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Charge and spin correlations in insulating and incoherent metal states of twisted bilayer graphene
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We study electronic, charge, and magnetic properties of twisted bilayer graphene with fillings 2 � n � 6 per
moire unit cell within the recently introduced formulation of extended dynamical mean-field theory for two-
sublattice systems. We use previously obtained hopping parameters between the states, described by Wannier
functions, centered at the lattice spots of AB and BA stacking, and the long-range Coulomb interaction, obtained
within cRPA analysis. We show that account of spin exchange between AB and BA nearest-neighbor spots
is crucial to introduce charge and spin correlations between these spots. The account of this exchange yields
preferable concentration of electrons in the same valley, with the tendency of parallel spin alignment of electrons
in AB and BA spots, in agreement with earlier results of the strong-coupling analysis, suggesting SU(2)×SU(2)
emergent spin-valley symmetry. The local spectral functions show an almost gapped state at fillings n = 2, 4, 6,
and incoherent metal state for the other fillings. We find that in both cases the local states of electrons have
rather long lifetimes. At the same time, the nonlocal charge and spin susceptibilities, obtained within the ladder
approximation, are peaked at incommensurate wave vectors, which implies that the above-discussed ordering
tendencies are characterized by an incommensurate pattern.
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Twisted bilayer graphene (TBG), which represents two
sheets of graphene rotated by a small angle with respect to
each other, was synthesized experimentally in 2018 [1,2]. This
material possesses fascinating properties, showing insulating
behavior at the electron fillings of narrow bands n = 2, 6 per
moire unit cell (corresponding to the carrier concentration
±2 per unit cell) [1,2], as well as the half filling [3–7], and
superconductivity in the vicinity of the fillings n = 2, 6 [2].
The electron spectral function measurements by scanning tun-
neling microscopy (STM) at various fillings [5,6,8] show a
clear signature of interaction effects. Explaining features of
the spectral functions, observed in these experiments, repre-
sents an important theoretical problem.

The peculiarities of the band structure of TBG were dis-
cussed a long time before its experimental realization [9–15]
and studied in detail soon after it [16–23]. At small twist
angles almost flat electronic bands are formed, with the band-
width of the order of 10 meV, which depends, however, on
the twist angle [17,24]. The corresponding Wannier functions
are formed by the electronic states centered at the spots of the
lattice with AB and BA stacking [16–20], and the hopping
parameters between these spots were obtained by means of
Wannier projection [18,19].

Since the electronic dispersion of TBG possesses Dirac
points, the screened Coulomb interaction remains long range
(see, e.g., Refs. [25,26]). The matrix elements of this interac-
tion between Wannier states were determined in Refs. [18,27].
The intraspot Coulomb repulsion in the presence of sub-
strate with the dielectric permittivity ε = 5 is estimated as

V0 � 38 meV for the twist angle θ = 1.05◦ [18]. This value
of V0 is larger than the bandwidth of narrow bands, which
implies a possibility of interaction-induced Mott metal in-
sulator transition; a similar result for V0 was obtained for
θ = 1.08◦ [27]. The screening of the interaction by the other
bands was investigated within the cRPA approach [26,28–
30] and reduces the above-mentioned intraspot repulsion to
V0 � 15 meV for the permittivity of the substrate ε = 5 and
θ = 1.05◦ [28]; a close value was obtained for θ = 1.08◦,
ε = 4 in Ref. [29]. Therefore for realistic parameters screened
interaction remains larger than the bandwidth.

The effect of these interactions on the phase diagram
was studied within the weak-coupling approaches, such as
the random-phase approximation [31,32] and renormaliza-
tion group [33–36], strong-coupling approaches [27,37], as
well as the approaches not formally restricted by the inter-
action strength, in particular, mean-field approach [38–42],
Monte Carlo [43], exact diagonalization [44], and dynamical
mean-field theory (DMFT) [45]. These approaches yielded
a variety of phases, including ferromagnetism (see also
Refs. [46–48]), spin-density waves, valence bond order (see
also Refs. [49–51]), etc. Special emphasis was paid to the
emergent SU(2)×SU(2) spin and valley symmetry in the
strong-coupling limit [27,37,38], which yields formation of
mixed valley–spin ordered states with ferromagnetic align-
ment of the spins of the same valley.

