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Disorder-induced topological phase transition in HgCdTe crystals
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Using the self-consistent Born approximation, we study a topological phase transition appearing in bulk
HgCdTe crystals induced uncorrelated disorder due to both randomly distributed impurities and fluctuations
in Cd composition. By following the density-of-states evolution, we clearly demonstrate the topological phase
transition, which can be understood in terms of the disorder-renormalized mass of Kane fermions. We find that
the presence of a heavy-hole band in HgCdTe crystals leads to the topological phase transition at much lower
disorder strength than is expected for conventional three-dimensional topological insulators. Our theoretical
results can also be applied to other narrow-gap zinc-blende semiconductors such as InAs, InSb, and their ternary
alloys InAsSb.
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I. INTRODUCTION

The band structure of narrow-gap HgCdTe semiconduc-
tors in the vicinity of the � point of the Brillouin zone
is represented by a specific type of three-dimensional (3D)
fermionic excitations named Kane fermions [1–4]. Although
their band dispersion is closely resembling the dispersion of
Dirac fermions with an additional band, Kane fermions in the
three-band approximation are in fact hybrids of pseudo-spin-1
and -1/2 Dirac fermions [5,6]. As a result, unlike the pseudo-
spin-1 Dirac fermions, Kane fermions are not protected by
symmetry or topology, and their band gap can be set at will
by varying Cd concentration or external parameters such as
temperature [2] and hydrostatic pressure [7,8]. The band-gap
vanishing represents the critical state corresponding to the
topological phase transition between a trivial semiconductor
and a topological semimetal [9,10].

The crucial influence of disorder on topological phase
transitions was first discovered in two-dimensional (2D) sys-
tems hosting a quantum spin Hall insulator state, such as
HgTe/CdHgTe quantum wells (QWs) [11]. Particularly, Li
et al. [11] have found that disorder may induce a topological
phase transition if the QW is initially in the trivial semi-
conductor state. Then, Groth et al. [12] have shown that
the disorder-induced phase transition HgTe/CdHgTe QWs are
caused by the quadratic terms ∝k2σz in a 2D Bernevig-
Hughes-Zhang (BHZ) Hamiltonian [13]. The latter is nothing
other than a 2D Dirac Hamiltonian with additional quadratic
corrections, required for the proper characterization of the
topological state [14]. Later, disorder-induced phase transi-
tions have also been studied in 3D topological insulators
[15–17], Dirac/Weyl semimetals [18–21], and amorphous
solids [22]. In the latter case, it has been demonstrated that
an “unconventional” transition from a trivial insulator state to
a topological semimetal, could be driven by disorder. Interest-
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ingly, the discovered transitions correspond to weak-disorder
topological transition, and thus can be treated within the self-
consistent Born approximation (SCBA) [12,21–25].

As clear from the above, the presence of disorder-induced
topological phase transition is now evident for the systems
in which low-energy fermionic excitations are represented by
Dirac or Weyl fermions. A question naturally arises whether
such transition can occur in the system if the band structure
is not represented by pseudo-spin-1/2 fermionic excitations.
Below, considering the case of bulk HgCdTe crystals, we
show the answer to the above question to be affirmative.

By using the SCBA and three-band Kane Hamiltonian
in the continuous representation, we directly calculate the
density of states (DOS) as a function of the strength of uncor-
related disorder in HgCdTe crystals. By following the DOS
evolution, we directly demonstrate the band-gap vanishing
with increasing of the disorder strength. We show that similar
to the idea of Groth et al. [12], the topological phase transition
in HgCdTe crystals can also be understood in terms of the
disorder-renormalized mass of Kane fermions. Surprisingly,
the presence of a heavy-hole band in HgCdTe crystals leads
to a phase transition at much lower disorder strength than is
expected for conventional 3D topological insulators [15–17].
As a source of the disorder, we consider the electrostatic
potential of randomly distributed impurities, as well as fluctu-
ations in the Cd composition [26,27] resulting in the band-gap
fluctuations. Our theoretical results can also be applied to
other narrow-gap zinc-blende semiconductors such as InAs,
InSb, and their ternary alloys InAsSb [28–30].

