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Kerker scattering of electrons: Towards futuristic thermoelectric materials
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Historically, the transfer of ideas and concepts between optics and condensed-matter physics has been flour-
ishing. Inspired by shaping the scattering of electromagnetic waves by dielectric nanoparticle clusters through
the interference of excited multipole modes, we address shaping the scattering of matter waves by quantum dot
clusters embedded in a host semiconductor through the interference of excited partial waves. We theoretically
demonstrate nearly complete suppression of backward, forward, and both backward and forward scattering, i.e.,
three versions of the generalized Kerker scattering of matter waves. We envisage that thermoelectric properties
of semiconductors can be improved by incorporation of quantum dot clusters exhibiting ultradirectional forward
scattering: Such clusters act as phonon-blocking/electron-transmitting inclusions.
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I. INTRODUCTION

Nanophotonics, the science of controlling the interaction
of light and matter on subwavelength scales, has experienced
an explosive growth in the past two decades [1,2]. Metal-
lic nanoparticles have attracted much attention in this field.
Metallic nanoparticles derive their fascinating properties from
an ability to support collective electron excitations, known
as localized surface plasmons. Using metallic nanoparticles,
nanoscale optical devices such as nanolenses [3], nanowaveg-
uides [4,5], and nanoantennas [6] are realized. Indeed only
the electric response of such metallic nanostructures is engi-
neered to control and shape the scattering pattern.

As early as 1983, Kerker, Wang, and Giles discovered
peculiarities of electromagnetic plane wave scattering by
magnetic spherical particles [7]: Under certain conditions
for the values of the electric permittivity ε and magnetic
permeability μ, the induced electric and magnetic dipoles
are of equal magnitude, and consequently the in-phase and
out-of-phase oscillation of these induced dipoles leads to the
zero-backward (first Kerker condition) and near-zero-forward
(second Kerker condition) radiated power, respectively. The
Kerker conditions are indeed too restrictive since most natural
materials exhibit no considerable magnetic response, i.e., μ ≈
1, especially in the visible region of the spectrum. Therefore,
electromagnetic scattering by magnetodielectric spherical par-
ticles faded into oblivion.

The theoretical prediction and experimental realization of
double-negative metamaterials operating in the microwave
region coined the concept of artificial magnetism [8,9]. Now
it is well known that high-index dielectric nanoparticles of-
fer a route to considerable magnetic response in the visible
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spectral range [10–12]: According to the Mie theory, high-
index dielectric nanoparticles can exhibit strong magnetic
dipole resonance, due to the circular displacement current
excited by the incident wave. Intriguingly, the response of
the excited magnetic dipole may become comparable to or
even stronger than that of the excited electric dipole. Recog-
nition of the interference of electric and magnetic multipolar
resonances in high-index dielectric nanoparticles revitalized
the Kerker scattering [13–16]. Shaping the scattering pat-
tern beyond the forward and backward directions has also
been discussed. Particularly, nearly complete simultaneous
suppression of both forward and backward scattering, the
so-called transverse Kerker scattering, has gained interest
[17–22]. Kerker scattering and transverse Kerker scattering
by a dielectric nanoparticle are experimentally confirmed
[13,14,19]. Directional scattering from nanoparticle clusters
such as dimers [23–25], trimers [23,26,27], and quadrumers
[23] is studied. Moreover, meta-atoms supporting the trans-
verse Kerker effect are arranged into a lattice to realize
extraordinarily transparent metasurfaces: At the resonant fre-
quency, the transmitted light traverses the metasurface without
perturbation of its amplitude and phase [28]. Note that in
Huygens’ metasurfaces, the strong forward scattering leads to
a phase difference between the incident and transmitted fields.

Since the milestone experiments of Davisson and Ger-
mer, and Thomson, there is a tradition in highlighting the
similarities between wave optics and wave mechanics. In
this respect, the transfer of ideas and concepts between
optics and condensed-matter physics has been flourishing
[29], as exemplified by the invention of photonic crystals,
Anderson localization of light, topological photonics, the
multi-quantum-well barrier to reflect incident electrons [30],
the electronic Mach-Zehnder interferometer to measure in-
terference of quasiparticles with fractional charges [31], and
cloaking a quantum dot from impinging matter waves based
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on an analog of plasmonic cloaking of electromagnetic waves
[32–40].