Although the possibility of Mott transition in TBG
was emphasized right after its synthesis in Refs. [1–8,16],
only several theoretical approaches are able to treat this
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possibility. In view of sufficiently strong Coulomb interac-
tions in TBG, discussed above, the dynamical mean-field
theory [52], including the extended DMFT (E-DMFT) ap-
proach [53–55], as well as their nonlocal diagrammatic
extensions [56–60], are suitable tools for treatment of both
local and nonlocal interactions in this system. Previously,
mainly only on-site Coulomb interaction was considered in
DMFT studies of TBG [8,45].

Recently, the formulation of the E-DMFT approach for
multisublattice systems was used [60] to study charge and
spin correlations in graphene. This approach treats explicitly
both local and the nonlocal interaction inside the unit cell. The
remaining part of the nonlocal interaction was considered by
an effective retarded intra-unit-cell interaction of E-DMFT.
The nonlocal charge and spin susceptibilities can be further
considered within the ladder nonlocal diagrammatic exten-
sions of the E-DMFT approach [56–60]. The results of the
above-described E-DMFT method for graphene [60] showed
good agreement with the results of the functional group ap-
proach [61], as well as previous results of quantum Monte
Carlo studies.

In the present paper we apply the above-described ap-
proach to investigate the electronic properties and study the
effect of charge and spin correlations in TBG. In contrast
to the earlier studies of Refs. [8,45], we consider the effect
of the long-range Coulomb interaction obtained within the
cRPA analysis [28] for a tight-binding model of electrons with
Wannier functions centered at AB, BA spots. We also account
for the magnetic exchange interaction between AB and BA
spots, discussed in Refs. [18,27]. We show that the effect of
the latter interaction is crucial to resolve between different
types of correlations and find dominating charge susceptibil-
ity, which is odd in valley index but even in sublattice (AB
and BA) indexes, such that electrons prefer to concentrate
in the same valley but fill almost equally AB and BA spots.
The dominating spin susceptibility is even in the sublattice
index, showing preferable ferromagnetic ordering of nearest-
neighbor sites. We obtain local spectral functions at various
fillings and consider other local and nonlocal properties.

Model and method. To model properties of TBG, we
consider the tight-binding model of electrons, described by
the Wannier functions, centered at AB and BA spots on a
hexagonal lattice, with the hopping between different spots
and long-range interaction (see Fig. 1). The corresponding
Hamiltonian can be written as

H = −
∑

imα, jm′β,σ

timα, jm′α (d̂†
imασ d̂ jm′ασ + H.c.)

+ 1

2

∑
im, jm′,αβ

U σσ ′
imα, jm′β

(
n̂imασ − 1

2

)(
n̂ jm′σβ − 1

2

)
. (1)

Here, d̂†
imασ (d̂imασ ) is a creation (annihilation) operator of an

electron at the unit cell i of the hexagonal lattice, m = AB, BA
is the spot index, α = 1, 2 and σ =↑,↓ are the valley and spin
indexes, and n̂ jmασ = d̂†

jmασ d̂ jmασ . We consider a twist angle
θ = 1.05◦ and take the hopping parameters timα, jm′α from the
Wannier projection of the continuum model in Ref. [18]. The
last term in Eq. (1) describes the electron-electron interaction

FIG. 1. Upper part: Fragment of the hexagonal lattice of AB and
BA spots with the on-site (U0), nearest-neighbor (UAB,BA, solid lines),
and next-nearest-neighbor (UAB,AB) interactions (dashed line); longer
distance interactions are considered within the model (1) but are
not shown. Dotted lines show the lattice of AA spots. Lower part:
The impurity model formed by AB and BA spots, including the bath
Green functions ζ (iνn) acting at each spot, the on-site interaction U0,
the interspot interaction U ′ (shown by solid line), magnetic exchange
Jz, and the dynamic interaction v(iωn).

