

(
− 2|�|2 N

U

−�
∑
k,σ

c†
k,σ,uck,σ,l − �∗ ∑

k,σ

c†
k,σ,l ck,σ,u

)}
. (5)

Meanwhile, in order to facilitate the summation method
of Matsubara frequencies, we write the partial function
into the frequency space by using the relations ck(τ ) =
(1/

√
β )

∑
ωn

e−iωnτ ck(ωn), c†
k(τ ) = (1/

√
β )

∑
ωn

eiωnτ c†
k(ωn),

�(τ ) = (1/
√

β )
∑


n
e−i
nτ�(
n), �∗(τ ) =

(1/
√

β )
∑


n
ei
nτ�∗(
n), and

∫ β

0 dτe−iωnτ = βδωn,0. We
obtain

Z =
∫

D[c†(ωn), c(ωn),�∗(
n),�(
n)]

× exp

{
−

BZ∑
k,σ,ωn

[(−iωn + hk)c†
k,σ,u(ωn)ck,σ,u(ωn)

+ (−iωn + h∗
k )c†

k,σ,l (ωn)ck,σ,l (ωn)] − 2N

U

∑

n

|�(
n)|2

−
BZ∑

k,σ,ωn,
n

(
�(
n)√

β
[c†

k,σ,u(ωn + 
n)ck,σ,l (ωn)]

+�∗(
n)√
β

[c†
k,σ,l (ωn)ck,σ,u(ωn + 
n)]

)}
. (6)

Next, we will take the mean-field approximation in which
�(
n) = √

β�δ
n,0 and �∗(
n) = √
β�∗δ
n,0. In this way,

the partition function in frequency space can be written as
Z = ∫

D[c†(ωn), c(ωn),�∗,�]e−S , where

S =
BZ∑

k,σ,ωn

ξ
†
k,σ

(−iωnI + Hk)ξk,σ + 2βN

U
|�|2, (7)

Hk = ( hk �

�∗ h∗
k
), ξk,σ (ωn) = (ck,σ,u ck,σ,l )T , T indicates the

transposition, and ωn is the Matsubara frequency. Correspond-
ingly, the mean-field Hamiltonian reads

Hmean =
BZ∑
k,σ

ξ
†
k,σ

Hkξk,σ + 2N

U
|�|2, (8)

which, in fact, can also be elucidated by substitut-
ing c†

k,σ,uck,σ,l = −(N/U )�∗ + δ(c†
k,σ,uck,σ,l ) and neglecting

terms higher than second order δ2.
The eigenenergy spectrum is

εk,σ,± = Rehk,σ ± �k,σ (�), (9)

with

�k,σ (�) =
√

|�|2 − (Imhk,σ )2. (10)

Equations (9) and (10) show that the eigenenergies are com-
plex with finite real and imaginary parts for |�| < min |Imhk|
and purely real for |�| > max |Imhk|. This reflects the fact
that, when we change |�| by modulating the temperature
or the strength of interaction, a real-complex transition of
the spectrum can be expected. The Hamiltonian in Eq. (8)
can then be written in terms of the annihilation and creation
operators of non-Hermitian quasiparticles αk,σ , γk,σ , α‡

k,σ
, and

γ
‡
k,σ

as

ξ
†
k,σ

Hkξk,σ = εk,σ,+α
‡
k,σ

αk,σ + εk,σ,−γ
‡
k,σ

γk,σ , (11)

where α
‡
k,σ

and γ
‡
k,σ

and αk,σ and γk,σ relate ξk,σ and ξ
†
k,σ

by
the non-Hermitian Bogoliubov transformations(

αk,σ

γk,σ

)
= �k,σ ξk,σ (12)

and (
α

‡
k,σ

γ
‡
k,σ

) = ξ
†
k,σ

�k,σ , (13)

respectively, and

�k,σ = [2i�k,σ (Imhk,σ − i�k,σ )]−1/2

×
(

hk,σ − εk,σ,− �

�∗ h∗
k,σ − εk,σ,+.