In this paper, we theoretically demonstrate Kerker scatter-
ing and transverse Kerker scattering of matter waves by one
or a cluster of spherical core-shell quantum dots embedded
in a host semiconductor. In general, these quantum dots are
not arranged in a regular pattern and thus the potential felt
by the electron is not spherically symmetric. Guided by the
multiparticle Mie theory [41], we present a generalized partial
wave method to treat the electron multiple scattering. The
electron scattering pattern not only depends on each quantum
dot characteristic—i.e., radius, effective mass, and potential
of the core/shell—but also on the geometrical arrangement
of quantum dots. We show that with a proper choice of pa-
rameters, the interference of s, p, d , and even f waves, and
consequently the scattering pattern, can be engineered.

There is at least one good reason to engineer electron scat-
tering from quantum dots which are interchangeably called
nanoinclusions and nanoparticles. Regarding the increasing
need for clean energy resources, and the estimation that
72% of the global primary energy consumption is lost af-
ter conversion [42], thermoelectric devices which generate
electricity from waste heat are of paramount importance
[43]. However, the relatively low energy conversion efficiency
of conventional thermoelectrics has limited their use. Thus
intense research is focused on new bulk and thin-film thermo-
electric materials, and even few-layer and single-layer two-
dimensional materials such as graphene, black phosphorus,
transition-metal dichalcogenides, group IV-VI compounds,
and MXenes [44,45]. Recent experiments have confirmed
that thermoelectric properties of semiconductors can be im-
proved by incorporation of nanoinclusions [46–49]. Such
so-called phonon-blocking/electron-transmitting nanoinclu-
sions are believed to strongly scatter phonons while not
severely deteriorating electron transport. At low concen-
trations of nanoinclusions, scattering events are almost
independent. But at high concentrations of nanoinclusions
>1%, electron multiple scatterings are important [50]. Along
these lines, cloaking one core-shell nanoparticle from con-
ducting electrons is discussed [32,33]. However, collective
cloaking of a cluster of quantum dots is rather involved [40].
In this respect, we pay attention to the ultradirectional forward
scattering by a cluster of quantum dots. We also envisage
a new generation of quantum dot superlattice thermoelectric
materials based on quantum dots supporting the transverse
Kerker effect: Indeed “transverse scatterers” arranged into a
lattice are expected to be transparent to matter waves.

II. MODEL

We study the multiple scattering of an electron from N
core-shell quantum dots embedded in a host semiconductor.
In general, these spherical quantum dots are not arranged in a
regular pattern. In other words, the scattering potential is not
spherically symmetric (see Fig. 1). We rely on the effective-
mass Hamiltonian

H = − h̄2

2
∇ · 1

m(r)
∇ + V (r) (1)

(a)

(b)

FIG. 1. (a) Schematics of a core-shell quantum dot with inner
radius a1 and outer radius b1. (b) An artistic view of electron wave
scattering from a cluster of core-shell quantum dots.

to describe the electron dynamics. The effective mass in the
host semiconductor mh, wave number k, wave vector k = kẑ,
and energy E = h̄2k2/(2mh) characterize the incident elec-
tron. The wave function of the incident electron is ψinc = eikz.
The center Oα , position dα , radius aα , effective mass mc,α ,
and band offset with respect to the host semiconductor, or
potential Vc,α of the core region |r − dα| < aα , radius bα ,
effective mass ms,α , and potential Vs,α of the shell region
aα < |r − dα| < bα , characterize the αth spherical quantum
dot. We use ā = ( 1

N

∑N
α=1 a2

α )1/2 and b̄ = ( 1
N

∑N
α=1 b2

α )1/2 as
the typical inner and outer radii, respectively.

III. ELECTRON SCATTERING FROM
ONE QUANTUM DOT

First we revisit electron scattering from one core-shell
quantum dot centered at the origin of the coordinates [34].
The Hamiltonian H commutes with the angular momentum
operators L2 and Lz. Thus it is convenient to invoke the si-
multaneous eigenfunctions of L2 and Lz, i.e., the spherical
harmonics Ylm(r̂), to construct the eigenfunctions of H . Indeed
the incident plane wave can be expanded as

ψinc = eikz =
∞∑

l=0

il
√

4π (2l + 1) jl (kr)Yl0(θ, φ). (2)
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The transmitted waves ψcore,1 and ψshell,1, and the scattered
wave ψsca, can be expanded as well,