with the potential U σσ ′
imα, jm′β that includes both the on-site and

nonlocal contributions.
For the following discussion we split the interaction

U σσ ′
imα, jm′β = Uim, jm′ + 
Uim, jm′δαβδσσ ′ . The valley indepen-

dent and spin isotropic part was obtained within cRPA
analysis [28]. It can be parameterized by Uim, jm′ = U0/[1 +
U0/W (rim, jm′ )], where U0 = 15 meV is the on-site interac-
tion, W (r) = e2/(εr) is the bare Coulomb repulsion, and
rim, jm′ is the radius vector connecting corresponding lattice
sites i, m and j, m′. According to Refs. [18,27], we also
include the intravalley nearest-neighbor ferromagnetic ex-
change 
UiAB, jBA = −Jz where we choose Jz = 3.75 meV
[62]. Because of the limitations of the used impurity solver,
we neglect exchange interaction at distances longer than the
nearest-neighbor distance, which is justified by sufficiently
fast decay of this interaction with the distance [18,27]. We also
consider only intravalley longitudinal z-component Jz of the
spin interaction, since only this part of the interaction can be
reduced to the density-density form, allowed by the impurity
solver. This approximation corresponds to breaking SU(2)
spin symmetry and the emergent (in the strong-coupling limit)
O(2) × Z2 valley symmetry (see Ref. [27]) to the Z2,spin ×
Z2,valley one. We note that neglect of the transverse part of
the exchange (e.g., Hund) interaction is a rather common
approximation in DMFT studies of multiband systems (see,
e.g., Ref. [63]), and it is known to yield an overestimate of

115147-2



CHARGE AND SPIN CORRELATIONS IN INSULATING … PHYSICAL REVIEW B 106, 115147 (2022)

TABLE I. Charge (spin) static local susceptibility χ
c(s)AB1,mα

loc and double occupations for integer fillings. The intervalley local spin
susceptibility (α = 2) is negligibly small, 〈nAB1↑nmα↓〉 ≈ 〈nAB1↑nm2↑〉.

χ c
loc χ s

loc 〈nAB1↑nmα↑〉
mα AB1 BA1 AB2 BA2 AB1 BA1 BA1 AB2 BA2

n = 2, Jz = 0 1.29 −0.04 −1.11 −0.04 2.41 0 0.06 0.01 0.06
n = 2, Jz 1.25 1.12 −1.23 −1.12 2.48 2.24 0.23 0.00 0.01
n = 3, Jz 1.75 1.08 −1.13 −1.04 2.88 2.12 0.30 0.08 0.09
n = 4, Jz 1.67 1.49 −1.64 −1.50 3.31 2.99 0.47 0.17 0.17

phase transition temperatures while capturing the main physi-
cal properties of the system. We therefore expect that the main
ordering tendencies are captured by included interactions.

Following Ref. [60], we Fourier transform the isotropic
part of the interaction Vmm′ (q) = ∑

j Uim, jm′eiqrim, jm′ and
introduce averaged intra- (UAB,AB = U0) and intersublat-
tice (UAB,BA = U ′) interaction over momentum, Umm′ =∑

q Vmm′ (q). The remaining nonlocal isotropic interaction

Ṽmm′ (q) = Vmm′ (q) − Umm′ is considered within the E-DMFT
approach [53–55] by introducing the self-consistently deter-
mined effective dynamic interaction v(iωn) in the impurity
model and accounting for the difference Ṽmm′ (q) − v(iωn)
in the ladder summation for susceptibilities (see details in
Refs. [60,66]). The anisotropic part of the interaction is in-
troduced in the impurity model, which reads

SDMFT = −
∑

mα,iνn

ζ−1(iνn)d†
imασ (iνn)dimασ (iνn)

+ 1

2

∑
mασ,m′βσ ′,iωn

U σσ ′
mα,m′βnimασ (iωn)nim′ασ ′ (−iωn)

+ 1

2

∑
iωn

v(iωn)ni(iωn)ni(−iωn), (2)

where d†
imασ (dimασ ) are Grassmann variables, i refers

to the impurity site, U σσ
mα,mβ = U0 (α 
= β), U σ,−σ

mα,mβ =
U0, and U σσ ′

ABα,BAβ
= U σσ ′

BAα,ABβ
= U ′ − Jzδσσ ′δα,β (when m

is specified explicitly we denote the combination mα as
mα). The bath Green function ζ (iνn) = {[Gloc(iνn)]−1 +
(iνn)}−1 is determined self-consistently, nimασ (iωn) =∑

νn
d†

imασ (iνn)dimασ (iνn + iωn), ni(iωn) = ∑
mασ nimασ (iωn).