)
. (14)
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Although the annihilation operators of non-Hermitian
quasiparticles are not the Hermitian conjugate of their

creation operator [54,56] (
αk,σ

γk,σ
)† 
= (α‡

k,σ
γ

‡
k,σ

), they

do satisfy the anticommutation relations as follows:
{αk,σ , α

‡
k′,σ ′ } = {γk,σ , γ

‡
k′,σ ′ } = δkk′δσσ ′ and {αk,σ , γ

‡
k′,σ ′ } =

{αk,σ , γk′,σ ′ } = {γk,σ , α
‡
k′,σ ′ } = {γ ‡

k,σ
, α

‡
k′,σ ′ } = 0.

Integrating out the quasiparticle fields in the partition func-
tion, we obtain the effective action

Seff = 2βN

U
|�|2 −

BZ∑
k,σ,ωn

ln[d̃et(−iωnI + Hk,σ )], (15)

where d̃et indicates that the zero determinants are excluded.
Exclusion of the zero determinant is a direct result in math-
ematics. The zero determinant requires that both Rehk = 0
and ω2

n = (Imhk)2 − |�|2 are satisfied simultaneously. For the
case in which both relations are satisfied simultaneously, the
roots excluded in the sum of ωn in turn are enclosed in the
deformed loop integral, so that some special poles are added
in the deformed loop integral. Despite all this, these contribu-
tions can be omitted in the thermodynamic limit N → ∞ for
k-dependent Imhk.

Under the saddle point approximation, the functional
derivative of the effective action with respect to the auxiliary
fields �∗, ∂Seff/∂�∗ = 0, yields the trivial solution � = 0
and the nontrivial gap equation

4N

U
=

BZ∑
k,σ

sinh (β�k,σ )/�k,σ

cosh (βRehk,σ ) + cosh (β�k,σ )
. (16)

The condensed energies can then be obtained with δE =
β−1[Seff(�) − Seff(0)]. Since the integral is a multivalued
integral, we define the upper and lower shores of the unan-
alyzable region. Using the arc theorem, we finally arrive at
the explicit form

δE = 2N

U
|�|2 − 1

β

BZ∑
k,σ

ln
1 + cosh (β�k,σ )

cosh (βRehk,σ )

1 + cos (βImhk,σ )
cosh (βRehk,σ )

. (17)

The stable saddle point corresponds to a negative δE . Compar-
ing the values of δE for � 
= 0 and � = 0, the corresponding
phase can be determined.

The partition function can be written as

lnZ �
BZ∑

k,σ,s=±
ln [1 + exp (−βεs)] − 2βN

U
|�|2 (18)

under the stationary phase approximation [57], where |�|
satisfies the gap equation and the negative condensed ener-
gies. We prove that the contribution from the second-order
correction is zero in Appendix B. It is shown that the second-
order contribution produces only a factor of 1 in the partition
function. With the partition function lnZ , the free energy F =
−β−1 lnZ can then been obtained. Since complex eigenen-
ergies come in conjugate pairs, the real partition function
and thus the free energy are real and objective. From the
free energy F , the entropy and specific heat can be calcu-
lated straightforwardly using the formulas Sen = kB(lnZ −

β∂ lnZ/∂β ) and γ = −β∂Sen/∂β. It is shown that zero en-
tropy at a temperature approaching to zero is guaranteed.
The continuity of these thermodynamic properties can then be
analyzed to provide corroborative identification of the orders
of various phase transitions. We will use the thermodynamic
potential to analyze the continuity of the entropy and spe-
cific heat in Sec. III B. Equation (18) and the definition of
free energy F show that the continuity of the thermody-
namic properties is equivalent to the continuity of the order
parameter |�|.

