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Influence of (Ba,F) multidoping on structural, magnetic, optical,
and electrical properties as well as performance enhancement of multiferroic BiFeO3
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Antiferromagnetic (AFM) and high ferroelectric (FE) orderings coexist in the pristine BiFeO3. However, its
performance is suppressed by complex FE switching originated from its R3c space group and high leakage
current due to the volatile nature of Bi. We theoretically predict that the performance can be enhanced by
(B,F) codoping. To this end, BiFeO3 and its Ba-doped, Bi1−xBaxFeO3−x/2, as well as (Ba,F) multidoped,
Bi1−xBaxFeO3−xFx , are analyzed structurally, magnetically, optically, and electrically for the pure (doped)
compound (compositions), where x = 0.25. The analyses are performed in the framework of density func-
tional theory accompanied by random phase approximation, Berry phase theory, and Hubbard model using
PBE-GGA + U with Ueff = 4(5) eV. Here, we predict that the tetragonal polar distortions of the co-doped
compound with an AFM ordering lead to a nonzero spontaneous polarization. Hence, both the magnetic and
electric polarizations coexist in the codoped composition. To assess the accuracy of the results, we calculate
the spontaneous polarization for the pure BiFeO3 in both the R3c and P4mm symmetries and find the results in
agreement with the available experimental and theoretical data. Furthermore, our dielectric functions for the pure
case are found consistent with the experimental data. Moreover, absorption coefficient spectra, as calculated by
GGA + U with Ueff = 4 eV and TB-mBJ with its self-consistently converged c = 1.38 parameter, using Tauc
method also reveal direct optical gaps of 2.66 and 2.80 eV, which agree with the corresponding experimental
optical gap of 2.74 eV. To study the impacts of doping on the intrinsic ferroelectricity improvement of BiFeO3, we
then calculate and analyze the optical absorption edges and loss functions for the pristine and doped compounds.
By taking the band structure, partial densities of states, energy loss function, and parallel component of the
imaginary part of the dielectric tensor, �[ε‖], for the pure case into consideration simultaneously, the energies
of the prominent peaks for �[ε‖] spectra and their corresponding permitted absorption (emission) transitions are
rigorously analyzed and determined. The analyses reveal that the sources of the prominent peaks occurred in
�[ε‖] mainly originate from the excitation states of the bound electrons of O 2s, O 2p, Bi 6s, Bi 6p, Fe 3d , and
Fe 4s orbitals. Our results in most of the energy ranges show that the intrinsic ferroelectricity can be improved by
the (Ba,F) codoping due to the reduction of the leakage current achieving from the calculated electric energy loss
function. Further, the rhombohedral (R3c) is changed by the codoping to the tetragonal (P4mm) structure with
more convenient symmetry for polarization switching. Hence, the system not only remains multiferroic after the
codoping, but also its performance is enhanced. These evidences show that the codoping can play a key role for
the applications of this multiferroic system in various devices.
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I. INTRODUCTION

Multiferroic systems due to their multifunctionality play
a vital role in reducing the size of modern devices engi-
neered by advanced materials and thence are attractive for a
variety of high technology applications (HTAs) [1–3]. Partic-
ularly, the bismuth-based multiferroic systems have attracted
considerable attention in a broad range of HTAs because
they are environment-friendly, low-cost, useful for develop-
ing high energy density capacitors, clean energy exploration
and environmental remediation, and functionality induced by
conversion between mechanical and electrical energy [4–9].
More specifically, BiFeO3 as a multifunctional compound
with space group R3c is a primary multiferroic material due
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to the coexistence of ferroelectric (FE) and anti-ferromagnetic
(AFM) orderings at room temperature [10–14].

Extremely high polarization was reported for BiFeO3

[15–17]. However, it can be argued that the R3c structure
has significant problems and challenges [18]. It is well known
that, in practice, it is difficult to synthesize the stoichiometric
BiFeO3, as reviewed by Silva et al. [19]. In addition to the
above practical difficulty of synthesizing the ideal stoichio-
metric BiFeO3 single crystal, FE polarization along [111]
direction creates eight possible orientations [18]. Due to these
possibilities, ferroelectric switching is complex and whence
difficult to control for BiFeO3 with the R3c symmetry [18].
Therefore, demands for finding other structures than R3c for
BiFeO3 have been increased [20]. Makhdoom et al. explored
the structural phase transition from rhombohedral to pseu-
docubic symmetry in polycrystalline samples with formula
Bi1−xBaxFeO3 (x = 0.00–0.25) using XRD diffraction [21].
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However, pseudocubic symmetry is not suitable for ferro-
electric point of view [22]. BiFeO3 thin films under biaxial
compressive strain can be deflected from the rhombohedral
to the tetragonal with a high c/a ratio [23–25]. Oliver et al.
reported on the synthesis, crystallographic, and magnetic
structures of Ba and (Ba,F)-codoped BiFeO3 compounds with
compositions Bi1−xBaxFeO3−x/2 and Bi1−xBaxFeO3−xFx, re-
spectively [26]. They [26] in agreement with Makhdoom et al.
[21], found that the c/a ratios for the oxide compounds were
remain pseudocubic, i.e. 1, for x = 0.2 and nearly pseudocu-
bic, i.e., 1.003 ≈ 1, for x = 0.3. However, they [26] explored
two large tetragonal polar distortions, i.e., c/a � 1.08 with
x = 0.2 and 1.05 with x = 0.3, for the oxyfluoride compounds
exhibiting G-type AFM (G-AFM) ordering in the ab plane.
Thus, the space group R3c suffering from the complexity
problem of the ferroelectric switching can be transformed by
(Ba,F) codoping to a more suitable space group, i.e., P4mm,
having simpler switching properties than R3c [18]. Further-
more, Oliver et al. by neutron powder diffraction found that
the remanent magnetization in the oxide compound, Ba-doped
BiFeO3, was related to the ferrimagnetic impurity BiFe12O19

and not to an intrinsic property of the oxide compounds [26].
From the above reviewed and discussed evidences, the new
oxyfluoride compounds in question with tetragonal structure,
c/a � 1.05, would be good candidates for the novel mul-
tiferroic materials. Therefore, here, we intend to shed light
into the electronic structures and optical as well as electrical
properties of all these multiferroic compounds to profoundly
understand the physical mechanism governed. Furthermore,
we below discuss another motivation that has attracted our
attention to study these compounds. Besides the adversity of
manufacturing nominal stoichiometric crystal, and the switch-
ing problem of the R3c symmetry and the proposed solutions
discussed above, another limitation that declines the ferro-
electric properties has been attributed to the high levels of
leakage current presented in the BiFeO3 [27,28]. The volatile
nature of Bi and changing valency of iron ion from trivalent to
divalent, as Fe+3 to Fe+2, can produce defects such as oxygen
vacancies, especially in the thin films of BiFeO3. Therefore,
the BiFeO3 exhibits a high leakage that reduces the residual
polarization in this material [28,29]. Consequently, the intrin-
sic conductivity of nonstoichiometric BiFeO3 makes it not so
useful in ferroelectric applications. According to the earlier
investigations, small dielectric loss at low frequencies reflects
a reduction in leakage current [27,28,30]. Therefore, theoreti-
cal and experimental investigations of the optical properties of
BiFeO3 and comparing them with those of doped BiFeO3 may
be very helpful. Choi et al. determined the dielectric function
and refractive index spectra of BiFeO3 by spectroscopic ellip-
sometry [31]. Liu et al. used density functional theory (DFT)
within generalized gradient approximation (GGA) and Lima
employed Hubbard model using PBE-GGA + U with Ueff =
6 eV to determine the optical properties of rhombohedral
BiFeO3 [32,33]. Makhdoom et al. [21] measured the optical
properties for Ba doped BiFeO3 in the pseudocubic symmetry
and found a reduction in the dielectric constant compared
to the pure case. However, there are theoretical and experi-
mental data lacking in the electronical, optical, and electrical
properties for the tetragonal symmetry of Bi1−xBaFexO3−x/2

and Bi1−xBaxFeO3−xFx. The above important evidences mo-

tivated us to investigate the leakage current of these possible
multiferroic compounds. Therefore, here, in addition to the
structural and electronic properties, we aim to study their opti-
cal properties and examine their leakage current using the loss
optical function. Furthermore, we calculate the magnitude of
the spontaneous electric polarization (SEP) using Berry phase
method based on the modern theory of polarization [34–38]
for the AFM tetragonal structure of pure and multidoped com-
pounds. By this, we investigate the possibility of coexistence
of nonzero ferroelectric polarization and AFM ordering and
reduction of the leakage current in the codoped compounds
under consideration.

To achieve the goals discussed above, i.e., solving FE
switching and leakage current problems by (Ba,F) codop-
ing, we perform DFT calculations using PBE-GGA + U . We
then analyze the structural, electronical, optical and elec-
trical properties of the rhombohedral BiFeO3, pseudocubic
Bi1−xBaFexO3−x/2 and tetragonal Bi1−xBaxFeO3−xFx, where
x = 0.25. By our analyses, we predict that the tetragonal
Bi1−xBaxFeO3−xFx with x = 0.25 would be a G-AFM with
nonzero spontaneous polarization and hence a novel mul-
tiferroic composition. Moreover, we find that the doped
compounds have a smaller leakage current than those of pris-
tine BiFeO3 in the most energy ranges. In agreement with the
experiment [26], we find that G-AFM configuration is more
energetically favorable than FM configuration. Our optical
results show that the real and imaginary parts of the optical
spectra are anisotropic along the two light polarizations for
all the materials. This observation is in accordance with the
hexagonal and tetragonal symmetries and available experi-
mental data [31,39]. Although Ba doping can decrease the
static dielectric constant consistent with experiment [21], we
find that this decrement in codoping is smaller than that of
Ba-doped compound only. Therefore, the codoped is more
suitable than Ba doped from the dielectric point of view.
Furthermore, absorption coefficient spectra are obtained form
their corresponding extinction coefficient spectra, as calcu-
lated by GGA + U with Ueff = 4 eV, and various versions
of the mBJ methods, including the original TB-mBJ [40],
KTB-mBJ [41], Sgap-KTB-mBJ [42], JTSKTB-mBJ [43],
and Ir-TB-mBJ [41,44]. Then, by means of Tauc approach
[45] following the method proposed by Makuła, Pacia, and
Macyk [46], we extract, from the absorption coefficient spec-
tra, the direct optical gaps to be 2.66 eV using GGA + U
with Ueff = 4 eV, and 2.80 eV using TB-mBJ with its self-
consistently converged c = 1.38 parameter. The calculated
optical gaps are found to be consistent with the corresponding
experimental optical gap of 2.74 eV [31,39]. The energy loss
function (ELF) spectra show great sensitivity to doping and
indicate a reduction in the ELF up to 21.65 eV and above
the 28.56 eV for both the oxide and oxyfluoride doped com-
pounds compared to the pristine BiFeO3. The lower dielectric
ELF usually shows lower leakage current [27] and thereby
it may indicate an improvement in ferroelectric properties.
Moreover, we determine the permissible optical absorption
and emission transitions to find their sources in the pure case.
To this end, we considered the band structure, partial densities
of states, energy loss function, and parallel component of the
imaginary part of the dielectric tensor, �[ε‖], at the same time.
Then, we rigorously analyze the energies of the prominent
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peaks for �[ε‖] spectra and their corresponding permitted
absorption (emission) transitions. From the optical analyses,
the origins of the prominent peaks occurred in �[ε‖] are found
to be O 2s, O 2p, Bi 6s, Bi 6p, Fe 3d , and Fe 4s states. In
addition, we calculate spontaneous polarizations for the R3c
and P4mm symmetries of the pure BiFeO3 and the multidoped
composition in P4mm symmetry. The calculated values for
spontaneous polarizations of pristine BiFeO3 in both R3c and
P4mm symmetries are found in agreement with the available
theoretical [47–49]) and experimental data [50,51]. Due to
doping, in addition to the c tetragonal direction, we observe a
nonzero component for the polarization along the “a” tetrag-
onal direction. Therefore, the main objective of this work
is to show that G-AFM tetragonal Bi1−xBaFexO3−x/2 with
x = 0.25 can be a multifunctional compound with a more
convenient symmetry structure compared to the rhombohedral
R3c BiFeO3 and an acceptable spontaneous polarization.

II. CHEMICAL AND MAGNETIC SUPERSTRUCTURES

A. Pure compound

Bismuth iron oxide BiFeO3 crystallizes in a rhombohe-
drally distorted simple cubic perovskite cell with space group
R3c and lattice parameters ar = 5.364 Å and αr = 59.348◦
[52]. The rhombohedral structure can be converted to the
hexagonal structure. To this end, we use the a = 2ar cos[(π −
αr )/2] and c = 3[a2

r − a2/3]1/2 relations, as reported in Chap.
4.3, p. 40 of Ref. [53], to convert the primitive rhombohedral
lattice parameter ar and the rhombohedral angel αr to the con-
ventional hexagonal lattice parameters a and c, respectively.

In this work, by (Ba,F) codoping we intend to enhance the
performance of BiFeO3 multiferroic, as to be subsequently
discussed in Sec. V. Let us discuss below to what extent the
stoichiometric BiFeO3 can be considered as a reference for
comparison to ensure the improvement of the results after
impurity doping compared to the actual defective nonstoichio-
metric BiFeO3. It is of significant importance to notice that,
in practice, it is hard to synthesize the nominal or ideal sto-
ichiometric BiFeO3, as indicated in Sec. I and Refs. [19,54].
Nevertheless, so far, remarkable progresses have been made
to synthesize highly pure BiFeO3. Ortiz-Quiñonez at al. have
synthesized it using a combustion reaction, employing tar-
taric acid or glycine as promoter [55]. Peñalva and Lazo also
have synthesized it applying the combustion method, utilizing
metallic nitrates with a mixture of fuel between glycine and
urea [56]. They [56] have determined the stoichiometry ratios
of BiFeO3 by scanning electron microscopy (SEM) and en-
ergy dispersive spectroscopy (EDS) techniques obtaining the
atomic percentage values of 18.1% for Bi, 22.9% for Fe, and
59% for O, which are close to the theoretical ratios (1 : 1 :
3), viz. 18.1/8.1 = 1.0, 22.9/18.1 ≈ 1.2, 59/18.1 ≈ 3.2 �⇒
(1.0 : 1.2 : 3.2) (1 : 1 : 3). These experimental progresses
have led to extensive theoretical studies of the stoichiometric
BiFeO3 by ab initio methods. Lima [33] recently has studied
electronic structures, effective masses, and magnetic, as well
as optical properties of the pure stoichiometric BiFeO3 in
its R3c phase using DFT + U calculations. Benyoussef et al.
[57] very recently—after synthesizing BiFeO3 nanoparticles,
and depositing them using spray pyrolysis method, as well

as preparing BiFeO3 thin films—have studied experimentally
optical properties of the prepared thin films. Furthermore,
they [57] also theoretically studied the bulk and thin films of
the pure BiFeO3 using the ideal stoichiometric rhombohedral
structure by performing ab initio DFT calculations and found
their theoretical results to be in agreement with their experi-
mental data. The above reviewed experimental and theoretical
evidences as well as the conciseness achieved between the
experimental results of the highly pure synthesized material
and the theoretical results of the corresponding stoichiometric
material confirm that the defective nonstoichiometric BiFeO3

can be approximated by its stoichiometric single crystal to
the extent discussed above experimentally and theoretically.
Therefore, the stoichiometric BiFeO3 can be considered ap-
proximately as a benchmark test to confirm the performance
enhancement due to doping. Furthermore, let us discuss below
the accuracy of such an approximation. It is well known that
the nonstoichiometric BiFeO3 suffers from the relatively low
(high) electrical resistivity (conductivity) leading to leakage
current problem [58,59]. The latter problem mainly origi-
nates from the valence fluctuation of Fe ions (Fe3+ to Fe2+)
[58]. This, in turn, produces oxygen vacancies to compen-
sate electric charges [58]. Therefore, an appropriate doping
can diminish the oxygen vacancies [58]. This, in turn, can
suppress the leakage current of the nonstoichiometric BiFeO3

due to field-assisted ionic conduction [58]. From the above
discussion, higher conductivity is expected in the defective or
nonstoichiometric than in the pure or stoichiometric BiFeO3.
This expectation has been already confirmed by Singh et al.
[58] and Habouti et al. [59] who have shown that the leakage
current density in the defective nonstoichiometric BiFeO3 can
be substantially reduced by optimizing the process condi-
tions of stoichiometric BiFeO3 chemical solution, see also
Ref. [60]. Therefore, the ideal stoichiometric BiFeO3 can be
considered as an appropriate criterion for the improvement
achieved by doping, since the conductivity of the ideal single
crystal is less than that of the defective solid-solution material.
Consequently, if the leakage current of the doped-material
is less than that of the nominal stoichiometric material, it is
most likely also less than that of defective nonstoichiometric
material. Furthermore, in this work we also study the single
doped composition, i.e., Ba-doped material. Therefore, our
Ba-doped case can also provide another alternative reference
system for the co-(Ba,F)-doped composition than the theoreti-
cal stoichiometric BiFeO3 or defective BiFeO3. Nevertheless,
despite the above evidences, we created a defective sample
for companion, as well. The comparison once more confirmed
that the stoichiometric BiFeO3 can provide a reliable refer-
ence system.

B. Single-doped and codoped compositions

The structure of Bi1−xBaxFeO3−xFx (Bi1−xBaxFeO3−x/2)
is tetragonal (pseudocubic) with G-AFM ordering lying in
the ab plane [26]. Since the c/a ratio for the pseudocubic
compound is not exactly one, i.e., the ratio is slightly larger
than unity, we select the P4mm space group even for the
pseudocubic compound. In the tetragonal structure, Bi atoms
are located at the corners, O atoms are placed at the centers of
the faces, and Fe atoms are positioned at the center of the unit
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FIG. 1. (a1) Tetragonal structure of BiFeO3, (a2) a 2 × 2 × 2 supercell of tetragonal BiFeO3, (a3) the latter supercell after codoping Ba
and F impurities into the pure compound at Bi and O sites, respectively, (b1) the latter codoped supercell projected in ab plane, (b2) the latter
projected codoped supercell after a clockwise rotation by 90◦ about the transverse b axis, and (b3) magnetic unit cell involving G-AFM spin
configurations along a direction. (b4) Crystal structure of (Ba, F)-co-doped-BiFeO3.

cell for the tetragonal BiFeO3, as shown in Fig. 1(a1). We con-
struct a 2 × 2 × 2 supercell to prepare enough space and/or
sites for codoping Ba and F impurities and setup the G-AFM
configuration, see Fig. 1(a2). Then, we dope the Ba and F im-
purities into the pure compound at Ba and F sites, respectively,
as shown in Fig. 1(a3). The spins are oriented along either a
or b direction. Figures 1(a3) and 1(b1) demonstrate the same
structure in different points of view, viz. Fig. 1(b1) is the
projection of Fig. 1(a3) on ab plane. In order to orient the spin
directions towards a axis, we rotate clockwise the structure
by 90 degrees around the b axis, see Fig. 1(b2). The G-AFM
spin direction of Fe atoms included in Fig. 1(b2) is shown
in Fig. 1(b3). Figure 1(b4) shows the supercell of the (Ba,
F)-co-doped-BiFeO3. In analogous to the construction of the
codoped structure discussed above, we follow the same steps
to construct a similar 2 × 2 × 2 supercell to setup the G-AFM
structure for the single-doped Bi1−xBaxFeO3−x/2 (x = 0.25),
where only Ba impurity and O vacancy are presented in the
absence of F impurity. To construct the G-AFM configuration
of the pure BiFeO3, we use the hexagonal structure with the
spin configurations reported in Ref. [61].