For the solution of the impurity problem we apply the
continuous-time quantum Monte Carlo (CT-QMC) approach,
realized in the iQIST package [64]. In view of approximate
particle-hole symmetry of the dispersion of Ref. [18], we
mainly consider interval of the fillings of electrons 2 � n � 4
per moire unit cell (n = 4 corresponds to half filling); we
have verified that the results for the fillings 4 < n � 6 are
close to those obtained by applying particle-hole transforma-
tion [65,66]. The calculations are performed at T = 11.6 K,
which is approximately 10 times smaller than the bandwidth,
and ε = 5. In view of not too low considered tempera-
ture, we perform calculations in the spin-, spot-, and valley-
symmetric state.

Results. Let us first analyze the results for the local charge
and spin susceptibility χ

c(s)m′β,mα

loc (ω) = (1/2)〈〈ρc(s)
im′β |ρc(s)

imα〉〉ω

at ω = 0, describing long-time charge and spin local
correlations, where ρc

imα = ∑
σ nimασ − n/4, ρs

imα =∑
σ (−1)σ nimασ . In Table I we present the results for the

susceptibilities and double occupations 〈nm′β↑nmασ 〉 at integer
fillings for m′, β = AB1. (The results for the other spot
and valley indexes can be obtained by symmetry; here
and hereafter if not specified otherwise explicitly, we use
energy units of 10 meV.) For n = 2 we present the results
with and without magnetic exchange (for other fillings
the comparison looks similarly). One can see that without
magnetic exchange, charge correlations are mostly present
only within the same spot, while spin correlations are present
within the same spot and valley. Accordingly, the occupations
and spin orientations of different spots are independent in
this case, and they can also be different in different valleys.
With inclusion of magnetic exchange charge correlations
are spread to both spots and valleys and indicate a tendency
towards filling of one of the two valleys, according to
positive (negative) intra (inter) valley charge correlations.
The above-mentioned tendency is especially pronounced
for n = 2, when the double occupations of electrons with
different valley or spin index almost vanish. At larger n finite
double occupations of different valleys or spin states occur,
although such occupations are still suppressed. While the
intra- and interspot charge susceptibilities within the same
valley are almost equal for n = 2 and n = 4, reflecting equal
preferable occupation of these spots, for n = 3 a stronger
imbalance of the intravalley charge susceptibilities is also
observed. The spin correlations in the presence of magnetic
exchange involve both spots of the same valley, indicating
preferable ferromagnetic alignment of the spin states at these
spots. Therefore we observe the crucial effect of magnetic
exchange on charge and spin correlations which supports
valley and spot states, similar to those discussed previously
within strong-coupling analysis of Refs. [27,37]. One can
also see that the local spin correlations are enhanced on
approaching half filling n = 4.

The local spectral functions A(ν) = (−1/π )ImGloc(ν), ob-
tained by analytical continuation of E-DMFT local Green’s
function using Pade approximants, are shown for vari-
ous fillings in Fig. 2. As we explicitly show in the
Supplemental Material, the results for the fillings n = 5, 6 are
close to those for n = 2, 3 up to the particle-hole transfor-
mation. One can see that for fillings n = 2, 4, 6 the spectral
functions are almost gapped at the Fermi level (ν = 0) due
to strong electronic correlations and correspond to the insu-
lating states, which agrees with the experimental data [1–6].
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FIG. 2. The frequency dependence of the local spectral functions
at various fillings. Dotted lines show the results for Jz = 0 and n = 2
(left plot) and n = 4 (right plot).

In agreement with the discussion above, one can see that
switching off Jz yields more metallic spectral functions. The
peaks of the spectral functions correspond to broadened levels
of the impurity problem, which in the absence of the retarded
part v(iωn) are located at ±(U0 + Jz )/2 (see Supplemental
Material [66]) and are slightly shifted by the retarded in-
teraction. We note that earlier the peaks of the spectral
functions, obtained experimentally [67], were associated with
the extended (higher-order) van Hove singularities [67,68].
However, the experimental distance between the peaks �
57 meV at θ = 1.1◦ is too large in comparison to the band-
width ∼10 meV, estimated from the ab initio approaches,
which required to readjust bandwidth in Ref. [67]. For n 
=
2, 4, 6 we obtain the nonzero density of states at the Fermi
level; the maximum of the spectral function at n = 3, 5 cor-
responds to the broadened atomic level ±(U ′ − Jz )/2 (see
Supplemental Material [66]). As we discuss in the Supple-
mental Material [66], even in this case the obtained frequency
dependence of the electronic self-energy has a nonquasipar-
ticle form. This state can be therefore characterized as an
incoherent metallic state.