III. BILAYER NELSON-HATANO MODEL

A. Spectrum features

To reveal the various phase transitions induced by inter-
action in disorder-free non-Hermitian systems, we consider
the bilayer Nelson-Hatano model in detail. The tight-binding
Hamiltonian of the upper layer is given by

hu =
N∑
i

t

2
(egc†

i+1ci + e−gc†
i ci+1), (19)

where we have neglected the spin freedom and considered a
nonreciprocal hopping. The rightward amplitude is (t/2)eg,
while the leftward amplitude is (t/2)e−g, and g is determined
by the tilt slope of the flux line. In momentum space we have

hu(k) = t (cosh gcos ka − i sinh g sin ka), (20)

where a is the lattice distance. The Hamiltonian of the lower
layer hl (k) takes the same form but with the rightward
hopping amplitude (t/2)e−g against the leftward hopping am-
plitude (t/2)eg. We then have hu(k) = h∗

l (k).
The spectrum can be obtained: εk,±(�) = t cosh gcos ka ±√

|�|2 − (t sinh g sin ka)2. In the process of the continuous
change of the order parameter |�|, three critical points, |�|c0,
|�|c1, and |�|c2, are identified. As functions of |�|, we have
access to four different phases via modulation of |�|. We label
these four different phases as I–IV.

The values of the three critical points are determined as fol-
lows. Because |�|c0 represents the critical point of the phase
transition between nontrivial order (|�| 
= 0) and trivial order
(|�| = 0), |�|c0 = 0 can be obtained. Corresponding to the
transition from Figs. 2(b) to 2(d), the complex-spectrum gap
will change from point gapped to gapless. It can be determined
by maxBZ

k (| Im εk,±|) = 0, where maxBZ
k (| Im εk,±|) means all

k in the BZ and taking the maximum value of | Im εk,±|. Then
the critical point |�|c1 = t sinh g is identified. Similarly, sep-
arating the gapless phase, phase III [e.g., Fig. 2(d)], from the
line-gapped phase, phase IV [e.g., Fig. 2(f)], gives the value
of |�|c2. At |�|c2, the two energy bands exactly intersect; we
can then calculate |�c2| using the equation

BZ
min

k
[εk,+(|�|c2)] − BZ

max
k

[εk,−(|�|c2)] = 0. (21)

|�|c2 = t cosh g is obtained straightforwardly. The respective
energy spectra of phases I–IV have the following character-
istics. Phase I is a normal phase with a zero order parameter
|�| = 0, and its spectrum is complex and point gapped. In
phase II, 0 < |�| < |�|c1, the spectrum is complex and point
gapped [58]. In phase III, |�|c1 < |�| < |�|c2, the spectrum
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FIG. 2. Spectra for g = 0.5. (a), (c), and (e) Energy dispersion
relations. (b), (d), and (f) Comparison between the real part and the
imaginary part of the spectra. (a) and (b) Phase II, |�| = 0.3t <

t sinh g; the spectrum is complex and point gapped. (c) and (d) Phase
III, t sinh g < |�| = 0.7t < t cosh g; the spectrum is purely real and
gapless. (e) and (f) Phase IV, |�| = 1.5t > t cosh g; the spectrum is
purely real and line gapped.

is real and gapless. In phase IV, |�| > |�|c2, the spectrum
is real and line gapped [58]. To show the characteristics of
phases II, III, and IV, we show the dispersion relations for the
real part and imaginary part of the eigenenergy for g = 0.5 in
Figs. 2(a), 2(c) and 2(e), respectively. The changes in the real
part vs the imaginary part are shown in Figs. 2(b), 2(d) and
2(f), respectively.