ψcore,1 =
∞∑

l=0

il
√

4π (2l + 1)T c
l,1 jl (qc,1r)Yl0(θ, φ),

ψshell,1 =
∞∑

l=0

il
√

4π (2l + 1)
[
T s

l,1 jl (qs,1r)

+ T ′s
l,1yl (qs,1r)

]
Yl0(θ, φ),

ψsca =
∞∑

l=0

il
√

4π (2l + 1)Rl,1h(1)
l (kr)Yl0(θ, φ). (3)

Here angular momentum quantum numbers l = 0, 1, 2,
3, 4, 5, ... specify s, p, d , f , g, h, ... partial mat-

ter waves. jl , yl , and h(1)
l = jl + iyl denote the spherical

Bessel, spherical Neumann, and spherical Hankel functions
of the first kind, respectively. qc,α = χc,α

h̄

√
2mc,α|E − Vc,α|,

qs,α = χs,α

h̄

√
2ms,α|E − Vs,α|, χc/s,α = 1 if E − Vc/s,α � 0 and

χc/s,α = i if E − Vc/s,α < 0. Note that the above wave func-
tions have no dependence on the azimuthal angle φ, due to the
rotational invariance of the system about the ẑ axis.

At the interface of two regions I and II, the probability
amplitude and the current are continuous. It follows that the
boundary conditions at the interface are ψI = ψII and 1

mI
∇ψI ·

n̂I,II = 1
mII

∇ψII · n̂I,II, where n̂I,II denotes the unit vector nor-
mal to the interface. Imposing the boundary conditions at
the inner and outer radii of the core-shell quantum dot, the
scattering coefficients can be found. In particular, Rl,1 = Rl,1,
where

Rl,α = −qs,αmh jl (kbα )[ j′l (qs,αbα ) + y′
l (qs,αbα )Ul,α] + kms,α j′l (kbα )[ jl (qs,αbα ) + yl (qs,αbα )Ul,α]

qs,αmhh(1)
l (kbα )[ j′l (qs,αbα ) + y′

l (qs,αbα )Ul,α] − kms,αh′(1)
l (kbα )[ jl (qs,αbα ) + yl (qs,αbα )Ul,α]

(4)

and

Ul,α = −qc,αms,α jl (qs,αaα ) j′l (qc,αaα ) − qs,αmc,α j′l (qs,αaα ) jl (qc,αaα )

qc,αms,αyl (qs,αaα ) j′l (qc,αaα ) − qs,αmc,αy′
l (qs,αaα ) jl (qc,αaα )

. (5)

The far-zone radial component of the scattered current is

jsca
r = jsca · r̂ = h̄

mh
Im[ψ∗

sca∇ψsca] · r̂

∼ h̄k

mh

b2
1

r2
Fsca (θ ), (6)

where

Fsca (θ ) = 4π

k2b2
1

Im

[
i
∑

ll ′

√
(2l + 1)(2l ′ + 1)

× R∗
l,1Rl ′,1Y

∗
l0(r̂)Yl ′0(r̂)

]
(7)

characterizes the angular scattering of the quantum dot.
Now, we derive conditions for the nearly complete suppres-

sion of backward, forward, and both backward and forward
scattering. In the case of dominant s and p waves,

Fsca (θ ) ∝ |R0,1|2 + 6Re(R∗
0,1R1,1) cos θ + 9|R1,1|2 cos2 θ,

(8)
to a good approximation. Thus the scattering is directed
mainly in the forward (backward) direction when Re(R∗

0,1R1,1)
is positive (negative). It follows that

R0,1 = +3R1,1,

R0,1 = −3R1,1 (9)

almost ensure the suppression of backward scattering and
forward scattering, respectively. Note that both R0,1 and R1,1

are complex numbers.

In the case of dominant p and d waves,

Fsca (θ ) ∝ 9|R1,1|2 cos2 θ + 25

4
|R2,1|2(3 cos2 θ − 1)2

+ 15 Re(R∗
1,1R2,1)(3 cos2 θ − 1) cos θ. (10)

Here

R1,1 = + 5
3 R2,1,

R1,1 = − 5
3 R2,1 (11)

almost ensure the suppression of backward scattering and
forward scattering, respectively.