To study further the degree of electron localization at in-
teger fillings, we present in Fig. 3 the frequency dependence
of the real parts of the diagonal local spin and charge suscep-
tibilities χ

c(s)mα,mα
loc (ω) at the real frequency axis, obtained by

Pade analytical continuation of E-DMFT results. The narrow
peaks of the real part show charge and spin localization, with
the local-state lifetime τ , given by the inverse width of the
peak of the real part, cf. Refs. [69–73]. For n = 2 and n = 4
we obtain τ ∼ 5 ns, while for n = 3 we have τ ∼ 0.5 ns;
in all cases we find τ � h/(kBT ) (h and kB are the Planck
and Boltzmann constants, respectively). Importantly, even in
the incoherent metallic state at n = 3 this is a rather long
local-state lifetime in comparison to the typical lifetimes of
local magnetic moments obtained in such strongly correlated
substances as pnictides (τ ∼ 10 fs, Ref. [71]), and even α iron
(τ ∼ h/(kBT ) ∼ 5 ps at the considered temperature [69,70]).
Even longer lifetimes of local states of TBG are expected at
lower temperatures.

To study the nonlocal spin and charge correlations, we
calculate the nonlocal static charge (spin) susceptibility
χ

c(s),mα,nβ
q = (1/2)〈〈ρc(s)

q,mα|ρc(s)
−q,nβ〉〉ω=0, where ρc(s)

q,mα is the

Fourier transform of ρ
c(s)
imα . These susceptibilities are evaluated

FIG. 3. The frequency dependence of the real part of local charge
(dashed lines) and spin (solid lines) susceptibilities χ

c(s)mα,mα
loc (ω) at

the real frequency axis and integer fillings. The rescaling factor a = 1
for n = 2, 4, and a = 10 for n = 3 is introduced for visibility.

in the ladder approximation via the numerical solution of the
Bethe-Salpeter equation using local vertices, obtained within
the E-DMFT approach; see Ref. [60] for the details (cf. also
Refs. [56–58,74]). For calculation of the local vertices within
the CT-QMC method we use 40–60 fermionic frequencies
(both positive and negative). In Fig. 4 we show the result-
ing momentum dependence of the staggered with respect to
valleys charge susceptibility χ c,st

q = ∑
mnαβ (−1)α+βχ

c,mα,nβ
q

for n = 2. The considered susceptibility is dominant among
other uniform/staggered charge susceptibilities in view of
the analysis of the local counterpart, presented above; the
wave vectors are shown in units of L−1

AA, where LAA =
atr/[2 sin(θ/2)] is the supercell lattice constant of AA spots,
and atr = 2.46 Å is the lattice constant of the sites of one
of the graphene sublattices. We find that the most prefer-
able ordering tendency corresponds to an incommensurate
pattern with a continuous set of the wave vectors, forming
almost a circle in momentum space with the radius close to
2L−1

AA, which implies periodicity in the real space with the
period ∼3LAA. Surprisingly, we find almost the same pattern
in the spin susceptibility χ s

q = ∑
mnαβ χ

s,mα,nβ
q with slightly

different maximal value, see Ref. [66]. Therefore the space
distribution of both charge and spin correlations in TBG at
n = 2 is expected to be the same and characterized by the
obtained set of the incommensurate wave vectors, which is
another consequence of the emergent charge-spin symmetry.
Similar results are obtained for the other fillings, and the
examples of momentum dependencies of susceptibilities for
the integer fillings n > 2 are presented in the Supplemental
Material [66]. With approaching half filling of the moiré
unit cell (n = 4), the charge and spin susceptibilities increase
while the wave vector of incommensurate correlations de-
creases such that the charge and spin correlations become
more commensurate.
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FIG. 4. The momentum dependence of the staggered in valley
indexes charge susceptibility χ c,st

q at n = 2. The momentum depen-
dence of the spin susceptibility is quite similar, see Supplemental
Material [66].