B. Phase characteristic

The gap equation and condensed energy [Eqs. (16) and
(17)] indicate that the order parameter |�| at the critical points
(|�|c0, |�|c1, and |�|c2) depends on the temperature and the
strength of the interaction. Therefore, we can obtain the T -U
phase diagram. Figure 3(a) is the phase diagram for a fixed
value of the non-Hermitian parameter g(=1.3), where the
existence of four phases is indicated clearly. There exist two
characteristic energy scalings to divide the phase diagram into
Hermitian and non-Hermitian parts. One of the characteristic
energy scalings is the critical strength of interaction Uc near
zero temperature [� 6t in Fig. 3(a)]. It enacts a discontinuous
QPT point (QTP) [59]. Another characteristic energy scaling
is the non-Hermitian characteristic thermal energy kBTc de-
termined by Tc = t sinh g/(kBπ ). It corresponds exactly to the

maximum of the imaginary part crossing the first Matsubara
frequency [60]. When T > Tc and U deviates from Uc, the
system might undergo successive phase transitions IV → III
→ II → I with increasing temperature. Among them, there is a
TCP on the transition line separating phases II and I. At TCP a
second-order transition (in orange) and a first-order transition
(in green) converge. Both the condensed energy and the order
parameter decrease to zero at the TCP. Therefore, this TCP
can be determined by � = 0 and condensed energy δE = 0.
Figure 3(b) shows that the TCP temperature is TTCP � 0.66t
for g = 1.3. The order parameter |�| dependence on the tem-
perature is clearly visible in Figs. 3(c) and 3(d). Let us now
focus on the transition line between phases I and II. As shown
in Fig. 3(c), which embodies the right region of the TCP,
|�| changes continuously with temperature, but its derivative
has an interruption at |�| = 0. This implies that the phase
transition occurring in the transition line segment to the right
of the TCP is a second-order phase transition. In contrast, in
the region to the left of the TCP shown in Fig. 3(d), |�| is
continuously modulated in the regime of phases III and II and
jumps from a finite value to vanish (or vice versa) at some
temperature suddenly as it goes in or out of phase I. This
implies that the phase transition occurring in the transition
line segment to the left of the TCP is a first-order phase
transition. We can make a small expansion near the transition
line to obtain a Ginzburg-Landau action, regardless of whether
|�| = 0 or 
= 0. So then we identify them as classical phase
transitions.

The phase transitions IV → III → II above the tempera-
ture Tc can be clarified as being topological phase transitions
because the order parameter and its higher derivative are
continuous. Figure 4(a) shows that the entropy S and the spe-
cific heat γ are continuous for |�| 
= 0. The transition from
phase II to phase I contrasts sharply with the phase transitions
IV → III → II. It is either second order or first order because
the entropy is continuous for T > TTCP and discontinuous for
T < TTCP, while the specific heats are always discontinuous.
We can use the Zak phase [61] to identify the different phases
by topological numbers N [62],

N = 1

π

∫ π/2

0
dk

∂

∂k
(arg ε+ − arg ε−), (22)

where arg means the angle of the amplitude. That the inte-
gration is taken from zero to π/2 is due to the symmetry
with respect to the upper and lower layers. We show the
change in N as a function of |�| in Fig. 4(b). It is clearly
shown that phases II, III, and IV have different topological
numbers. In addition to their topological essence, the phase
transition from III to II is a real-complex transition, while the
phase transition from IV to III is a real-real transition. Such a
real-real transition (III → IV) can be considered a continuous
metal-insulator transition corresponding to the energy gap to
be closed.