Let us below discuss to which extent our selected 2 ×
2 × 2 supercell can represent the experimental situation. To
this end, we, first, notice that the dimensions of the super-
cell depend on the percentage (concentration) of the impurity
substitution. The impurity concentration can be tuned by the
variable x used as the subscript of Ba atom in the chemical
formulas of the compositions in question. In this work, we aim
to enhance the multiferroic performance of BiFeO3 by doping.
To this end, it is also necessary to reduce the leakage current
density (J), as one of the major problems of the pure material,
as discussed in Sec. I. We, second, notice that, in addition to

the supercell dimensions, J also depends on x. Therefore, in
order to optimize x and whence the supercell dimensions, we
consider the experimental behavior of J versus x and choose
the x that minimizes J , as an ideal choice, or yields reasonably
small J , as an efficient and affordable choice. The latter point,
i.e. optimizing x by choosing an efficient and affordable value
for x, plays more crucial role, if we, third, note that not only
the dimensions of the unit cell but also the number of atoms
in the unit cell and as a result the speed of calculations depend
on x, as well. Therefore, to find an efficient and affordable
x, we, fourth, note the experimental effects of Ba impurity
concentration on J . Makhdoom et al. [21] have experimentally
studied the effects of Ba impurity concentration on J to deter-
mine the x variable in their Bi1−xBaxFeO3 samples prepared
by the conventional solid state reaction method. Since J , based
on the power law relation, is proportional to Em, i.e., J ∝ Em,
where m is a constant, they have plotted also log(J ) as func-
tions of E for x = 0, 0.1, and 0.2, as shown in Fig. 3(b) of
Ref. [21]. By this way, the power relation can be transformed
to a linear relation, log(J ) ∝ mE , where m determines the
slope of the line. Figure 3(b) of Ref. [21] shows that for
x = 0.20, corresponding to 20% Ba impurity concentration, m
is unity (m = 1), indicating an Ohmic conduction mechanism
(J ∝ E ), for intermediate electric field region, and m > 2, in-
dicating the space-charge-limited conduction mechanism, for
the high electric field region. Figure 3(a) of Ref. [21] shows
that J for x = 0.25 behaves like and thereby follows the same
mechanism as J for x = 0.2. More importantly the J curve for
x = 0.25 is located under the J curve for x = 0.20 for all the
electric field region. As a result, the leakage current density
for x = 0.25 is less than that for x = 0.20. This figure shows
the following behaviors for the leakage current density:
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TABLE I. Concentrations of Ba impurity (x) and their corre-
sponding dimensions of the supercells (Supercell) as well as their
corresponding number of atoms (NA) for Bi1−xBaxFeO3 composi-
tion. The interval for the variation of x in this table is selected based
on the experimental data reported by Makhdoom et al. [21] and
Clemens et al. [26].

x Supercell NA

0.00 2 × 2 × 2 40
0.05 2 × 2 × 5 100
0.50 2 × 2 × 2 40
0.10 2 × 2 × 5 100
0.15 2 × 2 × 5 100
0.20 2 × 2 × 5 100
0.25 2 × 2 × 2 40
0.30 2 × 2 × 5 100

(i) J is minimized by x = 0.10, (ii) J is substantially reduced
by x = 0.15 and 0.25 compared to the pure material, i.e.,
x = 0, and (iii) J for x = 0.15 remains very close to and
only a little bit smaller than that for x = 0.25. Therefore,
based on these behaviors, the ideal choice is x = 0.10, since
it minimizes J . In order to choose the efficient and affordable
x, however, we determine the concentrations of the Ba impu-
rity, and their corresponding dimensions of the supercells, as
well as corresponding number of atoms of the supercells for
Bi1−xBaxFeO3 composition so that G-AFM supercells can be
constructed for each case, as tabulate in Table I. From this
table the efficient and affordable choice can be determined
to be x = 0.25, since not only its leakage is considerably
less than that of x = 0.20 but also its number of atoms is
much less than those of x = 0.10, 0.15, and 0.20. Therefore,
we choose x = 0.25 which is corresponding to the 2 × 2 × 2
supercell rather than the ideal choice of x = 0.10 and a little
bit better choice of x = 0.15 which are both corresponding
to a 2 × 2 × 5 supercell, since not only the calculations can
be speed up but also more importantly the leakage current
can be substantially reduced by this efficient and affordable
supercell. Hence, the accuracy of the calculations are reported
to the experimental extent discussed above in this work.

III. COMPUTATIONAL DETAILS

The first principle calculations were performed using DFT
[62,63] as implemented in the WIEN2K simulation package
[53,64,65] employing PBE-GGA [66], and GGA + U [67,68]
for the exchange-correlation functional. It is well-known that
the Hubbard U parameter can be case-dependent [69–74].
Therefore, we try to optimize the Ueff case by case. Our
results show that Ueff = 4 eV can reproduce nearly acceptable
experimental data for both the pure and doped compounds.
However, we perform more elaborations and optimize the Ueff

to be 4(5) eV for the pure (doped) case by fitting to the exper-
imental magnetic moment per each Fe atom [26] and optical
properties [31]. Therefore, both of the optimized values of
Ueff, i.e., 4 and 5 eV, are used in this work to predict the
electrical and optical properties. We optimize the k mesh to
be 9 × 9 × 3 (14 × 14 × 4) in the first Brillian zone (1BZ) for

the self-consistent (SCF) DFT (post-processing optical) cal-
culations of the R3c unit cell of the pure case. For the P4mm
supercells of the pure and doped cases, we optimize the k-
mesh to be 6 × 6 × 6 (7 × 7 × 8) in the 1BZ for the SCF-DFT
(post-processing optical) calculations. For the expansion of
the wave functions (charge densities) RMTKmax (Gmax) is opti-
mized to be 7 (12 Bohr−1). We select the separation energies
to be −9 Ry for separating the valence electrons from the core
electrons so that electronic configurations of 6s24 f 145d106p3

for Bi, of 4d105s26p66s2 for Ba, of 3s23p64s23d6 for Fe, of
2s22p4 for O, and of 2s22p5 for F are applied for the valence
electrons included in the SCF-calculations. The radii of the
muffin-tin spheres are chosen to be 2.17, 2.15, 1.52, 1.48,
and 1.50 Bohr for Bi, Ba, Fe, O, and F atoms, respectively.
Internal coordinates and lattice parameters are fully optimized
by minimizing the Hellmann-Feynman forces [75] with the
criterion of f c < 1 mRy/bohr. The spin-orbit coupling (SOC)
is considered in all the calculations.

It is well known that the DFT-based methods suffer from
the precise electronic band gap prediction [40,41,44,76–78].
Tran and Blaha (TB) [40] have proposed an exchange poten-
tial to overcome the latter shortcoming. This potential is called
TB-mBJ, see Eq. (4) of Ref. [41] or Eq. (1) of Refs. [40,44].
David Koller, Fabien Tran, and Peter Blaha [41] have also
reported merits and limits of TB-mBJ exchange potential. The
failure to describe ferromagnetic metals by TB-mBJ is not
unexpected, see Table II and the related discussion right below
this table of Ref. [41]. In the TB-mBJ exchange potential,
there is a correction (c) factor, see Eq. (5) of Ref. [41] or
Eq. (3) of Ref. [40] or Eq. (2) of Ref. [44]. This c factor of
the TB-mBJ can be expressed as [40]

c = α + β
√

g, (1)

where α = −0.012, β = 1.023 (Bohr)1/2, and g depends on
the electron charge density ρ(r′) and its gradient ∇ρ(r′) as
follows [40]:

g = 1

Vcell

∫
cell

|∇ρ(r′)|
ρ(r′)

dr′, (2)

which is the average of g = ∇ρ(r′)/ρ(r′) in the unit cell
of volume Vcell in the absence of spin polarization. In the
presence of spin polarization, g can be generalized by taking
spins up and down into account, as expressed in Eq. (6) of
Ref. [42]. Koller, Tran, and Blaha (KTB) in another contribu-
tion [42], than their last contribution [41], have improved the
TB-mBJ exchange potential. To this end, they, i.e., KTB [42],
generalized the c factor of the TB-mBJ potential from c =
α + β

√
g with the above (α = −0.012, β = 1.023 (Bohr)1/2)

to c = A + Bge with (e = 1, A = 0.488, B = 0.500 (Bohr)e =
0.500 (Bohr)1 = 0.500 Bohr) for large band gap insulators, as
well as with (e = 1, A = 0.267, B = 0.656 Bohr) for small
band gap semiconductors, see Table II of Ref. [42]. There-
fore, the TB-mBJ method is called KTB-mBJ, if c = A +
Bg is used, whereas it is still called TB-mBJ, if c = α +
β
√

g is used. The above KTB-mBJ designed for small-gap
(Sgap) insulators [large-gap (Lgap) semiconductors] is called
Sgap-KTB-mBJ (Lgap-KTB-mBJ). In Eq. (1) (c = A + Bge),
c and whence α (c and whence A) are dimensionless param-
eters, while the dimension of β (B) is

√
Bohr ((Bohr)e) to
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compensate the dimension of
√

g (ge). Here, in this work,
since the band gap of our system is not too large, we use
Sgap-KBT-mBJ only, i.e., c = A + Bg with (A = 0.267, B =
0.656 Bohr), as well as TB-mBJ, i.e., c = α + β

√
g with

(α = −0.012, β = 1.023 (Bohr)1/2). Jishi, Ta, and Sharif by
means of the above generalized c = A + Bge relation, as pro-
posed by KTB [42], have reparameterized it considering a
set of perovskite materials, and obtained A, B, and e parame-
ters to be 0.4, 1.0 (Bohr)1/2, and 0.5, where A = 0.4 > α =
−0.012 but B and e are the same as the original TB-mBJ,
viz. B = 1.0 (Bohr)1/2 ≈ β = 1.023 (Bohr)1/2 and e = 1/2,
see Eq. (5) of Ref. [43]. The TB-mBJ with (A = 0.4, B =
1.0 (Bohr)1/2, e = 0.5) is called JTSKTB-mBJ method. Since
according to Eqs. (1) and (2) c depends on ρ(r′), the c factor
of the TB-mBJ functional is an internal parameter which can
be self-consistently converged and determined. This kind of
treatment, i.e., TB-mBJ with its self-consistently converged c
parameter, is called regular TB-mBJ or simply TB-mBJ, see
Ref. [44]. Similarly, KTB-mBJ with its self-consistently con-
verged c parameter, can be called regular KTB-mBJ or simply
KTB-mBJ. The same is true for JTSKTB-mBJ, since in this
method c is self-consistently converged and determined. A
band gap of a system depends on the c parameter and can
be increased by increasing this factor, as shown in Fig. 1
of Ref. [41]. During a self-consistent field (SCF) TB-mBJ
calculations, the c parameter can be also forced to remain
fixed to a desired constant value. This kind of constrained
calculations, i.e., TB-mBJ with a fixed c parameter, is called
nonregular or irregular TB-mBJ method, see Ref. [44]. The
irregular TB-mBJ, as proposed in Ref. [44], is a constrained
TB-mBJ method, since in the irregular TB-mBJ (Ir-TB-mBJ)
method it is possible to constrain c to a constant (c) value
during an SCF calculation. The c factor is a dimensionless
parameter which can be varied usually from around 0 or 0.5
to around 2 or 2.5 in an Ir-TB-mBJ calculation, where the
interval (0, 2.5) or (0.5, 2) depends on the material under study
which would be checked per case, see Fig. 1 of Ref. [41].
Therefore, the band gap can be obtained as a function of c
parameter by performing a set of Ir-TB-mBJ calculations. By
means of the Ir-TB-mBJ with various c parameters, c can be
directly optimized to achieve further improvements over the
regular the TB-mBJ method, see magnetic moment discussion
of Fe atom, as reported below Table II of Ref. [41]. There-
fore, by Ir-TB-mBJ with optimized c (copt), as introduced in
Ref. [40] and used in its Table IV, band gap prediction can be
considerably improved.

In summary, the TB-mBJ method refers to the exchange
potential expressed in Eq. (1) of Ref. [40], where c =
α + β

√
g with (α = −0.012, β = 1.023 (Bohr)1/2) for every

material. The Lgap-KTB-mBJ method refers to Eq. (1) of
Ref. [40], where c = A + Bge with (e = 1, A = 0.488, B =
0.500 Bohr) for wide band gap insulators having band gaps
larger than or equal 7 eV. The Sgap-KTB-mBJ method refers
to Eq. (1) of Ref. [40], where c = A + Bge with (e = 1, A =
0.267, B = 0.656 Bohr) for small band gap semiconductors
having band gaps smaller than 7 eV. The Lgap-KBT-mBJ
can be distinguished from Sgap-KBT-mBJ by the latter band
gap of 7 eV which is considered by KBT as the border
between small and large gaps, see page 155109-4, second

column, of Ref. [42]. The JTSKTB-mBJ method refers to
Eq. (1) of Ref. [40], where c = A + Bge with (A = 0.4, B =
1.0 (Bohr)1/2, e = 0.5) for perovskite materials. The Ir-TB-
mBJ method refers to Eq. (1) of Ref. [40], where c is
constrained to a fixed value reigning between 0 to around
2.5. In TB-mBJ, KTB-mBJ, and JTSKTB-mBJ methods, c
in Eq. (1) of Ref. [40] is a local functional of ρ(r′). In the
latter methods, A, B, and e are three free parameters that can
be used to determine an initial value for c. Then, in TB-
mBJ, KTB-mBJ, and JTSKTB-mBJ methods, c in Eq. (1) of
Ref. [40] is allowed to vary iteration by iteration during an
SCF DFT procedure to reach its converged value. In the Ir-TB-
mBJ method, c itself is directly considered as a free parameter.
Thus, in the Ir-TB-mBJ method, exchange potential given in
Eq. (1) of Ref. [40] itself varies via ρ(r′) during an SCF-DFT
procedure cycle by cycle up to the end of well converged SCF
procedure, while its c factor from the beginning up to the end
of SCF calculation is kept fixed and not allowed to vary.

In order to elucidate to which extent our GGA +
U calculations can yield reliable results, in this work,
the accuracy of our PBE-GGA + U results are also
estimated by the TB-mBJ exchange potential. To this end,
we have also calculated the electronic structure for the rhom-
bohedral phase of the pure stoichiometric BiFeO3 compound
using the TB-mBJ, KTB-mBJ, JTSKTB-mBJ, and irregular
TB-mBJ with various c parameters, including copt, as indi-
cated above, in addition to the PBE-GGA + U .

IV. THEORETICAL BACKGROUNDS

Let us, first below in Sec. IV A (Sec. IV B), briefly and
theoretically discuss how post processing calculations are per-
formed over the SCF-DFT band structures to obtain optical
(spontaneous electric polarization) properties, as discussed in
Sec.V B (Sec.V C).

A. Optics

A linear response of a system to an incident light having
energy h̄ω can be calculated by the complex dielectric func-
tion ε(ω) using random-phase approximation (RPA) [79]. The
results of this kind of calculations were found consistent with
experiments [31,39]. Here, we calculate the imaginary part of
the dielectric tensor, �[εαα′ (ω)], using the following formula:

�[εαα′ (ω)] =
(

e2�

2π h̄m2ω2

) ∑
cv

∫
dk〈ck|pα|vk〉〈vk|pα′ |ck〉

× fck(1 − fvk )	(Eck − Evk − h̄ω), (3)

where e and m are charge and mass of electron, respectively.
� is the volume of the unit cell. h̄ω is the energy of the
incident photon. pα and pα′ are the momentum operators
where α = α′ = x, y, z. |ck〉 and |vk〉 are crystal eigenstates
with momentum k and eigenvalues Eck and Evk where c and
v indexes refer to the conduction and valence bands, respec-
tively. fck and fvk are the Fermi-Dirac distribution function
and 	(Eck − Evk − h̄ω) is the Dirac delta function. The rank
of the dielectric tensor is one for the hexagonal and tetragonal
symmetries. The dielectric tensor can be decomposed into two
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independent components ε‖ and ε⊥, where ε‖ = εzz is alone
the c hexagonal (tetragonal) direction and ε⊥ = εxx = εyy lies
along the other two perpendicular directions. The real part of
the dielectric function, �[ε(ω)], is evaluated from the imag-
inary part by substituting Eq. (3) into the Kramers-Kronig
formula:

�[ε(ω)] = 1 + 2

π
℘

∫ ∞

0

dω′ω′�[ε(ω′)]
ω′2 − ω2

, (4)

where symbol “℘” stands for the Cauchy principle part of
the integral. The other optical properties can be straight-
forwardly obtained from Eqs. (3) and (4). In Sec. V B,
we discuss our calculated index of refraction, N (ω) =
�[N (ω)] + i�[N (ω)] ≡ n(ω) + ik(ω), where n(ω) is the in-
dex of refraction and k(ω) is the extinction coefficient.
N (ω) is related to the complex dielectric function as ε(ω) =
N2(ω). If, for simplicity, we represent the dielectric function
as ε(ω) = �[ε(ω)] + i�[ε(ω)] = ε1(ω) + iε2(ω), then from
ε(ω) = N2(ω), we have ε1(ω) + iε2(ω) = n2(ω) − k2(ω) +
2in(ω)k(ω). Hence, ε1(ω) = n2(ω) − k2(ω) and ε2(ω) =
2n(ω)k(ω). The latter relations can be solved to obtain the
index of refraction n and the extinction coefficient k. In
Sec. V B, we substitute Eqs. (3) and (4) into the following
formulas to calculate n(ω) ≡ �[N (ω)] and k(ω) ≡ �[N (ω)]
as follows:

n(ω) ≡ �[N (ω)] =
√

|ε(ω)| + �[ε(ω)]

2
, (5)

k(ω) ≡ �[N (ω)] =
√

|ε(ω)| − �[ε(ω)]

2
, (6)

where |ε(ω)| =
√

(�[ε(ω)])2 + (�[ε(ω)])2 ≡√
n2(ω) + k2(ω). Light absorption measurement, as an

optical technique, can be used to measure the decay of the
light intensity I (z) = I0e−α(ω)z after traversing a thickness z
of a material with respect to the initial incident intensity I0,
where α(ω) is the absorption coefficient. The intensity I (z) is
proportional to the square of the absolute value of the incident
field. Thus, the absorption coefficient is proportional to the
extinction coefficient as follows, see Eq. (5.2) of Ref. [80]:

α(ω) = 2ω�[N (ω)]

c
≡ 2ωk(ω)

c
, (7)

where the factor of 2 originates from |I (z)|2. The extinction
coefficient is dimensionless, whereas the unit of absorption
coefficient is cm−1. In Sec. V B, we substitute Eq. (6) into
Eq. (7) to calculate the absorption coefficient. Then, we cal-
culate the optical gap Eopt

g using Tauc method [45], i.e., the
following relation between α(ω), the energy of the incident
photon hν, and Eopt

g , see Eq. (1) of Ref. [46]:

(α(ω)hν)1/γ = B
(
hν − Eopt

g

)
, (8)

where h is the Planck constant, ν is the photon’s frequency,
B is a proportionality constant, and γ is 1/2 for the direct
transition and 2 for the indirect transition. The energy-loss
function (ELF) is also related to the dielectric function by
ELF(ω) = �[ −1

ε(ω) ] relation. Hence, it reads

ELF(ω) = �
[ −1

ε(ω)

]
= �[ε(ω)]

(�[ε(ω)])2 + (�[ε(ω)])2 . (9)

Other optical properties such as reflectivity, transmission,
conductivity, polarization coefficient, and so on can be also
derived from Eqs. (3) and (4). More details are discussed and
presented in Refs. [81–83].

B. Spontaneous electric polarization

According to the modern theory of polarization [34–38],
the total microscopic polarization of structure λ can be defined
as follows:

P(λ) = e

�(λ)

N∑
s=1

Z ion(λ)
s r(λ)

s

+ 2e

(2π )3

M∑
n=1

∫
1BZ(λ)

dk
〈
u(λ)

nk

∣∣ − i∇k
∣∣u(λ)

n,k

〉
, (10)

where λ can be 1 or 2. Here λ = 1(λ = 2) refers to the initial
high-symmetry (final polar low-symmetry) structure which is
the cubic (tetragonal) structure in our study. In this equation,
e is the electron charge, �(λ) is the unit cell volume of the
structure λ, s is an index to numerate number of ions in the
unit cell, and N is the number of ions. In the first term of
this equation, Zion(λ)

s is the ionic number in the unit cell of
the phase, i.e., the number of valence electrons of the atom in
the structure λ so that eZion(λ)

s is the positive point charge of
the atom in the unit cell. r(λ)

s is the position vector of atom s in
structure λ. The factor of 2 in the numerator of the second term
shows the band occupancy for the spin polarized systems in
the absence of the SOC. However, it is worth to highlight that
the latter factor should not be considered in the presence of the
SOC, because this relativistic interaction itself couples spins
up and down states. Therefore, in practice, we have ignored
this factor of 2 in Eq. (10) to avoid double counting, since
our spin polarized calculations have been performed in the
presence of the SOC and whence the up and down electric
polarizations have been already mixed together by default
using this relativistic coupling. n is the band index, M is the
number of occupied bands, k is the wave vector, unk

(λ) is the
cell-periodic complex amplitude of the Bloch eigenstate in
the structure (λ), −i∇k is the momentum representation of the
position vector r, and 〈unk

(λ)| − i∇k|unk
(λ)〉 is the electronic

contribution of the band n at the wave vector k in the λ phase
to the Berry phase, i.e., ϕ

(λ)
el, n(k), or gauge potential. The first

(second) term in Eq. (10) refers to the ionic (electronic) part of
the polarization. The integral in the second term is taken over
the first Brillouin zone of the λ structure (1BZ(λ) ) and gives
the electronic Berry phase of band n for the λ phase, ϕ

(λ)
el, n.