Conclusion. In this paper we have applied recently devel-
oped formulation of an E-DMFT approach [60] to consider
the electronic states, local and nonlocal charge and spin cor-
relations of TBG in the filling range 2 � n � 6. We have
used previously obtained Wannier projected dispersion of
electrons, moving on a lattice of the spots with AB and BA
stacking and cRPA screened interaction, which includes both
Coulomb repulsion and magnetic exchange. In the presence
of magnetic exchange between nearest-neighbor AB and BA
spots we find the tendency of electrons to occupy the same
valley and fill almost equally the nearest-neighbor spots. The
magnetic exchange favors also ferromagnetic alignment of
spins of nearest-neighbor spots. The effect of this exchange
is crucial for obtaining the above-discussed state; without the
magnetic exchange the correlations between different spots
become negligibly small.

The obtained state in the presence of magnetic exchange
for n = 2(6), when the double occupation of electrons (holes)
is present only within the same valley, is similar to that earlier
discussed in the strong-coupling analysis [27,37] within an
emergent SU(2)×SU(2) spin valley symmetry scenario. With
approaching half filling the double occupation of different
valleys occurs, although it is suppressed by correlations. At
lower temperatures this can yield a cascade of phase transi-
tions, which is similar to that discussed recently in Ref. [7],
with the difference that we expect a tendency to the equal
occupation of the spots within the same valley instead of
filling equally different spin projections. Yet at the considered
temperature we find finite local and nonlocal charge and spin
susceptibilities such that the spontaneous symmetry breaking
does not occur.

The local spectral functions, obtained within E-DMFT
analysis, show a gapped state for the fillings n = 2, 4, 6
and an incoherent metal state for the other fillings. The ob-
tained spectral functions qualitatively agree with the STM
study of Ref. [8]. The spectral functions in the vicinity of

the fillings n = 4, 6 also qualitatively agree with the studies
[5,6]. The disagreement at some other fillings, as well as
mutual disagreement between some features of the above-
mentioned STM studies, requires further clarification but can
be at least partly explained by the tip-induced band bend-
ing (see discussion in Ref. [5]). At all fillings we find that
local magnetic and charge states have rather large lifetime
of the order of few nanoseconds at the considered tempera-
ture T = 11.6 K; even longer lifetimes are expected at lower
temperatures.

Based on the solution of the E-DMFT problem, the local
vertices were calculated and the nonlocal charge and spin
susceptibilities were evaluated via the solution of the Bethe-
Salpeter equation. In both the staggered in valleys charge
channel and in the spin channel we find an incommensurate
pattern of preferable ordering tendencies with the wave vector
∼2L−1

AA, and the corresponding real space periodicity at dis-
tances ∼3LAA, where LAA is the supercell lattice constant of
AA spots.

In the considered approach we have accounted for only the
intravalley longitudinal z component Jz of the spin interac-
tion, since only this part can be reduced to a density-density
form, allowed by the used impurity solver. We expect that
this does not qualitatively change the obtained results, since
the main effect on the ordering tendencies is captured by the
included interactions. We have also included the magnetic
exchange only between the nearest-neighbor AB and BA spots
in view of its fast decay with distance; considering longer-
range magnetic exchange requires treatment of the dynamic
spin interaction in the impurity problem. Using solvers, which
account for the transverse spin and/or isospin valley part of
the exchange interaction for the considered four-band model,
is a more challenging problem which can be considered in
future studies.

The developed method can be further used to study super-
conductivity of TBG near integer fillings. Another interesting
topic is studying dynamic collective excitations, such as
magnons, plasmons, etc., in twisted bilayer graphene, as well
as studying other related systems.

In view of strong correlations in TBG, an interesting task
for future studies is also considering the nonlocal corrections
to the self-energy, which will allow one to study the effect of
the renormalization of the Fermi velocity, as well as damping
of electronic quasiparticles due to nonlocal correlations, and
can be performed within one of the diagrammatic extensions
of the E-DMFT approach (cf. Refs. [56–59]).
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