II. THEORY

The band structure of narrow-gap zinc-blende semicon-
ductors (including HgCdTe crystals) in the vicinity of the �

point of the Brillouin zone is qualitatively described by the
three-band Kane Hamiltonian [8], which directly takes into
account the �6 and �8 bands. In the basis set of Bloch am-
plitudes in the sequence |�6,+1/2〉, |�6,−1/2〉, |�8,+3/2〉,
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TABLE I. Band parameters of bulk Hg1−xCdxTe crystals at T = 2 K calculated on the basis of material parameters provided in Ref. [8].

x mhh/m0 C (meV) M (meV) A (meV nm) B (meV nm2) D (meV nm2) a0 (nm)

0.155 0.341 0.00 −12.17 691.02 −103.30 66.26 0.645975
xc � 0.168 0.342 0.00 0.00 691.02 −102.19 65.24 0.646003
0.18 0.344 0.00 10.59 691.02 −101.22 64.35 0.646027

|�8,+1/2〉, |�8,−1/2〉, and |�8,−3/2〉, the Hamiltonian is
written as

H3D(k) =
(

Hcc Hcv

H†
cv Hvv

)
, (1)

where the blocks Hcc and Hvv represent the contribution from
the �6 and �8 bands, respectively, and the block Hcv and the
block Hcv describes the band mixing. The block Hcc is given
by

Hcc =
[

Ec + h̄2

2m0
k(2F + 1)k

]
I2×2, (2)

where I2×2 is the 2×2 identity matrix, Ec is the energy
of the conduction band-edge conduction band profile, k =
(kx, ky, kz ), and F is a parameter accounting for contribution
from remote bands. The block Hcv has the form

Hcv = P

⎛
⎝−

√
2k+
2

√
6kz

3

√
6k−
6 0

0 −
√

6k+
6

√
6kz

3

√
2k−
2

⎞
⎠, (3)

where P is the Kane matrix element, k± = kx±iky. The block
Hvv is given by

Hvv = EvI4×4 + H (i)
L , (4)

where I4×4 is the 4×4 identity matrix, Ev is the energy of va-
lence band edge, and H (i)

L is the isotropic part of the Luttinger

Hamiltonian [31],

H (i)
L = h̄2

2m0

[
−k

(
γ1 + 5

2
γ2

)
k + 2(J · k)γ2(J · k)

]
, (5)

where γ1, γ2, and γ3 are contributions to the Luttinger pa-
rameters from remote bands, and J = (Jx, Jy, Jz ) is the vector
composed of the matrices of the angular momentum 3/2.
For simplicity, we neglect the small terms breaking rotational
symmetry of H3D(k) in Eq. (1), as well as the terms resulting
from the bulk inversion asymmetry of the unit cell of zinc-
blende semiconductors [32].

Due to full rotational symmetry of H3D(k), its wave func-
tion can be presented in the form

�3D(k) = Uz(φ)Uy(θ )�3D(k), (6)

where

Uz(φ) =
(

exp (−iσzφ/2) 0
0 exp(−iJzφ)

)
,

Uy(θ ) =
(

exp(−iσyθ/2) 0
0 exp(−iJyθ )

)
. (7)

Here, k = |k|, kx = k sin θ cos φ, ky = k sin θ sin φ, and kz =
k cos θ , while σx and σz represent the Pauli matrices.