The case of dominant s and d waves is far more interesting,
since

Fsca (θ ) ∝ |R0,1|2 + 25
4 |R2,1|2(3 cos2 θ − 1)2

+ 5Re(R∗
0,1R2,1)(3 cos2 θ − 1) (12)

is a function of cos2 θ rather than cos θ . It follows that

R0,1 = −5R2,1 (13)

almost ensures the simultaneous suppression of both forward
and backward scattering.

Figure 2(a) shows the nearly complete suppression of
backward scattering by a core-shell quantum dot. Here mh =
0.1me, mc,1 = 0.9me, and ms,1 = 2.2me, where me denotes
the mass of the electron. a1 = 1.5 nm. In the case of domi-
nant s and p waves, R0,1 = 2.66e0.03π iR1,1 when b1 = 2 nm,
E = 58, Vc,1 = −305, and Vs,1 = −85 meV. In the case of
dominant p and d waves, R1,1 = 1.45e0.01π iR2,1 when b1 = 2
nm, E = 288, Vc,1 = −80, and Vs,1 = 95 meV. Figure 2(b)
shows the nearly complete suppression of forward scattering.
Here s and p waves are dominant and R0,1 = 3.3e0.97π iR1,1

when b1 = 2 nm, E = 25, Vc,1 = −80, and Vs,1 = −60 meV.
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FIG. 2. Fsca (θ ) of a core-shell quantum dot exhibiting (a) forward
scattering due to s and p waves (pink line) or p and d waves (blue
line), (b) backward scattering due to s and p waves, (c) and (d) trans-
verse scattering due to s and d waves. The parameters are in the text.

The interesting case of transverse Kerker scattering due to
the interference of s and d waves is shown in Figs. 2(c) and
2(d). Here R0,1 = 4e0.82π iR2,1 when b1 = 1.75 nm, E = 300,
Vc,1 = 70, and Vs,1 = −25 meV.

To design high-performance thermoelectric materials, in-
clusions are expected to exhibit directional forward scattering
in a broad energy window. Such inclusions are not out of
reach. For the quantum dot exemplified in Fig. 2(a), the ratio
of forward to backward scattering is 10 644 and 439 at ener-
gies E = 10 and 58 meV, respectively, when Vc,1 = −305 and
Vs,1 = −85 meV. More importantly, this ratio is greater than
1 in the whole energy window E < 83 meV.

Concerning the similarities between wave optics and
wave mechanics, a few remarks are in order. (i) To study
the electromagnetic wave scattering from a nanoparticle,
the vector multipole fields—solutions of the Maxwell
equations that are simultaneous eigenvectors of L2

and Lz—are of use [41,51]: J(1)
lm (r, k) = jl (kr)Xlm(r̂),

J(2)
lm (r, k) = 1

k ∇ × J(1)
lm (r, k), H(1)

lm (r, k) = h(1)
l (kr)Xlm(r̂),

and H(2)
lm (r, k) = 1

k ∇ × H(1)
lm (r, k), where Xlm = [l (l +

1)]−1/2LYlm are vector spherical harmonics. H-multipole
fields satisfy the radiation condition at infinity. To study the
matter wave scattering from a quantum dot, we expand the
wave functions in terms of jl (kr)Ylm(r̂) and h(1)

l (kr)Ylm(r̂),
which satisfy the boundary condition at infinity. The
spherical harmonics Ylm(r̂) are simultaneous eigenfunctions
of L2 and Lz. (ii) The Maxwell and Schrödinger wave
equations are different in many respects. In other words,
there is no one-to-one correspondence between the worlds of
electromagnetic and matter waves. For example, an electric
multipole field is distinct from a magnetic one labeled by
the same angular momentum numbers. But a partial matter
wave is labeled only by the angular momentum numbers.
(iii) Identically zero forward scattering of electromagnetic
waves from a magnetodielectric nanoparticle is forbidden
by the optical theorem [52]. In a similar vein, the optical

theorem implies the nearly complete rather than the complete
suppression of forward scattering of matter waves from a
quantum dot.