The summation in the second term is taken over the bands and
therefore, it is proportional to the electronic Berry phase of the
λ structure, viz. ϕ(λ)

el . Similarly, the summation in the first term
is proportional to the ionic Berry phase of the λ structure, i.e.,
ϕ

(λ)
ion , so that Eq. (10) for polarization in μ cartesian direction

can be represented as

P(λ)
μ = e

2π

ϕ(λ)
μ

�(λ)
R(λ)

μ , (11)

where ϕ(λ)
μ is the total Berry phase in the polarization direction

and R(λ)
μ is the length of lattice vector in the real space for the
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FIG. 2. Relative changes in total energies with respect to the
origin of the energy coordinate chosen at −315 600 Ry calculated
by PBE-GGA + U + SOC with Ueff = 5 eV for the (Ba,F)-codoped
composition as functions of volume per formula unit for (a) the
G-AFM configuration using three different c/a ratios, and (b) both
the G-AFM and FM spin configurations using the optimized c/a ratio
obtained from (a). The inset shows (a) after zooming in for higher
resolution.

structure λ, viz. R(λ) = ∑3
μ=1 R(λ)

μ ê(λ)
μ , where R(λ)

μ ê(λ)
μ (R(λ)

μ )
is the primitive vector of structure λ along μ in the direction
of unit vector ê(λ)

μ . According to the modern theory of polar-
ization, the spontaneous polarization of a compound 	P is
defined as the difference between the polarization of the po-
lar low-symmetry structure and the high-symmetry structure,
viz. 	P = 	P(2) − 	P(1) [34–38]. In Sec. V C, we use this
definition to calculate the spontaneous electric polarization.

V. RESULTS AND DISCUSSIONS

A. Structural and electronic properties

1. Lattice parameters

Let us, here, in this section check that which of the cases
in question can be suitable candidates for the ferroelectricity.
To this end, we calculate relative changes in total energies
with respect to the origin of the energy coordinate chosen
at −315 600 Ry as functions of volume per formula unit
using PBE + GGA + U with Ueff = 5 eV for three ratios
c/a = 1.02, 1.05, 1.08 of the codoped compound with x =
0.25, see Figs. 1(b2) and 2(a). Two of these three selected
ratios, i.e., c/a = 1.05 and 1.08, were reported experimentally
by Oliver et al. [26] for x = 0.3 and 0.2, respectively. The
lowest energy state is observed for c/a = 1.05, see Fig. 2(a)
and also its inset which is rescaled for more clarity. Therefore,
we select 1.05 as our optimized c/a ratio for the oxyfluo-
ride composition. Then, we calculate the lattice parameter a
using the latter c/a. Similarly, the lattice parameters a and
c/a ratios are optimized for the pure and Ba doped cases,
as tabulated in Table II. In this table, experimental [15] and
theoretical [84] data for the pure case and experimental data
[26] for the doped cases with x = 0.2 and 0.3 are included
for comparison. The comparison shows good agreement. For
the pure (doped) compound (compositions), in addition to the
optimized Ueff = 4 eV (Ueff = 5 eV), the results calculated by
Ueff = 5 eV (Ueff = 4 eV) are also included. The comparison
shows that lattice parameters are not very sensitive to this
change made in Ueff. This is in agreement with our observa-
tions for the highly correlated CeIn3 case [71,71]. It is worth
to mention that for the optimization only lattice parameters

TABLE II. Lattice parameter a in Å and c/a ratio calculated
by PBE-GGA + U+SOC for the rhombohedral BiFeO3, tetrago-
nal Bi1−xBaxFeO3−x/2 (x = 0.25) and Bi1−xBaxFeO3−xFx (x = 0.25)
compounds together with the available experimental and computa-
tional results for comparison. The present results are denoted by *. To
avoid repetition, every blank cell of each block of the table, excluding
irrelevant cells assigned to the experimental data, represents the
repetition of its own upper cell in the table.

Crystal x Scheme Ueff (eV) a (Å) c/a Ref.

BiFeO3 ¬a PBE+U 4 5.625 2.510 *
5 5.628 2.509 *
3b 5.631 2.502 [84]

Exp. 5.571 2.490 [15]

Bi1−xBaxFeO3−x/2 0.25 PBE+U 4 4.089 1.003 *
5 4.096 *

0.20 Exp. 3.985 1.000 [26]
0.30 Exp. 3.996 1.003 [26]

Bi1−xBaxFeO3−xFx 0.25 PBE+U 4 3.988 1.050 *
5 4.053 *

0.20 Exp. 3.928 [26]
0.30 Exp. 3.962 1.080 [26]

aThe math symbol “¬” stands for “not presented.”
bIn Ref. [84], the Hubbard parameter U = 4 eV and the exchange
interaction. J = 1 eV ⇒ Ueff = U − J = 4 − 1 = 3 eV.

are not considered. To optimize the Ueff parameter, a variety
of more sensitive quantities with respect to the variation of the
Hubbard parameter, including magnetic moments and band
gaps, are taken into account. We have also made sure that the
doped cases remain insulator after doping.

Let us terminate this section by highlighting the following
fact deduced from the above results. Although the Ba-doped
composition, due to its tiny polar distortion c/a of around
1.003 leading to the cubic or more precisely pseudocubic
symmetry, cannot be an appropriate ferroelectric material,
the pure compound with hexagonality c/a of about 2.5 and
(Ba,F)-codoped composition with tetragonality c/a of about
1.05 can properly constitute ferroelectric materials.

2. Magnetic moments

A weak ferromagnetism was reported experimentally [85]
for Ba doped BiFeO3. However, Oliver et al. explored G-AFM
ordering for Ba doped BiFeO3 and attributed the remanent
magnetization to the ferrimagnetic impurity BiFe12O19 in this
doped compound [26]. Therefore, for the optimized c/a =
1.05, we compare the energies versus volume of FM and
G-AFM spin configurations. The total energy of FM config-
uration is about 0.4 Ry ≈ 5.4 eV higher than that of G-AFM
configuration, see Fig. 2(b). Thus, we found that the G-AFM
configuration can be energetically more favorable than FM
configuration which is consistent with the G-AFM ordering
reported experimentally by Oliver et al. [26].

Here, let us show that GGA + U can also reproduce the
experimental magnetic moments per each Fe atom in the
pure and doped cases. Accordingly, in agreement with the
corresponding experimental magnetic moment of 4.1 μB [51],
we have calculated the magnetic moment to be 4.11 (4.17) μB
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by PBE-GGA + U with Ueff = 4 (5) eV for the pure com-
pound. In addition to the pure case, the averages of magnetic
moments are calculated for the Ba-doped and (Ba,F)-codoped
compositions with x = 0.25 by PBE-GGA + U with Ueff =
4 (5) eV to be about 3.71 (3.80) μB and 3.60 (3.62) μB,
respectively. These results are also found in agreement with
the corresponding experimental data [26], i.e., 3.74 (3.70) μB

for the Ba-doped composition with x = 0.2 (0.3) and overall
3.70 μB for the (Ba,F)-codoped composition considering both
x = 0.2 and 0.3. The results show that the magnetic moment
decreases as Ueff increases in all the three cases. This confirms
that the localization degree of the d electrons of iron ion
increases as Ueff increases in these cases. This is in agreement
with our previous observation for the CeIn3 [71], as well. We
also notice that the magnetic moment decreases by doping.
For instance, magnetic moment of the single doped compo-
sition decreases compared to the pure case. Subsequently,
magnetic moment of the codoped composition also decreases
compared to the single doped case. From this, it appears that
these kinds of doping cause the d electrons of Fe ion to behave
a little bit more like itinerant electrons than localized elec-
trons. We have performed more elaborations and, however,
found that the change in the magnetic moment originates
mainly from the change in symmetry rather than doping. To
this end, for the tetragonal structure before (Ba,F) codoping,
we, using PBE-GGA + U with Ueff = 5 eV, calculated the
magnetic moments to be very close (almost equal) to that
calculated for the tetragonal structure after (Ba,F) codoping,
i.e., 3.80 μB. This magnetic moment, 3.80 μB, obtained for the
tetragonal structure before and after (Ba,F) codoping differs
from the magnetic moment of 4.11 (4.17) μB calculated by
PBE-GGA + U with Ueff = 4 (5) eV for the pure case having
different symmetry, i.e., rhombohedral (R3c). This shows that
symmetry can play more important role than doping for the
cases under study.

Before closing this section, let us also assess the accuracy
of our magnetic moment calculated by the PBE-GGA + U
with Ueff = 4 eV, including both the spin polarization, and
SOC for the pristine compound. To this end, let us calculate
the total magnetic moment per Fe atom for the rhombohe-
dral phase of BiFeO3 using PBE-GGA + U with various U
parameters and a variety of mBJ versions, i.e., TB-mBJ, Sgap-
KTB-mBJ, Ir-TB-mBJ, and JTSKTB-mBJ with their various
c parameters, as defined and discussed in Sec. III. The results
together with the experimental and other theoretical results
are presented in Table III for comparison. The comparison
shows that the magnetic moment increases by increasing U
in PBE-GGA + U as well as c in various versions of TB-
mBJ. The results also show that both the PBE-GGA + U with
Ueff = 4 eV and the original version of the mBJ, i.e., TB-mBJ
[40], with its well converged c = 1.38 in agreement with each
other can successfully reproduce the experimental datum and
there are accurate enough for prediction of magnetic moment
of this compound.

Let us conclude this section by noting that the doped com-
positions have already shown one of the degrees of freedom
required to being among multiferroic materials, viz. nonzero
magnetic moments with G-AFM ordering as shown above.
Clearly the Ba-doped composition due to its pseudocubic
symmetry, however, cannot satisfy the second degree of free-

FIG. 3. Band structures calculated by GGA + U + SOC for the
(a) pristine BiFeO3 with Ueff = 4 eV, (b) Ba-doped composition,
Bi1−xBaxFeO3−x/2 (x = 1/4), with Ueff = 5 eV, and (c) (Ba,F)-
multidoped composition, Bi1−xBaxFeO3−xFx (x = 1/4), with Ueff =
5 eV. The Fermi energy levels (EF) are set to zero.

dom, viz. the spontaneous electric polarization vanishes in all
the cubic crystals. Thus, in Sec. V C, we concentrate only
on the (Ba,F)-codoped composition with P4mm symmetry to
investigate whether its tetragonal symmetry can allow electric
and magnetic polarizations to occur simultaneously.

3. Band structures

Sometimes, in ab initio calculations, the presence of impu-
rities in narrow-gap semiconductors can lead to an undesired
zero band gap. However, existence of a nonzero band gap
plays a vital role in electric polarization calculations, at least
using the available standard polarization approaches, as to
be performed and discussed in Sec. V C. To this end, let
us, here, examine that the effective Hubbard parameter is
selected in such a way that it can produce not only satisfactory
results compared to the experiment, but can also prevent a
possible unwanted metallic behavior of the doped systems.
Therefore, in order to check the band gaps and to show
the accuracy of our optical properties, as to be discussed in
Sec. V B, let us calculate the band structures of BiFeO3 and
its doped tetragonal compositions using PBE-GGA + U . The
band structures along high symmetry k-points, as shown in
Fig. 3, reveal that the indirect band gap of the pure case, 2.29
(1.99) eV calculated by PBE-GGA + U with Ueff = 5 eV
(Ueff = 4 eV), substantially reduces by doping. However, the
indirect insulator character remains unchanged after doping
by PBE-GGA + U with Ueff = 5 eV. The reductions of the
band gaps originate from the subbands produced by the doped
impurities inside the gap region between the valence and con-
duction bands of the pure case. This observation is consistent
with the following reports: (i) Sang Won Bae et al. [86]
studied nanostructured cubic SrTiO3 particles and its doped
SrTi0.5M0.5O3 (M = Ru, Rh, Ir, Pt) nanoparticles as visible
light photocatalysts and found that the doped impurities tai-
lored the band structure of the SrTiO3 and thence giving a
reduction in the band gap compared to the large band gap
of SrTiO3, (ii) Hirak Kumar Chandra and coauthors [87] per-
forming pseudopotential calculations using GGA(PW91)+U
as implemented in the VASP code calculated the DOSs of
BaTiO3 introducing Mn-doped with U = 3 eV and V-doped
with U = 4 eV to study the effects of these different dopants
on the impurity states inside the band gap, see Fig. 1 of this
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TABLE III. Total magnetic moment per Fe atom (MM), electronic bangap (Ee
g ), type of electronic band gap (Type), direct optical band gap

(dir. E opt
g ), and indirect optical band gap (ind. E opt

g ) for rhombohedral phase of BiFeO3. XC, SOC, c, and Ueff represent exchange-correlation,
spin-orbit coupling, c parameter of various mBJ versions, including TB-mBJ, Sgap-KTB-mBJ, JTSKTB-mBJ, and Ir-TB-mBJ, as defined and
discussed in Sec. III, and effective Hubbard parameter of LDA/GGA+U , respectively. Results of this work are denoted by *.

Scheme XC SOC c Ueff (eV) MM (μB) Ee
g (eV) Type dir. E opt

g (eV) ind.aE opt
g (eV) Ref.

GGA PBE Yes �b �b 3.74 0.44 ind. 1.89r 0.32r *
GGA + U PBE Yes �b 2.0 3.96 1.30 ind. 2.60r 1.22r *
GGA + U PBE Yes �b 4.0 4.11 1.99 ind. 2.66q 1.86q *
GGA + U PBE Yes �b 5.0 4.17 2.29 ind. 2.82r 2.00r *
GGA + U PBE Yes �b 6.0 4.22 2.48 ind. 2.92r 2.29r *
TB-mBJ PBE Yes 1.38 �b 4.10 2.15 ind. 2.80q 2.00q *
Sgap-KTB-mBJd PBE Yes 1.49 �b 4.12 2.28 ind. 2.89r 2.13r *
Ir-TB-mBJd PBE Yes 1.53 �b 4.19 2.62 ind. 3.18r 2.41r *
Ir-TB-mBJd PBE Yes 1.55 �b 4.20 2.67 ind. 3.22r 2.44r *
Ir-TB-mBJd PBE Yes 1.57 �b 4.22 2.73 ind. 3.28r 2.50r *
Ir-TB-mBJd PBE Yes 1.60 �b 4.23 2.81 ind. 3.37r 2.62r *
JTSKTB-mBJd PBE Yes 1.80 �b 4.35 3.33 ind. 4.02r 3.00r *
LDA ¬c No �b �b ¬c 0.51 dir. ¬c ¬c [100]
LDA ¬c No �b �b 3.54 ¬c ind. ¬c ¬c [100]
LDA ¬c No �b �b 3.3 0.4 ind. ¬c ¬c [16]
LDA PW91 No �b �b 3.6 0.5 ind. ¬c ¬c [109]
GGA ¬c No �b �b ¬c 0.50 ind. ¬c ¬c [57]
GGA PBE No �b �b 3.9 1.0 ind. ¬c ¬c [109]
GGA PBE No �b �b ¬c 1.0 ind. ¬c ¬c [110]
GGA PBE No �b �b 3.7 1.0 ind. ¬c ¬c [109]
GGAi PBE-HSE06 No �b �b ¬c 1.94j ind. 2.14 1.83 [101]
GGA PBEsol No �b �b ¬c 0.99 ind. ¬c ¬c [111]
GGA WC No �b �b 3.8 0.8 ind. ¬c ¬c [109]
LDA+U ¬c No �b 6.0 ¬c 2.80(2.40) dir. (ind.) ¬c ¬c [33]
LDA+U ¬c No �b 3.8 4.1 2.0 ind. ¬c ¬c [109]
LDA+U ¬c No �b 2 3.8 1.3 ind. ¬c ¬c [16]
LDA+U ¬c No �b 4 4 1.9 ind. ¬c ¬c [16]
LDA+U ¬c No �b 5.5 ¬c 2.10 ¬c ¬c ¬c [104]
GGA + U ¬c No �b 2.0 4.02 ¬c ¬c ¬c ¬c [88]
GGA + U ¬c No �b 2.0 4.30 ¬c ind. ¬c ¬c [49]
GGA + U ¬c No �b 4.5 ¬c 2.1 ind. ¬c ¬c [105]
TB-mBJf ¬c No ¬c �b ¬c 2.50 (1.60e) dir. ¬c ¬c [57]
TB-mBJ ¬c Yes ¬c �b ¬c 1.60 ind. ¬c ¬c [112]
TB-mBJ ¬c Yes ¬c �b ¬c 1.92 ind. ¬c ¬c [113]
TB-mBJ ¬c No ¬c �b ¬c 1.70 ind. ¬c ¬c [112]
TB-mBJ ¬c No ¬c �b ¬c 1.96 ind. ¬c ¬c [113]
TB-mBJ ¬c No PBEsol �b ¬c 2.46 ind. ¬c ¬c [111]
i-TB-mBJh PBEsol No ¬c �b ¬c 2.84 dir. ¬c ¬c [111]
Hybrid B3LYP No �b �b 4.2 3.6 ind. ¬c ¬c [109]
Hybrid B1-WC No �b �b 4.2 3.0 ind. ¬c ¬c [109]
Hybrid B1-WC No �b �b 4.2 3.0 ind. ¬c ¬c [110]
Hybrid HSE No �b �b 4.1 3.4 ind. ¬c ¬c [110]
sXg ¬c No �b �b ¬c 2.8 ind. ¬c ¬c [114]
Exp. 2.10 1.92 [101]

3.75 [115]
4.10 [51]

2.67k [116]
2.74l [39]
2.50 [102]

0.90 ± 0.5 ¬c [100]
1.30 ¬c [99]

2.00m [103]
1.85n [104]
2.25p [104]
2.10p [105]
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TABLE III. (Continued.)

Scheme XC SOC c Ueff (eV) MM (μB) Ee
g (eV) Type dir. E opt

g (eV) ind.aE opt
g (eV) Ref.

2.74o 2.18o [31]
2.35 → 1.70s [106]
2.25 → 1.40t [106]
2.09 → 2.32u [107]

3.0 [108]

aIndirect transitions in RPA are forbidden according to the Fermi’s golden rule due to the momentum conservation law, 	k = 0, in the absence
of phonon interactions, as discussed in Sec. V B, see also Refs. [117–119], though it can be estimated using Tauc method [45], employing
Eqs. (7) and (8).
bMath symbol “�” stands for “does not exist”.
cMath symbol “¬” stands for “not presented”.
dSee second and third paragraphs of Sec. III for the discussion of this version of mBJ-based scheme and its corresponding c parameter.
eCalculated for BiFeO3 thin films.
fUsing GGA.
gsX potential is a DFT method based on Hartree-Fock, including electron exchange via Thomas-Fermi screened exchange term, as used by the
pseudopotential-based CASTEP code.
hi-TB-mBJ defined in Ref. [111] is identical to Sgap-KTB-mBJ defined, here, in Sec. III.
iPBE-GGA using Heyd–Scuseria–Ernzerhof (HSE06) hybrid functional as implemented in the VASP code.
jExtracted from Fig. 6 of Ref. [101].
kMeasured for BiFeO3 thin films at 300 K.
lMeasured for BiFeO3 thin films.
mExtracted from Fig. III of Ref. [103].
nUsing absorbance measurement.
oExtracted, as shown in Fig. 14 and discussed in Sec. V B, using Eqs. (7) and (8), as expressed and discussed in Sec. IV A, from experimental
ka spectrum, as shown in Fig. 3(b) of Ref. [31].
pUsing reflectance measurement.
qExtracted, as shown in Fig. 14 and discussed in Sec. V B, using Eqs. (7) and (8), as expressed and discussed in Sec. IV A, from our calculated
k⊥ spectrum, e.g., see Fig. 10(c).
rExtracted using Eqs. (7) and (8), as expressed and discussed in Sec. IV A, from our calculated k⊥ spectrum.
sMeasured by conventional absorption spectroscopy from 297.77 to 800.03 K.
tMeasured with fixed wavelength using the Urbach equation by slowly varying temperature from 369.85 to 1074.80 K.
uMeasured for BiFeO3 nano-crystals from (5 nm, 623 K) to (65 nm, 823 K), see Table 1 of Ref. [107].

reference, (iii) Ayana Ghosh et al. [88] using first-principles
calculations have recently calculated the band structures of
BiFeO3 compounds and its doped BiLaFe2O6 and BiSrFe2O6

compositions and found that the band gap of BiFeO3 is re-
duced by La doping whereas vanished by Sr doping driving
the system to be metallic, as can be clearly seen in the band
structures shown in Fig. 2 of this reference, (iv) Manpreet
Kaur et al. experimentally measured a decrease of band gap
with increasing concentration of Ba impurity in BiFeO3 [89],
(v) Manjula et al. also reported a decrease in band gap with in-
creasing Ba concentration measuring reflectance spectra [90],
(vi) Essossimna Djatoubai and coworkers [91] very recently
tuned the electronic structure of BiFeO3 via band gap en-
gineering by Ti-dopants and oxygen vacancies for efficient
photocatalytic water oxidation, and (vii) Chan-Ho Yang et al.
[92] by comprehensively reviewing A-site (Bi-site), B-site
(Fe-site), and O-site substitution of BiFeO3 and giving spe-
cific examples for each case discussed the effects of doping on
the electronic structure of the BiFeO3 and confirmed that the
midgap states could be partially filled by band filling control
and even charge trapping in an electric field. Furthermore, our
results also show that the indirect band gap of the oxyflu-
oride composition, 0.46 eV, is larger than that of the oxide
composition, 0.14 eV. The band gaps can be more improved
by the advanced modern techniques such as TB-mBJ [40,42],

Green function (GW ) [93–95], DFT plus dynamical mean
field theory (DFT + DMFT) [70,96], and GGA-1/2 [97,98]
methods. The latter method, GGA-1/2, can be applied as the
starting point for G0W0 which may be more successful for
band gap calculations of some cases. Here, in this work, in
addition to the GGA + U with Ueff = 4 eV, different versions
of the mBJ methods, as discussed in Sec. III, are used to
improve the band gap of the pure case. To this end, besides the
original version of mBJ, i.e., TB-mBJ [40], its other versions
such as KTB-mBJ [41], Sgap-KTB-mBJ [42], JTSKTB-mBJ
[43], and Ir-TB-mBJ [41,44] are also used.