The form of the wave function �3D(k) in Eq. (6)
allows one to introduce a new Hamiltonian H̃3D(k), de-
pending only on k, using a unitary transformation H̃3D(k) =
Uy(−θ )Uz(−φ)H3D(k)Uz(φ)Uy(θ ). In explicit form, the
Hamiltonian H̃3D(k) is written as

H̃3D(k) = CI6×6 + MIM +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−(D + B)k2 0 0 Ak 0 0
0 −(D + B)k2 0 0 Ak 0
0 0 − h̄2k2

2mhh
0 0 0

Ak 0 0 −(D − B)k2 0 0
0 Ak 0 0 −(D − B)k2 0
0 0 0 0 0 − h̄2k2

2mhh

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where I6×6 is the 6×6, IM = diag{1, 1,−1,−1,−1,−1} is a
diagonal matrix; other parameters are defined as A = √

6P/3,
C = (Ec + Ev )/2, M = (Ec − Ev )/2,

D = h̄2

2m0

γ1 + 2γ2 − 2F − 1

2
,

B = − h̄2

2m0

γ1 + 2γ2 + 2F + 1

2
,

1

mhh
= 1

m0
(γ1 − 2γ2).

(9)

The band parameters used in H̃3D(k) for Hg1−xCdxTe crystals
at different x are summarized in Table I. The Hamiltonian

H̃3D(k) has three doubly degenerate eigenvalues:

Ec,lh = C − Dk2 ±
√

(M − Bk2)2 + A2k2,

Ehh = C − M − h̄2k2

2mhh
. (10)

As clear, the first two eigenvalues coincide with the band dis-
persion of “conventional” 3D topological insulators [15–17],
while the third branch represents an additional “parabolic”
heavy-hole band. The mass parameter M in Eq. (8) describes
the band inversion: M > 0 corresponds to a trivial semicon-
ductor, while M < 0 represents a topological semimetal. In
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the latter case, semimetallic HgCdTe is often called “semi-
conductor with negative band gap” assuming the energy
difference between the �6 and �8 bands.

In order to calculate the DOS in bulk Hg1−xCdxTe in the
presence of disorder, we add the random impurity poten-
tial Vimp(r)I6×6 and the “gap fluctuation” potential UM (r)IM

to H3D(k). Further, we assume both potentials to be Gauss
distributed with zero mean values and define its spatial corre-
lations as

〈Vimp(r)〉 = 〈UM (r)〉 = 0,

〈Vimp(r)Vimp(r′)〉 = v2g(|r − r′|),
〈UM (r)UM (r′)〉 = u2ξ (|r − r′|),
〈Vimp(r)UM (r′)〉 = 0, (11)

where 〈· · · 〉 represents the average over all realizations of
the random potentials; g(r) and ξ (r) are the normalized
correlation functions [24,33], while v and u represent the cor-
responding disorder strength. The last expression in Eq. (11)
means that the random potentials Vimp(r) and UM (r) are sup-
posed to be independent.

Let us consider a Green’s function defined by

Ĝ(k, ε) =
〈

1

ε − H

〉
= [ε − H3D(k) − 
̂(k, ε)]−1, (12)

where ε is the energy, 
̂(k, ε) is the self-energy matrix, and
H = H3D(k) + Vimp(r)I6×6 + UM (r)IM .

Due to the full rotational symmetry of H3D(k), the
disorder-averaged Green’s function in Eq. (12) can be pre-
sented in the form

Ĝ(k, ε) = Uz(−φ)Uy(−θ )Ĝ(k, ε)Uy(θ )Uz(φ), (13)

with

Ĝ(k, ε) = [ε − H̃3D(k) − 
̂(k, ε)]−1, (14)

which depends only on k. This shows that Ĝ(k, ε) in Eq. (13)
depends on the angles via the terms of Uz(φ) and Uy(θ ).

