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First-order coherence of light emission from inhomogeneously broadened mesoscopic ensembles
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Inhomogeneous broadening is well known to hinder individual characteristics of emitters, supplanting the
single-particle properties by their broader probability distribution. Here, we present an analysis of the emission
spectra of mesoscopic ensembles of inhomogeneously distributed emitters below the thermodynamic limit
(101-104 emitters). Based on a simple analytical model and an extensive numerical analysis, we show that the
number and individual linewidths of the emitters can be directly estimated from the ensemble autocorrelation
function in spite of an inhomogeneously broadened emission. As an application, we analyze the photolumines-
cence of colloidal nanocrystal aggregates embedded in a gold shell. Our general method can be applied to a
wide range of mesoscopic many-body systems and could provide new insights into their first-order coherence
properties.
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I. INTRODUCTION

Spectroscopy of emitter ensembles distinguishes between
two main regimes, depending on the way the environment
affects the individual components. In the homogeneous broad-
ening regime, the spectral shape of the ensemble emission is
identical to the single-particle spectrum. The field autocorre-
lation function then decays as the inverse of the individual
linewidth δE . On the other hand, in the inhomogeneously
distributed regime, the spectral shape is solely given by the
probability distribution of the center frequencies. This is
typically the case for Doppler-broadened atomic gases [1],
ensembles of size-distributed semiconductor quantum dots
[2,3], color centers with varying mechanical or electromag-
netic environments [4,5], excitons in quantum wells [6],
spin-dephased Raman transitions [7,8], and so on. In such
cases, the autocorrelation function is therefore given by the
ensemble linewidth and rapidly decays as its inverse T ∗

2 [8,9].
In some cases, techniques such as spectral hole burning [10]
or dynamical decoupling [11,12] can provide access to the
underlying homogeneous dephasing time.

Here, we investigate mesoscopic ensembles of emitters
that are inhomogeneously distributed, yet are insufficiently
numerous to lead to a fully inhomogeneously dephased au-
tocorrelation function. We show analytically and numerically
that, in contrast to the thermodynamic limit where the co-
herence is fully lost in a typical time T ∗

2 ∼ h̄/�Einh, in the
case of mesoscopic ensembles the loss is only partial and
some information can be retrieved from the self-normalized
first-order autocorrelation function. The reminiscent exponen-
tial tail indeed retains information on both the number and
intrinsic linewidth of the individual emitters that compose
the ensemble. Using numerical simulations, we propose a
simple method to experimentally access these quantities. We
emphasize that there is no need for prerequisite information
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about the number of individual emitters, their intensity, their
individual properties, or their inhomogeneous distribution.

As an illustration, we then apply our method to experi-
mental data from mesoscopic (N ∼ 101–104) ensembles of
nanocrystals (NCs) of inhomogeneous linewidth ∼40 meV,
exceeding by about one order of magnitude the individual
linewidths, to infer an estimation of the individual emitter
properties. We compare our results to geometrical estimations
of the NC population of 22 NC aggregates of varying sizes
as well as to the emission brightness. This analysis allows
us to deduce the fraction of photoactive emitters. Finally, we
implement a stochastic optimization algorithm to show that
the emission spectra are well reproduced using the extracted
parameters.

II. MODEL AND SIMULATIONS

A. Framework and model

For the sake of simplicity, we consider ensembles of N
individual emitters of identical Lorentzian emission spectrum
(at the exception of their center emission wavelength), and we
term their individual coherence time T2—even though part of
the individual linewidth could contain time-averaged broad-
ening such as spectral diffusion. We denote Ei = E0 + �Ei

(i = 1, . . . , N) their center energies, with E0 the center en-
ergy of the ensemble and �Ei the individual deviations from
E0. �Ei are therefore random variables that are identically
distributed according to the thermodynamic limit inhomoge-
neous spectrum of typical width h̄/T ∗

2 . The N-particle power
spectrum reads

S(E ) ∝
N∑

i=1

L(E − Ei ) =
N∑

i=1

L(E ) ∗ δ(E − Ei ), (1)

where L(E ) = 1

(h̄/T2)2 + (E − E0)2
is the Lorentzian distri-

bution. The first-order autocorrelation function g(1)(τ ) can be
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FIG. 1. Six examples of simulated spectra with the number of emitters varying from N = 100 to N = 1000.

obtained by Fourier transform of the power spectrum

g(1)(τ ) = Ce− |τ |
T2 ei E0

h̄ τ

N∑
i=1

ei �Ei
h̄ τ ,

where C is a normalization constant. Let us focus on its
modulus |g(1)(τ )| = Ce− |τ |

T2 MN , where we introduce the ran-
dom variable MN = |∑N

i=1 ei �Ei
h̄ τ |. We consider two opposite

limits: when τ = 0, we simply obtain |g(1)(τ )| = CN owing
to the vanishing phase argument in MN . On the other hand,
when τ � T ∗