C. QPT and quantum chaotic behavior

The non-Hermitian characteristic temperature Tc is crucial
in our discussions. Derived from the spectrum equations dis-
cussed above, the imaginary part of the spectrum has a
maximum t sinh g. The imaginary part of the spectrum is
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FIG. 3. T -U and �-T phase diagrams for g = 1.3. (a) Classical and quantum regimes, which are separated by the two characteristic energy
scales, Uc and Tc, illustrated in the text, are shown in the phase diagram. The classical phase transition appears at T > Tc ≈ 0.54t or U when
deviates from Uc ≈ 6t . Four phases, I–IV, are shown. The TCP is shown on the phase transition line between phases I and II, at which the
second-order phase transition line (in orange) connects to the first-order phase transition line (in green). The first-order phase transition appears
at T < Tc and U close to Uc. It is a phase transition between a normal phase, phase I, and a line-gapped real-energy phase, phase IV. (b) Enlarged
view near the TCP (kBTTCP ∼ 0.66t). (c) Variation of the order parameter |�| vs the temperature in various phases, which are distinguished by
dashed lines, to the right of the TCP in the phase diagram in (a). U = 6.5t . The transition between phase I and phase II is second order. The
order parameter varies continuously with temperature, but its derivative has a singularity at |�| = 0. (d) Variation of the order parameter |�|
vs the temperature in various phases to the left of TCP in the phase diagram in (a). U = 4.65t . The phase transitions between phases I and II
and I and III are first order. The order parameter jumps at the temperatures T ∼ 0.54t/kB and 0.62t/kB. (e) Enlarged view near the QTP. Two
crossover borderlines in the scalings T+ ∼ 0.738(U − Uc )1/2/kB and T− ∼ 0.531(Uc − U )1/2/kB divide the phase diagram into three regions,
phase I, phase IV, and an oscillation region. (f) The relative changes in Tc, the QTP, and the TCP for several values of g (0, 0.5, 0.9, and 1.3). It
is shown that the lager g is, the larger these characteristic parameters are. Tc = 0, and the non-Hermitian oscillation region vanishes if g = 0.
(g) Variation of the order parameter |�| vs the temperature in various phases for U = 6.002t . The order parameter shows oscillatory behavior
in the region between two crossover borderlines. (h) The non-Hermitian quantum transition line oscillates with a period of 1/T . The dashed
lines are related to the Matsubara frequencies.

associated with the relaxation time of unstable particles τs

[63]. Therefore, we have

τs �
h̄

2t sinh g
= h̄

2πkBTc
, (23)

where kBTc = t sinh g/π . The lower bound on the right side
is nothing more than the shortest possible Lyapunov time
[64] to reach quantum chaos [32]. For T > Tc, h̄/(2πkBTc) �
h̄(2πkBT ), the inequality of quantum chaos holds. This
regime, in which the rate of dissipation does not exceed the
upper bound required by quantum chaos, is viewed as the clas-
sical one. However, the characteristic is completely different
for T < Tc and U close to Uc. This unique region, resulting

from by non-Hermiticity, is divided into two phases, I and IV,
by an oscillating curve in the phase diagram [see Fig. 3(a)].

In contrast, the nonquantum chaos has been presented con-
cretely in the energy spectra. It is seen that for phase II in
Fig. 2(b), when we adjust the quantum number k from −π to
π , eigenvalues εk,±signk, i.e., εk,±, cross the real axis to form
two closed loops. Mathematically, this is Hopf bifurcation
[65]. For phases III and IV in Figs. 2(d) and 2(f), the spectra
are real, and there are no exceptional points or bifurcations.
This is consistent with the results in Ref. [6], in which the
nearest-level-spacing distribution of eigenenergies is a Gini-
bre one in the complex-eigenenergy phase. Correspondingly,
it manifests a Poisson distribution in the real-eigenenergy
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FIG. 4. Properties of the topological phase transition. (a) Entropy
and specific heat as a function of temperature for g = 1.3 and U =
6.5t . Phase transitions IV → III → II are continuous. The phase
transition between phases I and II is second order. (b) Topological
numbers in phases II, III, and IV. This implies that we can use
topological numbers to label different topological phases.

phase. The different distributions correspond to chaotic and
nonchaotic ones [66].

To get a closer look, we zoom in on the region around the
QTP in Fig. 3(e). It is shown that there are three different
regions: phases I and IV and a smooth oscillation crossover
region. They are separated by two dashed lines depicted with
the same scaling T±(U ) ∼ |U − Uc|1/2 but with different co-
efficients. Excluding some points, for which a crossing does
not indicate a phase transition, on the two lines T±(U ), the
clamped extent is the crossover and is similar to the quan-
tum critical region [12]. When we adjust the non-Hermitian
parameter g, the QTP shifts [67], as shown in Fig. 3(f). In
the limit g = 0, Tc = 0, and the oscillation region shrinks
to zero. Reference [56] pointed out that first-order quantum
phase transitions are like quantum critical points with some
limitations. We show the typical variation curve of the order
parameter |�| vs temperature near the QTP in Fig. 3(g). It
is found that the order parameter oscillates between zero and
finite values in the crossover region, so that the order param-
eter |�| is not a certain value at the QTP. We fail to obtain an
action similar to Ginzburg-Landau theory. The reason is that
the quantum and thermal fluctuations are equally important.
Such a feature agrees with the situation in strongly correlated
metals [68]. Therefore, we equate this appearance with the
non-Hermitian quantum transition.