Without loss of generality, when calculating the self-energy

̂(k, ε), we further assume that the vector k in its coordinate
system is oriented along the z axis. In this case, if one addi-
tionally takes into account that H̃3D(k) in Eq. (13) restricts the
form of 
̂(k, ε), one can write the self-energy 
̂(k, ε) as


̂(k, ε) =

⎛
⎜⎜⎜⎜⎜⎝


c 0 0 
p 0 0
0 
c 0 0 
p 0
0 0 
hh 0 0 0


p 0 0 
lh 0 0
0 
p 0 0 
lh 0
0 0 0 0 0 
hh

⎞
⎟⎟⎟⎟⎟⎠

, (15)

where 
c, 
lh, 
hh, and 
p are functions of k and ε.
After some calculations involving Eqs. (11)–(15), the self-

energy matrix 
̂(k, ε) within the SCBA for correlated and
mutually independent disorder potentials [33–35] is written
as


̂(k, ε) =
∫ Kc

0

k′2dk′

2π

∫ π

0

sin θ dθ

2π
W−(k, k′, θ )G′

p cos θ

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

+
∫ Kc

0

k′2dk′

2π

∫ π

0

sin θ dθ

2π
W+(k, k′, θ )

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

G′
c 0 0 0 0 0

0 G′
c 0 0 0 0

0 0 G′
hh 0 0 0

0 0 0 G′
lh 0 0

0 0 0 0 G′
lh 0

0 0 0 0 0 G′
hh

⎞
⎟⎟⎟⎟⎟⎠

−3

4
(G′

hh − G′
lh) sin2 θ

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (16)

where G′
n ≡ Gn(k′, ε) are the component of the Green’s func-

tion Ĝ(k, ε) having the same form as 
̂(k, ε) in Eq. (15),
while W±(k, k′, θ ) are defined as

W±(k, k′, θ ) = v2g̃(
√

k2 + k′2 − 2kk′ cos θ )

±u2ξ̃ (
√

k2 + k′2 − 2kk′ cos θ ), (17)

where g̃(k) and ξ̃ (k) are the Fourier transform of the disorder
correlation functions defined by Eq. (11):

g(r) =
∫

d3q
(2π )3

eiq·rg̃(q), ξ (r) =
∫

d3q
(2π )3

eiq·r ξ̃ (q).

In Eq. (16), we also introduce a cut-off wave vector
Kc = π/a0 (where a0 is the lattice constant of bulk semi-
conductor), corresponding to the size of the Brillouin
zone [25].
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FIG. 1. Band structure and color map of the DOS as a function of the disorder strength W = √
v2 + u2 calculated on the basis of a

three-band Kane Hamiltonian for bulk Hg1−xCdxTe crystals at different Cd concentration: x = 0.18 (M > 0), x = xc (M = 0 for xc � 0.168
at 2 K [8]), and x = 0.155 (M < 0). The band parameters are provided in Table I. The white solid curves show the band-edge positions
determined by Eq. (24). The sign on the solid curves conforms to the corresponding sign in the formula. The white dotted curve found from
m(ε,W ) = 0 represents the topological phase transition.

Once the Green’s function is known, the spectral function
A(k, ε) and density of states D(ε) are calculated as

A(k, ε) = − 1

π
Im{Tr(Ĝ(k, ε + i0))},

D(ε) =
∫ Kc

0

k2dk

2π2
A(k, ε). (18)

To proceed further, we assume g̃(q) = ξ̃ (q) = 1, which corre-
sponds to uncorrelated disorder potentials UM (r) and Vimp(r).
The latter, for instance, can be considered as the electrostatic
potential formed by the short-range impurities [25,36–38]. In
this case, the self-energy matrix is independent of k and has
the diagonal form with 
p(ε) = 0 and


hh(ε) = 
lh(ε) = v2 + u2

2π2

∫ Kc

0

Ghh(k, ε) + Glh(k, ε)

2
k2dk,


c(ε) = v2 + u2

2π2

∫ Kc

0
Gc(k, ε)k2dk, (19)

where Gc(k, ε), Ghh(k, ε), and Glh(k, ε) are written as

Gc(k, ε) = (D − B)k2 + Xlh(ε)

�(k, ε)
,

Glh(k, ε) = (D + B)k2 + Xc(ε)

�(k, ε)
, (20)

Ghh(k, ε) = 1
h̄2k2

2mhh
+ Xhh(ε)

.