IV. ELECTRON SCATTERING FROM A
CLUSTER OF QUANTUM DOTS

We consider electron wave scattering from an aggre-
gate of core-shell quantum dots. A point P of position r =
(r sin θ cos φ, r sin θ sin φ, r cos θ ) has position rα = rα r̂α =
r − dα in the frame of reference centered at Oα . In this frame,
the incident wave can be expanded as

ψinc = eik·r = eik·(rα+dα )

= eik·dα

∞∑
l=0

il
√

4π (2l + 1) jl (krα )Yl0(r̂α ). (14)

The transmitted and scattered waves can be expanded as well:

ψcore,α =
∞∑

l=0

il
√

4π (2l + 1)T c
l,α jl (qc,αrα )Yl0(r̂α ),

ψshell,α =
∞∑

l=0

il
√

4π (2l + 1)[T s
l,α jl (qs,αrα )

+ T ′s
l,αyl (qs,αrα )]Yl0(r̂α ),

ψsca =
∞∑
l

il
√

4π (2l + 1)
[
Rl,αh(1)

l (krα )Yl0(r̂α )

+
∑
α′ �=α

Rl,α′h(1)
l (krα′ )Yl0(r̂α′ )

]
. (15)

The scattered wave is naturally expressed as the superposition
of waves scattered by all the quantum dots. Employing the
Nozawa’s addition theorem (see Appendix A) to write the
scattered wave in terms of eigenfunctions centered at Oα , and
imposing the boundary conditions at the inner and outer radii
of the αth core-shell quantum dot, we find a set of linear
equations for the scattering coefficients (see Appendix B).
Eliminating the coefficients T c

l,α , T s
l,α , and T ′s

l,α from these
equations, we find that

Rl,α =
N∑

α′ �=α

∞∑
l ′=0

il ′−l

√
2l ′ + 1

2l + 1
Rl,αGl0,l ′0(dα′α, k)Rl ′,α′

+ Rl,αeik·dα , (16)

where Rl,α describe the scattering from one isolated quantum
dot [see Eq. (4)]. The above equation can be written in a
more compact matrix form Rcluster = Rdot + MRcluster, whose
solution is

Rcluster = (I − M)−1Rdot. (17)
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Here

Rcluster = [(R0,1, . . . , Rl,1), . . . , (R0,N , . . . , Rl,N )]T ,

Rdot = [eik·d1 (R0,1, . . . ,Rl,1), . . . ,

× eik·dN (R0,N , . . . ,Rl,N )]T ,

Mlα,l ′α′ = il ′−l

√
2l ′ + 1

2l + 1
Rl,αGl0,l ′0(dα′α, k)(1 − δαα′ ). (18)

We again employ the Nozawa’s addition theorem to rewrite
ψsca in terms of wave functions centered at the origin

ψsca =
∑
lm

il
√

4π (2l + 1)Rlmh(1)
l (kr)Ylm(r̂). (19)

Here r > dα and

Rlm =
N∑

α=1

∞∑
l ′=0

il ′−l

√
2l ′ + 1

2l + 1
Glm,l ′0(−dα, k)Rl ′,α (20)

is the effective scattering coefficient of the cluster. In general,
the scattered wave ψsca depends on the azimuthal angle φ,
since the cluster is not rotationally symmetric about the ẑ axis.
Moreover, the s, p, d , and even f wave contribution to the
scattered wave may be significant. Now it is straightforward
to calculate the far-zone radial component of the scattered
current,

jsca
r = jsca · r̂ = h̄

mh
Im[ψ∗

sca∇ψsca] · r̂

∼ h̄k

mh

b̄2

r2
Fsca (r̂), (21)

where

Fsca (r̂) = 4π

k2b̄2
Im

[
i

∑
lml ′m′

√
(2l + 1)(2l ′ + 1)R∗

lm

× Rl ′m′Y ∗
lm(r̂)Yl ′m′ (r̂)

]
(22)

characterizes the angular scattering of the cluster. In
particular Fsca (θ = 0, φ), Fsca (θ = 180◦, φ), and Fsca (θ =
0, φ)/Fsca (θ = 180◦, φ) characterize forward scattering (F),
backward scattering (B), and the ratio of forward to back-
ward scattering (F/B), respectively. The incident current is
jinc = h̄k

mh
ẑ. Moreover, the total geometrical cross section of

quantum dots is
∑N

α=1 πb2
α = Nπ b̄2. Thus it is appropriate to

adopt

Qsca
N =

∫
jsca
r r2d


jincNπ b̄2

= 4

Nk2b̄2

∑
lm

(2l + 1)|Rlm|2, (23)

as the scattering efficiency of the cluster.
In the following numerical examples devoted to the mul-

tiple scattering phenomena, we consider identical quantum
dots with mc,α = 0.9me and ms,α = 2.2me, aα = 1.5 and
bα = 2 nm. We fix Vc,α = −30 meV but adjust Vs,α .
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FIG. 3. � of a dimer of core-only quantum dots, as a function
of θd for various d12. Here mh = 0.7me and E = 10 meV. � < 1
represents the shadow effect in electron scattering.