The characteristics of the oscillation curve remind us of
the Shubnikov–de Haas (SdH) oscillation [69] in Hermitian
systems. In the presence of a magnetic field B, the quantum
oscillation shows a periodicity in 1/B at low temperature. This
feature is attributed to the Landau quantization of the energy

levels. In Fig. 3(h), we reveal a similar oscillation structure
of periodicity at 1/T at low temperature. Compared to the
magnetic field in the Hermitian system, the non-Hermitian
parameter can be viewed as an imaginary magnetic field. This
oscillation is attributed to the quantization of the Matsubara
frequencies. Meanwhile, the maximum value of the imaginary
part of the eigenvalues plays the role of the chemical potential.
In Table II, we compare the unquantifiable chaotic oscillation
and the SdH oscillation.

IV. CONCLUSIONS

To conclude, we investigated in general the real-complex
transition, also called the localization-delocalization transi-
tion, in disorder-free non-Hermitian systems with interaction.
The phase diagram of various phase transitions and the
quantum critical phenomena were revealed by the bilayer
Nelson-Hatano model. The relevant characteristic parame-
ters, such as the characteristic temperature for a division of
classical and quantum phase transition regimes, the critical
strength of interaction, the nontrivial tricritical point, and the
relaxation time of unstable particles, were identified. We em-
phasize a bound of quantum chaos for the quantum critical
phenomena determined by the relaxation time and the non-
Hermitian parameters. We draw the following conclusions.
In the classical regime, the phase transition can be either
topological or nontopological. The nontopological transition
includes a tricritical point which is the conjunction point of
first-order and second-order transition lines. In the quantum
regime, it is unquantifiable chaotic, and the first-order phase
transition line is an oscillation. The borders of the crossover
show 1/2 power law scalings.
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APPENDIX A: INTERACTION TERM

In this Appendix, we show that the interaction bringing
about real-complex transitions is universal for non-Hermitian
systems, whether it is a bilayer system or a monolayer one.
However, from the view of interaction, we fucus on bilayer
systems because for two reasons; one is the facility to modu-
late interactions by modulating interlayer distances [71], and
the other is that the interaction between excitons at long dis-
tances can be attractive [72–74].

TABLE II. Comparison of two oscillation structures.

Hermitian Non-Hermitian

Parameter Symbol Parameter Symbol

Magnetic field A Imaginary magnetic field [1] ih
Landau levels (n + 1/2)h̄eB/mc Matsubara frequencies (n + 1/2)2πkBT/h̄
Quantum oscillation period [70] B−1 Crossover oscillation perioda T −1

Chemical potential μ Maximum imaginary part t sinh g

aSee Fig. 3(h).
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In monolayer non-Hermitian systems, intralayer terms sim-
ilar to the interaction of excitons can be found in the Wannier
bases. The Coulomb interaction in the Wannier basis is written
as

HCoulomb = 1

2N

∑
i, j,i′, j′,σ,σ ′

Ui j,i′ j′

× c†
σ (ri )c

†
σ ′ (r j )cσ ′ (r j′ )cσ (ri′ ). (A1)

We stress the mirror term,

i + i′ = j + j′ = L, i 
= j, σ = σ ′, (A2)

which is different from the contributions of the direct term i =
i′ 
= j = j′ and the exchange term i = j′ 
= j = i′. We then
have