Here, we introduce Xc(ε) = ε − Ec − 
c(ε), Xlh(ε) = ε −
Ev − 
lh(ε), Xhh(ε) = ε − Ev − 
hh(ε), and

�(k, ε) = [D2 − B2]k4

− [A2 − (D − B)Xc − (D + B)Xlh]k2 + XcXlh.

(21)

Note that the integrals in Eq. (19) are calculated analytically
(see Appendix A), transforming Eqs. (19)–(21) into the set
of algebraic self-consistent equations numerically solved by
simple iterations.

After the Green’s function Ĝ(k, ε) and self-energy matrix

̂(k, ε) are known, the spectral function A(k, ε) and density
of states D(ε) are calculated as

A(k, ε) = − 2

π
Im{Gc(k, ε) + Glh(k, ε) + Ghh(k, ε)},

D(ε) = − 2

π

Im{
c(ε) + 
lh(ε) + 
hh(ε)}
v2 + u2

. (22)

Note that these expressions are valid only for the case of
uncorrelated disorder potentials UM (r) and Vimp(r).

III. RESULTS AND DISCUSSION

Figure 1 shows the evolution of DOS with the disorder
strength W introduced as W = √

v2 + u2 in accordance with
Eq. (19) for Hg1−xCdxTe crystals with different Cd concen-
tration x. If M > 0, the band gap in the DOS decreases with
W until it vanishes above a critical value W ∗. Conversely, the
DOS at M < 0 remains gapless for all values of W . Let us
now demonstrate that such behavior of the DOS in CdHgTe
crystals is attributed to the disorder-induced topological phase
transition.

Indeed, according to Groth et al. [12], the presence of
disorder leads to the renormalization of both topological mass
m(ε,W ) and chemical potential μ(ε,W ):

m(ε,W ) = M + 
c(ε) − 
lh(ε)

2
,

μ(ε,W ) = C − 
c(ε) + 
lh(ε)

2
, (23)

where the overbar stresses the values found on the set of
real numbers. Since the finite DOS is associated with a finite
imaginary part of the self-energy matrix 
̂(ε), the band-gap
region is characterized by the solution of Eq. (19) with purely
real quantities 
c(ε), 
lh(ε), and 
hh(ε). Note that 
hh(ε) =

lh(ε) for the Kane fermions. A topological transition occurs
when the renormalized mass parameter changes the sign, i.e.,
m(ε,W ) = 0 [12]. The band-edge positions on the (ε,W )
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FIG. 2. Color map of the spectral function A(k, ε) for bulk Hg0.82Cd0.18Te crystal at different values of the disorder strength W = √
v2 + u2.

The white dotted curves represent the quasiparticle energy dispersion defined by Eq. (25).

diagram are found from the condition

μ(ε,W ) = C ± m(ε,W ), (24)

where “+” and “−” correspond to the edge of the �6 and �8

bands, respectively.
As seen from Fig. 1(a), two curves corresponding to the

band edges cross at the transition point W = W ∗, where
m(ε,W ) = 0. Interestingly, these curves not only describe the
boundaries of the region with vanishing DOS, but also allow
one to trace the band-edge positions in the absence of the
band gap at m(ε,W ) < 0. The latter is also seen in Figs. 1(b)
and 1(c). The description of disorder-induced phase transition
in terms of the renormalized topological mass and chemical
potential implies the implicit replacement of Kane fermions
by new quasiparticles with energy dispersion determined by

det|H̃3D(k) + 
̂(ε) − εI6×6| = 0, (25)

where the self-energy matrix is found on the set of real num-
bers.