A. The shadow effect

The so-called shadow effect is known in the realm of elec-
tromagnetic wave scattering from dielectric spheres [41]. As
an interesting consequence of multiple scattering, the scatter-
ing cross section of a cluster of dielectric spheres may be less
than the sum of the scattering cross sections of the constituent
spheres considered as independent scatterers.

Here we demonstrate the shadow effect in the realm
of electron wave scattering from quantum dots. We
consider a dimer composed of two identical core-only
quantum dots positioned at − 1

2 d12(sin θd, 0, cos θd ) and
+ 1

2 d12(sin θd, 0, cos θd ). Indeed d12 is the dimer length, and θd

is the angle between the dimer axis and the incident electron
wave vector. We assume that mh = 0.7me and E = 10 meV.
We focus on

� = Qsca
2

Qsca
1

, (24)

where Qsca
2 and Qsca

1 denote the scattering efficiencies of a
dimer and a single quantum dot, respectively. Figure 3 demon-
strates that � may become less than 1.

B. Kerker scattering of electrons: Ultradirectional
forward scattering

In view of applications in nanoantennas, nanolasers, and
photovoltaics, ultradirectional light scattering has gained in-
terest. It is demonstrated that the directionality of the forward
scattering can be significantly increased upon the excitation
of electric and magnetic multipoles rather than the electric
and magnetic dipoles. Furthermore, significant suppression
of undesired side lobes and enhancement of unidirectional
scattering can be achieved by arranging the nanoparticles in a
chain [53–57]. Indeed multiple scattering effects are of great
importance in clusters: The electric and magnetic multipoles
induced in each nanoparticle of the cluster are different from
those induced in an isolated nanoparticle. Here we focus on
the ultradirectional electron scattering by a cluster of quantum
dots in view of futuristic thermoelectric materials.
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FIG. 4. Fsca (θ, φ) of a symmetric quadrumer of core-only quan-
tum dots for (a) E = 10 meV, (b) E = 100 meV, and (c) E =
350 meV. Corresponding plots of Fsca (θ, φ = 0, 90◦) are in panels
(d)–(f). Here mh = 0.7me.

We consider a symmetric quadrumer composed of four
core-only quantum dots at (3,0,0), (−3, 0, 0), (0,3,0), and
(0,−3, 0) nm. The plane of the cluster is perpendicu-
lar to the ẑ axis, the propagation direction of the inci-
dent wave. We assume that mh = 0.7me. Figure 4 shows
Fsca (θ, φ) of this symmetric quadrumer for E = 10, 100,
and 350 meV. Here the scattering pattern has fourfold
rotational symmetry about the ẑ axis. Moreover, the scat-
tering pattern is highly pronounced in the forward di-
rection. To better characterize the directionality of the
scattering, we use the main lobe angular width θFWHM de-
fined as the full width at half maximum of Fsca (θ, φ =
0). At these three energies, θFWHM is 45◦, 15◦, and 8◦,
the maximum of the main lobe 7.3, 107, and 1400 is
quite considerable, and the side lobe is smaller by a
factor 6, 158, and 215, respectively. At these three en-
ergies, the ultradirectional forward scattering originates
from the interference of partial waves with angular mo-
menta l � 4, 8, and 14, respectively. In other words,
to realize ultradirectional forward scattering, the exci-
tation of high angular momentum partial waves is of
importance.

C. Kerker scattering of electrons: Suppression of
forward scattering

Many theoretical and experimental studies are devoted to
superbackscattering of electromagnetic waves [13,14,58–60].
Notably, it has been recognized that enhanced backscattering
may pave the way toward negative scattering asymmetry pa-
rameter g (defined as the average of the cosine of the scattering
angle) [61,62]. To describe diffusive light transport in random
particulate media, the scattering mean free path �s and the
transport mean free path �∗ = �s/(1 − g) are of importance.
An unusual negative g makes �∗ less than �s. In respect of
the Anderson localization, this unusual multiple scattering
regime deserves attention. Here we focus on the suppression
of forward electron scattering by a cluster of quantum dots.