Hmirror = 1

2N

∑
i 
= j,σ

Ui, j;L−i,L− j

× c†
σ (ri )c

†
σ (r j )cσ (rL− j )cσ (rL−i ). (A3)

Writing it in k space, it is found that

Hmirror

= U

2N

∑
i 
= j,σ

1

N2

BZ∑
k1,k2,k3,k4

e−i(k1+k4 )·ri

× e−i(k2+k3 )·r j c†
σ,k1

c†
σ,k2

cσ,k3 cσ,k4 ei(k3+k4 )·L

= U

2N

BZ∑
k1,k2,σ

c†
σ,k1

c†
σ,k2

cσ,−k2 cσ,−k1 − U

2N

∑
σ

× 1

N

BZ∑
k1,k2,k3

c†
σ,k1+k3

c†
σ,k2−k3

cσ,−k2 cσ,−k1 . (A4)

Here we have used cσ (r) = N−1/2 ∑BZ
k eik·rcσ,k,

c†
σ (r) = N−1/2 ∑BZ

k e−ik·rc†
σ,k, N−1 ∑

i ei(k1+k2 )·ri =
δk1+k2,0, and eik·L = exp[i

∑
j (n j/Nj )b j · Niai] =

exp[i
∑

j (n j/Nj )Ni2πδi j] = 1. In the thermodynamic limit

Hmirror takes the form

Hmirror = U

2N

BZ∑
k1,k2,σ

c†
σ,k1

c†
σ,k2

cσ,−k2 cσ,−k1 . (A5)

This shows that we can use a non-Hermitian monolayer
model with the interaction of intralayer excitons to study such
real-complex transitions. The contribution of the excitons is
crucial for either monolayer or bilayer systems in these non-
Hermitian systems.

We adopt the bilayer system in our study. By taking into
account only the main hopping terms, we have

Hd = −
∑

σ

∑
r1,r2

U

2N
p†

σ (r1)pσ (r2) + H.c.

= − U

N
2

∑
σ

∫
dr1dr2

× c†
σ,u(r1)cσ,l (r1)c†

σ,l (r2)cσ,u(r2), (A6)

where p†
σ and pσ are the annihilation and creation operators

of an interlayer exciton and 
 is the size of the primitive
cell. The negative sign means that the order of the operators
is exchanged once mathematically in Hmirror. Physically, it is
due to the dipoles pointing in opposite directions. In k space,
it reads

Hd = −U

N

BZ∑
k1,k2,σ

c†
k1,σ,uck1,σ,l c

†
k2,σ,l ck2,σ,u. (A7)

APPENDIX B: SECOND-ORDER CORRECTION
IN THE STATIONARY PHASE APPROXIMATION

Now, we discuss the second-order contribution to Z under
the stationary phase approximation. Usually, the second-order
contribution is not zero, as in semiclassical approxima-
tions. A nonzero second-order contribution would change
the coefficients in front of the propagator. However, such a
second-order contribution vanishes. The zero entropy at zero
temperature is guaranteed.

We expand Z near the saddle points �s and �∗
s and obtain

Seff(�,�∗) � Seff(�s,�
∗
s ) + 1

2
(� − �s �∗ − �∗

s )

(
∂2Seff

∂�∂�∗
∂2Seff
∂�∗2

∂2Seff
∂�2

∂2Seff
∂�∗∂�

)∣∣∣∣∣
�=�s

(
�∗ − �∗

s

� − �s

)
. (B1)

The corresponding Z is given by

Z =
∫

d�∗d�

2π i
e−Seff � e−Seff (�s,�

∗
s )

∫
dδ�∗dδ�

2π i
exp

[
−1

2
(δ� iδ�∗)

(
∂2Seff

∂�∂�∗ i ∂2Seff
∂�∗2

−i ∂2Seff
∂�2

∂2Seff
∂�∗∂�

)∣∣∣∣∣
�=�s

(
δ�∗

−iδ�

)]
. (B2)

With the substitutions (
δ�∗
−iδ�

)
=

(
1 −i
−i 1

)(
Reδ�
Imδ�

)
and (1/2π i)