Before concluding this section, let us also estimate the ac-
curacy of our band gap calculated by the PBE-GGA + U with
Ueff = 4 eV, including both the spin polarization, and SOC for
the pure case. To this end, let us calculate the band gap for the
rhombohedral phase of BiFeO3 using PBE-GGA + U with
various U parameters and a variety of mBJ versions, i.e., TB-
mBJ, Sgap-KTB-mBJ, JTSKTB-mBJ, and Ir-TB-mBJ with
their various c parameters, as defined and discussed in Sec. III.
The results together with the experimental and other theoret-
ical results are presented in Table III for comparison. The
first thing that is worth paying attention to in this table is
an apparent self-discrepancy between experimental electronic
band gaps (optical gaps) already measured ranging from
(0.90 eV ± 0.50)min ≈ 0.40 to 1.30 eV (1.85 to 3.00 eV) for
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FIG. 4. Band structures calculated by (a) TB-mBJ, (b) Sgap-KTB-mBJ, (c) Ir-TB-mBJ, (d) JTSKTB-mBJ methods for the rhombohedral
phase of BiFeO3, respectively. The latter methods are defined and discussed in Sec. III. The corresponding c parameter of each method is also
indicated. The c parameters of the TB-mBJ, Sgap-KTB-mBJ, and JTSKTB-mBJ are self-consistently obtained, while the copt parameter of the
constrained Ir-TB-mBJ method is so optimized to reproduce a band gap of 2.73 eV. (e) PBE-GGA, and (f) PBE-GGA + U with Ueff = 4 eV
are also included for comparison. All the Fermi levels are set to zero.

this material, as reported in Refs. [99,100] (Refs. [31,39,99–
108]) and tabulated in Table III. For instance, J. F. Ihlefeld
et al. [39] experimentally measured a direct optical gap of
2.74 eV for the stoichiometric as well as 5% bismuth-deficient
single-phase BiFeO3 thin-films deposited on the (001) SiTiO3

substrate. As another example, Kevin A. McDonnell et al.
[101] measured direct and indirect optical gaps to be 2.10 and
1.92 eV for the BiFeO3 crystal, respectively. The electronic
band gap was measured by Higuchi et al. to be 0.9 eV with an
uncertainty of 0.50 eV [99]. They [99] compared their mea-
sured electronic band gap with the optical gap measured by J.
F. Ihlefeld et al. [39], and related the discrepancy to the dif-
ference of electron correlation energy between thin films and
ceramic sample used due to the valence fluctuations of Fe ions
(Fe2+ or Fe3+), creating oxygen vacancies for charge compen-
sation. Makuła, Pacia, and Macyk in a letter entitled “How
To Correctly Determine the Band Gap Energy of Modified
Semiconductor Photocatalysts Based on UV-Vis Spectra” [46]
discuss that in some cases the well known Tauc method [45],
as frequently used to obtain direct and indirect optical gaps
from an experimental or theoretical absorption spectrum, can
lead to inaccurate band gap, and thereby proposed a method
to obtain more accurate band gap. In Sec. V B, to apply Tauc
approach [45] on our calculated absorption spectra, we will
also use the latter method to obtain more reliable optical gaps
of the pure system, see Table 1 and Figs. 1 to 4 of Ref. [46].
Anyway, the discrepancies between experimental band gaps
can originate from other sources. For example, the differ-
ences between the results of band gap measurements can be
attributed to the purity or concentration of defects. The other
sources of the differences may originate from different meth-
ods of measurements, preparation techniques of the materials,
the effects of thin-films preparation, the sizes of the nanopar-
ticles, the crystallographic direction of the crystal growth,
the effects of different substrates, thickness of the thin-films,
optical gap or electronic band gap, and so on. Furthermore, A.
F. Lima [33] also recently reviewed this issue and discussed
that the measured band gaps can vary from 0.9 to 2.7 eV
depending on the experimental techniques and forms of the
material. The second thing that is worth paying attention to in
this table is an apparent self-inconsistency between theoretical

band gaps already calculated ranging from 0.50 to 2.80 eV
for this material, as reported in Refs. [16,33,49,57,88,100,
101,104,105,109–114] and tabulated in Table III. The dif-
ferences between the results of band gap calculations can
be attributed to the computational methods, and whether the
calculations are performed for the bulk or thin-films of the
material in question, as well as mainly the functionals used
for the exchange-correlation term. The latter point is also in
agreement with our band gaps calculated ranging from 0.44
to 3.50 eV by various schemes, as tabulated in Table III. A
comparison shows that the band gap increases by increas-
ing Ueff in PBE-GGA + U . The band structures calculated
by the TB-mBJ, Sgap-KTB-mBJ, Ir-TB-mBJ, and JTSKTB-
mBJ, including their corresponding c parameter, as defined
and discussed in Sec. III, are shown in Fig. 4. In this figure,
band structures calculated by PBE-GGA and PBE-GGA + U
with Ueff = 4 eV are also included for comparison. The band
structures, as presented in Figs. 4(a) to 4(d), show that the
band gap increases as the c parameter of the mBJ-based
methods increases, see also Table III. In this sense, the role
of c parameter in mBJ can be comparable with that of U
parameter in LDA/GGA + U , though they are physically and
conceptually different. The results, as tabulated in Table III,
show a reasonable agreement between the band gaps predicted
by original TB-mBJ using its self-consistently converged
c = 1.38 and PBE-GGA + U using Ueff = 4 eV. This nearly
band gap agreement can be also seen by comparing band
structure calculated by PBE-GGA + U with Ueff = 4 eV, as
shown in Fig. 4(f), with the band structure calculated by
TB-mBJ with c = 1.38, as shown in Fig. 4(a). Moreover,
the valence bands of these two band structures show almost
similar behaviors, see valence bands shown in Figs. 4(a) and
4(f). Despite the band gap agreement and the similarity of
the valence bands, the curvatures of the conduction bands
of the latter figures show a little bit deviation with respect
to each other and with that of PBE-GGA band structure,
see the bunch of conduction bands which is closer to the
Fermi level shown in Fig. 4(a) and compare it with those
of shown in Figs. 4(f) and 4(e). The bunch of conduction
bands is more compressed by the TB-mBJ potential than that
by the PBE-GGA + U compared to the initial bunch of the
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conduction bands generated by the PBE-GGA without U and
c parameters, see Figs. 4(a), 4(e) and 4(f). The comparison
shows that both of the TB-mBJ and PBE-GGA + U shift up
the GGA conduction bands. However, the nature or curvature
of the bunch of conduction bands nearly remains unchanged
by the PBE-GGA + U even after pushing up the PBE-GGA
conduction bands, whereas it is somehow changed by the re-
pulsion potential TB-mBJ. Although the ground state physical
properties are mainly determined by the valence bands, the
conduction bands are also important and can affect the results.
This implies that band structure calculated by PBE-GGA + U
with Ueff = 4 eV is approximately close (but not exactly iden-
tical) to that calculated by TB-mBJ with c = 1.38 for the pure
case. This agreement, regardless of the differences observed
between conduction bands, becomes more important, if we
recall that the latter two methods are the same methods that
were also able to predict the magnetic moment well before
in Sec. V A 2. The third thing that is worth paying attention
to in this table is that the “electronic band gap” would be
distinguished from the “optical gap.” The electronic band gap
(Ee

g ) is defined as Ee
g = ECBM − EVBM, where ECBM is the

energy of the conduction band minimum (CBM) and EVBM is
the energy of the valence band maximum (VBM). According
to this definition, Ee

g is a single-valued quantity for a given
crystal, which is not the case for the optical gap, as to be
discussed in Sec. V B. Therefore, Ee

g can be either direct or
indirect, but not both at the same time, unless the values of
the direct and indirect electronic band gaps are the same so
that Ee

g remains single-valued. This is also not the case for the
optical gap, as to be discussed in Sec. V B. It is noticeable that
in spite of the single-valued characteristic of the electronic
band gap, sometimes two different values with two different
direct and indirect types have been reported for electronic
band gaps of a crystal using its unique band structure. This has
been performed usually when the two values of the electronic
band gaps are very close to each other. Reporting two different
band gaps close to each other using a single band structure
may be considered as an approximation. However, this can-
not be completely correct, since it violates the single-valued
characteristic and whence the definition of the electronic band
gap. The “optical gap” (Eopt

g ), as to be defined in Sec. V B,
differs from the electronic band gap Ee

g , see Table III. The
latter point is obvious but it is important, because Ee

g and

Eopt
g are frequently used instead of or compared with each

other, though they are technically and physically two differ-
ent quantities having apparent similarities. Jean-Luc Bredas
[120] considering different types of energy gaps such as band
gap, HOMO-LUMO gap, fundamental gap, optical gap, or
transport gap has reported that “failure to appreciate the dis-
tinctions among these different energy gaps has caused much
confusion in the literature, which is manifested by the frequent
use of improper terminology,....” As shown in Table III, large
values can be produced for Ee

g theoretically using screened
exchange (sX) method, as used in Ref. [114], or JTSKTB-
mBJ or “Ir-TB-mBJ with larger c parameters” methods, as
used in this work, than those produced by “TB-mBJ using its
self-consistently obtained c parameter” or “PBE-GGA + U
using its systematically optimized U parameter.” This implies
that, in practice, it is possible to force Ee

g to reproduce the

experimental Eopt
g , but, in principle, it is nonphysical and unre-

liable. Since most of the energy gaps reported for this material
are optical band gap, let us postpone the gap discussion to
Sec. V B where we calculate Eopt

g .
Let us close this section by limiting the accuracy of our

results for the pure (doped) compound (compositions) to the
extend predicted by TB-mBJ and PBE-GGA + U with Ueff =
4(5) eV methods which can reproduce two different quanti-
ties, magnetic moment and band gap, consistent with some
experimental data approximately.

4. Densities of states

It is well known that stereochemically active lone pair elec-
trons can be responsible for the polarization in bismuth- and
lead-based ferroelectrics [121–126]. Thus, here, in order to
demonstrate the activity of the lone pair s electrons of Bi atom
having electronic configuration [Xe] : 4 f 14 5d 10 6s 26 p3, let
us shed light into the total and partial DOSs of the pure
(doped) compound (compositions) calculated by GGA + U +
SOC with Ueff = 4 eV (Ueff = 5 eV), as shown in Fig. 5. Total
DOS of the pure case, as shown in Fig. 5(a), confirms the band
gap reported above based on the corresponding band structure,
as shown in Fig. 3(a). Looking at the edges of the total and
partial DOSs between the valence and conduction states of
the pure compound shows that gap edges mainly originate
from s-Bi, p-Bi, d-Fe, and p-O orbitals, see Figs. 5(a)–5(d),
respectively. Total DOS of the oxide doped composition, as
shown in Fig. 5(e), confirms the reduction of the band gap
reported above due to the subbands produced by the Ba im-
purity, compared to that of the pure compound, based on the
corresponding band structure, as shown in Fig. 3(b). Although
shifting DOSs down can be almost observed by comparing
Figs. 5(a)–5(c), and 5(d) and 5(e), 5(f)–5(h), and 5(i), the
last sources of the gap edges, i.e., s-Bi, p-Bi, d-Fe, and p-O
orbitals, remain unchanged, see Figs. 5(e), 5(g) 5(f), 5(h),
and 5(i). Total DOS of the oxyfluoride doped composition,
as shown in Fig. 5(j), confirms the increase (decrease) of
the band gap reported above due to the subbands produced
by the oxyfluoride impurity, compared to that of the oxide
(pure) composition (compound), based on the corresponding
band structure, as shown in Fig. 3(c). In analogy to the oxide
system, here also, for the oxyfluoride composition, we see that
the DOSs are shifting down compared to the pure case, and
again s-Bi, p-Bi, d-Fe, and p-O orbitals constitute the roots
of the gap edges, see Figs. 5(j), 5(k), 5(l), 5(m), 5(n), and
5(o). For more clarity, the total DOSs of Ba-doped (codoped)
compound from −0.5 to 1.5 eV energy ranges are shown in
Fig. 6. The three peaks are located at 0.28, 1.04, and −0.13 eV
for single doped, see Fig. 6(a). For the codoped, we see two
small peaks at −0.09 and −0.26 eV in the valence region near
the Fermi energy and a peak around 0.51 eV in the conduction
region, see Fig. 6(b). The valence s-Bi, p-Bi, p-O, and d-Fe
DOSs of the pure compound, as shown in Figs. 5(b) and 5(d),
satisfy the hybridization conditions discussed in section 5.4
of our previous work on quantum size effects in Pb/Si(111)
thin films [127]. Therefore, the s-Bi, p-Bi, p-O, and d-Fe
states of the pristine compound can hybridize with each other,
consistent with Ref. [126].
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FIG. 5. Projected spins up total and partial DOSs generated by the GGA + U + SOC with Ueff = 4 (5) eV for the pure compound (doped
compositions). The Fermi energy levels are set to zero.

In order to quantitatively verify the hybridization among
s-Bi, p-Bi, d-Fe, and p-O orbitals, we calculate their
corresponding occupation numbers for spins up and down
(dn), ni(up, dn) with i = s, p, and d , in all the pure and

FIG. 6. Spin up total DOSs calculated by the GGA + U + SOC
with Ueff = 5 eV for doped compositions in energy interval [0.5,
1.5 eV]. The new peaks originated from the doped impurities are
shown by arrows indicating their energies and intensities.

doped compounds, see Table IV. The results show that
the corresponding up and down occupation numbers are
equal for each orbital in each compound, i.e., the up and
down occupations are completely balanced. This confirms
that the AFM calculations are well converged so that the
corresponding total up and down DOSs can symmetrically
cancel each other in each compound, resulting in a null total
magnetic moment for each case, as expected for an AFM
configuration. However, this can cause to raise a question
that “how this can coexist with magnetic ordering.” To settle
this down, let us consider d orbitals of the Fe atoms, as
the main magnetic source, of the materials in question. Let
us also consider only the pure compound as a convenient

TABLE IV. Averages of the occupation numbers for spins up and
down [ni(up, dn) with i = s, p, and d] and the number of atoms (N)
for each atom in the unit cells of BiFeO3 compound, and Ba-doped,
as well as (Ba,F)-codoped compositions.

Crystal Atom N ns(up, dn) np(up, dn) nd (up, dn)

BiFeO3 Bi 6 (0.71, 0.71) (3.29, 3.29) (4.92, 4.92)
Fe 6 (1.08, 1.08) (3.07, 3.07) (2.65, 2.65)
O 18 (0.83, 0.83) (1.87, 1.87)

Ba-doped Bi 6 (0.57, 0.57) (3.24, 3.24) (4.81, 4.81)
Fe 8 (1.05, 1.05) (3.01, 3.01) (2.51, 2.51)
O 23 (0.74, 0.74) (1.60, 1.60)
Ba 2 (0.84, 0.84) (2.06, 2.06) (5.03, 5.03)

(Ba-F)-codoped Bi 6 (0.59, 0.59) (3.21, 3.21) (4.81, 4.81)
Fe 8 (1.01, 1.01) (2.90, 2.90) (2.32, 2.32)
O 22 (0.75, 0.75) (1.63, 1.63)
Ba 2 (0.84, 0.84) (2.06, 2.06) (5.03, 5.03)
F 2 (0.85, 0.85) (2.14, 2.14)
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FIG. 7. Spins up and down DOSs calculated by GGA + U + SOC with Ueff = 4 eV for the partial d orbitals of the (a) Fe1 and Fe6, (b) Fe2
and Fe5, (c) Fe3 and Fe4, (d) Fe1 + Fe2 + Fe3 and Fe4 + Fe5 + Fe6, and (e) total d orbital of Fe1 + Fe2 + Fe3 + Fe4 + Fe5 + Fe6, as well
as (f) total DOS of all the entire atoms and their orbitals inside the unit cell for the AFM phase of the stoichiometric pure BiFeO3 compound.
Occupation numbers per spin, as the areas under the up and down partial and total DOSs, are indicated in each figure. The Fermi level is set
to zero.

sample for this purpose. Obviously, similar discussion with
the same conclusion could be represented (not shown,
here, to avoid repeated discussion) for the other orbitals of
the pure compound and doped compositions. To this end,
spins up and down DOSs calculated by PBE-GGA + U
with Ueff = 4 eV are represented in Fig. 7 for the d
orbitals of the six Fe atoms of the pure compound both
individually and collectively, including occupation numbers
per spin channel and their summations. As can be seen from

Fig. 7(a), up-d-Fe1-DOS (up-d-Fe6-DOS) is not balanced
by its corresponding dn − d-Fe1-DOS (dn − d-Fe6-DOS),
viz. nFe1

d (up) = 0.6362 �= nFe1
d (dn) = 4.6814 (nFe6

d (up) =
4.6815 �= nFe6

d (dn) = 0.6367). This confirms that Fe1
(Fe6) is magnetically ordered individually, viz. nFe1

d (up) −
nFe1

d (dn) = 0.6362 − 4.6814 = −4.0452 � 0 (nFe6
d (up) −

nFe6
d (dn) = 4.6815 − 0.6367 = 4.0448 � 0). However, as

can be also seen from the latter figure, up-d-Fe1-DOS
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(dn − d-Fe1-DOS) is almost well balanced by dn − d-Fe6-
DOS (up-d-Fe6-DOS), viz. nFe1

d (up) = 0.6362 ≈ nFe6
d (dn) =

0.6367 (nFe1
d (dn) = 4.6814 ≈ nFe6

d (up) = 4.6815). This
implies that the resultant magnetic moment of Fe1 and
Fe6 atoms collectively are very close to zero, as opposite
channels of the Fe1 and Fe6 almost cancel each other, viz.
[nFe1

d (up) + nFe6
d (up)] − [nFe1

d (dn) + nFe6
d (dn)] = [0.6362 +

4.6815] − [4.6814 + 0.6367] = [5.3177 − 5.3181] = −
0.0004 ≈ 0. Similarly, up-d-Fe2-DOS (up-d-Fe5-DOS)
is not balanced by its corresponding dn − d-Fe2-DOS
(dn − d-Fe5-DOS), viz. nFe2

d (up) = 0.6116 �= nFe2
d (dn) =

4.6040 (nFe5
d (up) = 4.6933 �= nFe5

d (dn) = 0.6097), as
shown in Fig. 7(b). This shows that Fe2 (Fe5) is also
magnetically ordered individually, viz. nFe2

d (up) − nFe2
d (dn) =

0.6116 − 4.6940 = −4.0824 � 0 (nFe5
d (up) − nFe5

d (dn) =
4.6933 − 0.6097 = 4.0836 � 0). Again we notice
that, here also, up-d-Fe2-DOS (dn − d-Fe2-DOS) is
almost well balanced by dn − d-Fe5-DOS (up-d-Fe5-
DOS), viz. nFe2

d (up) = 0.6116 ≈ nFe5
d (dn) = 0.6097

(nFe2
d (dn) = 4.6940 ≈ nFe5

d (up) = 4.6933), see Fig. 7(b).
Therefore, the resultant magnetic moment of Fe2 and
Fe5 atoms collectively are also very close to zero, viz.
[nFe2

d (up) + nFe5
d (up)] − [nFe2

d (dn) + nFe5
d (dn)] = [0.6116 +

4.6933] − [4.6940 + 0.6097] = [5.3049 − 5.3037]=0.0012
≈ 0. In analogous to the above (Fe1, Fe6) and (Fe2,
Fe5) pairs, we notice that Fe3 and F4 also collectively
constitute a symmetric pair, see Fig. 7(c). This figure shows
that up-d-Fe3-DOS (up-d-Fe4-DOS) is not balanced by
its corresponding dn − d-Fe3-DOS (dn − d-Fe4-DOS),
viz. nFe3