We consider a dimer composed of two quantum dots at
(3,0,0) and (−3, 0, 0) nm. We assume that mh = 0.1me. Fig-
ure 5(a1) shows that for all incident electron energies E <

90 meV, the core-only dimer has a very strong forward scat-
tering. Particularly around E = 10 meV one finds that F/B >

2300. Using core-shell rather than core-only quantum dots
allows engineering the angular scattering pattern. Figure 5(a2)
shows dramatic suppression of forward scattering; indeed one
finds that in general F/B < 100, and in particular 0.01 <

F/B < 1 when 42 < E < 85 meV. Here Vs,α = −260 meV.
Figure 5(a3) better demonstrates the Kerker scattering of
electrons. Here E = 88 and Vs,α = −260 meV are assumed.
Fsca (θ, φ = 0) of a core-only dimer (red line) is pronounced
in the forward region θ < 35◦ and is maximum when θ =
0. Nevertheless, Fsca (θ, φ = 0) of a core-shell dimer (blue
line) is pronounced in the backward region 155◦ < θ and is
maximum when θ = 180◦. Figure 5(a4) conveys the same
message. Here E = 10 and Vs,α = 110 meV. The angular scat-
tering pattern of more complicated clusters can be engineered
as well. Figures 5(b1)–5(b4) confirm Kerker scattering of
electrons from an asymmetric quadrumer composed of four
quantum dots at (5,0,0), (−5, 0, 0), (−6,−6,−6), and (7,7,0)
nm.

The left and right panels of Fig. 6 vividly demonstrate
the contribution of partial waves to the scattering pattern of
the core-only and core-shell dimer, respectively. Note the
different scales of rows. Here a double such as (s, p) or a
triple such as (s, p, d ) denotes the contribution of all terms
with angular momenta 0 and 1, and all terms with angular
momenta 0, 1, and 2 to the scattering pattern, respectively
[see Eq. (22)]. Now it is clear that the strong suppression of
forward scattering is a consequence of the interference of high
angular momentum partial waves.

D. Transverse Kerker scattering of electrons

As mentioned before, the transverse Kerker scattering of
light due to the interference of four multipoles (electric and
magnetic dipoles, and electric and magnetic quadrupoles) is
demonstrated [19]. Here we focus on the transverse Kerker
scattering of electrons by a cluster of quantum dots in view of
futuristic thermoelectric materials.

We consider a trimer composed of three core-only quan-
tum dots at (0,0,3), (0, 0,−3), and (3,0,0) nm, and a
quadrumer composed of four core-only quantum dots at
(0,0,3), (0, 0,−3), (0,3,0), and (0,−3, 0) nm. We assume that
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FIG. 5. Fsca (θ = 0, φ), Fsca (θ = 180◦, φ), and Fsca (θ =
0, φ)/Fsca (θ = 180◦, φ) as a function of E for (a1) core-only dimer
and (a2) core-shell dimer when Vs,α = −260 meV. Fsca (θ, φ = 0)
of a core-only dimer (red line) and of a core-shell dimer (blue line)
when (a3) E = 88 and Vs,α = −260 meV and (a4) E = 10 and
Vs,α = 110 meV. Similar plots for an asymmetric quadrumer are
in panels (b1)–(b4). Here Vs,α = 105 meV. E = 10 and 51 meV in
panels (b3) and (b4), respectively. In all plots mh = 0.1me.

mh = 0.1me and Vc,α = 250 meV. Figure 7 vividly illustrates
transverse Kerker scattering of electrons by this trimer and
quadrumer, for E = 50 and 65 meV, respectively. Indeed the
interference of s, p, and d (s, d , and f ) waves results in the
peculiar scattering pattern of the trimer (quadrumer).