2 , the standard deviation of the random variable
X = �Ei

h̄ τ is much greater than 1 and therefore, thanks to
the 2π periodicity of the complex exponential, X can be ap-
proximated by a uniformly distributed variable on the [0, 2π )
interval. The calculation of MN is then analogous to a two-
dimensional random walk in the complex plane with fixed
step size but random direction, and was treated by Rayleigh
in 1880 [13]. It can be easily derived using the central limit
theorem and its probability distribution function when N � 1

is a Rayleigh distribution P(x) = 2x/N × e−x2/N with expec-
tation value E [MN ] = √

Nπ/2. This leads us to the following
expression for the expectation value of the self-normalized
first-order correlation function:

E

[∣∣∣∣g(1)(τ )

g(1)(0)

∣∣∣∣
]

=
√

π exp
(−|τ |

T2

)
2
√

N
. (2)

This result shows that the first-order autocorrelation func-
tion contains information about the individuals (namely N
and T2) in its long-time tail. Interestingly, Eq. (2) is inde-
pendent of the distribution function of the emitters center
energies. However, this information is contained in the in-
termediate timescales 0 < τ � T ∗

2 where the autocorrelation
quickly converges towards the Fourier transform of the emitter
spectral distribution. In addition, it is noteworthy that Eq. (2)
does not involve any additional normalization or calibration
procedure based for instance on the intensity of the emitters

FIG. 2. (a) Autocorrelation of ensembles with varying size. (b) Autocorrelation of ensembles with varying individual linewidths. The
orange lines are fits to the data for τ > T ∗

2 and the brown lines are calculated with Eq. (2).
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FIG. 3. Fitting parameters extracted from ∼3 × 104 numerically generated datasets. (a) Relative amplitude, plotted as a function of N , in
log-log scale. Inset: Same data, plotted in linear scale as a function of

√
N . (b) Decay time, plotted as a function of δE , in log-log scale. Inset:

Same data, plotted in linear scale as a function of 1/δE . The error bars represent the standard deviation of the extracted parameters.

since the autocorrelation is simply normalized by its value at
zero delay.

In practice, in a given physical system, N and �Ei are
fixed. Therefore, it is not possible to repeat a random draw
to estimate the expectation value of Eq. (2). However, in
the next section we will show that a fitting procedure of the
autocorrelation can yield the desired estimation since, when
τ increases, the phase argument in the exponential terms of
MN continuously varies, thereby randomly probing the whole
support of X .

B. Numerical simulations

We generate example spectra of varying emitter numbers
based on Eq. (1). With no loss of generality, we choose pa-
rameters that are close to those of the emitters experimentally
studied in Sec. III: E0 = 1.96 eV, �Einh = 40 meV. We use a

Gaussian distribution of the center energies �Ei [14,15]. Fig-
ure 1 displays six examples with N varying between 100 and
1000. Fluctuations of the spectrum envelope can be observed,
with randomly varying widths and amplitudes—preventing to
directly extract individual properties with a fitting procedure.
In the following, we show that a fit of the autocorrelation func-
tion allows to access characteristics of the individual spectra.

We use fast Fourier transform (FFT) to calculate the auto-
correlation functions from the spectra. Figure 2 shows typical
examples of A(τ ) = |g(1)(τ )/g(1)(0)| calculated from ensem-
bles of various N and δE . Around τ = 0, A(τ ) exhibits a
Gaussian shape of width ∼1/�Einh that originates from the
inhomogeneous distribution, and that is identical for all the
ensembles, independently of N and δE . At longer τ , a fluc-
tuating exponential tail is observed. Its amplitude depends on
N [Fig. 2(a)] and its decay time depends on T2 [Fig. 2(b)].
As plotted in orange solid lines on Figs. 2(a) and 2(b), these

FIG. 4. Six typical photoluminescence spectra of individual GSPs of various sizes.
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FIG. 5. Zoom-in of the autocorrelation function (blue curves) and fit results (orange curve) for the same emitters as in Fig. 4. The gray
curves represent the parts of the data that are not fitted.

tails are well fitted by exponential functions Ae−τ/τ0 using log-
linear fitting. The least mean-square fitting procedure ensures
that the fluctuations are averaged out if the fitting interval is
longer than the typical timescale of the fluctuations (which
is of order T ∗

2 ), such that the fitting parameters constitute
estimators of N and T2. The theoretical curves calculated
using Eq. (2) are plotted on the same graphs (brown curves),
showing the excellent agreement between the theoretical ex-
pectation value and the fit results.

We repeat this fitting procedure on a large number of
numerically generated signals, with N varying between 10
and 104, and δE varying between 1 and 10 meV. The fit-
ting results are shown on Fig. 3. The extracted parameters
follow the expected dependencies, with moderate uncertainty
(�A/A ≈ 15 % for the amplitude and �τ0/τ0 ≈ 10 % for the
decay time), showing that our method allows to extract N
and T2 from the first-order autocorrelation function calculated
from the emission spectrum.

In the next section, we illustrate an implementation of our
method on an experimental dataset.