In order to shed further light on this issue, Fig. 2 pro-
vides color maps of the spectral function A(k, ε) for bulk
Hg0.82Cd0.18Te crystal at different values of the disorder
strength. As clear, at W = 0 corresponding to the “clean”

crystal, 
̂(ε)≡0 and the spectral function is represented by
the sum of δ functions centered at the energies Ec, Elh, and
Ehh given by Eq. (10). Figure 2 evidences that although the
spectral function broadens in the presence of disorder, its
maximum values still coincide with the energy dispersion of
quasiparticles defined by Eq. (25) and shown by the white
dotted curves. As also seen from the evolution of A(k, ε), the
energy dispersion of quasiparticles mimics the energy disper-
sion of Kane fermions with the mass parameter renormalized
by disorder. This supports the quasiparticle picture of the
disorder-induced phase transition. Thus, the mechanism pre-
viously discovered by Groth et al. [12] for Dirac systems with
quadratic momentum terms also takes place in narrow-gap
HgCdTe systems described by the three-band Kane Hamilto-
nian.

Nevertheless, it is important to underline the non-
Lorentzian shape of A(k, ε) in disordered CdHgTe crystals;
this signalizing that no perfectly coherent quasiparticles can
be defined, and incoherent processes associated with the imag-
inary parts of the self-energy are relevant in the presence
of disorder. The strongly asymmetrical shape of the spectral
function is particularly seen in the evolution of a heavy-hole
branch.

FIG. 3. Band structure and color map of the DOS as a function of the disorder strength W = √
v2 + u2 calculated within the two-band

3D BHZ model (see Appendix B) with the same band parameters as used for Fig. 1. The white solid curves show the band-edge positions
determined by Eq. (24). The sign on the solid curves conforms to the corresponding sign in the formula. The dotted curve found from
m(ε,W ) = 0 represents the topological phase transition.
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FIG. 4. Critical disorder strength W ∗ as a function of mhh for bulk
Hg0.82Cd0.18Te. The red dotted curve represents the value calculated
within the two-band 3D BHZ model shown in Fig. 3(a).

Finally, let us discuss the contribution of the heavy-hole
band into disorder-induced phase transition. As seen from
Eqs. (19)–(21), all three bands are self-consistently involved
in the DOS calculations, which means that the heavy-hole
band cannot be considered separately. However, we can com-
pare the DOS evolution shown in Fig. 1 with the calculations
on the basis of the two-band 3D BHZ Hamiltonian, whose
eigenvalues formally coincide with the dispersion of the �6

and light-hole bands. The details of these calculations are
provided in Appendix B.

Figure 3 shows the evolution of the DOS with the disorder
strength W calculated within the two-band 3D BHZ model
(see Appendix B) with the same band parameters as used
for Fig. 1. If M > 0, the band gap decreases with W and
vanishes at a critical value W ∗, and then it is reopened again at
W > W ∗. Such behavior reminds one of the “typical” phase
transition between trivial and topological insulator states
known for HgTe QWs [12,25]. In the absence of a heavy-hole
band, the disorder induces a phase transition between trivial
and topological insulator states. The presence of a heavy-hole
band in HgCdTe crystals leads to the topological phase tran-
sition into the semimetal state, which occurs at much lower
disorder strength W ∗ than the transition in conventional 3D
topological insulators (cf. Fig. 1).

The difference between the values of W ∗ calculated in
the two models is not surprising. Although the unitary trans-
formation (6) indeed allows one to represent H3D(k) in the
form in which the heavy holes are completely decoupled from
the electron and light-hole bands, the elements of self-energy
matrix 
̂(k, ε) in Eq. (19) still include the mixed contribution
from all three bands. Indeed, in order to calculate 
c via Gc,
one needs to know 
lh, which in turn depends on both Glh

and Ghh. The inability to separate the light and heavy holes,
when calculating the Green’s function, is due to the fact that
these two bands are described within the same representation
of J = 3/2. As for the fact that the value W ∗ is lower than
the calculated one by using the two-band 3D BHZ model [see
Fig. 3(a)], this is due to the actual values of heavy-hole mass
mhh in HgCdTe crystals (see Table I). Figure 4, providing
W ∗ as a function of mhh, shows that the critical disorder
strength at small mhh values exceeds W ∗ calculated by using
the two-band 3D BHZ model, while increasing of mhh leads
to decreasing of W ∗.