∫
dδ�∗dδ� = (1/π )

∫
dReδ�dImδ�, Eq. (B2) becomes

Z = 2 exp

{
−Seff(�s,�

∗
s ) − 1

2
ln

[
d̃et

(
∂2Seff

∂�∂�∗ i ∂2Seff
∂�∗2

−i ∂2Seff
∂�2

∂2Seff
∂�∗∂�

)∣∣∣∣∣
�=�s

]}
(B3)
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after integrating δ�, where d̃et means that we get rid of those values making the determinant zero. Utilizing the effective action
and the eigenenergies

Seff = 2βN

U
|�|2 −

BZ∑
k,σ

2∑
j=1

ln [1 + exp (−βz j )] (B4)

and z1,2 = Rehk ±
√

|�|2 − (Imhk )2, the relations are easy to find: ∂z j/∂�∗ = ±�/[2
√

��∗ − (Imhk )2], ∂z j/∂� =
±�∗/[2

√
��∗ − (Imhk )2], ∂2z j/∂�2 = ∓�∗2/{4[��∗ − (Imhk )2]3/2}, ∂2z j/∂�∗2 = ∓�2/{4[��∗ − (Imhk )2]3/2}, and

∂2z j/∂�∗∂� = ±[��∗ − 2(Imhk )2]/{4[��∗ − (Imhk )2]3/2}. The matrix in Eq. (B2) can be expressed as

(
∂2Seff

∂�∂�∗ i ∂2Seff
∂�∗2

−i ∂2Seff
∂�2

∂2Seff
∂�∗∂�

)
= β

⎛⎜⎜⎝ 2N
U + ∑BZ

k,σ, j

∂2z j
∂�∂�∗ −β

∂z j
∂�∗

∂z j
∂�

1

1+e
−βz j

1+eβz j
i
∑BZ

k,σ, j

∂2z j
∂�∗2 −β

(
∂z j
∂�∗

)2
1

1+e
−βz j

1+eβz j

−i
∑BZ

k,σ, j

∂2z j
∂�2 −β

(
∂z j
∂�

)2
1

1+e
−βz j

1+eβz j

2N
U + ∑BZ

k,σ, j

∂2z j
∂�∂�∗ −β

∂z j
∂�∗

∂z j
∂�

1

1+e
−βz j

1+eβz j

⎞⎟⎟⎠. (B5)

The determinant in Eq. (B3) is found as

d̃et

(
∂2Seff

∂�∂�∗ i ∂2Seff
∂�∗2

−i ∂2Seff
∂�2

∂2Seff
∂�∗∂�

)
= d̃et

(
∂2Seff

∂�∂�∗
�∗2

|�|2
∂2Seff
∂�∗2

�2

|�|2
∂2Seff
∂�2

∂2Seff
∂�∗∂�

)
= d̃et

(
∂2Seff

∂�∂�∗ − �2

|�|2
∂2Seff
∂�2

�∗2

|�|2
∂2Seff
∂�∗2 − ∂2Seff

∂�∗∂�

�2

|�|2
∂2Seff
∂�2

∂2Seff
∂�∗∂�

)
. (B6)

Because

∂2Seff

∂�∂�∗ − �2

|�|2
∂2Seff

∂�2
= 2βN

U
+ β

2

BZ∑
k,σ

2∑
j=1

3 − 2 j√
��∗ − (Imhk )2(1 + eβz j )

= −β

2

[
−4N

U
+

BZ∑
k,σ

sinh(β
√

|�|2 − (Imhk )2)/
√

��∗ − (Imhk )2

cosh (βRehk ) + cosh(β
√

|�|2 − (Imhk )2)

]
, (B7)

it is shown that [∂2Seff/∂�∂�∗ − (�2/|�|2)∂2Seff/∂�2]�s=0 = 0 using the gap equation [Eq. (16)]. Together with its conjugate,
we have proved that the second-order correction to the stationary phase approximated partition function is zero.
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