d (up) = 0.6076 �= nFe3
d (dn) = 4.6943 (nFe4

d (up) =
4.6953 �= nFe4

d (dn) = 0.6091). Consequently, Fe3 (Fe4)
is magnetically ordered individually, viz. nFe3

d (up) −
nFe3

d (dn) = 0.6076 − 4.6943 = −4.0867 � 0 (nFe4
d (up) −

nFe4
d (dn) = 4.6953 − 0.6091 = 4.0862 � 0). However,

up-d-Fe3-DOS (dn − d-Fe3-DOS) can be nearly
canceled by dn − d-Fe4-DOS (up-d-Fe4-DOS), viz.
nFe3

d (up) = 0.6076 ≈ nFe4
d (dn) = 0.6091 (nFe3

d (dn) =
4.6943 ≈ nFe4

d (up) = 4.6953). Hence, the resultant
magnetic moment of Fe3 and Fe4 atoms together are
very close to zero, viz. [nFe3

d (up) + nFe4
d (up)] − [nFe3

d (dn) +
nFe4

d (dn)]=[0.6076 + 4.6953]−[4.6943+0.6091] = [5.3029
− 5.3034] = −0.0005 ≈ 0. Thus, each of the iron
atoms alone, Fei for i = 1 to 6, is magnetically ordered,
but considering the above three individual doublets,
i.e., (Fei, Fe j) for (i, j) = (1, 6), (2, 5), (3, 4), the
magnetizations of these pairs nearly vanish. The values
of [nFei

d (up) + nFej
d (up)] − [nFei

d (dn) + nFe j
d (dn)] are obtained

above to be −0.0004, 0.0012,−0.0005 for the paired indexes
(i, j) = (1, 6), (2, 5), (3, 4), respectively. Although the values
−0.0004, 0.0012,−0.0005 are very small, their reflections
can be observed from their corresponding asymmetric up
and down DOSs, as shown in Figs. 7(a), 7(b) and 7(c),
respectively. In fact, DOS is very sensitive to even any
small changes, as expected from a fundamental quantity
that constitutes the foundation upon which the other physical
properties are based. To obtain a more symmetric up and down
DOSs with respect to each other, we sum the asymmetric
DOSs shown in Figs. 7(a), 7(b) and 7(c) and instead of the
above three individual doublets obtain only one collective

doublet (
∑

i Fei,
∑

j Fe j) for (i, j) = (1, 6), (2, 5), (3, 4),
as shown in Fig. 7(d). The collective up and down DOSs
are made more symmetric, as qualitatively can be seen
from Fig. 7(d), than the individual DOSs shown in
Figs. 7(a), 7(b) and 7(c). To quantitatively assess the
latter qualitative observation, let us compare occupation
numbers of the collective DOSs, as well. As can be seen from
Fig. 7(d), up-d − ∑

i Fei-DOS (dn − d − ∑
i Fei − DOS)

is better balanced by dn − d − ∑
j Fe j − DOS (up-

d − ∑
i Fei − DOS) for (i, j) = (1, 6), (2, 5), (3, 4),

viz.
∑

i nFei
d (up) = 1.8554 ≈ ∑

j nFe j
d (dn) = 1.8555

(
∑

i nFei
d (dn) = 14.0697 ≈ ∑

j nFe j
d (up) = 14.0701). This

implies that the resultant magnetic moment of
∑

i Fei and∑
j Fe j for (i, j) = (1, 6), (2, 5), (3, 4) collectively are

made closer to zero, viz. [
∑

i nFei
d (up) + ∑

j nFe j
d (up)] −

[
∑

i nFei
d (dn) + ∑

j nFe j
d (dn)] = [1.8554 + 14.0701] −

[14.0697 + 1.8555] = [15.9255 − 15.9252] = 0.0003 ≈ 0.
The latter value of 0.0003 is smaller than the absolute
values of −0.0004, 0.0012,−0.0005, which results in
more symmetric collective up and down d-DOSs shown in
Fig. 7(d) compared to the individual up and down d-DOSs
shown in Figs. 7(a), 7(b) and 7(c). We checked whether
more symmetric up and down d-DOSs can be obtained
by collecting all the d-Fe DOSs or not. To this end, we
sum the up an down DOSs of all the six Fe atoms to
obtain total-up and total down d-Fe-DOSs, as shown in
Fig. 7(e). The up and down occupation numbers indicated
in Fig. 7(e) are found to be the same as those indicated in
Fig. 7(e). This shows that better symmetric up and down
DOSs or smaller number than 0.0003 within our accuracy
cannot be achieved by considering d orbitals of Fe atoms
only. Although the orbitals of the other atoms and the
other orbitals of the Fe atoms in the unit cell of the pure
material in question cannot impose considerable magnetic
moments, but if their small values are also considered
collectively, well symmetric total up and down DOSs up to
the accuracy of our calculations can be obtained for the whole
of the unit cell, as can be clearly seen qualitatively from
Fig. 7(e). Quantitatively, the total up and down occupation
numbers for all the atoms in the whole of the unit cell
are also perfectly balanced, i.e., 74.5314 − 74.5314 = 0,
see Fig. 7(e). The occupation number of the up d-orbital
for the Fe in Table IV, nFe

d (up) = 2.65, is obtained by
taking an average over the occupation numbers of the
six Fe atoms of the unit cell for the pure compound,
viz., nFe

d (up) = (
∑6

i=1 nFei
d )/6 = (0.6362 + 0.6116 +

0.6076 + 4.6953 + 4.6933 + 4.6815)/6 = 15.9255/6 =
2.65425 ≈ 2.65, where Fei is the ith Fe atom in the unit
cell. Similarly, the occupation number of the down d orbital
for the Fe in Table IV, nFe

d (dn) = 2.65, is obtained by
averaging over the occupation numbers of the 6 Fe atoms
of the unit cell for the pure compound, viz., nFe

d (dn) =
(
∑6

i=1 nFei
d )/6 = (4.6814 + 4.6940 + 4.6943 + 0.6091 +

0.6097 + 0.6367)/6 = 15.9252/6 = 2.6542 ≈ 2.65. As can
be clearly seen, although nFei

d (up) differs from nFei
d (up)

for every i, the averaged up occupation number nFe
d (up)

is completely balanced by the averaged down occupation
number nFe

d (up), viz., nFe
d (up) = nFFe

d (dn) = 2.65. For the
other averaged occupation numbers tabulated in Table IV
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FIG. 8. Spin up partial DOSs calculated by GGA + U + SOC with Ueff = 4 (5) eV for the pure compound (doped compositions).
Occupation numbers as the area under the partial DOSs are individually indicated for spins up of s-Bi in the (a) pure compound, (b) Ba-doped
composition, and (c) codoped. composition

similar discussion can be presented, which we avoid to repeat
them, here. From the above discussion, the answer to the
question is: although Table IV shows that spins up and down
channels are completely balanced, iron atoms individually are
magnetically ordered and collectively AFM ordering coexists.

The ns(up, dn) for Bi atoms in the pure, Ba-doped, and
(Ba,F)-codoped compounds are found to be (0.71, 0.71),
(0.57, 0.57), and (0.59, 0.59), respectively. Moreover, we ob-
serve that the valence s-Bi DOS of the pure case consists of
two parts with an energy gap between them. One part contain-
ing 0.54 electrons is almost distributed over (−10,−8.5 eV)
and the other part containing 0.14 electrons is distributed over
(−7.0 eV, EF), see Fig. 8(a). This is also the case for the doped
compositions, see Figs. 8(b) and (c). The deeper (shallower)
part of the valence s-Bi DOS for the Ba-doped composi-
tion containing 0.46 (0.10) electrons is distributed around
(−11,−9.5 eV) [(−8.0, EF)], which is shifted downwards by
approximately 1 eV compared to the pure case, as would be
seen from Fig. 8(b) compared to Fig. 8(a). The occupation
numbers of the deeper and shallower parts of the valence
s-Bi DOS and the amount of the down shift towards deeper
energies for the (Ba,F)-codoped composition, as shown in
Fig. 8(c), are close to those for the Ba-doped composition,
as shown in Fig. 8(b). Despite the latter close proximity, the
shapes of both the deeper and shallower s-Bi DOS distribu-
tions of the (Ba,F)-codoped composition substantially differ
from those of the Ba-doped composition, as would be noticed
from Fig. 8(c) in comparison to Fig. 8(b). The partial occu-
pancies, as tabulated in Table IV, show that np(up, dn) of the
Bi atoms are (3.29, 3.29), (3.24, 3.24), and (3.21, 3.21) for
the pure, Ba-doped and (Ba,F)-codoped compounds, respec-
tively. This indicates that in all the three compounds, the p-Bi

orbitals are overfilled, np(up) + np(dn) > 6 electrons. The
electronic configuration of the Bi atom outside of the crys-
talline environments, [Xe] : 4 f 14 5d 10 6s 26 p3, shows that
p-Bi containing three electrons is only half-filled. Therefore,
p-Bi orbitals of the compounds are so hybridized with the
other orbitals that their p orbitals are filled inside the crystals
under study. The kinds of p-Bi hybridization with the other
states are exhibited in Figs. 5(b), 5(c), and 5(d) for the pure
compound, in Figs. 5(f) to 5(i) for the Ba-doped composition,
and in Figs. 5(k) to 5(o) for the (Ba,F)-codoped composition.
The occupation numbers of the Fe atoms, as presented in
Table IV, show that ns(up, dn) and np(up, dn) are very close
to (1, 1) and (3, 3) in all the three compounds, respectively.
The electronic configuration of the Fe atom outside of the
crystalline environments, [Ne] : 3s 2 3p 6 3d 64 s2, shows that
the occupation numbers of the s- and p-Fe orbitals remain
almost unchanged. The nd (up, dn) for the Fe atoms of the
(Ba,F)-codoped composition (2.32, 2.32) is smaller than that
of the Ba-doped composition (2.51, 2.51), which itself is less
than that of the pure compound (2.65, 2.65), see Table IV,
viz 2.32 < 2.51 < 2.65. The occupation number of the d-Fe
orbitals is reduced from 5↑ + 1↓ = 6 for the free Fe atom to
2.65↑ + 2.65↓ = 5.30 for the pure compound, and to 2.51↑ +
2.51↓ = 5.02 for the Ba-doped composition, as well as to
2.32↑ + 2.32↓ = 4.64 for the (Ba,F)-codoped composition. In
analogous (contrast) to the latter (former) reduction (constant)
trend of the d-Fe (s- and p-Fe) orbital (orbitals), a reduction
trend can be nearly observed for both the s- and p-orbitals
of oxygen atom from free space taking its atomic configu-
ration [He] : 2s22p4 into account to the pure and Ba-doped
crystalline environment considering the occupation numbers
given in Table IV, viz.

ns(up) + ns(dn) = 1↑ + 1↓ = 2︸ ︷︷ ︸
free O atom

> 0.83↑ + 0.83↓ = 1.66︸ ︷︷ ︸
pure compound

> 0.74↑ + 0.74↓ = 1.48︸ ︷︷ ︸
Ba-doped composition

and

np(up) + np(dn) = 3↑ + 1↓ = 4︸ ︷︷ ︸
free O atom

> 1.87↑ + 1.87↓ = 3.74︸ ︷︷ ︸
pure compound

> 1.60↑ + 1.60↓ = 3.20︸ ︷︷ ︸
Ba-doped composition

.
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This reduction trend of the occupation numbers of the s- and p-O orbitals, as can be seen from Table IV, is stopped or more
precisely reversed to a very small extent from Ba-doped to (Ba,F)-codoped composition, viz.

ns(up) + ns(dn) = 0.74↑ + 0.74↓ = 1.48︸ ︷︷ ︸
Ba-doped composition

< 0.75↑ + 0.75↓ = 1.50︸ ︷︷ ︸
(Ba,F)-codoped composition

and

np(up) + np(dn) = 1.60↑ + 1.60↓ = 3.20︸ ︷︷ ︸
Ba-doped composition

< 1.63↑ + 1.63↓ = 3.26︸ ︷︷ ︸
(Ba,F)-codoped composition

.

For the s and p orbitals of the Ba impurity having atomic electronic configuration of [Kr] : 4d 10 5s 2 5p 66 s2 the sums of the
corresponding up and down occupation numbers reduce from free space to the doped compositions but remain unchanged from
Ba-doped to (Ba,F)-codoped composition, viz.

ns(up) + ns(dn) = 1↑ + 1↓ = 2︸ ︷︷ ︸
free-Ba atom

> 0.84↑ + 0.84↓ = 1.68︸ ︷︷ ︸
Ba-doped composition

= 0.84↑ + 0.84↓ = 1.68︸ ︷︷ ︸
(Ba-F)-codoped composition

and

np(up) + np(dn) = 3↑ + 3↓ = 6︸ ︷︷ ︸
free-Ba atom

> 2.06↑ + 2.06↓ = 4.12︸ ︷︷ ︸
Ba-doped composition

= 2.06↑ + 2.06↓ = 4.12︸ ︷︷ ︸
(Ba-F)-codoped composition

.

The d-orbital of the Ba impurity is full and its occupation numbers almost keep fixed from free space to the doped compositions,
viz.

nd (up) + nd (dn) = 5↑ + 5↓ = 10︸ ︷︷ ︸
free-Ba atom

> 5.03↑ + 5.03↓ = 10.06︸ ︷︷ ︸
Ba-doped composition

= 5.03↑ + 5.03↓ = 10.06︸ ︷︷ ︸
(Ba-F)-codoped composition

.

For the s and p orbitals of the F impurity having atomic
electronic configuration of [He] : 2s22p5 the sum of the corre-
sponding up and down occupation numbers reduces from the
free space to the (Ba,F)-codoped composition, viz.

ns(up) + ns(dn) = 1↑ + 1↓ = 2︸ ︷︷ ︸
free-Ba atom

> 0.85↑ + 0.85↓ = 1.70︸ ︷︷ ︸
(Ba-F)-codoped composition

and

np(up) + np(dn) = 3↑ + 2↓ = 5︸ ︷︷ ︸
free-Ba atom

> 2.14↑ + 2.14↓ = 4.28︸ ︷︷ ︸
Ba-doped composition

.

By taking the electronic configurations of the atoms that
make up the compounds in question, i.e., Bi, Fe O, Ba, and
F atoms, as quantitatively compared above, and the number
of atoms for each atom in each unit cell (N), as represented
in Table IV, into account, we find that the amount of extra
charges in p-Bi orbitals originate from the reductions of the
charges of the s-Bi, d-Fe, s-O, and p-O orbitals in the pure
case compared to those of the corresponding orbitals in the
free space. For both of the doped cases, as also quantitatively
compared above, we have observed the same reduction trends.
All these reduction trends confirm that these orbitals are hy-
bridized to each other.

Let us turn our attention to the deeper parts of the 6s-Bi-
DOSs of the compounds. They containing 0.54↑ + 0.54↓ =
1.08, 0.46↑ + 0.46↓ = 0.97, and 0.43↑ + 0.43↓ = 0.86 elec-
trons are distributed over narrow energy intervals of
(−10, 8.5 eV), (−11, 9.5 eV), and (−11, 9.5 eV) in the pris-
tine, Ba-doped, and (Ba,F)-codoped compounds, as shown in
Figs. 8(a), 8(b) and 8(c), respectively. The latter occupation
numbers and the deep positions of the 6s Bi of the com-
pounds far from the Fermi level show that the 6s Bi can
be approximately considered as lone pair orbitals compared

to the fully occupied 6s orbital of the free Bi atom. More
precisely, one notices that the lonely pair character of the 6s
Bi atom decreases by doping, i.e., the occupation number of
6s Bi reduces from two electrons in the free space to 1.08
in the pure compound, and to 0.97 electrons in the Ba-doped
composition, as well as to 0.86 in the (Ba,F)-codoped com-
position. This reduction trend of the 6s-Bi lone pairs stems
from the hybridization discussed above. Now let us deter-
mine the activity degrees of the 6s-Bi lone pairs. To this
end, let us turn our attention to the shallower parts of the
6s-Bi DOSs. They containing 0.14↑ + 0.14↓ = 0.28, 0.10↑ +
0.10↓ = 0.20, and 0.11↑ + 0.11↓ = 0.22 electrons are dis-
tributed over (−7 eV, EF), (−8 eV, EF), and (−8 eV, EF) broad
energy intervals in the pristine, Ba-doped, and (Ba,F)-codoped
compounds, respectively, as shown in Figs. 8(a), 8(b) and 8(c).
The 6s-Ba DOS piles up in the vicinity of the Fermi level
inside the shallow part of the DOS for the pure compound,
see the peak close to the Fermi energy in Fig. 8(a). Such a
behavior can be almost also seen for the 6s-Ba DOS of the
(Ba,F)-codoped composition, see Fig. 8(c) where the peak has
also shifted slightly back from the Fermi energy compared
to the pure case shown in Fig. 8(a). But this is not the case
for the Ba-doped composition where the shallow part of its
6s-Ba DOS is broadened with no considerable sharp peak
therein, see Fig. 8(b). Therefore, the 6s-Bi lone pairs can be
stereochemically active rather than inert in all the compounds
under study. But the activity degrees of the 6s-Bi lone pairs
stereochemically differ depending on the case. The results, in
agreement with results reported in Ref. [126], show that the s-
Bi lone pair loses its entirely spherical spatial electron charge
distribution (ECD) and deforms from spherical to aspherical
spatial ECD. Consequently, complex hybridizations of the
s Bi with p O can lead to the asymmetric charge transfer in
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FIG. 9. (a) Perpendicular component of the real part of the dielectric tensor �[ε⊥], (a′) previous figure after magnification, (b) parallel
component of the real part of the dielectric tensor �[ε‖], (b′) previous figure after magnification, (c) perpendicular component of the imaginary
part of the dielectric tensor �[ε⊥], (c′) previous figure after magnification, (d) parallel component of the imaginary part of the dielectric
tensor �[ε‖], and (d′) previous figure after magnification. These spectra as functions of the incident light energy, E = h̄ω, are calculated by
GGA + U + SOC (Ueff = 4 eV), Ir-TB-mBJ (c = 1.57), TB-mBJ (c = 1.38), JTSKTB-mBJ (c = 1.80), and Sgap-KTB-mBJ (c = 1.49) for
the pure compound. The experimental spectra extracted from Ref. [31] are represented for comparison. For the convenience of comparison,
the magnified insets (a′) to (d′) are presented in higher resolution.

the Bi-O bonds which can provide the development of ferro-
electricity in the pristine BiFeO3. On the other hand, the s-Bi
DOS of the codoped case behaves similar to the pure case,
see Figs. 5(b) and 5(k). In addition, in both cases, one notices
that near the Fermi surface DOS of s Bi is prominently larger
than p Bi. But the behavior of s-Bi DOS in pseudocubic doped
compound changes compared to the pure and codoped cases.
This may indicate that the nature of the lone pair electrons of
the pseudocubic composition, as can be seen from Fig. 5(f),
differs from that of the hexagonal pure compound, as shown
in Fig. 5(b), and that of the tetragonal codoped composition,
as shown in Fig. 5(k).

Let us conclude the present section by indicating that
the (Ba,F)-codoped composition, due to the stereochemically
lone pair s-Bi activity discussed above, like (unlike) the pure
(Ba-doped) compound has the potential to nominate in the
selection of ferroelectric systems.

B. Optical properties

Leakage current is one of the most important physi-
cal factors that can reduce the residual polarization in the
bismuth-based ferroelectrics [27,28]. On the other hand, it

is well known that the lower the dielectric loss at low fre-
quency, the lower the leakage current [27]. Thus, in order to
investigate the effects of Ba doping and (Ba,F) codoping on
the leakage current in BiFeO3, here, we calculate the optical
loss functions of the pure and doped compounds. Optical
properties including loss function can be obtained from di-
electric tensors. Therefore, as the first step, let us calculate the
real and imaginary parts of the dielectric tensors. In this way,
we can also assess the accuracy of the results by comparing
our optical properties with the available experimental data.