III. EXPERIMENTAL DATA

In this section, we focus on the luminescence spectra
of mesoscopic aggregates of CdSe/CdS/CdZnS NCs [16]
embedded within a silica and a gold shells, termed golden
supraparticles (GSPs). The synthesis of these emitters is de-
tailed in [17]. The gold shell enhances the light emission
through the Purcell effect, thus ensuring that the role of
Förster resonant energy transfer can be neglected [16,17].
The GSPs considered in this section comprise between 102

and 104 NCs. Their photoluminescence spectra were mea-
sured in a confocal microscope at 4 K under nonresonant
laser excitation. Figure 4 shows six representative spectra
from GSPs of various sizes. As with the simulated spectra of
Fig. 1, the envelopes exhibit shape irregularities that originate

from the random center wavelength of a finite number of
emitters. The overall distribution is not completely Gaussian
but slightly bimodal, with a main subpopulation centered
around 630 nm, and a secondary redder subpopulation cen-
tered around 640 nm.. As we evidenced in Sec. II, this has no
impact on the analysis, which is independent of the lineshape
of the inhomogeneous distribution.

In the same way as in Sec. II, we calculate the autocor-
relation using FFT. The results are shown on Fig. 5 (blue
curves) for the six spectra from Fig. 4. The autocorrelation
functions exhibit a long-time tail that can be well fitted by
an exponential function with a constant offset using log-linear
least mean square optimization (orange curves in Fig. 5).

We applied the same procedure to 22 GSPs. Figure 6
shows the results of the estimation of N and δE on these
emitters. The error bars are slightly higher than those shown in
Fig. 3 due to the shorter time range on which the exponential

FIG. 6. N and δE as deduced from the autocorrelation fit for the
22 GSPs. The error bars are calculated from the uncertainties on the
fitting parameters.
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FIG. 7. (a) Estimated number N plotted against the geometrically estimated number Ngeom. (b) Fraction of optically active NCs plotted
against Ngeom (c) Count rate as a function of N . (d) Count rate as a function of Ngeom.

tail is fitted. Concerning δE , we obtain values in the 2 to
5 meV range, in agreement with previous studies on individual
NCs at low temperature [18,19]. These values also consis-
tently match the narrowest features observed on the spectra.
Concerning N , to gain more insight, we now compare our
conclusions to the number Ngeom estimated from the measured
volume of the GSPs.

To estimate the number of NCs in the GSPs, we mea-
sured the diameters of the 22 GSPs using a scanning electron
microscope (SEM) and an atomic force microscope (AFM).
Knowing the center-to-center distance of individual NCs
(8.5 nm), the number of NCs in a GSP can be calculated
by assuming a compact random packing of the NCs [20].
Figure 7(a) shows a comparison of N and Ngeom. While these
two numbers are sizably different for some GSPs, we note
that we always obtain N � Ngeom. This observation shows that
some GSPs contain a large fraction of optically inactive NCs,
which could be due to either damage during the synthesis or
to photobleaching of part of the NC population of these GSPs.
The fraction F = N/Ngeom of optically active NCs is plotted
in Fig. 7(b) as a function of Ngeom. To further confirm that the
observed discrepancy between N and Ngeom is due to optically
inactive NCs, we plot the count rate measured at a fixed laser
power as a function of N [Fig. 7(c)] and of Ngeom [Fig. 7(d)],
together with a linear fit. The count rate exhibits a higher
correlation with N than Ngeom, with a twice higher covariance,
thus providing further evidence of our assumption.

To provide additional evidence of the relevance of the
extracted parameters, we implemented a fitting algorithm
where N and δE are fixed, given by the values extracted

from the autocorrelation function, while the individual center
wavelengths constitute the parameter vector to optimize. This
algorithm is based on simulated annealing, a variant of ran-
dom wall climbing where the parameter vector to optimize is
allowed to scatter backwards, with a probability that decreases
as a function of a decreasing parameter T . The results of this
optimization are shown in Fig. 8. The excellent agreement
between simulated and experimental spectra indicates that
the spectra can be perfectly reproduced using the parameters
extracted from our autocorrelation analysis. We note that,
although the number of free parameters is large (the center
frequencies of all the emitters), a good agreement cannot be
obtained if N or δE are not well chosen.

IV. CONCLUSION

We analyzed spectral properties of mesoscopic ensembles
in a regime that lies halfway between homogeneous (T2-
limited) and ensemble-averaged (T ∗

2 -limited) regimes. In this
mesoscopic regime, the spectral distribution is inhomoge-
neously broadened, yet retains information about individual
components. This information can be retrieved from the self-
normalized first-order correlation obtained from the emission
spectrum by Fourier transform, as pointed out by our simple
analytical model. We performed a numerical analysis showing
that an exponential fitting of the long-time components of
the self-normalized autocorrelation allows to reliably access
the number and individual linewidths of the constituents.
We applied this method to experimental data from colloidal
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FIG. 8. Blue curves: Spectra from Fig. 4. Orange curves: Simulated annealing optimized spectra.

II-VI NC aggregates, allowing to estimate the number and
linewidths of the optically active NCs. The extracted parame-
ters provide a better agreement with the count rate and optical
spectra than simple counting from geometrical parameters.
Our method is very general and could be applied to a wide
range of mesoscopic systems, for which it could constitute a
useful characterization tool. We therefore expect our work to
shine a new light on the coherence properties of composite
physical systems in the intermediate dephasing regime.

The data generated in this study are available [21].
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