IV. SUMMARY

We have investigated disorder-induced topological phase
transition in bulk CdHgTe crystals, in which the band struc-
ture is represented by specific Kane fermions differing from
pseudo-spin-1/2 fermionic excitations. By using the SCBA
and three-band Kane Hamiltonian in the continuous repre-
sentation, we directly calculate the DOS as a function of
the strength of uncorrelated disorder in HgCdTe crystals.
By following the DOS evolution, we clearly demonstrate the
topological phase transition, which can be also understood
within the quasiparticle picture in terms of the disorder-
renormalized mass of Kane fermions. Our conclusions also
hold for other narrow-gap zinc-blende semiconductors such
as InAs, InSb, and their ternary alloys InAsSb.

In this work, as a source of the disorder, we have consid-
ered the electrostatic potential Vimp(r) of randomly distributed
short-range impurities and short-range fluctuations UM (r) in
the Cd composition for which 〈Vimp(r)UM (r′)〉 = 0. Never-
theless, our results can also be generalized for other disorder
models inherent in realistic crystals. This may be significant
for the investigations aimed at improving the performance of
InAsSb- and HgCdTe-based midinfrared detectors [26].
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APPENDIX A: CALCULATION OF INTEGRALS

In order to calculate the integrals in Eq. (19), we have
found the roots x1 and x2 of the polynomial �(k, ε) in Eq. (21)
defining the following expansion: �(x, ε) = [D2 − B2](x2 −
x2

1 )(x2 − x2
2 ). Once the roots are known, the self-energies


c(ε), 
lh(ε), and 
hh(ε) in Eq. (19) are reduced to the
calculation of the integrals∫

x2(ax2 + b)

c
(
x2 − x2

1

)(
x2 − x2

2

)dx

= a

c
x + x1

(
ax2

1 + b
)

2c
(
x2

1 − x2
2

) {ln(x − x1) − ln(x + x1)}

− x2
(
ax2

2 + b
)

2c
(
x2

1 − x2
2

) {ln(x − x2) − ln(x + x2)} (A1)

and∫
ax2

c
(
x2 − x2

3

)dx = a

c
x + ax3

2c
{ln(x − x3) − ln(x + x3)},

(A2)
where x2

3 = −2mhhXhh(ε)/h̄2.

APPENDIX B: 3D ISOTROPICAL BHZ MODEL AND SCBA

For better understanding of the specifics of HgCdTe
crystals in comparison with conventional 3D topological in-
sulators [15–17], let us consider the disorder-induced phase
transition within the continuous 3D BHZ model [39–41].
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Formally, this two-band Hamiltonian describes a model sys-
tem consisting of conduction and light-hole bands only, while
the heavy-hole band is formally absent. In the basis set
of {|�6,+1/2〉, |�6,−1/2〉, |�8,+1/2〉, |�8,−1/2〉}, the 3D
BHZ Hamiltonian is written as [39–41]

HBHZ(k) = [
C − D

(
k2

x + k2
y + k2

z

)]
I4×4

+

⎛
⎜⎝
M(k) 0 Akz Ak−

0 M(k) Ak+ −Akz

Akz Ak− −M(k) 0
Ak+ −Akz 0 −M(k)

⎞
⎟⎠,

(B1)

where M(k) = M − Bk2 with k2 = k2
x + k2

y + k2
z . Here, the

structural parameters C, M, B, D, and A are determined in
the same way as those for Eq. (8). As clear, HBHZ(k) has two
doubly degenerate eigenvalues

Ec,lh = C − Dk2 ±
√

(M − Bk2)2 + A2k2, (B2)

which formally coincide with the band dispersion within the
three-band Kane Hamiltonian [see Eq. (10)].