The perpendicular and parallel components of the real
and imaginary parts of the dielectric tensor are calculated by
GGA + U + SOC with Ueff = 4 eV for the pure compound.
All the latter components together with the corresponding
experimental spectra [31] are shown as �[ε⊥], �[ε‖], �[ε⊥],
and �[ε‖] with respect to the energy of the incident radiations,
E = h̄ω, in Figs. 9(a)–9(d), respectively. For more clarity, let
us restrict the energy interval from [0, 70 eV] to a narrower
region where measurement was performed, [0, 6 eV]. In the
narrower interval, the �[ε⊥], �[ε‖], �[ε⊥], and �[ε‖] are
represented in Figs. 9(a′), 9(b′), 9(c′), and 9(d′), respectively.
The results show reasonable agreement with the experimental
data [31], see Fig. 9. The imaginary parts of the dielectric
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FIG. 10. (a) Perpendicular component of the index of refraction
n⊥, (a′) previous figure after magnification, (b) parallel component
of the index of refraction n‖, (b′) previous figure after magnification,
(c) perpendicular component of the extinction coefficient k⊥, (c′)
previous figure after magnification, (d) parallel component of the
extinction coefficient k‖, and (d′) previous figure after magnification.
All these spectra as functions of the incident light energy, E = h̄ω,
are calculated by GGA + U + SOC with Ueff = 4 eV for the pure
compound. The experimental spectra extracted from Ref. [31] are
represented for comparison. For the convenience of comparison, the
magnified insets (a′) to (d′) are presented in higher resolution.

tensor start to rise up at energies close to the band gap of
the system. This can be seen in Figs. 9(c′) and 9(d′) with no
a serious need to use scissor operator to shift the calculated
spectrum towards higher energies, as our calculated band gaps
are close to the experimental data, see Sec. V A 3. The real part
of the dielectric tensor becomes negative around (6, 9 eV) and
asymptotically approaches unity at high energies as expected,
see Figs. 9(a) and 9(b). To ensure the accuracy of our desired
results, let us also evaluate the index of refraction n and
extinction coefficient k of the pure compound and compare
them with the corresponding available experimental spectra.
To this end, they are also obtained from the corresponding
components of the dielectric tensor for the pure compound.
The results, including n⊥, n‖, k⊥, and k‖ together with the
corresponding experimental spectra extracted from Ref. [31]
are shown as functions of E (= h̄ω) in Figs. 10(a)–10(d),
respectively. For convince of comparison, the n⊥, n‖, k⊥, k⊥,
and k‖, k⊥ are represented in the experimental energy range
in Figs. 10(a′), 10(b′), 10(c′), and 10(d′), respectively. These
results, as shown in Fig. 10, are also consistent with the
experimental data [31].

The consistencies achieved between our optical results cal-
culated by DFT plus RPA and the corresponding experimental
spectra, as discussed above, in turn, show that the method used
can provide sufficiently reliable results for the current purpose
of the work. Thus, since our optical results are close to the
experimental data, here, we limited the accuracy of the opti-
cal results to that is predicted by DFT + U + RPA. Despite
the latter agreement, it is worth indicating that such a treat-
ment can be further improved by including excitonic effects

or electron-hole interactions using the Bethe-Salpeter equa-
tion (BSE) [128,129]. In anticipation of further investigations,
let us below discuss how optical properties can be improved
by BSE over RPA. It is well known that the dielectric tensor,
as the response function to the incident light, can be used to
obtain optical properties of materials [130]. In principle, the
dielectric function can be calculated by Eq. (1.3), as expressed
in the second column of page 606 of Ref. [79], including
the nonlocal bare Coulomb or Hartree interaction and the
nonlocal polarizability operator. The latter operator as a sum
over independent transitions can be simplified to Eq. (1.4) of
Ref. [79], where in the numerator of the fraction under the
summation of the latter equation exchange term is expressed.
The RPA was introduced to calculate the dielectric function
using the time-dependent Hartree-Fock scheme, or Lindhard
approximation, for a homogeneous electron gas, where the
classical electron-electron or Coulomb interaction and the
ion-electron interaction cancel each other as represented in
the Hartree-Fock equations [130]. The latter cancellation also
occurs in the Kohn-Sham equation [131]. The term RPA in-
dicates that the approximation expressed in Eq. (1.4) is used
for the polarizability operator and thereby for the calculation
of the dielectric function regardless of the classical Coulomb
interaction. The imaginary and real parts of the dielectric
function are represented in Eqs. (10) and (11) using a com-
bination of the Eqs. (1.3) and (1.4) of Ref. [79] as discussed
above, respectively. RPA can be either more simplified or
further improved. It can be more simplified to independent
particle approximation (IPA) by removing the exchange term,
as well [132]. It can be further improved by keeping both the
Coulomb term in Eq. (1.4) of Ref. [79] and the exchange
expression in Eq. (1.4) of Ref. [79] and consequently the
electron-hole interactions as included in the BSE [128]. Thus,
the RPA can be considered as a simplification of the BSE in
which the Coulomb term in Eq. (1.4) of Ref. [79] is neglected
while the exchange expression in Eq. (1.4) of Ref. [79] is
steel kept, see Ref. [132]. The holes and electrons (but not
electron-hole interactions) can be described by the single-
particle Khon-Sham DFT. To understand the physics behind
RPA and BSE methods, let us return to the simple IPA. If the
Coulomb term is removed from Eq. (1.3) of Ref. [79] and the
exchange term is also removed from Eq. (1.4) of Ref. [79],
then the BSE Hamiltonian becomes diagonal, see Eq. (28) of
Ref. [132]. In this simple IPA, the spectrum can be obtained
by taking summation of matrix elements of the polarizability
operator as the proper oscillator matrix elements over transi-
tions between valence and conduction states [79,132]. In this
case, the neutral quasiparticle excitons are neglected because
in the IPA there is not any bound state for an electron and a
hole to attract each other by the electrostatic Coulomb force.
Therefore, the RPA (BSE) is more comprehensive than the
IPA (RPA), because in RPA (BSE) exchange (and Coulomb
term) term (terms) exists (exist). The exciton as an elementary
excitation or electrically neutral quasiparticle is produced in
insulators if they can absorb a higher energy of an incident
light than its band gap so that an electron can be excited from
the valence into the conduction state and whence a hole can be
created in the valence band as the excited electron vacancy. In
this case, the excited electron can be attracted by the created
hole. Hence, the electron excited into the conduction band
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can interact with the hole created in the valence band. This
interaction between the excited electron and the created hole
is called excitonic effects. The excitonic effects, in turn, can
also introduce additional midgap states or subbands inside the
band gap of the insulator or semiconductor materials, see the
schematic figure represented in page 15, Fig. 4 of Ref. [132]
for the DFT, GW, and BSE effects on the band structure
and optical properties. These subbands can play as trapping
centers in analogy to the subbands created by impurities inside
the band gap of the pure system, as discussed in Sec. V A 3.
Despite the latter similarity between the subbands induced by
excitonic effects and impurities, the physical aspects behind
them are completely different, as can be inferred from the
above discussion. From the above discussion the following
points may be deduced intuitively and physically. (i) The
strength of the electron-hole interaction or excitonic effects
can be weakened if the holes created in the valence bands are
largely screened by a lot of valence electrons. This point is
consistent with the statement already reported by Adamyan
et al. on page 2 of Ref. [133]. (ii) The excitonic effects can
depend on the band gap because as the band gap increases
the material moves further away from the metallic state and
therefore, the number of itinerant electrons decreases which,
in turn, reduces the dielectric screening. This point is also in
agreement with the report indicated by Gao et al., see page 4,
column 2 of Ref. [134], and also see the paragraph right before
Eq. (5) of Ref. [129] related to the wide band gap of α-quartz
shown in Fig. 1 of the latter reference. Various other points
like the effects of temperature, incorporation of vacancies, de-
fects, impurities, low dimensions, or quantum confinements,
on the excitonic effects can be qualitatively deduced from the
underlying physics of the quasiparticle excitons (electron-hole
pairs) and most likely confirmed by already published articles.
However, let us conclude the BSE discussion by turning our
attention to the possible excitonic effects on the materials in
question. The excitonic effects and as a result BSE can more
affect insulators having wider band gaps [129] than that of
the pure compound in question. The reasonable agreement
between our optical and electrical results excluding excitonic
effects confirm that GGA + U with optimized U can provide
sufficiently satisfactory results without using BSE for the
current purpose of this work. However, if further subbands
created by the possible excitonic effects are experimentally
demanded for some specific purposes, many-body time con-
suming BSE calculations would be also performed. For the
doped compositions in question, the excitonic effects can even
less affect the results than the pure case because their band
gaps have already reduced by doping impurities compared to
the pure material. This shows that the dielectric screenings
in the doped compositions are stronger than that in the pure
compound. Therefore, the GGA + U with the optimized U
can predict better results for the doped compositions having
much smaller band gaps than the pure compound.

Let us now turn our attention to the optical results
calculated for the doped compositions using GGA + U +
SOC with Ueff = 5 eV. In contrast to the pure com-
pound, the doped compositions are asymmetric so that after
doping the perpendicular components of their dielectric ten-
sors, εxx and εyy, no longer remain equal to each other,
viz εxx = ε⊥,xx �= εyy = ε⊥,yy �= εzz = ε‖ for doped composi-

FIG. 11. (a) Average of the perpendicular and parallel compo-
nents of the real part of the dielectric tensor 〈�[ε]〉, (b) average of the
perpendicular and parallel components of the imaginary part of the
dielectric tensor 〈�[ε]〉, (b′) previous figure after magnification, (c′)
the latter figure after zooming in involving only codoped spectrum
for the sake of higher resolution, (c) average of the perpendicular
and parallel components of the index of refraction 〈n〉, and (d) av-
erage of the perpendicular and parallel components of the extinction
coefficient 〈k〉. The spectra as functions of the incident light energy,
E = h̄ω, are calculated by GGA + U + SOC with Ueff = 4 eV for
the pure compound and by GGA + U + SOC with Ueff = 5 eV for
the Ba-doped and (Ba,F)-codoped compositions.

tions and εxx = εyy = ε⊥ �= εzz = ε‖ for the pure compound.
Therefore, in order to make the results of the asym-
metric doped compositions comparable with that of the
symmetric pure compound, let us as usual take an aver-
age over the components of the dielectric tensors for the
pure and doped cases. To this end, we evaluate the av-
erage as 〈ε〉 = (εxx + εyy + εzz )/3 = �[εxx + εyy + εzz]/3 +
i�[εxx + εyy + εzz]/3 = 〈�[ε]〉 + i〈�[ε]〉 for the pure and
doped compounds. By this, the effects of doping can be de-
duced, at least in their mean field form. Since for the pure
compound the accuracy of the optical results has been already
shown above in comparison with experiment, let us compare
the 〈�[ε]〉, 〈�[ε]〉, 〈n〉, and 〈k〉 of the doped compositions
with those of the pure compound in Figs. 11(a), 11(b) 11(c),
and 11(d), respectively. At zero energy, 〈�[ε]〉 is 7.74 for the
pure BiFeO3 whereas it decreases after doping to 6.48 for the
Ba-doped and to 7.10 for the (Ba,F)-codoped compositions.
The maximum of 〈�[ε]〉 for the pure case, 〈�[ε]〉max = 13.15,
occurs at 2.68 eV. Then, 〈�[ε]〉 rapidly decreases to −1.50
at 7.69 eV in the pure case. In analogy to the pristine case,
〈�[ε]〉 spectra of the doped compositions also fall suddenly
after reaching to their corresponding maximum values, see
Fig. 11(a). These rapid reductions can be attributed to the
fact that the dipoles cannot change their orientations promptly
when the electric field oscillates rapidly and/or changes sud-
denly. In all the pure and doped samples, 〈�[ε]〉 spectra,
after the sharp drops and reaching their minimum values,
increase with oscillations as energy increases. Then, the spec-
tra gradually become nearly constant at energies larger than
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20 eV. They eventually approach unity asymptotically. We
also notice that the 〈�[ε]〉 spectra of the doped compositions
lie lower than the corresponding spectrum of the pure com-
pound, except for a small range of energy near 10 eV and
higher energies than 45 eV, see Fig. 11(b). These observations
are in agreement with the previous results reported for the
Ba-doped composition [21], where a decrease in 〈�[ε]〉 was
found for 25% doping level compared to the pure sample.
The optical absorption edges are estimated to occur at 2.0,
0.15, and 0.5 eV, as indicated by downward arrows in the
inset Fig. 11(b′) for the pure and (Ba,F)-codoped and in the
inset Fig. 11(c′) for the Ba-doped compositions, respectively.
For more clarity, the middle energy, 0.15 eV, of the Ba-doped
composition due to its small value is indicated by a downward
arrow individually in Fig. 11(c′). The former (middle) [latter]
energy, 2.0 (0.15) [0.5] eV, can be corresponded to the indirect
energy band gap of 1.99 (0.14) [0.46] eV calculated for the
pure (Ba-doped) [(Ba,F)-codoped] compound, as shown in
Fig. 3(a) [Fig. 3(b)] [Fig. 3(c)]. Absorption cannot occur at
energies lower than the energies of optical absorption edges.
The energies of the incident photons are lower than the band
gaps of the systems. Thus, the incident low energy photons
cannot excite electrons from the valence into the conduction
bands. The static index of refraction, n(E = 0), decreases
from 2.88 in the BiFeO3 to 2.54 in Ba-doped composition and
to 2.66 in the (Ba,F)-codoped composition, that is, the spectra
n of the doped compositions lie below the spectrum n of the
pristine compound at zero energy, see Fig. 11(c). This trend is
not changed for the other energy ranges so that n(E ) spectra of
the doped compositions also remain below the n(E ) spectrum
of the pristine compound at nonzero energies, apart from a
small energy range near 10 and 20 eV and also for energies
higher than 47 eV. For the latter high energies, E > 47 eV,
n(E ) does not considerably change by doping. Thus, for most
of the energy range, one can conclude that the dopings cause
to reduce n(E ), compared to the corresponding spectrum of
the pure case. The behavior of the extinction coefficients k(E )
is relatively comparable to that of the imaginary parts of the
dielectric functions �[ε], as can be seen from Figs. 11(b) and
11(d).

The dielectric energy loss functions (ELFs) with respect
to energy are shown in Fig. 12 for the pure and doped
compounds. The doping effects on the intensities and dis-
placements of ELF peaks calculated for the pure case can
be clearly compared with the ELFs calculated for the doped
cases, see Fig. 12. For the pure BiFeO3, the ELF spectrum
peaks having the intensities of 0.7, 1.5, 1.3, and 1.2, occur at
energies 9.4, 20.5, 28.1, and 54.8 eV, respectively. The penul-
timate energy, 28.1 eV corresponding to the third ELF peak
with the intensity of 1.3, calculated for the pure case is close
to 30 eV reported by Kun Liu et al. [32]. For the Ba-doped
((Ba,F)-codoped) composition, the ELF peaks with the inten-
sity values of 0.48 (0.51), 3.45 (3.05), 2.23 (2.02), and 0.81
(0.62) occur at energies 10.20 (9.54), 23.88 (23.91), 27.66
(27.44), and 56.91 (55.09) eV, respectively. The importance
of the above calculated intensities and their corresponding
energies as well as their physical interpretations can be eluci-
dated by considering the physical concepts of the ELF spectra
shown in Fig. 12. By this figure, we represent the energy
losses of fast electrons traversing the pure compound and

FIG. 12. Energy loss function, ELF, versus the energy of the
incident radiation for the pure and doped compounds. All the ELF
spectra as functions of the incident light energy, E = h̄ω, are calcu-
lated by GGA + U + SOC with Ueff = 4 eV for the pure compound
and by GGA + U + SOC with Ueff = 5 eV for the Ba-doped and
(Ba,F)-codoped compositions.

doped compositions. Therefore, the ELF spectra show how
the energies are transferred from the transmitted electron to
the materials in question, see Ref. [135]. As such, the ELF
spectra reflect the scattering processes during the passage of
the fast electrons through the materials [135]. Among these
ELF peaks two kinds of peak can be observed: tall or promi-
nent and short or weak peaks, corresponding to high and low
ELF intensities reported above for the materials under study,
respectively. The maximum intensity of an ELF spectrum
occurs at an energy which is called the plasmon resonance
energy and thence the corresponding peak is also called the
plasmon peak [136]. As such, a plasmon peak is a promi-
nent peak. But not every peak is necessarily a plasmon peak.
Therefore, from our ELF results shown in Fig. 12 and the
definitions of plasmon peak and energy, it can be seen that the
plasmon peak of the pure compound is shifted towards higher
energies from 20.5 to 23.88 eV for the Ba-doped composition
and to 23.91 eV for the (Ba,F)-codoped composition. The
latter plasmon energy of the (Ba,F)-codoped composition is
close but a little bit larger than that of the Ba-doped composi-
tion, viz. 23.91 eV � 23.88 eV. According to the definition
of the ELF, as expressed in Eq. (9), these plasmon peaks
of the pure compound and doped compositions occur where
their corresponding real parts of the dielectric functions, as
shown in Figs. 9(a) and 11(a), cross zero, �[ε(E )] ≈ 0,
with a positive slope, d{�[ε(E )]}/dE > 0, and the imaginary
parts of the dielectric functions, as shown in Figs. 9(b) and
11(b), nearly vanish, �[ε(E )] � 1, with a negative slope,
d{�[ε(E )]}/dE < 0. �[ε(E )], as expressed in Eq. (3), yields
the probability of the single-particle excitations according to
the Fermi’s golden rule [136,137]. In Eq. (3), the transition
energies of the single-particle excitations manifest themselves
as the prominent peaks of the �[ε(E )] spectrum.

The oscillation strengths of the excitation peaks depend
on the optical or joint density of states (JDOS) [129],
i.e., 	(Eck − Evk − h̄ω), and the diagonal matrix elements
of the momentum operator, i.e., 〈ck|pα|vk〉〈vk|pα|ck〉 =
〈ck|pα|vk〉〈ck|pα|vk〉∗ = |〈ck|pα|vk〉|2 where in Eq. (3) α =
α′ for the diagonal elements of the matrix representation
of the momentum operator. It is worth mentioning that the
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TABLE V. Energies of the prominent peaks of parallel component of imaginary part of dielectric tensor �[ε‖], and their corresponding
permissible absorption (emission) transitions, as well as changes in the orbital angular momentum quantum number 	l , spin angular
momentum quantum number 	σ , and wave vector 	k, for BiFeO3. The permissible transitions are obtained according to the selection rules
(	l = ±1, 0 with no 0 � 0 transition, 	σ = 0, and only direct transitions in RPA 	k = 0). Indirect transitions in RPA, i.e., 	k �= 0, are
not allowed because of the momentum conservation law resulted from the Fermi’s golden rule in the lack of linear momentums of phonons
Refs. [117–119]. In the first column, “Color” refers to the colors of the downward triangle symbols pointing to the prominent peaks of �[ε‖]
spectrum as shown in Fig. 13.