V. CONCLUSION

In summary, we presented a generalized partial wave
method to treat the electron multiple scattering by a clus-
ter of spherical core-shell quantum dots embedded in a host
semiconductor. Guided by the multiparticle Mie theory, we
expanded the incident, scattered, and transmitted wave func-
tions in terms of the simultaneous eigenfunctions of the
Hamiltonian of the pristine semiconductor and angular mo-
mentum operator. We used the Nozawa’s addition theorem to
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FIG. 6. Contribution of various partial waves to the scattering
pattern of the core-only dimer. (a1) s and p, (a2) d and f , (a3)
(s, p), (p, d ), and (p, f ), (a4) (s, p, d ), (s, p, d, f ), and all partial
waves. Right panels (b1)–(b4) pertain to the core-shell dimer. Here
mh = 0.1me, E = 88, and Vs,α = −260 meV.

relate the expansion of the scattered and transmitted waves
to that of the incident wave via imposing the boundary con-
ditions at the inner and outer radii of all core-shell quantum
dots. This naturally considers the electron multiple scattering
from quantum dots. Inspired by the multipolar interference ef-
fects in nanophotonics, we theoretically demonstrated Kerker
scattering and transverse Kerker scattering of matter waves by
one or a cluster of spherical core-shell quantum dots.

Our results may open exciting opportunities for the devel-
opment of new thermoelectric materials. To provide a high
concentration of electrons, thermoelectrics are usually heavily
doped with impurity atoms. But such traditional dopants
considerably scatter the conduction electrons and conse-
quently limit their mobility. To enhance the thermoelectric
performance, untraditional dopants exhibiting ultradirectional
forward scattering deserve attention: Such dopants are
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FIG. 7. (a) Fsca (θ, φ) and (b) Fsca (θ, φ = 0) and Fsca (θ = 90◦, φ)
of a trimer of core-only quantum dots, when mh = 0.1me, E =
50, and Vc,α = 250 meV. Similar plots for a quadrumer of core-
only quantum dots when E = 65 meV are in panels (c) and (d),
respectively.

almost unseeable to the electrons. We showed that core-shell
quantum dot clusters may serve as phonon-blocking/electron-
transmitting inclusions. Indeed experiments have
already confirmed that thermoelectric properties of bulk

semiconductors can be improved by incorporation of
nanoparticles [46–49]. We believe that the addition of
designed core-shell rather than core-only quantum dots into
the host matrix is not out of reach. Thus “Kerker scatterers”
may pave the way towards futuristic thermoelectric materials.

APPENDIX A: NOZAWA’S ADDITION THEOREM

The Nozawa’s addition theorem states that [41]

h(1)
l (krα′ )Ylm(r̂α′ ) = ∑

l ′m′ ϑl ′ (krα )Yl ′m′ (r̂α )Gl ′m′,lm(dα′α, k).

Here dα′α = dα − dα′ and dα′α = |dα′α|. Moreover,

Gl ′m′,lm(dα′α, k) = 4π
∑

L

il ′−l+LI (lm, L, l ′m′)υL(kdα′α )

× Y ∗
L,m′−m(d̂α′α ),

where ϑl ′ = jl ′ and υL = hL for rα < dα′α , and ϑl ′ = hl ′ and
υL = jL for rα > dα′α . The Gaunt integral I (lm, L, l ′m′) =∫

YlmYLMY ∗
l ′m′d
 can be conveniently expressed in terms of

the Clebsch-Gordan coefficients.

APPENDIX B: THE SCATTERING COEFFICIENTS

The scattering coefficients can be found from the following
set of linear equations:

jl (qs,αaα )T s
l,α + yl (qs,αaα )T ′s

l,α = jl (qc,αaα )T c
l,α,

qs,α

ms,α

[
j′l (qs,αaα )T s

l,α + y′
l (qs,αaα )T ′s

l,α

] = qc,α

mc,α
j′l (qc,αaα )T c

l,α,

eik·dα jl (kbα ) + h(1)
l (kbα )Rl,α +

∑
α′ �=α,l ′

il ′−l

√
2l ′ + 1

2l + 1
jl (kbα )Gl0,l ′0(dα′α, k)Rl ′,α′ = jl (qs,αbα )T s

l,α + yl (qs,αbα )T ′s
l,α,

k

mh

[
eik·dα j′l (kbα ) + h′(1)

l (kbα )Rl,α +
∑

α′ �=α,l ′
il ′−l

√
2l ′ + 1

2l + 1
j′l (kbα )Gl0,l ′0(dα′α, k)Rl ′,α′

]

= qs,α

ms,α

[
j′l (qs,αbα )T s

l,α + y′
l (qs,αbα )T ′s

l,α

]
.
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