The full rotational symmetry of HBHZ(k) allows for the
representation of its wave function �BHZ(k) in the form

�BHZ(k) = Tz(φ)Ty(θ )�BHZ(k), (B3)

with

Tz(φ) =
(

exp (−iσzφ/2) 0
0 exp (−iσzφ/2)

)
,

Ty(θ ) =
(

exp(−iσyθ/2) 0
0 exp(−iσyθ/2)

)
, (B4)

where kx = k sin θ cos φ, ky = k sin θ sin φ, and kz = k cos θ .
The unitary transformations defined by Tz(φ) and Ty(θ )

allows one to introduce a new Hamiltonian H̃BHZ(k) =
Ty(−θ )Tz(−φ)HBHZ(k)Tz(φ)Ty(θ ), which has a form

H̃BHZ(k) = [C − Dk2]I4×4

+
(

[M − Bk2]I2×2 Akσz

Akσz −[M − Bk2]I2×2

)
. (B5)

Then, with the unitary transformation of Eq. (B3), the
disorder-averaged Green’s function ĜBHZ(k, ε) can be pre-
sented in the form

ĜBHZ(k, ε) = Tz(−φ)Ty(−θ )ĜBHZ(k, ε)Ty(θ )Tz(φ), (B6)

with

ĜBHZ(k, ε) = [ε − H̃BHZ(k) − 
̂BHZ(k, ε)]−1, (B7)

where the self-energy 
̂BHZ(k, ε) has a form of H̃BHZ(k):


̂BHZ(k, ε) =
(


(BHZ)
c I2×2 
(BHZ)

p σz


(BHZ)
p σz 


(BHZ)
lh I2×2

)
. (B8)

Then, after some calculations similar to the case of Kane
fermions, the self-energy matrix 
̂BHZ(k, ε) within the SCBA
for the Gauss-distributed disorder potentials in Eq. (11) is
written as


̂BHZ(k, ε) =
∫ Kc

0

k′2dk′

2π

∫ π

0

sin θ dθ

2π

×
(

W+G(BHZ)
c

′
I2×2 W−G(BHZ)

p
′ cos θσz

W−G(BHZ)
p

′ cos θσz W+G(BHZ)
lh

′
I2×2

)
,

(B9)

where W± ≡ W±(k, k′, θ ) are defined by Eq. (17), while
G(BHZ)

c
′ ≡ G(BHZ)

c (k′, ε) are the component of the Green’s
function ĜBHZ(k, ε) having the same form as 
̂BHZ(k, ε) in
Eq. (B8).

In the case of uncorrelated disorder, when W±(k, k′, θ ) =
v2±u2, the self-energy matrix is independent of k and is
written in the form


(BHZ)
c (ε) = v2 + u2

2π2

∫ Kc

0

(D − B)k2 + Xlh(ε)

�(k, ε)
k2dk,



(BHZ)
lh (ε) = v2 + u2

2π2

∫ Kc

0

(D + B)k2 + Xc(ε)

�(k, ε)
k2dk, (B10)


(BHZ)
p (ε) = 0,

where Xc(ε) = ε − Ec − 
c(ε), Xlh(ε) = ε − Ev − 
lh(ε),
Xhh(ε) = ε − Ev − 
hh(ε), and

�(k, ε) = [D2 − B2]k4

− y[A2 − (D − B)Xc − (D + B)Xlh]k2 + XcXlh.

After the self-energy matrix 
̂(k, ε) is known, the density
of states D(ε) is calculated as

D(BHZ)(ε) = − 2

π

Im{
c(ε) + 
lh(ε)}
v2 + u2

. (B11)

One can see that Eqs (B10) and (B11) differ from those for
the Kane fermions (see Sec. II).
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