Color Energy (eV) Transitions 	l 	σ 	k

� Gray 3.0 O 2p � Fe 3d , O 2p & Fe 3d � Fe 3d , O 2p ±1, 0 0 0
� Blue 3.7 O 2p � Fe 3d , O 2p, Bi 6p & Fe 3d � Fe 3d , O 2p ±1, 0 0 0
� Green 5.3 O 2p � Fe 3d , O 2p, Bi 6p & Fe 3d � Fe 3d , O 2p ±1, 0 0 0
� Black 6.5 O 2p � Fe 3d , O 2p, Bi 6p & Fe 3d � Fe 3d , O 2p ±1, 0 0 0
� Olive 10.6 Fe 3d � Bi 6p, O 2p & O 2p � O 2p, Fe 4s, & Bi 6p � O 2p, Fe 4s ±1, 0 0 0
� Red 12.6 Bi 6s � Bi 6p, O 2p & Fe 3d � Bi 6p, O 2p & O 2p � O 2p, ±1, 0 0 0

Fe 4s & Bi 6p � O 2p, Fe 4s
� Orange 14.4 Bi 6s � Bi 6p, O 2p & Fe 3d � Bi 6p, O 2p & O 2p � O 2p, ±1, 0 0 0

Fe 4s & Bi 6p � Bi 6p, O 2p, Fe 4s
� Pink 15.3 Bi 6s � Bi 6p, O 2p & Fe 3d � Bi 6p, O 2p & O 2p � O 2p, ±1, 0 0 0

Fe 4s, & Bi 6p � Bi 6p, O 2p, Fe 4s
� Navy 19.1 Bi 6s � O 2p, Bi 6p & Fe 3d � Bi 6p, O 2p & O 2p � O 2p, ±1, 0 0 0

Fe 4s, & Bi 6p � O 2p, Fe 4s
� Cyan 26.2 O 2s � O 2p, Bi 6p ±1 0 0
� Violet 27.3 O 2s � O 2p, Bi 6p ±1 0 0

optical DOS spectrum, i.e., JDOS, not shown here, can be
obtained from Eq. (3) by setting all the matrix elements of
the momentum operator to unity, e.g. see Ref. [129], Chapter
4 of Ref. [80], Fig. 5 of Ref. [83] and its related discussion.
ELF, as expressed in Eq. (9), yields the probability of the
collective-particles excitations or coherent oscillations of the
valence charges, in addition to the above probability of the
single-particle excitations yielded from �[ε(E )], as expressed
in Eq. (3), see Ref. [137]. Therefore, in Eq. (9), the transi-
tion energies of the collective-particles excitations manifest
themselves as the prominent peaks of the ELF spectrum. This
implies that the difference between �[ε(E )] and ELF is due
to being single and collective transitions of the particles in
these two spectra, respectively. This means that each peak
of �[ε(E )] originates from a single permissible transition
between a valence DOS and a conduction DOS whereas each
peak of ELF can originate from collective permissible transi-
tions between several valence DOSs and several conduction
DOSs. Therefore, the prominent energies of the plasmon
peaks obtained from the ELF spectra determine the ener-
gies and whence frequencies of the incident electromagnetic
waves at which the collective-particles excitations, besides the
single-particle excitations, can also occur, due to the interac-
tions of the electromagnetic waves with the valence electrons
of the materials [137]. In order to find the sources of these
prominent peaks, in addition to the ELF, we consider all the
partial valence and conduction DOSs, band structures, and
imaginary part of the dielectric tensor all together simultane-
ously, and then systematically analyze them. For this rigorous
analysis, �[ε‖] is considered, because the peaks of �[ε‖] are
a little bit sharper than and more importantly very close to
those of �[ε⊥]. We also checked �[ε⊥] but did not find more
new transitions. In these analyses, we consider the following
selection rules for both the angular momentum and spin, as
well. To find the permissible interband transitions, we note

that any single or collective transition must satisfy the se-
lection rules derived from Wigner-Eckart theorem [138] due
to nonzero Clebsch-Gordan coefficients [138] for a spherical
tensor of rank 1 [138] related to the linear momentum op-
erator exited in both the Eqs. (3) and (9), viz. 	l = 0,±1
regardless of the forbidden (l = 0) ←→ (l = 0) transition,
where l is the angular momentum quantum number, see also
Ref. [83]. The latter selection rule, 	l = 0,±1, is considered
and accordingly satisfied by the states, as can be seen from the
permitted transitions tabulated in Table V. We also consider
the spin selection rule that indirect/different spin transitions
between spin up valence DOS and spin down conduction
DOS or spin down valence DOS and spin up conduction
DOS are forbidden, see Ref. [137]. The spin selection rule
originates from the lack of required momentum transfer/spin
flip under photon absorption or emission [137]. Therefore,
only transitions between valence and conduction states with
the same spin are allowed, viz. 	σ = 0, where spin num-
ber σ is 1 for spin up and -1 for spin down. This selection
rule, 	σ = 0, is considered, see Table V. In this analysis,
we consider only direct transitions (	k = 0), since indirect
or nonvertical transitions, i.e., 	k �= 0, are forbidden in the
framework of RPA [117]. According to RPA, direct or vertical
transitions are allowed only, see Eqs. (1) and (2) of Ref. [117].
However, if, in addition to photons, phonons are also involved,
indirect or nonvertical transitions can take place, as well,
see equation (3) of Ref. [117]. In the presence of phonons,
momentums of electrons can be conserved in the indirect
transitions, see equations (1) to (3) of Ref. [118], whereas,
in the absence of phonons, momentums of electrons can be
conserved in the direct transitions only, see also Ref. [119].
Taking these selection rules into account, our analyses are
summarized in Fig. 13 and Table V. The summarized analysis
shows that these prominent peaks mainly originate from the
excitation states of the bound electrons of O 2s, O 2p, Bi
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FIG. 13. Prominent peaks of the parallel component of the imag-
inary part of the dielectric tensor �[ε‖] for BiFeO3. The energies of
the prominent peaks and their corresponding permitted transitions, as
extracted from the associated partial DOSs and band structures, are
tabulated in Table V, as indicated herein by the colored downward
triangle symbols pointing to the peaks of �[ε‖] spectrum.

6s, Bi 6p, Fe 3d , Fe 4s orbitals, see Fig. 13 and Table V.
Vo Khuong Dien et al. also similarly studied transitions in
LiFeO2 attributing them to the excitation of Li 2s, O 2p, and
Fe (4s and 3d) orbitals, see Table 2 of Ref. [139] and related
discussion. These bound electrons can enhance photocurrent
generation which in turn can improve the photovoltaic effects.
Let us now turn our attention to the short or weak peaks of the
ELF in Fig. 12, as indicated above. The latter weak plasmons
modes originate from two sources. The first source is the so
called Landau damping upon which conversely the collective
excited states decay back to the single particle excited states
[137]. Therefore, the weak plasmon peaks reported in this
work determine energies/frequencies of the incident electro-
magnetic waves at which the Landau damping occur and
thereby the constructed collective excited states are absorbed
to their unexcited states. The second source of the weak modes
originates from the energy regions where there are not zero-
crossing points for �[ε(ω)], though �[ε(ω)] remains finite
[137] so that the aforementioned conditions for constitution
of the prominent modes are violated. The change in width
and shape of plasmons may also originate from the different
symmetries of the pristine case, R3c, and the doped cases,
P4mm. We note that the Ba doping has remarkable impact
on both the number and width of plasmons resulting in the
well biplasmons generation in energy window 10-30 eV that
maybe enhanced photovoltaic property, see Ref. [140]. After
Ba doping, F doping reduces the energy of the peak and shifts
most of the peaks in the Ba-doped case backwards to lower
energy occurred in the codoped case. The latter shift results
in a smaller leakage compared to the Ba-doped composition.
Therefore, the data extracted from our ELF may be useful to
predict the relative mobility of the charge carriers [141] and
existing less multi-peaks in the ELF spectra of the codoped
composition compared to that of the pure case may illustrate
lower mobility of the carriers in various ranges of energy. It
is worth to mention that the ELF spectra of the doped cases
vanish in (46, 53 eV) and (57, 68 eV) which is not the case for
the pristine compound in which its ELF spectrum nowhere
vanishes, see Fig. 12. On the other hand, the ELF spectra of
the doped compositions exhibit two high peaks. Thus, at some

energies, the electric loss functions of the doped compounds
become zero, whereas at some other energies become very
large. The pure case does not show the latter characteristic,
that is, switching between two extreme limits, i.e., zero and
high ELFs. One would also notice that the ELF peaks of
the doped compositions are shorter than those of the pure
compound almost at all the energies, apart from two long
peaks occurred at energies around 24.00 and 27.50 eV, see
Fig. 12. The ELF spectra of both the doped compositions al-
most match everywhere except in the energy range of (52.50,
69.00 eV) where a shift of 1.82 eV is observed between their
peaks. In one side our results show that the ELF spectra of
the Ba-doped and (Ba,F)-codoped compositions locate under
the ELF spectrum of the pure compound in most of the energy
intervals, except for (21.65, 28.56 eV) and (12, 17 eV). On the
other hand, it is known that the lower the ELF, the lower the
leakage current [27].

Before concluding this section, time seems apt to complete
the half-baked discussion on the accuracy of the calculations,
as started from Sec. V A 2 and continued in Sec. V A 3. To
this end, let us turn our attention to the optical gaps, as
tabulated in Table III, and the real and imaginary parts of
the dielectric functions, as shown in Fig. 9. We defined the
electronic band gap Ee

g in Sec. V A 3 and postponed the defi-
nition and discussion of the optical gap to this section wherein
the exciton effect and neutral quasiparticle exciton as elemen-
tary but necessary concepts to physically interpret the results
have been already discussed. Then, to begin the discussion,
let us, first, define the optical gap to distinguish it from the
electronic band gap. The optical gap Eopt

g is defined to be the
lowest optical transition after photon absorption [120,142]. In
other words, Eopt

g is the threshold energy for a photon to be
absorbed, creating an exciton, i.e., an electron-hole pair that
is bound together. In this sense, the optical gap without (w/o)
electron-hole interaction Eopt, w/o

g can be defined as the energy
for creating an electron-hole pair that is not bound together
[137]. Thus, the electron-hole binding energy (EB) can be
defined to be the difference energy between the optical gaps
with (w) and without (w/o) electron-hole interaction, viz.
EB = Eopt, w/o

g − Eopt, w
g [137]. In general, Eopt, w/o

g > Eopt, w
g ,

since after creating an exition additional energy is needed to
dissociate electron and hole from each other, and as a result
EB > 0 [120,129,137,142]. If such an additional binding en-
ergy is not provided, then the created pair of electron-hole
remains coupled to each other. However, in contrast to the
organic semiconductors and single-walled carbon nanotube,
in the conventional inorganic semiconductor crystals, the EB

is usually small and thereby can be approximately ignored
[120], i.e., EB ≈ 0. Furthermore, excitonic effects are more
important in wide electronic band gap semiconductors such as
α-quartz [129] and γ -Al2O3 [44,83]. Therefore, in this work,
we drop the superscripts w and w/o. Hence, we simply indi-
cate the optical gap by Eopt

g , instead of Eopt, w
g and Eopt, w/o

g , viz.
EB ≈ 0 �⇒ Eopt, w

g ≈ Eopt, w/o
g ≡ Eopt

g . Taking the definitions
of electronic band gap and optical gap into consideration, Ee

g

should be distinguished from Eopt
g , otherwise it can manifest

itself as a discrepancy between experimental and theoretical
energy gaps. In Sec. V A 3, we discussed the sources of dis-
crepancy between a measured experimental energy gap and
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the other measured experimental energy gaps as well as the
sources between a calculated theoretical energy gap and the
other calculated theoretical energy gaps. Here, we discuss that
the corollary of not distinguishing Ee

g and Eopt
g can be one of

the main sources of discrepancy between a calculated theoret-
ical energy gap and measured experimental energy gaps. This
point becomes more crucial for the pure case under study, be-
cause most of the experimental energy gaps are optical gaps,
while most of the theoretical energy gaps are electronic band
gaps, see Table III. It is well known that an electronic band
gap theoretically calculated by DFT+LDA/GGA is much less
than its corresponding electronic band gap experimentally
measured. Therefore, more elaborations, e.g., considering dif-
ferent theoretical methods, exchange-correlation functionals,
exchange potentials, are usually performed to increase the the-
oretical Ee

g to approach it towards the experimental value. An
optical gap is measured to be larger than its corresponding ex-
perimental electronic band gap, since Ee

g (Eopt
g ) is almost close

to the first uprising (peak) energy point of the imaginary part
of the dielectric spectrum and the first peak is formed after the
hillside of the spectrum, see Fig. 9 and Table III. Therefore,
if the available experimental energy gap is the optical gap and
Ee

g is not distinguished from Eopt
g , then, in order to reproduce

the experimental Eopt
g , one may wrongly try to increase the

theoretical Ee
g by applying large repulsive potentials more than

necessary. In this case, the excessive increase of the electronic
band gap can destruct the band structure. In this case, we
have not only made the electronic band gap larger than the
actual electronic band gap but also made the other physical
properties resulting from the destructed band structure more
incompatible with the experiment. This can be clearly seen
in Fig. 9, where dielectric spectra calculated by different
methods are compared with the corresponding experimen-
tal spectra. The comparison shows that over-increasing the
energy gap too much by Ir-TB-mBJ (c = 1.57) and JTSKTB-
mBJ (c = 1.80) has not only improved the results, it has
caused more inconsistencies compared to the experimental
spectra, e.g., see the insets Figs. 9(c′) and 9(d′). The result
shows that the spectra calculated by PBE-GGA + U with
Ueff = 4 eV and TB-mBJ with c = 1.38 predicting smaller
band gaps are closer to the experimental spectra than the other
spectra calculated by Ir-TB-mBJ (c = 1.57), JTSKTB-mBJ
(c = 1.80), and Sgap-KTB-mBJ (c = 1.49), see the insets
Figs. 9(a) to 9(d) and their insets (a′) and (d′) and Table III. Let
us recall that the Ueff = 4 eV and TB-mBJ with c = 1.38 are
those two functionals that could reproduce magnetic moment
in better agreement with the experimental magnetic moment
than the other functionals used in Sec. V A 2, see Table III.
In band structures section, Sec. V A 3, we did not decide,
about the appropriate functionals, because most of the exper-
imental energy gaps were optical gaps. But now we are in
a position to try to complete this task, as well. To this end,
let us calculate the optical gap of the pure system. For this,
first, using Eq. (7), we convert our calculated perpendicular
component of the extinction coefficient, k⊥, to the absorption
coefficient, α. For this purpose, k⊥ is considered for the case
under study, because it leads to smaller optical gap than k‖ and
therefore, k⊥ can determine the first excitation related to the
actual optical gap. Second, following Tauc method [45], we

use Eq. 8 to plot (αE )2 and (αE )1/2 versus energy for extract-
ing direct and indirect optical gaps, as shown in Figs. 14(a)
and 14(b), respectively. Third, to find the reliable slopes of
the tangent lines to the curves, we, following the method
proposed by Makuła, Pacia, and Macyk [46], determine the
optical gaps, as shown in Fig. 14. In this figure, in addition
to the spectra calculated by PBE-GGA + U with Ueff = 4 eV
and the original TB-mBJ with c = 1.38, experimental spectra
measured by S. G. Choi et al. [39] are also included for
comparison, see the inset of Fig. (3) of the latter reference.
Similarly, we calculate the direct and indirect optical gaps
using several other functionals but the results are more than
that can be presented in Fig. 14 and therefore, the rest of
the other results are presented in the Table III only. It is
worth mentioning that indirect optical transitions include a
photon and at least one phonon in order to conserve linear
momentum.and thereby indirect optical gap is less than direct
optical gap [117]. Our calculated indirect optical gaps are also
less than direct optical gap, Fig. 14 and Table III. It is also
noteworthy that indirect transitions in RPA method is for-
bidden momentum due to conservation law resulted from
the Fermi’s golden rule in the lack of linear momentums
of phonons and only direct transitions can take place. In
nature, however, the probability of indirect transitions may
be nonzero, and it can be predicted theoretically by Tauc
method [45]. As in RPA indirect transitions are forbidden,
our indirect optical gaps extracted from our absorption spectra
serve only as a prediction, though they are comparable with
the experimental data extracted from correct experimental
absorption spectra. It is worth indicating that in contrast to
electronic band gap, optical gap according to its definitions
can be either direct or indirect depending on the transition
occurred. The occurred transition itself, in turn, depends on
the possibility of phonon absorption or emission. If when
an electron transits from the conduction band to the va-
lence band or vice versa, in addition to photon emission
or absorption, phonon absorption or emission also occurs
so that both momentum and energy are conserved, then the
transition will be indirect. However, if during the latter transi-
tion phonon absorption or emission does not occur, then the
transition will be direct. Therefore, the optical gap can be
a double-valued quantity, because its definition depends on
what happens during the experiment, i.e., whether a phonon
absorption or emission occurs in practice or not. Hence, this
can be considered as another source of discrepancy between
energy gaps, if the single-valued electronic band gap is not
well distinguished from the double-valued optical gap. Let
us return to the main discussion and try to finish it, though
there are many physical points that can be mentioned. The
comparison shows that both of the methods, PBE-GGA + U
with Ueff = 4 eV and the original TB-mBJ with c = 1.38, can
successfully reproduce the experimental direct and indirect
optical gaps. Overall, taking magnetic moment, as tabulated
in Table III, dielectric spectra, as shown in Fig. 9, optical
gaps, as shown in Fig. 14 and tabulated in Table III, and
the results of the doped compositions into account altogether
we choose we choose the PBE-GGA + U with Ueff = 4 eV
for the study of the pure case and with PBE-GGA + U with
Ueff = 5 eV for the study of the doped case to the extend
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FIG. 14. Extractions of (a) direct optical gap (dir. E opt
g ), and (b) indirect optical gap (ind. E opt

g ) from our calculated perpendicular extinction
spectra, as discussed in Sec. V B, using Eqs. (7) and (8), as expressed and discussed in Sec. IV A, using GGA + U + SOC with Ueff = 4 eV
and TB-mBJ with its self-consistently converged c = 1.38 for the pure compound. The experimental curve is also obtained by applying Eq. (7)
on the ka spectrum, as shown in Fig. 3(b) of Ref. [31]. Then, the experimental dir. E opt

g , as shown in the current figure (a), and ind. E opt
g ,

as shown in the current figure (b), are extracted form the latter obtained experimental curve using Tauc method [45] method, i.e., employing
Eq. (8). To increase the accuracy of the slopes of the tangent lines to curves, the method proposed in Ref. [46] is used, see Table 1 and Figs. 1 to
4 of the latter reference. This dir. E opt

g is also consistent with the experimental direct optical gap extracted from the inset of Fig. 3 of Ref. [39].

presented by the results and their related discussions in this
work.

Therefore, putting altogether, we have found that the Ba
doping and (Ba,F) codoping can reduce the current leakage.
This finding taking the symmetries and polar distortions of
the doped compositions into account motivated us to inves-
tigate the effects of codoping on the spontaneous electric
polarization which is the subject of the subsequent section,
Sec. V C. Before this, let us ensure that it is consistent with
experiment, as well. To this end, we noticed that this fact was
also experimentally reported by Sinha et al. [27] that lower
loss peak at an energy resulted in lower leakage current for the
chromium-doped multiferroic bismuth ferrite, Cr doped BFO
NPs, see Figs. 4 and 5 of Ref. [27]. Consequently, in Sec. V C,
as the final contribution of this article, let us verify to make
sure that whether the (Ba,F) codoping can also improve the
intrinsic ferroelectricity of the multiferroic BiFeO3.

C. Spontaneous electric polarization

In this section, let us take the final step to complete the
steps taken so far to introduce the (Ba,F)-codoped com-
position as a suitable alternative to the problematic pure
compound. However, let us first calculate the spontaneous
electric polarization for the pure case in Sec. V C 1. By this,
we can show the accuracy of the polarization calculation by
comparing the calculated polarization of the pure compounds
with the already available corresponding experimental and
theoretical data. Then, we ultimately present our calculated
spontaneous electric polarization for the codoped composition
in Sec. V C 2.

1. Pristine compound

Let us first consider the most stable phase of the pure
BiFeO3 pristine compound and calculate its electric polar-
ization by density functional plus Berry phase theories. The
calculations are performed using PBE-GGA + U with the

optimized Ueff = 4 eV for the G-AFM configuration of the
rhombohedral (R3c) symmetry. To this end, we first optimized
the lattice parameters by the latter functional considering its
optimized parameter. Then, we calculate the SEPs using both
the latter optimized lattice and Hubbard parameters. Since
the polarization can depend on the c/a ratio, we recalculate
the SEPs using the experimental lattice parameters reported
in Ref. [143], as well. Furthermore, the polarization can also
depend on the functional, Hubbard parameter, and the DFT
solver method used. Zhang et al. [48] calculated the SEPs of
the pure compound by PBE-GGA + U and LDA + U with
Ueff = 2 eV using pseudopotential method. Thus, to make the
comparison with the results reported in Ref. [48] more mean-
ingful, we recalculate the SEPs using LDA + U with Ueff =
2 eV. Moreover, we recalculate the SEPs using LDA + U
with our optimized Ueff = 4 eV. All the above results together
(after performing unwrapping procedure, not shown here for
this comparative phase) with the available theoretical results
[48,49] and experimental data [51] are tabulated in Table VI.
The comparison shows reasonable agreement with the theo-
retical [48,49] and experimental [51] data. Keeping fixed the
c/a ratio, the results show that the polarization increases as
Ueff decreases. It is well known that the larger the Ueff, the
larger the localization degree. Hence, this implies that if c/a
can remain unchanged, a larger localization degree can result
in a smaller polarization. The results also show that for a
fixed localization degree, SEP increases by growing up the
c/a ratio.

In addition to the most stable R3c symmetry, let us
also consider the tetragonal (P4mm) structure for the pure
compound, because the symmetry of the (Ba-F)-codoped
composition as the main material of this work is also P4mm.
In this case, the effects of the codoped can be more shown
up. For the P4mm symmetry in the AFM phase of the pure
compound, we optimized the Ueff parameter once more, and
found it to be 6 eV. Then, using PBE-GGA + U with Ueff =
6 eV, we used the optimized lattice parameters of the codoped
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TABLE VI. Spontaneous electric polarization (	P) in μC/cm2, lattice parameter (a) in Å, hexagonality or tetragonality ratio c/a, code
(Code), exchange-correlation functional (XC), Hubbard parameter (U ) in eV, magnetic orderings (MO), and computational method (Scheme)
for pure BiFeO3 in both the R3c and P4mm symmetries and (Ba,F)-codoped composition in P4mm symmetry. Available experimental and
other theoretical results are included for comparison, as well. The present results are denoted by *. To avoid repetition, every blank cell of each
block of the table, excluding irrelevant cells assigned to the experimental data, represents the repetition of its own upper cell in the table.

Crystal Scheme Symmetry XC Ueff (eV) MO Code a c/a 	P(μC/cm2) Ref.

BiFeO3 Berry phase R3c PBE + U 4.0 G-AFM WIEN2K 5.625 2.510 102.35a *
LDA + U 4.0 5.502 2.506 101.99a *
PBE + U 4.0 5.579 2.486 101.90b *

2.0 103.52b *
LDA + U VASP 5.497 2.453 94.80 [48]
PBE + U 2.0 5.623 2.500 100.30 [48]

Born effective charges 4.0 5.609 2.455 90.90 [49]
Experiment 100.00 [51]

Berry phase P4mm PBE + U 6.0 AFM WIEN2K 3.996 1.050c 125.66 *
4.0 G-AFM 3.700 1.260 144.10 [47]

Experiment AFM 130.00 ± 5.00 [50]

(Ba-F)-codoped Berry phase P4mm PBE + U 5.0 G-AFM WIEN2K 3.996 1.050 80.17 *

aUsing our optimized lattice parameters calculated by the functionals reported in this table.
bUsing experimental lattice parameters reported in Ref. [143].
cThis ratio is obtained for the initial unit cell without spin polarization.

compound. Eventually, using the optimize Ueff and lattice
parameters, we calculate the SEP. The SEP is then unwrapped,
as discussed in Appendix. The unwrapped results together
with the available experimental [50] and theoretical [47] re-
sults calculated for the G-AFM using PBE-GGA + U with
Ueff = 4 eV are tabulated in Table VI for comparison. The
comparison shows agreement with the experimental data. It
also shows a reasonable agreement with the theoretical re-
sult taking the difference between the lattice parameters and
thereby the c/a ratios as well as the difference between the
considered magnetic phases, i.e., AFM and G-AFM, and as a
result the difference between the optimized Ueff values, i.e., 4
and 6 eV.

Let us conclude this section as: since our optimization
performed and procedure used to calculate the SEPs of the
pure case in both R3c and P4mm symmetries are able to suc-
cessfully reproduce the corresponding experimental data, it
can be reliable almost within the same accuracy for predicting
the SEP of the (Ba,F)-codoped composition, as well.

2. (Ba,F)-codoped composition

The ultimate task is to show that the spontaneous electric
polarization can considerably exist in the codoped compo-
sition. To this end, the electric polarization of tetragonal
(Ba,F)-codoped structure is calculated by the DFT-based full-
potential APW + lo method accompanied by the Berry phase
approach. The calculations are performed using GGA + U
with the optimized Ueff = 5 eV for the P4mm symmetry of
the (Ba,F)-codoped composition. After performing the regular
polarization calculations, we also consider the uncertainty
problem lying in the heart of the modern theory of polariza-
tion. The Berry phases are usually wrapped into [−π, π ], e.g.,
see Ref. [35]. In fact, the Berry phase is well-defined modulo
2π . Consequently, the polarization is only well-defined mod-
ulo eR/�, where R, e, and � are defined in Sec. IV B, see

also Ref. [144]. This is a resulting feature of the Berry phase
theory of polarization where the polarization is defined only
modulo a quantum of polarization indicating that the polar-
ization may be considered as a multivalued quantity [144]. In
Appendix, we find the best branch to resolve the uncertainty
in the modulo eR/� of the polarization. To this end, we com-
pute the polarization at several intermediate points along the
transition path following the procedure proposed by Raffaele
Resta and David Vanderbilt in Ref. [144]. By this way, we
unwrap the results to remove the uncertainty and uniquely
determine the polarization. The final spontaneous electric po-
larization is given in Table VI. The result confirms that in the
convenient P4mm phase of the (Ba,F)-codoped composition,
a considerable spontaneous polarization exists, though it is
smaller than that of the pure case in spite of having the same
c/a ratio. Therefore, the (Ba,F)-codoped composition can be
considered as a multiferroic material due to the coexistence of
SEP and G-AFM orderings, and as a less problematic applied
material due to its more favorable symmetry and less leakage,
compared to the pure case with its higher SEP but less desired
symmetry and larger leakage. The origin of polarization in the
codoped material mainly stems from the displacive atoms dur-
ing the adiabatic transition from the nonpolar (λ = 0) to the
polar (λ = 1) phase. In the codoped composition, the atomic
displacements from λ = 0 to λ = 1 are found to be nonzero in
the x and z but zero in the y direction. Thus, the polarization
vector of the codoped composition has two x and z compo-
nents, as discussed in Appendix. According to our results,
the transverse x component of the SEP vector of the codoped
composition mostly originates from the displacements of the
Bi atoms whereas its longitudinal z component originates
from the displacements of the Bi, Fe, and O atoms. In the
pure compound, however, the polarization vector is oriented
along the z direction only, and it has no net components in the
other x and y directions. Therefore, the smaller polarization of
the codoped composition mainly originates from the different
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atomic displacements both in terms of magnitudes and direc-
tions. This in turn may originate from the doping of Ba and F
cations with different atomic sizes and interactions compared
to their corresponding hosts Bi and O. The SEP trend from
pure to codoped material is consistent with the data tabulated
in Table I of Ref. [145] reported by Tingting Qi et al. for the
PbTiO3, following the same transition as (and having a close
tetragonality of c/a = 1.065︸ ︷︷ ︸

PbTiO3

≈ 1.05︸︷︷︸
BiFeO3

to) the BiFeO3, an its

doped ferroelectric perovskite solid solutions.
Let us conclude the work by expressing that the sponta-

neous electric polarization calculated above in the present sec-
tion, the G-AFM magnetic moment calculated in Sec. V A 2,
and the low leakage current discussed in Sec. V B, as well
as the convenient P4mm symmetry for polarization switch-
ing strongly nominate the codoped composition as a possible
multiferroic material.

VI. CONCLUSION

We have calculated and physically analyzed the struc-
tural, magnetical, optical, and electrical properties of the
pristine BiFeO3, and its Ba-doped, as well as (Ba,F)-codoped
compositions. The electronic calculations are performed
in the framework of density functional theory employing
full-potential APW + lo method using PBE-GGA + U with
optimized Ueff parameters. For the optical calculations random
phase approximation is employed. The calculations of the
spontaneous electric polarization are performed in the frame-
work of the modern theory of polarization using Berry phase
approach. For the energy gap and magnetic moment calcu-
lations, in addition to PBE-GGA and PBE-GGA + U with
various effective U parameters, a variety of mBJ exchange
potentials, including the original TB-mBJ and its successors,
KTB-mBJ, Sgap-KTB-mBJ, and JTSKTB-mBJ with their dif-
ferent self-consistently converged c parameters, as well as
Ir-TB-mBJ with its different constrained c parameters are uti-
lized for the pure compound. The accuracy of the calculations
is assessed and due to the consistencies achieved with the
experimental data, it is found that to an acceptable extent
the experimental situations can be captured by the results
presented in this work.

We have noticed that, so far, most of the available ex-
perimental energy gaps have been reported using optical
techniques for the pure compound. Therefore, in addition to
the electronic band gaps, optical gaps are also calculated for
this material using all the above functionals. To this end, we
obtain absorption spectra from our calculated extinction spec-
tra. Furthermore, we similarly obtain absorption spectra from
available experimental extinction spectra. Then, we using the
Tauc method extract the optical gaps from the theoretical and
experimental absorption spectra. Our calculated optical gaps
using PBE-GGA + U with Ueff = 4 eV and TB-mBJ with its
self-consistently converged c = 1.38 parameter are not only
found in agreement with each other and our optical gaps
extracted from the available experimental extinction spectra
but also with another readily experimental optical gap already
reported for the system in question.

Furthermore, we perform a systematic optical analysis to
find the origins of the optical absorption and emission transi-

tions. To this end, we determine the differences between the
peaks of all the valence and conduction partial densities of
states taking selection rules into account to distinguish per-
mitted transitions. Then, the transition energies are compared
with the prominent peaks of the imaginary parts of dielectric
spectra, and prominent peaks of the energy loss function, as
well as to the band structure of the system to find the sources
and types of the transitions. The rigorous analyses it is found
that the prominent peaks of the parallel component of the
imaginary parts of dielectric spectra can be attributed to O 2s,
O 2p, Bi 6s, Bi 6p, Fe 3d , and Fe 4s orbitals.

In this work, we have also found that the spontaneous elec-
tric and magnetic polarizations can satisfactorily coexist in
the (Ba,F)-codoped composition. To realize the importance of
the latter observation, it is essential to consider the problems
of the pure BiFeO3 crystal and the tasks performed here to
ensure that the problems can be fixed by codoping, as the main
motivations of this work.

Despite coexistence of spontaneous electric and antifer-
romagnetic polarizations simultaneously, the pure compound
suffers from the following problems: (i) difficulty in synthe-
sizing the stoichiometric BiFeO3, (ii) complex ferroelectric
switching due to the R3c structure [18], and (iii) high leakage
current due to the volatile nature of Bi and change in iron
valency, resulting in defects and reduction of the residual
polarization [28,29]. To fix these problems, in Sec. V, we have
inferred the following points: (i) both of the doped compo-
sitions have nonzero magnetic moments in agreement with
experiment and thereby satisfy the first condition of being
among the multiferroic materials, see Sec. V A 2. (ii) Both
the doped compositions have nonzero band gaps consistent
with the experimental data, as discussed in Sec. V A 3, and
whence their electric polarizations, if any, can be calculated
by the standard methods of polarization. (iii) The lone pair
s-Bi is almost active stereochemically in the (Ba,F)-codoped
composition and thence this composition has the capability
to behave as a ferroelectric system which is not the case for
the single-doped composition, see Sec. V A 4. (iv) The doped
cases can reduce the leakage current, see Sec. V B. (v) The
(Ba,F)-codoped (Ba-single-doped) composition can (cannot)
form a ferroelectric material due to its tetragonal (pseudocu-
bic) symmetry, see Sec. V A 1. The Ba-doped composition,
due to its tiny polar distortion c/a of around 1.003 leading
to the pseudocubic symmetry, cannot form a suitable ferro-
electric material, see Sec. V A 1. (vii) Although spontaneous
polarization of the (Ba,F)-codoped composition is not as large
as that of the pure compound, the (Ba,F)-codoped composi-
tion with sufficient tetragonality, as shown in Sec. V A 1, and
free of the pure compound problems, as discussed in Sec.V,
still shows an acceptable ferroelectric polarization, as reported
in Sec. V C 2.

The origin of the smaller polarization in the codoped com-
position is identified to mainly initiate from the different
magnitudes and directions of the atomic displacements stem-
ming from different atomic sizes and interactions of the Ba
and F impurities compared to their corresponding hosts Bi
and O.

All these evidences, as summarized above and discussed in
details through Secs. V A 1 to V A 4, V B, V C 1, and V C 2,
show that the codoped composition can constitute an appro-
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priate multiferroic system and whence would be considered
as a suitable alternative to the problematic pristine compound.
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APPENDIX: UNWRAPPING PROCEDURE

In the Berry phase scheme, the SEP, 	P, along an adi-
abatic path is a multivalued quantity that can be only well
defined modulo a quantum of polarization eR/� [144], where
R, e, and � are defined in Sec. IV B. There can be such
an uncertainty in polarization in the Berry phase approach.
In this approach, a phase can be only well-defined mod-
ulo 2π . This implies that 	P can be defined uncertainly
as P(λ=1) − P(λ=0) modulo eR/� [144,146–148]. The defini-
tion “	P := P(λ=1) − P(λ=0) (mod eR/�)” reads as “	P and
P(λ=1) − P(λ=0) are congruent modulo eR/�.” This implies
that 	P and P(λ=1) − P(λ=0) can be different but equivalent in
mod eR/� as they have the same remainder when divided by
eR/�. In this definition, 	P is an actual quantity that can be
observed and measured experimentally while P(λ=1) − P(λ=0)

is a successor quantity proposed by the modern theory of po-
larization [144,146–153] that may not be necessarily equal to
the actual quantity. In other words, computing P(λ=1) − P(λ=0)

by the endpoints of the path only, may not always lead to the
actual 	P. This is due to the fact that there is no guarantee
that the successor spontaneous polarization P(λ=1) − P(λ=0) is
the result of using the correct branch, if we only consider the
endpoints of the path without making sure about the correct-
ness of the branch [144]. Therefore, we have considered the
uncertainty problem to uniquely obtain the spontaneous po-
larizations of pure BiFeO3 compound and its (Ba,F)-codoped
composition, as to be discussed subsequently. It is worth to
mention that the uncertainty problem is more important in
perovskite compounds. For the cases under study, the polar-
izations P(λ=0) and P(λ=1) and consequently the spontaneous

polarization 	P are oriented along the c axes of the tetragonal
noncentrosymmetric (NCS) supercells. Therefore, for these
cases, R employed in eR/� can be simplified as R = nck̂
so that |R| = R = nc, where n is an integer number and c
(k̂) is the lattice constant (unit vector) along the Cartesian
z axis. Hence, the above definition can be represented as
	P := P(λ=1) − P(λ=0) + enck̂/� or equivalently as 	Pk̂ :=
P(λ=1)k̂ − P(λ=0)k̂ + enck̂/�, where 	P = |	P|, P(λ=1) =
|P(λ=1)|, and P(λ=0) = |P(λ=0)|. By taking a dot product of the
latter vector identity with the unit vector k̂, it can be simplified
to its scalar form 	P := P(λ=1) − P(λ=0) + enc/�. Therefore,
the basic task to identify 	P uniquely is reduced to determine
the integer number n for these cases with polarization oriented
along one-dimension only. We do it below by the procedure
proposed in Ref. [144]. To this end, in addition to the start-
ing structure “λ = 0” and end structure “λ = 1”, as the two
endpoints of the adiabatic transition, we have constructed 3
intermediate superstructures λ = 0.25, 0.50, and 0.75. In this
way, we find a chance to identify a sudden change (jump), if
any, in the calculated polarization at an intermediate distorted
structure compared to its previous and next structures. If a
jump (ascent or descent) occurs, we modify it to make smooth
the path by shifting the jumped polarization, i.e., pulling
downward the ascent polarization or pushing upwards the
descent polarization, using a negative or positive integer mul-
tiple of the quantum of polarization, as practically discussed
below. In fact, by this way, we unwrap the polarizations (Berry
phases) of the constructed structures step by step which are
by default traditionally wrapped regardless of spin into the in-
terval [−eR/2�, eR/2�] ≡ [−enc/2�, enc/2�] ([−π, π ]).
For spin polarized systems, a fact of 2 is considered.

To set up the G-AFM phase of the tetragonal BiFeO3,
we construct a 1 × 2 × 2 supercell, as shown in Fig. 15(a).
Electronic and ionic parts of polarization as two functions
of parameter λ are individually shown in Fig. 15(b). The
adiabatic transition of BiFeO3 starts from the centrosymmet-
ric nonpolar cubic structure, λ = 0, and terminates to the
noncentrosymmetric polar tetragonal structure, λ = 1. End-
points of the path indicated by λ = 0 and λ = 1 are not

FIG. 15. (a) The 1 × 1 × 2 supercell used to calculate SEP using DFT plus Berry phase theory employing PBE-GGA + U + SOC with
Ueff = 4 eV for the tetragonal phase of BiFeO3, (b) electronic part of the polarization (Pe) and ionic part of the polarization (Pion) as functions
of dimensionless λ parameter, (c) the latter Pe and Pion paths after smoothing them by subtracting (adding) proper quantum of polarization from
the ascent (to the descent) polarization together with the resultant total polarization, P = Pe + Pion, and (d) the latter smoothed Pe and Pion paths
after shifting them so that they start from zero, viz, the unwrapped Pe and Pion paths. The quantum of polarization, eR/� = 100.32 μC/cm2,
and the SEP, 	P = P(λ=1) − P(λ=0) = 125.66 μC/cm2, are indicated and/or expressed. The experimental datum extracted from Ref. [50] is
also indicated for comparison.
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FIG. 16. Unwrapping procedure of the polarization calculated by DFT + Berry phase theory using PBE-GGA + U + SOC with Ueff =
5 eV for the (Ba,F)-doped composition. (a) Wrapped traverse x components of the electronic part of the polarization (Pe,x) and ionic part
of the polarization (Pion,x) as functions of dimensionless λ parameter, (b) unwrapped Pe,x and Pion,x paths together with the resultant total
polarization, Px = Pe,x + Pion,x , (c) the shifted unwrapped Pe,x , Pion,x , and Px paths, (d) wrapped longitudinal z components of the electronic
part of the polarization (Pe,z) and ionic part of the polarization (Pion,z) as functions of dimensionless λ parameter, (e) unwrapped Pe,z and Pion,z

paths together with the resultant total polarization, Px = Pe,z + Pion,z, and (f) the shifted unwrapped Pe,z, Pion,z, and Pz paths. The quantum of
polarizations in x direction, eR/� = 23.89 μC/cm2, and in z direction, eR/� = 25.08 μC/cm2, as well as the SEPs in x direction, 	Px =
P(λ=1)

x − P(λ=0)
x = −20.92 μC/cm2, and in z direction, 	Pz = P(λ=1)

z − P(λ=0)
z = 77.39 μC/cm2, are expressed.

always sufficient to ensure that the branch is chosen cor-
rectly. To this end, in addition to the initial structure λ = 0
and final structure λ = 1, we have considered three interme-
diate structures. These intermediate structures are indicated
by λ = 0.25, 0.50, and 0.75. The results show that Pe (Pion)
smoothly increases (decreases) as λ increases from 0 to 0.75,
but an ascent (descent) jump occurs from λ = 0.75 to 1, see
Fig. 15(b). Therefore, in order to make smooth the electronic
and ionic paths, we pull (push) downward the ascent (upwards
the descent) polarization, as shown in Fig. 15(c). To this end,
we subtract (add) appropriate quantum of polarization from
the ascent (to the descent) polarization, where the quantum
of polarization is calculated to be eR/� = 100.32 μC/cm2

for 1 × 1 × 2 supercell, see Fig. 15(c). The total polarization,
i.e., P = Pe + Pion, is also shown in Fig. 15(c). Without loss
of generality, for convenience only, we displace the origins
of Pion and P paths and thereby entirely shift them so that
they start from zero, as shown in Fig. 15(d). These shifts by
constant values do not change the results, because the spon-
taneous polarization as the final important physical quantity
is obtained from the difference between the polarizations cal-
culated at the starting and ending structures, 	P = P(λ=1) −
P(λ=0), so that any constant shifts are canceled out. By this
way, the spontaneous electric polarization is calculated to be
	P = P(λ=1) − P(λ=0) = 125.66 μC/cm2 for the tetragonal
BiFeO3 compound, see Fig. 15(d) and Table VI.

The electric polarization of tetragonal (Ba,F)-codoped
composition is calculated by the DFT plus Berry phase
approach using GGA + U with Ueff = 5eV. In this case, in ad-

dition to the longitudinal polarization (P‖) along the tetragonal
c(≡ z) direction, we find also a nonzero transverse polariza-
tion (P⊥) along the tetragonal a(≡ x) direction only, whereas
P⊥ along the tetragonal b(≡ y) direction still vanishes. In the
transverse (longitudinal) direction of the codoped structure,
the wrapped electronic polarization, Pe,x (Pe,z), and ionic po-
larization, Pion,x (Pion,z), are shown in Fig. 16(a) [Fig. 16(d)].
The paths of Pe,x, Pion,x, Pion,z show zigzag behaviors from λ =
0 to 1, while the path of Pe,z smoothly decreases as λ increases
from 0 to 1, see Figs. 16(a) and 16(d). Therefore, the smooth
Pe,z path is left unchanged, while the zigzag paths are made
smooth by pulling (pushing) downward the ascent (upwards
the descent) jumped polarizations, as shown in Figs. 16(b)
and 16(e). To this end, we subtract (add) needed quantum of
polarizations from the ascent (to the descent) polarizations,
where the quantum of polarizations are calculated to be eR/�

23.89 and 25.08 μC/cm2 for x and z directions, respectively,
see Figs. 16(b) and (e). The x component of the total polar-
ization, i.e., Px = Pe,x + Pion,x, is also shown in Fig. 15(b).
Similarly, the z component of the total polarization, i.e., Pz =
Pe,z + Pion,z, is also shown in Fig. 15(e). In analogous to the
pure case, here, we also displace the origins of paths and
thereby entirely shift them so that all the paths start from zero,
as shown in Figs. 16(c) and (f). By this way, the x component
of the spontaneous electric polarization is calculated to be
	Px = P(λ=1)

x − P(λ=0)
x = −20.92 μC/cm2 for the tetragonal

(Ba,F)-codoped composition, see Fig. 16(c). Similarly, the z
component of the spontaneous electric polarization is calcu-
lated to be 	Pz = P(λ=1)

z − P(λ=0)
z = 77.39 μC/cm2 for the
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tetragonal (Ba,F)-codoped composition, see Fig. 16(f). The
results show that the longitudinal component of the polariza-
tion is about 3.7 larger than the magnitude of the transverse
component of the polarization. Finally, let us conclude

this Appendix by reporting the total SEP of the (Ba,F)-
multidoped composition to be 	P =

√
(	Px )2 + (	Pz )2 ≈√

(−20.92)2 + (77.39)2 ≈ 80.17 μC/cm2, as represented in
Table VI.
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